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On Economic Efficiency under Non-Convexity

1 Introduction

The analysis of economic efficiency relies extensively on convexity assump-
tions: convexity of production sets and convexity of preferences (e.g, Debreu
[10]). Yet, such assumptions are often not satisfied. Indeed, non-convexity
can arise under a number of circumstances, including externalities, increasing
returns, and non-divisibility (e.g., Guesnerie [11], Radner [24]). Local char-
acterizations of Pareto efficiency under non-convexity have been explored
by Bonnisseau and Cornet [6], Jofre and Cayupi [12], and Mordukhovich
[21]. Relying on subgradient, they extended the Second Welfare theorem
by investigating the first-order necessary conditions and the associated local
prices supporting a Pareto efficient allocation under non-convexity. How-
ever, a global analysis of pricing under non-convexity is more challenging.
Economists have come to rely on the separating hyperplane theorem to iden-
tify competitive prices supporting an efficient allocation (e.g., [10]). But
non-convexity means that the separating hyperplane theorem can no longer
be used. Moreover, non-convexity means that, in general, knowing local
prices (as analyzed in [6], [11], [12], [21]) is no longer sufficient to provide a
global characterization of Pareto efficiency. This is an important issue since
non-convexity is known to have adverse effects on the ability of competi-
tive markets and decentralized decisions to support an efficient allocation
[11]. This has stimulated much research on nonlinear pricing schemes and
their effects on efficiency. As stressed by Wilson ([30]), nonlinear pricing is
commonly used in both regulated and unregulated industries. Starting with
Ramsey pricing ([26]), the efficiency aspects of nonlinear pricing have been
explored in the context of monopoly pricing (e.g., Boiteux [5] , Mirrlees [19])
and regulatory policies (e.g., Laffont and Tirole [13]). The analysis has also
covered the efficiency of nonlinear tariffs (e.g., Ordover and Panzar [22], Am-
strong and Vickers [2], Oren et al. [23]) and of bundle pricing (e.g., McAfee
et al. [18], Armstrong [1]).

The objective of this paper is to develop a refined analysis of efficient allo-
cation under non-convexity. Our approach relies on a generalized separation
theorem under non-convexity. First, following Luenberger ([17]), we start
with zero-maximal allocations as a representation of Pareto efficiency. Sec-
ond, we use zero-maximal allocations to show the existence of a separating
hypersurface that supports a dual characterization of Pareto efficiency under
non-convexity. This extends the well-known separating hyperplane theorem
(which applies under convexity). We show how replacing the separating
hyperplane by a separating (non-linear) hypersurface provides the required
analytical insights to analyze economic efficiency under non-convexity. Our
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main result is the establishment of a dual characterization of zero-maximality
that remains valid under non-convexity. In this context, we show how the
separating hypersurface provides information on nonlinear prices support-
ing efficient allocations. Implications for the decentralization of economic
decisions under non-convexity are discussed.

2 The Model

2.1 Concepts and Notations

Consider an economy involving n individuals consuming m commodities. Let
[n] = {1, ..., n} denote the set of individuals. The i-th individual consumes
xi ∈ Xi ⊂ Rm, where Xi is the feasible set for xi, i ∈ [n]. For each i ∈ [n],
we make the following assumptions:

A.1 Xi is closed.
A.2 Xi has a lower bound.

While these assumptions include Xi = Rm
+ as a special case, note that

assumptions A.1 and A.2 do not require the set Xi to be convex.
Let Π = X1 × X2 × · · · × Xn and Σ = X1 + X2 + · · ·+ Xn. The vector of

all consumptions is denoted by X = (x1, x2, . . . , xn) ∈ Π ⊂ Rnm. The goods
X ∈ Π are produced. Denote the vector of aggregate netputs produced by
y ∈ Y ⊂ Rm,1 where Y is the feasible set representing the aggregate technol-
ogy. We make the following assumptions:

B.1 Y is closed.
B.2 Y ∩ Σ 6= ∅.

Importantly, we do not assume that the set Y is convex nor that it exhibits
free disposal.2 This allows for a technology exhibiting increasing returns to
scale and/or non-divisibility.

An allocation (X, y) involves consumption X = (x1, x2, ..., xn) ∈ Rmn

along with production y ∈ Rm. It is feasible if it satisfies X ∈ Π, y ∈ Y , and

∑

i∈[n]

xi ≤ y. (2.1)

Note that assumption B.2 guarantees that a feasible allocation always exists.
We assume that each consumer has a preference ordering that can be

represented by a utility function. The utility function of the i-th individual
is ui : Xi −→ R, i ∈ [n]. We make the following assumption:

1In the netput notation, outputs are positive and inputs are negative.
2Y would exhibit free disposal if it satisfied Y = Y − Rm

+ .
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C.1 The utility function ui is continuous on Xi for each i ∈ [n].

Note that we do not assume that ui is quasi-concave on Xi, i ∈ [n]. Under
a state-contingent approach, this allows for risk loving behavior. For the i-th
consumer, define the range of attainable utility Ui =

{
ui(xi) : xi ∈ Xi

} ⊂ R,
i ∈ [n] and U =

∏
i∈[n] Ui.

Our evaluation of consumer preferences will rely on the benefit function
introduced by Luenberger ([14]). Consider a reference bundle g ∈ Rm

+ with
g 6= 0. For the i-th consumer, the benefit function is defined as follows:

Definition 2.1.1 The i-th consumer’s benefit function bi is defined on Xi×R
by:

bi(xi, Ui) =





sup
β

{
β : β ∈ ∆i(xi, Ui)

}
if ∆i(xi, Ui) 6= ∅,

−∞ otherwise,
(2.2)

where ∆i(xi, Ui) = {β ∈ R : ui(xi − βg) ≥ Ui, xi − βg ∈ Xi}.
The benefit function defined in (2.2) measures the number of units of the

reference bundle g the i-th consumer is willing to give up starting from utility
level Ui to obtain xi.

The properties of the benefit function have been investigated by Luen-
berger ([14]). We say that the reference bundle g is good for the i-th consumer
if, for any xi ∈ Xi, we have xi + αg ∈ Xi and ui(xi + αg) > ui(xi) for all
α > 0. As shown in ([14]), for i ∈ [n], the benefit function bi(xi, Ui) has the
following properties:

(a) bi(xi, Ui) is upper semi-continuous in xi and Ui, and non-increasing in
Ui.

(b) bi(xi, Ui) is non-decreasing in xi if ui(xi) is non-decreasing in xi.
3

(c) When g is good for the i-th consumer, ui(xi) = Ui implies that
bi(xi, Ui) = 0.

(d) When xi is in the interior of Xi, bi(xi, Ui) = 0 implies that ui(xi) = Ui.
(e) The benefit function satisfies the translation property bi(xi+αg, Ui) =

α + bi(xi, Ui) for any α ∈ R.

In general, note that {xi : ui(xi) ≥ Ui, xi ∈ Xi} ⊂ {xi : bi(xi, Ui) ≥ 0, xi ∈
Xi}. However, combining (c) and (d), it follows that {xi : ui(xi) ≥ Ui, xi ∈
Xi} = {xi : bi(xi, Ui) ≥ 0, xi ∈ Xi} when g is good for the i-th consumer and
xi is in the interior of Xi.

Next, following [17], define the shortage function

3As shown in ([14]), bi(xi, Ui) would be concave in xi if ui(xi) is quasi-concave on Xi

and Xi is a convex set. However, given our focus on non-convexity, we do not assume that
ui(xi) is quasi-concave on Xi, or that Xi is a convex set. In other words, our analysis
applies in situations where the benefit function bi(xi, Ui) is not concave in xi.
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Definition 2.1.2 The shortage function is defined on Rm by

S(y) =

{
inf
σ
{σ : y − σg ∈ Y} if there is a σ such that y − σg ∈ Y ,

+∞ otherwise.
(2.3)

The shortage function in (2.3) measures how far short (measured in num-
ber of units of the reference bundle g) is point y from the frontier of the
aggregate technology (represented by the feasible set Y). In general, note
that S(y) ≤ 0 when y ∈ Y , implying that Y ⊂ {y : S(y) ≤ 0}. In addition,
the shortage function satisfies the translation property S(y +αg) = α+S(y)
for any α ∈ R.4 Below, we will make extensive use of the benefit function
(2.2) and of the shortage function (2.3) in the analysis of efficiency.

2.2 Efficiency

In our analysis of economic efficiency, we rely on the classical Pareto criterion:
a feasible allocation is Pareto efficient if no individual can be made better
off without making anyone else worse off. For some U ≡ (U1, U2, ..., Un) ∈ U ,
our analysis will rely on the following optimization problem5

V (U) = sup
X∈Π
y∈Y

{ ∑

i∈[n]

bi(xi, Ui) :
∑

i∈[n]

xi ≤ y
}

. (2.4)

Below, we focus our attention on situations where the supremum in (2.4)
is a maximum.6 Then, following [17], an allocation (X, y) is said to be
maximal if it solves (2.4). And it is zero-maximal if, in addition to being
maximal, U is chosen to satisfy V (U) = 0.

Next, as in [15] and [17], we relate zero-maximality to Pareto efficiency.
In what follows, for a given X∗ = (x∗1, x

∗
2, ..., x

∗
n), we adopt the notation

U∗
i = ui(x

∗
i ) for i ∈ [n], and U∗ = (U∗

1 , U∗
2 , ..., U∗

n). Luenberger ([17], p. 190)
showed the following proposition.

Proposition 2.2.1 Assume that the reference bundle g is good for at least
one consumer. If a feasible allocation (X∗, y∗) ∈ Π × Y is Pareto efficient,
then it is zero maximal.

Also, Luenberger ([15], p. 231) proved the following result.

4Note that S(y) would be convex in y if Y is a convex set ([17]). However, given our
focus on non-convexity, we do not assume that Y is a convex set. In other words, our
analysis applies to situations where the shortage function S(y) is not convex.

5Under assumption B.2, the optimization problem (2.4) has necessarily a solution for
some U .

6Under assumption C.1 and from Weierstrass’ theorem, a sufficient (but not necessary)
condition for (2.4) to correspond to a maximum is that the set Σ ∩ Y be compact.
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Proposition 2.2.2 If an allocation (X∗, y∗) ∈ Π×Y is zero-maximal, then
it is Pareto efficient compared to all allocations where xi is in the interior of
Xi for each i ∈ [n].

Propositions 2.2.1 and 2.2.2 establish the relationship (under some regu-
larity conditions) between zero-maximality and Pareto efficiency.7 This rela-
tionship is intuitive. First, it associates Pareto efficiency with the maximiza-
tion of aggregate benefit. Second, interpreting V (U) as aggregate surplus,
it implies the complete redistribution of social surplus. Finally, the utilities
U satisfying U ∈ {U ′ : V (U ′) = 0} characterize the Pareto utility frontier
(Samuelson [28]). Importantly, these results hold without assuming that the
production set Y is convex or that the utility functions ui(xi), i ∈ [n], are
quasi-concave.

The following alternative characterization of maximality will prove useful.
(All proofs are presented in the Appendix).

Lemma 2.2.3 Let V be the map defined in (2.4). We have8

V (U) = sup
X∈Π
y∈Rm

{ ∑

i∈[n]

bi(xi, Ui)− S(y) :
∑

i∈[n]

xi ≤ y
}

. (2.5)

Lemma 2.2.3 shows that a maximal allocation can be obtained by max-
imizing net benefit, i.e. aggregate benefit minus shortage. Note that the
optimization with respect to production activities y is unrestricted in (2.5).
This means that the shortage function S(y) in (2.5) automatically imposes
the feasibility condition y ∈ Y .9 In other words, in maximal allocations, the
shortage function S(y) captures all the relevant information about technol-
ogy with or without a convex technology. From propositions 2.2.1 and 2.2.2
(and under the regularity conditions stated in these propositions), it follows
that the optimization problem (2.5) defines a Pareto efficient allocation when
U ∈ {U ′ : V (U ′) = 0)}. Below, we will make extensive use of this result.

3 Separation

3.1 Existence of a separating hypersurface

Let (X∗, y∗) ∈ Π× Y be a zero-maximal allocation. From equation (2.5), it
follows that

∑

i∈[n]

bi(xi, U
∗
i )− S(y) ≤

∑

i∈[n]

bi(x
∗
i , U

∗
i )− S(y∗) = 0 (3.1)

7Note that Proposition 2.2.2 can be shown to hold under slightly more general con-
ditions. Indeed, Luenberger’s proof ([15], p. 231) remains valid when compared to all
allocations xi ∈ Xi such that xi − βig ∈ Xi for some βi > 0, i ∈ [n].

8Note that the supremum in (2.5) can be replaced by a maximum when (2.4) corre-
sponds to maximum.

9In addition, it implies that a maximal allocation always satisfies S(y) = 0.
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for all y ∈ Rm and all X ∈ Π. Define on Rm × U the function

B(y, U) = sup
X

{ ∑

i∈[n]

bi(xi, ui) :
∑

i∈[n]

xi ≤ y, X ∈ Π
}

. (3.2)

Noting that bi(xi, Ui) defined in (2.2) is upper semi-continuous in (xi, ui), it
follows that the function B(y, U) in (3.2) is upper- semi-continuous in (y, U).
In addition, considering maximal allocations, we deduce from (2.4) and (2.5)
that

V (U) = sup
y
{B(y, U) : y ∈ Y} = sup

y
{B(y, U)− S(y) : y ∈ Rm} (3.3)

which has for solution

Y ∗(U) = arg max
y
{B(y, U)− S(y) : y ∈ Rm}, (3.4)

for some U ∈ U . Under the conditions stated in propositions 2.2.1 and
2.2.2, it follows that Pareto efficiency is obtained when U satisfies V (U) =
B(y, U)− S(U) = 0 and y ∈ Y ∗(U).

Below, we consider the case where U satisfies Y ∗(U) 6= ∅ and Rm\Y ∗(U) 6=
∅. We also consider the map h∗ : Rm −→ R defined as

h∗(y) = θ∗[B(y, U∗)− S(y)] + S(y), (3.5)

for some θ∗ ∈]0, 1[. The function h∗ in (3.5) is used to establish the following
proposition.

Proposition 3.1.1 (Separation theorem). Let (X∗, y∗) ∈ Π × Y be a zero-
maximal allocation and let U∗ = (u1(x

∗
1), ..., un(x∗n)). Then, there exists a

function h∗ : Rm → R which satisfies

h∗(y) = B(y, U∗) = S(y) = 0, (3.6)

for all y ∈ Y ∗(U∗) and

B(y, U∗) < h∗(y) < S(y) (3.7)

for all y ∈ Rm\Y ∗(U∗). Moreover, V (U∗) = 0.

The function h∗ : Rm → R defines a hypersurface {y : h∗(y) = 0, y ∈
Rm} that separates the sets {y : B(y, U∗) ≥ 0, y ∈ Rm} and {y : S(y) ≤
0, y ∈ Rm}. Noting that Y ⊂ {y : S(y) ≤ 0} and {y : ui(xi) ≥ Ui, xi ∈
Xi, i ∈ [n];

∑
i∈[n] xi ≤ y, y ∈ Rm} ⊂ {y :

∑
i∈[n] bi(xi, ui) ≥ 0, xi ∈ Xi, i ∈

[n];
∑

i∈[n] xi ≤ y, y ∈ Rm} ⊂ {y : B(y, U) ≥ 0, y ∈ Rm}, it follows that

{y : h∗(y) = 0, y ∈ Rm} is also a separating hypersurface between Y and
{y : ui(xi) ≥ u∗i , xi ∈ Xi, i ∈ [n];

∑
i∈N xi ≤ y, y ∈ Rm}.
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The separating hypersurface {y : h∗(y) = 0, y ∈ Rm} is in general not
unique. To see that, simply consider choosing a different θ ∈]0, 1[ in (3.5),
which would generate a different function h∗. This issue of choosing among
the possible separating hypersurfaces will be investigated below. In general,
we take h∗ to be an upper semi-continuous function (e.g., by letting θ∗ → 1
in (3.5)). Below, we will explore conditions under which the function h∗ can
be chosen to be continuous.

Note that the analysis becomes much simpler under convexity assump-
tions. Then, the separating hyperplane theorem applies, and h∗ can be chosen
to be linear. It this case, {y : h∗(y) = 0, y ∈ Rm} is a separating hyperplane
and its gradient identifies competitive prices supporting an efficient allocation
(e.g., [10]). However, non-convexity means that a separating hyperplane may
no longer exist. Yet, the above result shows that a separating hypersurface
continues to exist in general under non-convexity. The key to its existence
relies on allowing the function h∗ to be non-linear. As discussed below, the
separating hypersurface {y : h∗(y) = 0, y ∈ Rm} will be of considerable
interest in the characterization of efficient allocations under non-convexity.
We will argue that h∗(y) can be interpreted as the aggregate value of y, its
gradient defining social prices supporting a Pareto efficient allocation.

3.2 Nonlinear price equilibrium

Interpreting h∗(y) as the aggregate value of y, we now consider a class of
allocations defined by the concept of a nonlinear price equilibrium. It includes
as a special case the standard characterization of competitive equilibrium
obtained when prices are uniform (e.g., [10], [17]).

Definition 3.2.1 A triplet (X∗, y∗, h∗) consisting of an allocation X∗ =
(x∗1, ..., x

∗
n), an aggregate production plan y∗ and a real valued function h∗

defined on Rm, is called a nonlinear price equilibrium of the economy if:

(a)
∑

i∈[n] x
∗
i ∈ Y (feasibility).

(b) If xi ∈ Xi and ui(xi) > ui(x
∗
i ) for some i ∈ [n], then h∗(xi +y∗−x∗i ) >

h∗(y∗)(preference maximization).

(c) h∗(y∗) ≥ h∗(y) for all y ∈ Y, (aggregate profit maximization).

In the case of a convex economy (where the separating hyperplane theo-
rem applies), note that we can set h∗(y) = p∗ · y, where p∗ can be interpreted
as the price vector for the m commodities. Then, our non-linear price equi-
librium reduces to the classical market equilibrium. Indeed, in this case,
condition (b) means that if xi ∈ Xi and ui(xi) > ui(x

∗
i ), then p · xi > p · x∗i

for i ∈ [n]. Similarly, condition (c) becomes p∗ · y∗ ≥ p∗ · y for all y ∈ Y .
The following two propositions establish the close linkages existing be-

tween a nonlinear price equilibrium and zero-maximal allocations.
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Proposition 3.2.2 Assume that g is good for at least one consumer, and
that all utility functions satisfy local non-satiation. Suppose there is some
θ∗ ∈]0, 1[ such that the triple (X∗, y∗, h∗) is a nonlinear price equilibrium
with h∗(y) = θ∗[B(y, U∗) − S(y)] + S(y) for all y ∈ Rm. Then, (X∗, y∗) is
zero maximal.

Proposition 3.2.3 Suppose all utility functions are continuous. Suppose
that (X∗, y∗) is zero-maximal and that g is good for at least one consumer.
Then, there is a map h∗ : Rm → R such that:

(a) For each i ∈ [n], xi ∈ Xi and ui(xi) ≥ U∗
i implies h∗(xi + y∗ − x∗i ) ≥

h∗(y∗).

(b) For all y ∈ Y, h∗(y) ≤ h∗(y∗).

(c) If h∗ is continuous10 and satisfies h∗(y∗) 6= min{h∗(xi +y∗−x∗i ) : xi ∈
Xi} for all i ∈ [n], then (X∗, y∗, h∗) is a nonlinear price equilibrium.

Propositions 3.2.2 and 3.2.3 show the relationships between zero-maximality
and a non-linear price equilibrium. Using propositions 2.2.1 and 2.2.2 (and
under the conditions stated in these propositions), this also establishes re-
lationships between non-linear price equilibrium and Pareto efficiency. Such
results apply under a non-convex Y and non-quasi-concave preferences. They
include as a special case the classical welfare theorems. Indeed, under con-
vexity assumptions (where the separating hyperplane theorem applies), they
reduce to the standard relationships between competitive equilibrium and
Pareto efficiency (e.g., [10], [17]).

One can show that the convex case can be retrieved as a special case. In
particular, if h∗ is differentiable the gradient calculated at the equilibrium
yields a price equilibrium.

Corollary 3.2.4 Suppose that Y and Xi are convex for all i ∈ [n]. More-
over, suppose also that the utility functions are continuous and quasi-concave.
Suppose that (X∗, y∗) is zero-maximal and that g is good for at least one con-
sumer. Suppose that map h∗ is continuous and differentiable at y∗. We have:

(a) For each i ∈ [n], xi ∈ Xi and ui(xi) ≥ U∗
i implies ∇h∗(y∗) · xi ≥

∇h∗(y∗) · x∗i .

(b) For all y ∈ Y, ∇h∗(y∗) · y ≤ ∇h∗(y∗) · y∗.

(c) If h∗ is continuous and satisfies h∗(y∗) 6= min{h∗(xi + y∗ − x∗i ) : xi ∈
Xi} for all i ∈ [n], then (X∗, y∗,∇h∗(y∗)) is a price equilibrium.

10Conditions under which h∗ is continuous are analyzed below.
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4 Duality

In this section, we investigate a dual representation of zero-maximal alloca-
tions. Our duality relationships are obtained under the following additional
assumption on consumer preferences:

D.1 (monotonicity). For each i ∈ [n], ui is non-decreasing on Xi.

As noted above, the monotonicity assumption D.1 implies that bi(xi, Ui)
is non-decreasing in xi. We assume that this condition holds through the
rest of the paper.

Again, our analysis is presented without assuming that the utility function
ui(xi) is quasi-concave on Xi, i ∈ [n]. And importantly, we do not assume
that the set Y is convex.

4.1 Continuity

Above, we have seen that the benefit function bi is in general upper semi-
continuous. We have suggested that the function h∗ defining the separating
hypersurface can also be chosen to be upper semi-continuous. This section
establishes conditions under which the stronger property of continuity applies
to the benefit function bi, the shortage function S as well as the function h∗.
Such properties will prove important in our duality analysis.

First, consider the benefit function bi(xi, Ui). We want to explore con-
ditions under which bi is continuous in xi and Ui, i ∈ [n]. Note that Luen-
berger ([14]) explored this issue after making convexity assumptions. While
establishing conditions for the continuity of the benefit function, some of Lu-
enberger’s results ([14]) do not hold under non-convexity.11 This means that
establishing continuity under non-convexity requires additional assumptions.

We introduce the following definition. For each i = [n], we say that the
direction of g is interior to the consumption set Xi if for all xi ∈ Xi and all
βi > 0, xi + βig lies in the interior of Xi. As shown below, this condition is
needed to establish the lower semi-continuity of the benefit function. Note
that this condition does not appear to be overly restrictive. For example,
when Xi satisfies Xi = Xi + Rm

+ , then the direction of g is always interior to
Xi if g > 0.12

The next result establishes conditions under which the benefit function
is continuous.

Proposition 4.1.1 Assume that assumptions A.1, A.2 and C.1 hold, and
that g is good. For each i ∈ [n], the benefit function bi(xi, Ui) is jointly

11For example, it can be shown that the benefit function is not always lower semi-
continuous under non-convexity of the consumption set.

12When some elements of g are null, then the direction g being interior to the consump-
tion set does restrict g to point away from the lower bound of Xi.
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continuous with respect to xi and Ui in the interior of the region of Xi × Ui

where bi(xi, Ui) is finite if either one of the following two conditions holds:
(a) the set Xi is convex,
(b) the direction of g is interior to Xi.

Proposition 4.1.1 establishes conditions under which the benefit function
bi(xi, Ui) is continuous in (xi, Ui). These conditions are rather mild. First,
they require that the reference bundle g be good. Second, they focus the
analysis on points away from the region where the benefit function is infi-
nite. This does not seem overly restrictive. Third, they include either the
convexity of the set Xi (condition (a)), or that the direction of g be interior
to the consumption set Xi (condition (b)). The former imposes a convexity
restriction on the set Xi, while the latter does not. However, condition (b)
does impose some restrictions on the reference bundle g. As noted above,
condition (b) is always satisfied if g is strictly positive and Xi = Xi + Rm

+ .
And it remains satisfied when the bundle g points away from the lower bound
of the set Xi. This provides useful information that can help in the choice of
g.

Below, we assume that the conditions stated in Proposition 4.1.1 are
satisfied. This means that, under the stated regularity conditions, we take
the benefit function to be continuous in xi. Together with condition D.1,
this means that we assume that the benefit function bi(xi, Ui) is continuous
in (xi, Ui) and non-decreasing in xi. These properties will be used in our
duality analysis.

Can we also establish monotonicity and continuity properties of the short-
age function S(y)? As noted above, we consider the general case where we do
not restrict the set Y to be convex or to satisfy free disposal. In this context,
the shortage function S may not be monotone nor continuous. However, de-
fine Y+ ≡ Y −Rm

+ as the free-disposal hull of Y , and let S+ be the shortage
function obtained under Y+. Under free disposal, note that S+(y) is non-
decreasing in y and satisfies Y ⊂ Y+ = {y : S+(y) ≤ 0} (see [3]; [17], p. 20).
When Y 6= Y+, it follows that the set Y+−Y gives the region where free dis-
posal does not hold. It is in that region that S(y) fails to be non-decreasing in
y. But under the monotonicity assumption D.1 (which implies that B(y, U)
is monotonic in y), the separation property stated in proposition 3.1.1 means
that efficient allocations would never locate in this region. This suggests that
we can ignore this region without affecting the identification of a separating
hypersurface in (3.5). In other words, without a loss of generality, we can
replace the function S(y) by its associated free-disposal shortage function
S+(y) in (3.5).13

13Note that this argument applies only to the identification of the separating hypersur-
face h∗ (and not to the identification of maximal allocations). Thus, it does not mean
that Y can be replaced by its associated free-disposal set Y+ in (2.4), or that S can be
replaced by S+ in (2.5). Indeed, doing so could incorrectly identify maximal allocations
that are not feasible if they are located in Y+ − Y.
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Paralleling our earlier definition, we say that the direction of g is interior
to the technology Y if for all y ∈ Y and all σ > 0 y − σg lies in the interior
of Y . As shown next, this condition plays an important role in establishing
the continuity property of the shortage functions S and S+.

Proposition 4.1.2 Suppose that Y has an upper bound and that the direc-
tion of g is interior to Y. Then,
(a) the shortage function S is continuous on Rm in the interior of the region
where it is finite;
(b) the free disposal shortage function S+ is continuous on Rm in the interior
of the region where it is finite.

Proposition 4.1.2 states conditions under which the shortage functions
S(y) and S+ are continuous in y. These conditions seem rather mild. First,
they restrict the feasible set to have an upper bound. Second, they focus
the analysis away from regions where the shortage function is infinite. This
does not appear unduly restrictive. Third, proposition 4.1.2 restricts the
direction of g to be interior to Y . This restriction is needed to establish the
upper semi-continuity of the shortage functions S and S+. For S+, note that
this condition is always satisfied when g is strictly positive. And when some
elements of g are null, this restricts g to point away from the boundary of
the set Y . Again, this provides useful information that can help in the choice
of g.

Below, we will assume that the conditions stated in Proposition 4.1.2 are
satisfied. When applied to the free-disposal shortage function, this means
that under the stated regularity conditions, S+ is non-decreasing and con-
tinuous. Adding this to our analysis of the benefit function presented in
Proposition 4.1.1 will prove useful in our duality analysis. Indeed, below, we
assume that the conditions stated in propositions 4.1.1 and 4.1.2 are satis-
fied. This means that we proceed assuming that B(y, U) and S+(y) are each
non-decreasing and continuous in y.

As discussed above, after substituting S+(y) for S(y), it follows from
(3.5) that one can find a map h∗ that is continuous and non-decreasing in
y. On that basis, we now focus our attention on separating hypersurfaces
characterized by continuous and non-decreasing functions h∗ .

4.2 Generalized Lagrangian

Define Φ as the set of continuous and non-decreasing functions from Rm to R
and satisfying the translation property: f(y+αg) = α+f(y) for any y ∈ Rm

and any α ∈ R. Consider the penalty functional

P
(
f(y), f(z)

)
= f(y)− f(z), (4.1)

where P : R × R → R and f ∈ Φ. The penalty functional P (f(·), f(·))
satisfies P (f(y), f(y)) = 0 for all y ∈ Rn.
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Consider the functional L defined on Π× Rm × U × Φ.

L
(
X, y, U, f

)
=

∑

i∈[n]

bi(xi, Ui)− S(y) + P
(
f(y), f

( ∑

i∈[n]

xi

))
, (4.2)

where X ≡ (x1, ..., xn) ∈ Π, U ≡ (U1, ..., Un) ∈ U , and y ∈ Rm. Note that
L in (4.2) can be interpreted as a generalized Lagrangian. Indeed, it would
reduce to a standard Lagrangian when f is linear. And the translation prop-

erty of the functions bi and S and f implies that L
(
X, y, U, f

)
is invariant

to translation, with translation defined as y being replaced by y +
∑

i αig,
and xi being replaced by xi + αig, αi ∈ R, i ∈ [n].

In the remainder of the paper, we focus our attention on situations where
zero-maximal allocations exist. Under the regularity conditions stated in
propositions 2.2.1 and 2.2.2, these allocations are Pareto efficient. We inves-
tigate the dual characterization of such allocations. While the dual character-
ization of Pareto efficiency is well-known under convexity (e.g., [16]), we seek
to extent the dual interpretation of Pareto efficiency under non-convexity.

Consider

L∗(U) = inf
f

sup
X,y

{
L

(
X, y, U, f

)
: x ∈ Π, y ∈ Rm, f ∈ Φ

}
. (4.3)

Note that the feasibility restriction
∑

i∈[n] xi ≤ y, is not imposed in (4.3).

We are interested in establishing linkages between (4.3) and the maximal
allocation (2.5).

Lemma 4.2.1 (Weak Duality) For U ∈ U , let

L#(U) = sup
x,y

inf
f

{
L

(
X, y, U, f

)
: X ∈ Π, y ∈ Rm, f ∈ Φ

}
.

We have,
L∗(U) ≥ L#(U) ≥ V (U). (4.4)

The inequalities (4.4) show that, in general, L∗(U) is an upper bound
of both L#(U) and V (U). Situations where this upper bound is reached are
of considerable interest (e.g., [4], [29]). The next proposition presents key
results supporting a dual characterization of Pareto efficiency.

Proposition 4.2.2 Assume that a maximal allocation exists for some U ∈
U ,14 and that L∗(U) = L#(U). Then, there is a saddle-point (X∗, y∗, f ∗) ∈
Π × Rm × Φ of the generalized Lagrangian L(X, y, U, f) in (4.2) satisfying
for all X ∈ Π, y ∈ Rm and f ∈ Φ

(a) L(X, y, U, f ∗) ≤ L(X∗, y∗, U, f ∗) ≤ L(X∗, y∗, U, f), (4.5)

14As noted above, under assumptions B.2 and C.1, a sufficient (but not necessary)
condition for the existence of a maximal allocation is that the set Y ∩ Σ be compact.
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(b)
∑

i∈[n]

x∗i ≤ y∗, (4.6)

(c) P
(
f ∗(y∗), f ∗(

∑

i∈[n]

x∗i )
)

= f ∗(y∗)− f ∗(
∑

i∈[n]

x∗i ) = 0, (4.7)

(d) (X∗, y∗) ∈ arg max
y∈Rm

X∈Π

{ ∑

i∈[n]

bi(xi, Ui)− S(x) :
∑

i∈[n]

xi ≤ y
}

, (4.8)

(e) L∗(U) = V (U). (4.9)

The above proposition establishes sufficient conditions for the existence of
a saddle-point of the generalized Lagrangian as given in (4.5). Equation (4.6)
states that (X∗, y∗) in the saddle point problem (4.5) is always at a feasible
point where aggregate consumption does not exceed aggregate production:∑

i∈[n] x
∗
i ≤ y∗. At that point, equation (4.7) shows that the penalty function

is always zero. Comparing it with (2.5), (4.8) imply that (X∗, y∗) corresponds
to a maximal allocation. It means that y∗ is necessarily feasible and satisfies
y∗ ∈ Y . Finally, (4.9) states that L∗(U) = V (U).

While L∗(U) ≥ V (U) in general (from (4.4)), equation (4.9) states that
L∗(U) = V (U) when a saddle-point exists. The condition L∗(U) = V (U) has
been called a condition of zero duality gap. The linkages between L∗(U) =
L#(U) and L∗(U) = V (U) are presented next.

Lemma 4.2.3 For U ∈ U , we have L∗(U) = L#(U) if and only if L∗(U) =
V (U).

This shows that a zero duality gap, L∗(U) = V (U), is equivalent to the
existence of a saddle point, with L∗(U) = L#(U). But under what conditions
does a zero duality gap hold? To address that question, let γ ∈ Rm, and
rewrite (2.5) as

W (U, γ) ≡sup
X,y

{ ∑

i∈[n]

bi(xi, Ui)−S(x) :
∑

i∈[n]

xi ≤ y+γ, y ∈Rm, X∈ Π
}

. (4.10)

Comparing (2.5) and (4.10), it is clear that W (U, 0) = V (U). It follows
that the solution of (4.10) for (x, y) is a maximal allocation (assuming that
it exists) when γ = 0. In general, W (U, γ) is non-decreasing in γ. The next
two propositions establish the linkages between a zero-duality gap and the
continuity properties of W (U, γ) with respect to γ.

Proposition 4.2.4 Assume a zero duality gap: L∗(U) = V (U). Then W (U, γ)
is upper semi-continuous in γ at γ = 0.

Proposition 4.2.5 Assume that W (U, γ) is upper semi-continuous in γ at
γ = 0. Then, there is a zero duality gap: L∗(U) = V (U).15

15Note that a similar result would apply to a gap between L∗(U) and L#(U)
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Propositions 4.2.4 and 4.2.5 show that a necessary and sufficient condition
for a zero duality gap is that the function W (U, γ) be upper semi-continuous
in γ at γ = 0. This is the condition required to support a dual representation
of Pareto efficiency, as discussed next.

4.3 Nonlinear expenditure and profit functions

Note that the choice of X in (4.3) suggests the introduction of the function
E defined on Φ× U by

E(f, U) ≡ inf
X

{
f(

∑

i∈[n]

xi)−
∑

i∈[n]

bi(xi, Ui) : X ∈ Π
}

. (4.11)

We show next that the function E(f, U) can be interpreted as an aggregate
expenditure function.

Lemma 4.3.1 For all (f, U) ∈ Φ× U , we have

E(f, U) = inf
X

{
f(

∑

i∈[n]

xi) : ui(xi) ≥ Ui, i ∈ [n], X ∈ Π
}
. (4.12)

Similarly, the choice of y in (4.3) implies the following maximization prob-
lem

π(f) ≡ sup
y
{f(y)− S(y) : y ∈ Rm}, (4.13)

which defines the function π on Φ. We show next that π(f) in (4.13) can be
interpreted as an aggregate profit function.

Lemma 4.3.2 For all f ∈ Φ we have

π(f) = sup
y
{f(y) : y ∈ Y}. (4.14)

Both E(f, U) and π(f) are conditional on the function f , which provides
a measure of revenue for production activities, f(y), and of expenditures for
consumption activities, f(

∑
i∈[n] xi). Using (4.11) and (4.13) , the saddle-

point problem (4.3) implies that

L∗(U) = inf
f
{π(f)− E(f, U) : f ∈ Φ}. (4.15)

This shows that, when a saddle-point (4.5) exists, solving the problem
(4.15) is dual to solving the primal problem (2.5).

Proposition 4.3.3 Assume that there is a zero duality gap and that a max-
imal allocation exists for some U ∈ U . Then, there is a dual function f ∗

satisfying
f ∗ ∈ arg min

f
{π(f)− E(f, U) : f ∈ Φ}. (4.16)
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In the remainder, we define

H(U) ≡ arg min
f
{π(f)− E(f, U) : f ∈ Φ}. (4.17)

The above results mean that, under some regularity conditions, the func-
tion f ∗ ∈ H(U) is associated with a dual characterization of maximal allo-
cations. In general, f ∗ defines a continuous and non-decreasing separating
hypersurface. It provides a general characterization of the separating hyper-
surface first considered in (3.5). In other words, h∗ in (3.5) can be chosen
more generally such that h∗ ∈ H(U∗), where U∗

i = u(y∗i ) for i ∈ [n]. In
other words, under zero duality gap, the separating hypersurface that de-
fines the efficient aggregate revenue/cost can be obtained as the solution of
L∗(U) = inff{π(f) − E(f, U) : f ∈ Φ} in (4.15), with U being chosen such
that L∗(U) = 0. Combining (4.15) and (4.17) with Propositions 2.2.1, 2.2.2,
4.2.2 and 4.3.3, we obtain the following result.

Proposition 4.3.4 Assume that there is a zero duality gap. Then, a dual
representation of Pareto efficiency is given by (4.12), (4.14) and (4.15),
where U is chosen to satisfy L∗(U) = 0.

Note that L∗(U) = 0 in (4.15) can be interpreted as the aggregate budget
constraint stating that aggregate profit π(f) must be entirely redistributed
to consumers. This gives the following intuitive interpretation of efficiency:
after maximizing aggregate profit and aggregate net benefit, and choosing f
according to (4.15), Pareto efficiency is obtained by a complete redistribution
of aggregate profit among the n consumers.16

It is important to stress that these results apply without assuming that
set Y is convex nor that the functions ui are quasi-concave on Xi, i ∈ [n].
They generalize well-known results obtained under convexity. Indeed, un-
der convexity, from the separating hyperplane theorem ([4]), f can be taken
to be linear, the penalty function (4.1) becomes linear, and (4.2) becomes
the standard Lagrangian. Then the gradient of f ∗ measures the market
prices supporting an efficient allocation ([10]). However, (4.16) applies un-
der non-convexity when f ∗ is possibly nonlinear. The implications of this
generalization are discussed next.

5 Implications

Under non-convexity, we allowed the function f ∈ Φ to be non-linear. Under
zero-maximality (where U is chosen such that L∗(U) = 0), equation (4.16)
means that the function f(x) can be used to define a separating hypersurface,

16Note that this does not say how aggregate profit gets distributed among the n con-
sumers. While different distributions of profit will lead to a move along the Pareto utility
frontier, all points along this frontier satisfy the Pareto efficiency criterion.
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where f is a continuous and non-decreasing function on Rm and satisfies
f ∈ H(U∗).

In general, the function f ∈ H(U∗) can take many forms. In this section,
we explore alternative forms of f that can support an efficient allocation. We
start with the simplest case by asking the question: can f ∈ H(U∗) be an
affine function? It can if there exists (α, p) ∈ R×Rm

+ satisfying f(y) = α+p·y,
with

α + p · y = B(y, U∗) = S(y) (5.1)

for all y ∈ Y ∗(U∗) and

B(y, U∗) < α + p · y < S(y) (5.2)

for all y ∈ Rm\Y ∗(U∗). This includes two important special cases: the case
of uniform pricing (UP) when α = 0; and the case of two-part tariffs (TPT)
when α 6= 0. They are discussed next.

5.1 The case of uniform pricing (UP)

When α = 0 and f ∈ H(U∗) is defined by f(y) = p · y, f characterizes a
separating hyperplane. From the separating hyperplane theorem ([4]), it is
well known that, under convexity assumptions, there always exists some p ∈
Rm

+ such that f characterizes a separating hyperplane satisfying equations
(5.1) and (5.2) with α = 0. In this context, p can be interpreted as the social
prices of the m commodities. And under competitive markets, they are
the market-clearing prices, generating the classical results that competitive
markets support an efficient allocation (e.g., [10]). This makes it clear that
f(y) = p · y identifies scenarios of uniform pricing (UP), where the prices p
are the same for all agents in the economy.

But can uniform pricing still apply in the presence of non-convexity? The
answer is: yes, provided that (5.1) and (5.2) hold with α = 0. This requires
that p satisfies two conditions. First, given α = 0, (5.1) implies that p · x
must be tangent to both {y ∈ Rn : B(y, U∗) ≥ 0} and {y ∈ Rn : S(y) ≤ 0},
for all y ∈ Y ∗(U∗). When the set Y ∗(U∗) has a single point, this means that
y 7→ p·y, y 7→ B(y, U∗), as well as y 7→ S(y) must go through that point. And
when the set Y ∗(U∗) has more than one point, this requires that B(y, U∗)
and S(y) are both linear in y and with identical derivatives on Y ∗(U∗). Note
that this rules out the presence of non-convexity within the set Y ∗(U∗)

Second, given α = 0, (5.2) implies that the map y 7→ p · y must strictly
separate {y ∈ Rm : B(y, U∗) > 0} and {y ∈ Rn : S(y) < 0}. This allows for
non-convexity within the set Rm\Y ∗(U∗). These non-convexities can be asso-
ciated with B(y, U∗) being a non-concave function of y and/or S(y) being a
non-convex function of y, for y ∈ Rm\Y ∗(U∗). However these non-convexities
should remain mild so that (5.2) is not violated. This corresponds to situa-
tions where conv{y ∈ Rm\Y ∗(U∗) : B(y, U∗) ≥ 0}∩ conv{y ∈ Rm\Y ∗(U∗) :
S(y) ≤ 0} = ∅, where conv{A} denotes the convex hull of A. In this case,
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the non-convex maximal allocation can be ’convexified’ and treated as if it
were a standard convex problem.17

Under such conditions and given α = 0, (5.1) and (5.2) remain satisfied
even under non-convexity. It means that a separating hyperplane exists.
Again, its gradient p ∈ Rm

+ provides a measure of social prices supporting an
efficient allocation. Importantly, with f(y) = p · y, equation (4.11) becomes
E(p, U) =

∑
i∈[n] Ei(p, Ui), where

Ei(p, Ui) = inf
xi

{p · xi)− bi(xi, Ui)− : xi ∈ Rm}, (5.3)

Ei(p, Ui) being the classical expenditure function for the i-th consumer, i ∈
[n] (see [14]). In this context, it follows from (5.3) that −Ei(p, ui) provides
a measure of the net benefit (net of cost) obtained by the i-th consumer.

Similarly, with f(y) = p · y, equation (4.13) becomes

π(p) = sup
y
{p · y − S(y) : y ∈ Rm}, (5.4)

where π(p) is the classical aggregate profit function (see [17]). In this case,
the prices p are the same for all agents and standard efficiency results apply.
First, conditional on p, efficient consumption decisions can be decentralized,
where each consumer behaves so as to minimize its expenditures. Second,
equation (5.4) states that efficiency implies the maximization of aggregate
profit, conditional on prices p. This applies as well when production activities
involve a set of firms. And it applies even in the presence of production
externalities among firms. As such, equation (5.4) is just a restatement of
the Coase theorem (see [9])).

While the Coase theorem implies aggregate profit maximization, it does
not imply firm-level profit maximization in the presence of externalities. In-
deed, ruling out firm externalities is in general required for decentralized
profit maximization to be consistent with economic efficiency. To see that,
assume that k firms are involved in the production of y. In the absence of
production externalities, the feasible set can be written as Y =

∑k
j=1 Yj,

where Yj is the feasible set for the j-th firm. Then, equation (5.4) can be
written as π(p) =

∑
j∈[k] πj(p), where πj(p) = sup{p · yj : yj ∈ Yj} is the

indirect profit function for the j-th firm, j = 1, ..., k. When f is linear, this
reduces to the standard result that decentralized profit maximization (condi-
tional on prices p, outputs being chosen to satisfy the marginal cost pricing
rule) is consistent with economic efficiency (see [10]). Under such a scenario,
non-convexities do not invalidate standard results concerning the efficiency
of decentralized decisions under competitive markets.

17This includes the case of pseudoconcavity/pseudoconvexity as discussed by Mangasar-
ian [20] .
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5.2 The case of two-part tariffs (TPT)

Now consider the case where f(x) = α + p · x, with α 6= 0. Interpreting p
as the marginal unit prices of the m commodities, it follows that α can be
interpreted as an aggregate fixed fee that is both paid by the consumers and
received by the producers. This is the basic two-part tariff (TPT) scheme,
representing the simplest possible form of non-linear pricing. This raises the
question : what do we gain by going beyond uniform pricing and introducing
the fixed fee α?

The usefulness of TPT pricing is that the fixed fee α can help find effi-
cient pricing scheme f(x) = α + p · x that satisfies equations (5.1) and (5.2).
Below, we consider two scenarios where α > 0: the case of perfect price dis-
crimination; and the case of non-convexity associated with increasing returns
to scale (IRTS).

First, consider the situation where α =
∑

i∈[n]Ei(p, ui), where Ei(p, ui) is
defined in equation (5.3). With α being the aggregate fee paid by consumers
and received by producers, this means that the aggregate net consumer ben-
efits are completely extracted by the producers. This is a situation of perfect
price discrimination corresponding to an efficient allocation where aggregate
benefits are maximized but where such benefits also totally captured by pro-
ducers (see [25]). This generates the largest possible aggregate profit. It is
efficient in the sense of satisfying the Pareto efficiency criterion. But is it
equitable? It depends on how the aggregate profit is redistributed among the
n consumers. Note that efficient price discrimination could be desirable on
equity ground if the aggregate profit is distributed in a way that generates
a more equitable distribution of purchasing power among consumers. But
this begs the question: why go through the trouble of extracting consumer
benefits to give it back to them? This indicates that price discrimination
schemes are likely to arise either if they are associated with a redistribution
of purchasing power among consumers, or if they are a necessary part of
implementing an efficient allocation. This later case can arise under non-
convexity, as illustrated next.

Second, consider the case of increasing returns to scale (IRTS), where
kF ⊂ F for all k > 1. Assume that 0 ∈ F . Under uniform pricing p ∈ Rm

+ ,
consider the profit function π+(p) = supy{p · y : y 6= 0, y ∈ Y}. It is
well known that, under IRTS and uniform pricing, π+(p) < 0. This means
that uniform pricing gives no incentive to produce under IRTS. The profit-
maximizing solution then is y = 0, which is in general inefficient. In this case,
the problem is not with profit maximization, but rather with uniform pricing
(UP). This is a scenario where UP cannot support an efficient allocation. But
TPT pricing can. To illustrate, consider the case where α = −π+(p) > 0.
Then, profit maximization under (TPT) implies that π(p) = supy{α + p · y :
y ∈ Y} = 0. This identifies α = −π+(p) > 0 as the smallest fixed fee paid by
consumers to provide an incentive for producers to produce and support an
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efficient allocation.18 Under this TPT scheme, the fixed payment α generates
zero aggregate profit, meaning that there is nothing to redistribute from
producers as consumers efficiently capture all the economic surplus.

These two scenarios generate efficient allocations under two extreme sit-
uations: the aggregate surplus is captured entirely by producers in the first
case, but by consumers in the second case. The general TPT case includes
scenarios where both producers and consumers share the aggregate surplus.
In situations where

∑
i∈[n]Ei(p, ui) > −π+(p), the fixed payment α can be

chosen such that
∑

i∈[n]Ei(p, ui) > α > −π+(p). Under Pareto efficiency, the
aggregate profit is α + π+(p) > 0 is then redistributed to the n consumers.
Again, the nature of the redistribution affects the equity but not the efficiency
of the allocation. This indicates that TPT schemes provide some flexibility
in Pareto efficiency. And this illustrates that TPT cannot always reduce to
UP (e.g., the case of IRTS) and still support efficient allocations. This makes
it clear that Pareto efficiency should be evaluated under the broader context
of non-linear pricing.

5.3 The general case of non-linear pricing (NLP)

While IRTS is a well-known example where the convexity of the production
set does not hold, our analysis applies under general non-convexity. The
general case of non-convexity covers situations where equations (5.1) and
(5.2) are not satisfied for any α ∈ R and p ∈ Rm

+ . Then, non-convexity
means that neither UP nor TPT pricing schemes can support an efficient
allocation. It means that we must now work with a separating hypersurface,
where f ∈ H(U∗) is necessarily non-linear. While f ∈ H(U∗) remains in
general continuous and non-decreasing on Rm

+ , it may not be differentiable.
In this context, it can be useful to analyze its properties using subgradient
(see [8], [27]). Indeed, elements of the subgradient of f provide a measure
of local prices. When evaluated at a Pareto efficient point, these local prices
must be tangent to both the benefit function and the shortage function. This
is consistent with the analysis of first-order necessary conditions presented
by Bonnisseau and Cornet [6], Jofre and Cayupi [12], and Mordukhovich
[21] in their characterization of Pareto efficiency. However, when f is non-
linear, these local prices vary with the evaluation point. As such, they are
not globally valid. Our analysis extends previous research by showing how
a non-linear f ∈ H(U∗) provides information about both local and global
prices supporting an efficient allocation under non-convexity. It provides
new and useful insights about the efficiency of non-linear pricing [30].

The nonlinearity of f ∈ H(U∗) can arise from two sources. First, f is
nonlinear when equation (5.1) fails to hold. This means that B(x, U∗) =

18The fixed fee α > 0 amounts to a subsidy to producers. This argument has been
used to argue that a subsidy to infant industries facing IRTS can help support an efficient
allocation. However, note that if α represents this subsidy, it amounts to an income
transfer to producers and not a price subsidy.
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S(x) is nonlinear for y ∈ Y ∗(U∗). This is relevant only if Y ∗(U∗) is not
a singleton. This corresponds to situations where the functions B(y, U∗)
and S(y) are both nonlinear and tangent to each other at more than one
point. Although this scenario can occur, we conjecture that it may not very
common. Second, f ∈ H(U∗) must be nonlinear when (5.2) fails to hold.
This requires that B(y, U∗) be non-concave in y on Rm\Y ∗(U∗) and/or that
S(y) be non-convex in y on Rm\Y ∗(U∗). Such non-convexities can arise in
situations of indivisibility and/or of increasing returns.

The separating function f ∈ H(U∗) being non-linear implies non-linear
pricing. Note that this does not invalidate expenditure minimization or profit
maximization. As in the convex case, efficient consumption decisions involve
the minimization of aggregate expenditures (4.12). However, note that the
presence of nonlinearity in f ∈ H(U∗) means that the decentralization of
consumer decisions is no longer consistent with Pareto efficiency. The reason
is that the marginal value of consumer goods (as measured by the subgradi-
ent of f(

∑
i∈[n] xi)) now depends on the consumption level of all consumers.

In other words, under non-convexity and nonlinear pricing, the general con-
sistency of decentralized consumption decisions with Pareto efficiency fails
to hold.

And as in the convex case, efficient production decisions involve the maxi-
mization of aggregate profit (4.14). This is a generalization of the Coase theo-
rem under non-convexity. In the presence of multiple firms, it applies whether
or not production externalities exist among firms. However, f ∈ H(U∗) be-
ing non-linear means that commodity prices are no longer constant. This
means that, under multiple firms, the decentralization of production deci-
sions is no longer consistent with Pareto efficiency. The reason is that the
marginal value of aggregate production (e.g., as measured by the subgradient
of f) now depends on the production level of all firms. In other words, under
non-convexity and nonlinear pricing, the general consistency of decentralized
production decisions with Pareto efficiency fails to hold.

These arguments suggest that developing efficient nonlinear pricing schemes
can be quite challenging. Indeed, the identification of market clearing prices
becomes complex and the decentralization of allocation decisions becomes
problematic. However, evolutionary selection may help in the long run. To
see that, consider experimentations with alternative nonlinear pricing. Such
experimentations can identify which scheme generates higher aggregate sur-
plus. To the extent that evolutionary selection favors the schemes generating
larger surpluses, the pricing system may evolve toward a steady state equi-
librium that is Pareto efficient (e.g., Courtault and Tallon [7]). This would
occur in the long run if the decision makers in charge of the experimentation
are in a position to capture the increase in aggregate surplus. Then, they
would have incentives to select the pricing schemes that increase aggregate
surplus. In the long run, that process would converge to an efficient alloca-
tion. In this case, while efficiency may not hold in the short run, it could
arise in the long run without explicit coordination.
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6 Conclusion

Our analysis has examined economic efficiency under non-convexity. It re-
lied on a generalized separation theorem under non-convexity. Starting with
zero-maximal allocations as a representation of Pareto efficiency, we showed
the existence of a separating hypersurface that supports a dual characteri-
zation of Pareto efficiency under non-convexity. We showed how replacing
the standard separating hyperplane (which always exists under convexity)
by a separating (non-linear) hypersurface provides the required analytical
insights to analyze economic efficiency under non-convexity. Our main re-
sult is the establishment of a dual characterization of zero-maximality that
remains valid under non-convexity. In this context, we show how the sepa-
rating hypersurface provides information about pricing supporting efficient
allocations. When the separating hypersurface is non-linear, this implies
that non-linear pricing is an integral part of economic efficiency. Finally, we
explored the adverse effects of non-convexity on the ability of decentralized
decision-making to support Pareto efficiency.

Under non-convexity and nonlinear pricing, finding that complete de-
centralization is no longer efficient is important. This points to the limita-
tions of competitive markets in their ability to support economic efficiency.
More generally, it stresses the importance of coordination schemes needed
to implement Pareto efficiency. Such coordination schemes can in principle
be provided by contracts implemented under various institutional environ-
ments. The challenge then is to identify the nature and types of centralization
schemes that would implement Pareto efficient allocation. Alternatively, we
argue that the prospects from uncovering efficient nonlinear pricing schemes
may improve in the long run if evolutionary selection tends to favor the
schemes that contribute to increasing aggregate surplus.

Appendix

Proof of lemma 2.2.3. Noting that y ∈ Y implies that S(y) ≤ 0, we have

V (U) = sup
X,y

{ ∑

i∈[n]

bi(xi, Ui) : X ∈ Π, y ∈ Y ,
∑

i∈[n]

xi ≤ y
}

≤ sup
X,y

{ ∑

i∈[n]

bi(xi, Ui)− S(y) : X ∈ Π, y ∈ Y ,
∑

i∈[n]

xi ≤ y
}

≤ sup
X,y

{ ∑

i∈[n]

bi(xi, Ui)− S(y) : X ∈ Π, y ∈ Rm,
∑

i∈[n]

xi ≤ y
}
.

We now need to show that V (U) ≥ supX,y{
∑

i∈[n] bi(xi, Ui) − S(y) : X ∈
Π, y ∈ Rm,

∑
i∈[n] xi ≤ y}. From (2.5), this inequality clearly holds if∑

i∈[n] bi(xi, Ui) − S(y) = −∞. Consider the case where
∑

i∈[n] bi(xi, Ui) −
S(y) > −∞. Letting y′ = y − S(y)g, we have y′ ∈ Y , and S(y′) = 0. Let
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x′i = xi − βig, i ∈ [n], where the β′is satisfy
∑

i∈[n] βi = S(y). Using the
translation property of both b and S, we obtain

sup
X,y

{ ∑

i∈[n]

bi(xi, Ui)− S(y) : X ∈ Π, y ∈ Rm,
∑

i∈[n]

xi ≤ y
}

= sup
X,X′,y,y′

{ ∑

i∈[n]

bi(x
′
i, Ui)− S(y′) : X ′ ∈ Π,

∑

i∈[n]

x′i ≤ y′,

y′ = y − S(y)g ∈ Y , x′i = xi − βig, i ∈ [n],
∑

i∈[n]

βi = S(y)
}

≤ sup
X′,y′

{ ∑

i∈[n]

bi(x
′
i, Ui) : X ′ ∈ Π, y′ ∈ Y ,

∑

i∈[n]

x′i ≤ y′
}

= V (U),

which concludes the proof.

Proof of proposition 3.1.1. From (3.5), pick some θ∗ ∈]0, 1[ and consider
the map h∗ : Rm −→ R defined by

h∗(y) = θ∗[B(y, U∗)− S(y)] + S(y).

If y ∈ Y ∗(U∗) then B(y, U∗) = S(y) = 0, hence h∗(y) = 0. Suppose that
y /∈ Y ∗(U∗). From (3.4), B(y, U∗) − S(y) < 0 for y ∈ Rm\Y ∗(U∗). Hence
h∗(y) = θ∗[B(y, U∗)−S(y)]+S(y) < S(y). Furthermore, since 0 < θ∗ < 1 and
[B(y, U∗)−S(y)] < 0, we deduce that θ∗[B(y, U∗)−S(y)] > B(y, U∗)−S(y).
It follows that B(y, U∗) < θ∗[B(y, U∗) − S(y)] + S(y) = h∗(y) for all y ∈
Rm\Y ∗(U∗), which ends the proof.

Proof of proposition 3.2.2. We need to prove that B(y∗, U∗) = S(y∗) = 0.
If (X∗, y∗, h∗) is a nonlinear price equilibrium, by definition, y∗ ∈ Y . It follows
that S(y∗) ≤ 0. Moreover, we have from Proposition 3.1.1

B(y∗, U∗) ≤ θ∗[B(y∗, U∗)− S(y∗)] + S(y∗) ≤ S(y∗).

Consequently, we have B(y∗, U∗) ≤ 0. Given ui(x
∗
i ) = U∗

i for each i ∈ [n],
it follows that

∑
i∈[n] bi(xi, U

∗
i ) ≥ 0. Therefore B(y∗, U∗) ≥ 0. Consequently,

we have B(y∗, U∗) = 0. This implies that S(y∗) ≥ 0 from Proposition 3.1.1.
Thus S(y∗) = 0, which ends the proof.

Proof of proposition 3.2.3. Let L(U∗) = {y : y =
∑

i∈[n] xi, bi(xi, U
∗
i ) ≥

0, i ∈ [n]}. From Proposition 3.1.1 and letting θ∗ → 1 in (3.5), there exists a
map h∗ : Rm −→ R such that

Y ⊂ {y : h∗(y) ≤ 0} and L(U∗) ⊂ {y : h∗(y) ≥ 0}.
This immediately proves condition (b). Now, fix i and consider xi ∈ Xi. If
bi(xi, U

∗
i ) ≥ 0, we have yi = xi+

∑
j 6=i x

∗
j ∈ L(U∗). Hence, h∗(xi+

∑
j 6=i x

∗
j) ≥
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h∗(y∗). Thus, bi(xi, U
∗
i ) ≥ 0 implies h∗(xi +

∑
j 6=i x

∗
j) = h∗(xi + y∗ − x∗i ) ≥

h∗(y∗). Now, for any xi with ui(xi) ≥ ui(x
∗
i ) we have bi(xi, U

∗
i ) ≥ 0. Hence,

using the above result, we deduce that ui(xi) ≥ U∗
i implies that h∗(xi + y∗−

x∗i ) ≥ h∗(y∗). This prove the condition (a).
Now suppose that h∗(y∗) 6= min{h∗(xi + y∗ − x∗i ) : xi ∈ Xi}, for each

i. Assume that xi ∈ Xi with ui(xi) > U∗
i . Then, from the above result,

h∗(xi + y∗ − x∗i ) ≥ h∗(y∗). Suppose h∗(xi + y∗ − x∗i ) = h∗(y∗). When
h∗(y∗) 6= min{h∗(xi + y∗ − x∗i ) : xi ∈ Xi} and by continuity, there is some
x′i near xi such that ui(x

′
i) > U∗

i and h∗(x′i + y∗ − x∗i ) < h∗(xi + y∗ − x∗i ).
It follows that y′i = x′i +

∑
j 6=i x

∗
j ∈ L(U∗) and h∗(y′i) < h∗(y∗). But this

contradicts the separating property of h∗. Thus, ui(xi) > U∗
i implies that

h∗(xi + y∗ − x∗i ) > h∗(y∗), which ends the proof.

Proof of corollary 3.2.4. Since the Xi’s are convex and the ui’s are
continuous and quasi-concave for each i ∈ [n], it follows that the sub-
set of L(U∗) = {y : y =

∑
i∈[n] xi, bi(xi, U

∗
i ) ≥ 0, i ∈ [n]} is closed and

convex. All we need to prove is that the hyperplane H ≡ {y ∈ Rm :
∇h(y∗) · y = ∇h(y∗) · y∗} weakly separates L(U∗) and Y . From proposition
3.1.1 h∗(y∗) = min{h∗(y) : y ∈ L(U∗)} = 0. Since L(U∗) is convex and h∗ is
differentiable at y∗ we obtain the optimality condition−∇h(y∗) ∈ NL(U∗)(y

∗),
where NL(U∗)(y

∗) is normal cone to L(U∗) at y∗. Moreover, we also have
h∗(y∗) = max{h∗(y) : y ∈ Y} = 0. Consequently, since Y is closed and
convex, the optimality conditions yield: ∇h(y∗) ∈ NY(y∗). Let TL(U∗)(y

∗)
and TY(y∗) denote the tangent cones to L(U∗) and Y at y∗, respectively.
Since ∇h(y∗) ∈ NY(y∗) ∩ −NL(U∗)(y

∗), the hyperplane H weakly separates
TL(U∗)(y

∗) and TY(y∗). However, by definition L(U∗) ⊂ TL(U∗)(y
∗) and

Y ⊂ TY(y∗). Consequently, H separates L(U∗) and Y , which ends the proof.

Proof of proposition 4.1.1. Luenberger ([14], p. 465) proved result (a).
To obtain result (b), first note that Luenberger ([14], p. 465) proved the
upper semicontinuity of the benefit function. Thus, we just need to prove its
lower semi-continuous. Assume that there is a sequence {(xk

i , U
k
i )}k∈N such

that
lim
k→∞

(xk
i , U

k
i ) = (xi, Ui) and bi(x

k
i , U

k
i ) > −∞, (6.1)

for all k ∈ N. Using proof by contradiction, suppose that bi is not lower
semi-continuous. It follows that there is some γ > 0 such that

bi(x
k
i , U

k
i ) < bi(xi, Ui)− γ (6.2)

for all k ∈ N. Let xγ
i ≡ xi − (bi(xi, Ui)− γ)g. Since g is good, we have:

Ui ≤ ui

(
xi − bi(xi, Ui)g

)
< ui(x

γ
i ) (6.3)

for all k ∈ N. Since the direction of g is interior to Xi, we deduce that
xγ

i = xi− bi(xi, Ui)g+γg lies in the interior of Xi. Hence, there is some δ > 0
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such that B(xγ
i , δ) ⊂ Xi, where B(xγ

i , δ) is the open ball centered at xγ
i of

radius δ. Define
zk ≡ xk

i − (bi(xi, Ui)− γ)g, (6.4)

which satisfies limk−→∞ zk = xγ
i . It follows that, for any δ > 0, there exists

kδ such that, for all k > kδ,

‖zk − xγ
i ‖ < δ. (6.5)

In addition, since ui is continuous, for any ε > 0, there exists δε such that

‖z − xγ
i ‖ < δε =⇒ |ui(z)− ui(x

γ
i )| < ε. (6.6)

Using (6.1), for all ε > 0, there exists kε such that, for all k > kε,

|Uk
i − Ui| < ε. (6.7)

From (6.3), one can choose, ε > 0 such that ui(x
γ
i )−ε > Ui. Pick some k ∈ N

such that k ≥ max{kε, kδ/2}.
Define z̄k ≡ zk − δ

3
g
‖g‖ . From equation (6.5), we have

‖z̄k − zk‖ ≤ δ/3 =⇒ ‖z̄k − xγ
i ‖ ≤ δ/3 + δ/2 < δ.

Consequently z̄k ∈ B(xγ
i , δ) ⊂ Xi. Moreover, equations (6.6) and (6.7) imply

that ui(z̄
k) > Uk

i . From (6.4), we have

z̄k = xk
i − (

δ/3

‖g‖ + bi(xi, Ui)− γ)g.

Thus, xk
i −

( δ/3
‖g‖ + bi(xi, Ui)− γ

)
g ∈ Xi and

ui

(
xk

i − (
δ/3

‖g‖ + bi(xi, Ui)− γ)g
)

> Uk
i .

It follows that bi(x
k
i − ( δ/3

‖g‖ + bi(xi, Ui)− γ)g, Uk
i ) ≥ 0. Using the translation

property of the benefit function, we obtain bi(x
k
i , U

k
i ) ≥ bi(xi, Ui) + δ/3

‖g‖ − γ.

But this contradicts (6.2).

Proof of proposition 4.1.2. First, consider the shortage function S(y).
Define a sequence {yk}k∈N and some ȳ ∈ Rn such that limk→∞ yk = ȳ and
S(yk) has finite values on Rm for all k ∈ N. Since Y has an upper bound, the
sequence {S(yk)}k∈N has a lower bound and lim infk→∞ S(yk) > −∞. Let
σ ≡ lim infk→∞ S(yk). Since Y is closed, y−σg ∈ Y . Thus, σ ≥ S(y). Hence
S+ is lower semi-continuous.

Next, we need to prove that S is upper semi-continuous, i.e. that σ ≡
lim supk→∞ S(yk) ≤ S(y). Using proof by contradiction, suppose that S is
not upper semi-continuous. It follows that there is some γ > 0 such that

S(yk) > S(y) + γ (6.8)
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for all k ∈ N. Let yγ ≡ y − (S(y) + γ)g.
Since the direction of g is interior to Y and yγ = y−S(y)g−γg, yγ lies in

the interior of Y . Hence, there is some δ > 0 such that B(yγ, δ) ⊂ Y where
B(yγ, δ) is the open ball centered at yγ of radius δ. Let

zk ≡ yk − (S(y) + γ)g, (6.9)

which satisfies limk−→∞ zk = yγ. Hence, for all δ > 0, there exists kδ such
that for all k > kδ

‖zk − yγ‖ < δ. (6.10)

Define z̄k ≡ yk + δ
3

g
‖g‖ . From equation (6.10), we have

‖z̄k − zk‖ ≤ δ/3 =⇒ ‖z̄k − yγ‖ ≤ δ/3 + δ/2 < δ.

Consequently z̄k ∈ B(yγ, δ) ⊂ Y . From (6.9), we have

z̄k = yk − (−δ/3

‖g‖ + S(y) + γ)g.

It follows that yk−(− δ/3
‖g‖+S(y)+γ

)
g ∈ Y , or S(yk−(− δ/3

‖g‖+S(y)+γ
)
g) ≤ 0.

Using the translation property of the shortage function, we obtain S(yk) ≤
S(y)− δ/3

‖g‖ + γ. But this contradicts (6.8).

Now consider the free-disposal shortage function S+. First, remark that
if Y has an upper bound then Y+ ≡ Y − Rn

+ has the same upper bound.
Second, note that the logic used in the continuity proof of S applies to S+.
Thus, under the stated conditions, S+ is continuous.

Proof of lemma 4.2.1. Note that

sup
X,y

{
L

(
X, y, U, f

)
: X ∈ Π, y ∈ Rm

}
≥ inf

f

{
L

(
X, y, U, f

)
: f ∈ Φ

}
(6.11)

for all X ∈ Π, y ∈ Rm, f ∈ Φ. Using (4.3), (6.11) implies L∗(U) ≥ L#(U).
This proves the first inequality in (4.4).

Suppose that
∑

i∈[n] xi > y. Consider a sequence fk ∈ Φ, k = 1, 2, ..., such

that fk(v) = α + k
∑

j∈[m] vi, with v = (v1, ..., vm) and α being an arbitrary
constant. This implies that for k ≥ 1:

fk(y)− fk
( ∑

i∈[n]

xi

)
= k

( ∑

j∈[m]

yj −
∑

j∈[m]

∑

i∈[n]

xij

)
< 0.

Consequently limk−→∞ P
(
fk(y)−fk(

∑
i∈[n] xi)

)
= −∞. Hence, the condition

∑
i∈[n] xi > y implies that inff

{
L

(
X, y, U, f

)
: f ∈ Φ

}
= −∞. It follows
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from (2.5) that

L#(U) = sup
x,y

inf
f

{
L(X, y, U, f) :

∑

i∈[n]

xi ≤ y, X ∈ Π, y ∈ Rm, f ∈ Φ
}

≥ sup
X,y
{
∑

i∈[n]

bi(xi, Ui)− S(y) :
∑

i∈[n]

xi ≤ y, X ∈ Π, y ∈ Rm} (6.12)

= V (U),

which proves the second inequality in (4.4).

Proof of proposition 4.2.2. Equation (4.5) follows from (4.4) and (4.3)
when L∗(U) = L#(U). The second inequality in (4.5) implies that

f ∗(y∗)− f ∗(
∑

i∈[n]

x∗i ) ≤ f(y∗)− f(
∑

i∈[n]

x∗i ), ∀f ∈ Φ. (6.13)

Assume that
∑

i∈[n] y
∗
i > x∗. Then, there exists a strictly increasing linear

function fa defined on Rm by fa(v) = α + a · v where a ∈ Rm
++, satisfying

fa(y∗) − fa(
∑

i∈[n] x
∗
i ) < 0. Also, letting f b(v) = α + b · v, where b > a, we

have f b(y∗) − f b(
∑

i∈[n] x
∗
i ) < fa(y∗) − fa(

∑
i∈[n] x

∗
i ) < 0. This implies that

f(y∗)− f(
∑

i∈[n] x
∗
i ) does not have a lower bound, which contradicts (6.13).

This gives (4.6).
Note that f ∗(y∗) − f ∗(

∑
i∈[n] x

∗
i ) = 0 when

∑
i∈[n] x

∗
i = y∗. Consider the

case where
∑

i∈[n] x
∗
i ≤ y∗ and

∑
i∈[n] x

∗
i 6= y∗. Choosing f c ∈ Φ such that

f c(v) does not depend on v, (6.13) implies that f ∗(y∗) − f ∗(
∑

i∈[n] x
∗
i ) ≤ 0.

The function f ∗ ∈ Φ being non-decreasing, it follows that
∑

i∈[n] x
∗
i ≤ y∗

and
∑

i∈[n] x
∗
i 6= y∗ imply that f ∗(y∗) − f ∗(

∑
i∈[n] x

∗
i ) ≥ 0. Combining these

results yields (4.7).
Assuming that a maximal allocation exists, using (4.6) and (4.7), the first

inequality in (4.5) implies (4.8). Finally, using (4.5) and (2.5), equations (4.7)
and (4.8) yield (4.9).

Proof of lemma 4.2.3. L∗(U) = L#(U) implying L∗(U) = V (U) was
shown in the previous proposition. The converse follows from (4.4).

Proof of proposition 4.2.4. Assume that W (U, γ) is not upper semi-
continuous in γ at γ = 0. This means that there exist a d > 0 and a
sequence {γk : k = 1, 2, ...} satisfying limk→∞ γk = 0 and

W (U, γk) ≥ W (U, 0) + d, k = 1, 2, ... (6.14)

Under a zero duality gap (where L∗(U) = V (U)), (6.14) means that there
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exists a f ∈ Φ satisfying

W (U, 0) = V (U)

> sup
y∈Rm

X∈Π

{ ∑

i∈[n]

bi(xi, Ui)− S(y) + f(y)− f(
∑

i∈[n]

xi)
}
− d/2

≥ sup
y∈Rm

X∈Π

{ ∑

i∈[n]

bi(xi, Ui)− S(y) + f(y)− f(
∑

i∈[n]

xi) :
∑

i∈[n]

xi ≤y+γk
}
− d/2.

Choose yk ∈ Rm and Xk ∈ Π such that
∑

i∈[n] x
k
i ≤ yk + γk and satisfying∑

i∈[n] bi(x
k
i , Ui)− S(yk) ≥ W (U, γk)− d/4. It follows that

W (U, 0) > sup
y∈Rm

X∈Π

{
W (U, γk)− d/4 + f(x)− f(

∑

i∈[n]

xi) :
∑

i∈[n]

xi ≤ y+γk
}
− d/2,

≥ W (U, γk)− 3d/4 + f(xk)− f(
∑

i∈[n]

xk
i ).

(6.15)

Combining (6.14) and (6.15), we obtain W (U, γk) > W (U, γk) + d/4 +
f(yk) − f(

∑
i∈[n] x

k
i ). Since f ∈ Φ is continuous and non-decreasing, letting

k →∞ implies that W (U, γk) > W (U, γk) + d/4, a contradiction.

Proof of proposition 4.2.5. Suppose that a zero duality gap does not
hold. From (4.4), this means that V (U) < L∗(U). Thus, there exists a δ > 0
such that

V (U) = W (U, 0) ≤ L∗(U)− δ,

≤ sup
y∈Rm

X∈Π

{ ∑

i∈[n]

bi(xi, Ui)− S(y) + f(y)− f(
∑

i∈[n]

xi)
}
− δ (6.16)

Consider a sequence {γk}k∈N where γk = γ/k, γ ∈ Rm
++. From (6.16),

choose yk ∈ Rm and xk ∈ Π such that
∑

i∈[n] x
k
i = yk + γk and satisfying

W (U, 0) ≤
∑

i∈[n]

bi(x
k
i , Ui)− S(xk) + f(yk)− f(

∑

i∈[n]

xk
i )− δ/2. (6.17)

Note that

W (U, γk) = sup
y∈Rm

X∈Π

{ ∑

i∈[n]

bi(xi, Ui)− S(y) :
∑

i∈[n]

xi ≤ y + γk
}

≥
∑

i∈[n]

bi(x
k
i , Ui)− S(yk).

(6.18)

Combining (6.17) and (6.18) yields W (U, 0) ≤ W (U, γk)+f(yk)−f(
∑

i∈[n] x
k
i )−

δ/2. Letting k → ∞ and using the continuity of f , this implies W (U, 0) ≤
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lim supk→∞ W (U, γk) − δ/2, which contradicts the upper semi-continuity of
W (U, γ) at γ = 0.

Proof of lemma 4.3.1. We have from (4.11):

inf
X
{f(

∑

i∈[n]

xi) : ui(xi) ≥ Ui, i ∈ [n], X ∈ Π}

≥ inf
X
{f(

∑

i∈[n]

xi)−
∑

i∈[n]

bi(xi, Ui) : ui(xi) ≥ Ui, i ∈ [n], X ∈ Π}

≥ inf
X
{f(

∑

i∈[n]

xi)−
∑

i∈[n]

bi(xi, Ui) : X ∈ Π}

= E(f, U).

We now need to show that E(f, U) ≥ infX{f(
∑

i∈[n] xi) : ui(xi) ≥ Ui, i ∈
[n], X ∈ Π}. From (4.11), this inequality clearly holds if

∑
i∈[n] bi(xi, Ui) =

−∞. Consider the case where
∑

i∈[n] bi(xi, Ui) > −∞. Letting x′i = xi −
bi(xi, Ui)g, we have x′i ∈ Xi, ui(x

′
i) ≥ Ui, and bi(x

′
i, Ui) = 0 for all i ∈ [n].

Using the translation property of both bi and f , we obtain

E(f, U) = inf
X

{
f(

∑

i∈[n]

xi)−
∑

i∈[n]

bi(xi, Ui) : X ∈ Π
}

= inf
X,X′

{
f(

∑

i∈[n]

x′i)−
∑

i∈[n]

bi(x
′
i, Ui) : x′i = xi − bi(xi, Ui)g ∈ Xi, i ∈ [n], X ∈ Π

}

= inf
X,X′

{
f(

∑

i∈[n]

x′i) : x′i = xi + bi(xi, Ui)g) ∈ Xi, ui(x
′
i) ≥ Ui, i ∈ [n], X ∈ Π

}

≥ inf
x′

{
f(

∑

i∈[n]

x′i) : ui(x
′
i) ≥ Ui, x

′
i ∈ Xi, i ∈ [n]

}
,

which concludes the proof.

Proof of lemma 4.3.2. We have

sup
y
{f(y) : y ∈ Y}

≤ sup
y
{f(y)− S(y) : y ∈ Y}

≤ sup
x
{f(y)− S(y) : y ∈ Rm}

= π(f).

We now need to show that π(f) ≤ supy{f(y) : y ∈ Y}. From (4.13), this
inequality clearly holds if S(y) = +∞. Consider the case where S(y) < +∞.
Letting y′ = y−S(y)g, we have y′ ∈ Y , and S(y′) = 0. Using the translation
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property of both S and f , we obtain

π(f) = sup
y
{f(y)− S(y) : y ∈ Rm}

= sup
y,y′
{f(y′)− S(y′) : y′ = y − S(y)g ∈ Y , y ∈ Rm}

= sup
y,y′
{f(y′) : y′ = y + S(y)g ∈ Y , y ∈ Rm}

≤ sup
y′
{f(y′) : y′ ∈ Y},

which concludes the proof.

Proof of proposition 4.3.3. Equation (4.16) is obtained directly from
(4.15).
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