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1. INTRODUCTION

Empirical studies on efficiency and productivity grounded in frontier specifications are
abundantly available and these frontier methodologies have become standard empirical tools that
serve a variety of academic, regulatory and managerial purposes. Apart from its prolific application
in the academic literature analysing private and public sector performance-related issues (see, e.g.,
Liu et al. (2013) for a survey of empirical frontier applications), the implementation of incentive
regulatory mechanisms using frontier-based performance benchmarks is rather widespread in
liberalized network industries (e.g., for the electricity sector see the Jamasb and Pollitt (2001)
survey). To cite but one example of a managerial application, the Sherman and Ladino (1995) study
documents how a US bank employed a basic frontier model to find sufficient savings in its branch
network to fund its strategy of expansion.

Many empirical applications take a long run perspective in that it is assumed that all inputs
and/or outputs are under managerial control. While a focus on a sub-vector of, e.g., inputs is
straightforward, the large majority of the frontier-based literature in fact ignores the notion of
capacity utilisation. Consequently, a part of the measured amount of inefficiency may well be due
to the short run fixity of some of the inputs. Recently, Caves (2007) argued that a variety of
efficiency concepts and capacity notions have yielded a rich body of empirical knowledge on firm
behaviour that is part of the so-called old industrial organisation literature. There are indeed many
examples of empirical research on organisations focusing on capacity utilisation. For example,
Ghemawat and Nalebuff (1985) have shown how the probability of firm survival depends on the
ability to adjust capacity in order to keep production costs under control when facing changes in
demand. Managing capacity utilisation smoothly is an organisational factor of strategic value.

This paper concentrates on the development of plant capacity measures using nonparametric
frontier technologies. More specifically, this paper makes two contributions. First, it proposes a new
input-oriented plant capacity measure that complements the existing output-oriented counterpart, as
applied by, for instance, Valdmanis, Kumanarayake and Lertiendumrong (2004). Second, we
empirically explore the differences between both these plant capacity notions using traditional convex
as well as nonconvex technology specifications.

The paper is structured as follows. Section 2 offers a brief literature review on the different
capacity notions around in the literature and their use in a nonparametric frontier context. It devotes
some particular attention to the small literature having utilised the plant capacity concept. The next
section introduces technologies and distance functions allowing to define the traditional output-
oriented plant capacity measure as well as its new input-oriented counterpart. Then, the new input-

oriented plant capacity measure is illustrated using a numerical example. An empirical section
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illustrates these new plant capacity measure for both convex and nonconvex nonparametric frontier
technologies using a sample of Canadian farms specialising in milk production. Conclusions are

drawn in a final section.

2. LITERATURE REVIEW
2.1. Economic and Technical Capacity Utilisation: A Taxonomy

The economic literature contains a variety of capacity notions. A useful taxonomy is to
distinguish between technical (engineering) and economic (mainly cost-based) capacity concepts
(see, e.g., Johansen (1968), Nelson (1989)). We first pay attention to the technical or engineering
notion, and then to the economic concepts using a cost function approach.

Johansen (1968) followed a technical approach by introducing the notion of plant capacity.
Plant capacity is defined as the maximum output vector that can be produced with existing equipment
with unrestricted variable inputs per unit of time. This capacity notion clearly takes an engineering
perspective. Fare, Grosskopf and Kokkelenberg (1989) and Fare, Grosskopf and Valdmanis (1989)
transpose this notion into a multi-output frontier framework using some combination of output
efficiency measures (see also Fare, Grosskopf and Lovell (1994: § 10.3)).

At least three ways of defining a cost-based notion of capacity have been proposed in the
literature (see Nelson (1989)). Each of these notions aims to isolate the short run excessive or
inadequate utilisation of existing fixed inputs (for instance, capital stock). A first notion is defined
in terms of the output produced at short run minimum average total cost given existing input prices
(see Hickman (1964), among others). A second definition focuses on the output for which short and
long run average total costs curves are tangent (e.g., Segerson and Squires (1990)). This tangency
point notion is known under two variations depending on what are supposed to be the decision
variables. One notion assumes that outputs are constant and determines optimal variable and fixed
inputs. Another notion assumes that fixed inputs cannot adjust, but outputs, output prices and fixed
input prices do adjust. A third and final definition of economic capacity considers the output
determined by the minimum of the long run average total costs (for instance, Cassels (1937) and
Klein (1960)). A brief summary of how these different economic capacity concepts can be
transposed in a nonparametric frontier framework is found in De Borger et al. (2012).

One motivation for developing an input-oriented plant capacity measure is that it facilitates

comparison with traditional and widely used economic notions based on the cost function. In this

! Briec et al. (2010) show that it is possible to develop dual capacity measures using nonparametric technologies for the case
of other objective functions: e.g., profit maximisation (following Squires (1987)). The case of revenue maximisation (see
Segerson and Squires (1995)) remains to be developed.

2 Johansen (1968) also proposes a synthetic capacity concept as the maximal output with existing plant and equipment
while accounting for the restricted availability of variable inputs. This seems to correspond to technical efficiency.
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perspective, the currently available output-oriented plant capacity measure would then be more
naturally compared with the more scarcely used revenue-based capacity notion (e.g., Segerson and
Squires (1995)).

2.2.  Plant Capacity: A Selective Review

Estimates of plant capacity have been reported regularly in the economic literature, though it
is hard to deny that the notion of plant capacity is nowhere as popular as some of the cost-based
notions of capacity. We offer a selection of plant capacity estimates in a variety of economic
sectors.

Magnussen and Rivers Mobley (1999) compare Norwegian public and highly regulated
hospitals to the Californian private and less regulated hospitals. Key findings are that the Norwegian
hospitals have a higher plant capacity utilization, and that the excess capacity in California depends on
competitive pressures. Karagiannis (2015) analyses Greek public hospitals in two distinct years
(1993 and 2002), while Kerr et al. (1999) estimate plant capacity of 23 acute hospitals in Northern
Ireland comparing two three year periods. Valdmanis, Bernet and Moises (2010) compute state-
wide hospital capacity in Florida based on the whole hospital population as part of an emergency
preparedness plan. Starting from a scenario involving patient evacuations from Miami due to a
major hurricane event, they assess whether hospitals in proximity to the affected market can absorb
the excess patient flow. Finally, Valdmanis, Kumanarayake and Lertiendumrong (2004) estimate
plant capacity utilisation in 68 Thai public hospitals in 1999 with a focus on the eventual trade-offs
between services for the poor and the nonpoor. They find that hospitals are generally operating at
relatively high capacity (90-95 percent) and that there is no significant difference between capacity
utilization across three types of hospitals and across different regions.

Felthoven (2002) analyses the impact of the American Fisheries Act (AFA) of 1998 on the
Pollock fishery and finds that decommissioned vessels exhibited a lower level of technical
efficiency and that the capacity utilization of the AFA-eligible vessels increased after the law came
into effect. Kirkley, Morrison Paul and Squires (2002) focus on the US North Atlantic sea scallop
fishery centered in Georges Bank and various Mid-Atlantic resource areas with as dominant gear type
the dredge. They report a plant capacity of about 33% using stochastic frontiers and a 22% rate with a
nonparametric model, while there does not seem to be a clear trend in plant capacity over time. Van
Hoof and De Wilde (2005) estimate capacity of the Dutch beam-trawling fleet over the period
1992-99 finding an overall average of 0.83 plant capacity. They also explain the variations in plant
capacity by a dummy for the home port, the price of plaice, the quotas for sole, the spawning stock
for both plaice and sole, and the fleet sizes. Vestergaard, Squires and Kirkley (2003) obtain for a
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small sample of 69 Danish gill-net vessels in 1993 a high average plant capacity score of 0.92.
Walden and Tomberlin (2010) estimate plant capacity for 71 steel-hulled vessels using bottom trawl
gear fishing off the northeastern US coast in the Exclusive Economic Zone during 2006. They find
an overall capacity utilization rate using a convex model of only 52%, while a nonconvex model

obtains a rate of 84%: the latter result is deemed more credible.

Apart from these studies focusing on health care and fisheries, we are only aware of one
study focusing on another economic sector. Indeed, Sahoo and Tone (2009) analyse plant capacity
as well as other capacity notions for the Indian banking sector. All these studies hide a large
variation in methodological choices. For instance, Felthoven (2002) and Kirkley, Morrison Paul and
Squires (2002) estimate plant capacity using both nonparametric and stochastic frontier analysis. As
another example, while many articles limit themselves to just measuring plant capacity, Karagiannis
(2015) as well as Van Hoof and De Wilde (2005) also explain the variations in plant capacity using
different regression methods. As a final case, Vestergaard, Squires and Kirkley (2003) also develop
partial plant capacity measures using output-specific nonradial efficiency measures.

These plant capacity estimates have also been used as parameters in a so-called short-run
industry model attempting to reallocate outputs and resources across production units so as to reduce
excess capacity levels at the industry level. Dervaux, Kerstens and Leleu (2000) apply such a model to
reorganize French surgery units, while Kerstens, Vestergaard and Squires (2006), Van Hoof and De
Wilde (2005) as well as Yagi and Managi (2011) explore its application in a fishery context. Another
methodological refinement based on the plant capacity notion is its inclusion in a decomposition of
the Malmquist productivity index (see De Borger and Kerstens (2000) and the extension by Bye,
Bruvoll and Larsson (2009)).

3. PLANT CAPACITY: DEFINITIONS
3.1. Distance Functions, Efficiency Measures and Plant Capacity Notions
3.1.1 Distance Functions and Efficiency Measures

To clear the ground, we start by defining technology and some basic notation. Denating an

dimensional input vectox(e R") and anm-dimensional output vectoy € R™.), the production

possibility set or technology is defined as follos= {(x,y) (I x can producey}. The input set

associated witls denotes all input vectossc R": capable of producing a given output vector

R™: L(y) = {xO(xy) OS. In an analogous way, the output set associated Svittnotes all output

vectorsy € R™ that can be produced from a given input veetar R": P(x) = {y O(xy) O0S.
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Furthermore, it is often useful to partition the input vector into a fixed and variablex pagt’(x)).
By analogy, we define a short-run technol@&yy {(x',y) Ox can produceg} and the corresponding
input set [(y) = {xX' O(x,y) O S} and output set ) = {y O(x'y) O S}.

The input distance function offers a complete characterization of the inpufysetnd is

defined as follows:

D (% y)=max{y ;y= 0x /yOL(y} (1)
Next, one can define the radial input efficiency measure as:
DF.(x, y)=min{A | A20,AxOL(y} . (2)

The latter measure is the inverse of the input distance funcidf( ¥ y)=[D(x, y)]_l). Its main

properties (e.g., Hackman (2008)) are that it is situated between zero and unDF{&,yW < 1),
with efficient production on the boundary (isoquant) of the inputLégt represented by unity.
Furthermore, the radial input efficiency measure has a cost interpretation. By analogy, denote the

input distance function and radial input efficiency measure of the input(getoy Di'(x',y) and
DFif(X'y) respectively. These are defined as followis" (x, y) = max{y y=0x lyOL (y} and
DF' (xf , y) = min{)l A2 0,Ax0OL (y} :

The output distance function offers a complete characterization of the outpx)satd it

can be defined as follows:

D, (%, y)=min{z:p=0,y /40P (x} . (3)
Next, one can define the radial output efficiency measure as:
DF, (x, y) =max{6 :6= 0,6y0P (x} . (4)

The latter measure is the inverse of the output distance funcB&(xy) = [D,(xy)]™)3 Its

main properties (e.g., Hackman (2008)) are that it is larger than or equal tdify,y) > 1), with
efficient production on the boundary (isoquant) of the outputPget represented by unity.
Furthermore, the radial output efficiency measure has a revenue interpretation. By analogy, denote

the output distance function and radial output efficiency measure of the outpl({x3dty Do/ (X,y)

and DFJ(X\y) respectively. Then, D (xf : y) = min{,u 120,y /[u0dP" (X } and

DF, (xf , y) = max{é? 9= 00y0P" (X } :

3 There are also definitions around in the literature whereby the output-oriented efficiency measure equals the output
distance function.
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3.1.2 Output-Oriented Plant Capacity Utilisation

We now first recall the definition of the output-oriented plant capacity utilisation measure
(see Fare, Grosskopf and Kokkelenberg (1989) and Féare, Grosskopf and Valdmanis (1989)). An
output-oriented measure of plant capacity utilisation requires solving an output efficiency measure
relative to both a standard technology and the same technology without restrictions on the
availability of variable inputs. Plant capacity utilisation in the outpR@&Up(x,X,y)) is defined as:

DF, (%, y)

PCUO(X, Xf, ”:m,

(5)

whereDFo(x,y) and DF.' (x", y) are output efficiency measures relative to technologies including

respectively excluding the variable inputs as defined before. Notice thBOWs(x,x',y) < 1, since
1 < DFo(xy) < DFo'(xy). Thus, output-oriented plant capacity utilisation has an upper limit of
unity, but no lower limit.

This leads to the following basic output-oriented decomposition:
DF,(x, ¥)= DE (X', ). PCY (% X, V. (6)
Thus, the traditional output-oriented efficiency meaddifg(x,y) can be decomposed into a biased
plant capacity measur®F,'(x',y) and an unbiased plant capacity meas®@U,(x X , ),

following the terminology introduced by Fare, Grosskopf and Kokkelenberg (1989), Fare,
Grosskopf and Valdmanis (1989) and Fare, Grosskopf and Lovell (1994). We explain these notions
with the help of Figure 1.

Figure 1 tries to develop the intuition behind both the output- and input-oriented plant
capacity measures in a single variable input and output space. The total product curve for given
fixed inputs is the polylin@bcd and its horizontal extension dt Observations are denoted by
squares, projection points by circles. We focus on observatioWe start by explaining the
geometric intuition behind the output-oriented plant capacity measure and its components.

<FIGURE 1 ABOUT HERE>

The output-oriented plant capacity measure compares @tonits vertical projection point
€” on the frontier on the line segmext and also compares the translated p@ifvhich consumes
more variable inputs) to its vertical projection point on the horizontal frontier segment emanating
from pointd with maximal outputs. The traditional output-oriented efficiency med3&u€x,y) is

therefore represented by the ratio of distar@®s/0"e (> 1). The biased plant capacity measure
DF,(x',y) starts measuring from the translated p@ntThis translated point has an identical

output level as poing, but without constraints on its amount of variable inputs it manages to

generate the maximum output level at pathtTherefore, the biased plant capacity measure
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DF,(x',y) is represented by the ratio of distan@s/0€’ (> 1). This biased plant capacity

measure correctly reveals the maximal output available (represented bydjdoat it still starts

from an inefficient point (represented by poie). The unbiased plant capacity measure
PCU,(x X, y), as the ratio of both these efficiency measures, is represented by the ratio of

distances{"e"/0"e)/(0'd/0€’). Since the ratio®"e andQ'e’.are identical, this simplifies to the ratio
0"e"/0d (< 1). Thus, the unbiased plant capacity measure atyreompares the maximum output

e” that can be reached starting from pantith the maximal outpudl that can be reached starting

from the translated poim. The exact position of point(er its translation @ and thus its efficiency

status does not influence this plant capacity measurement for a given level of variable inputs. The

maximal output can be labelled the plant capacity output. Obviously, this unbiased plant capacity
measurePCU,_(x X, y) is linked to the distancgd’, where the poindl’ is the translation from the

maximal output at poind to the output level comparable with point e

We can now also explain why 0 RCUx(x,X,y) < 1. Imagine that poine would shift
somewhat to the right (say anywhere on the line sega®riut not to poing’) and be capable to
generate a somewhat higher maximal output than the one indicated bg’hdihen, the distance
to the plant capacity output (poia) would become shorter than the distaetd’ and hence
PCUo(x,X,y) would increase. Obviously, the reverse would be true if moimbuld shift somewhat
to the left and be capable to generate a somewhat lower maximal output than the one indicated by
point € then, FCUq(x,X,y) would decrease.

We can now also explain whé?CUy(x,X,y) = 1: imagine that poiné would shift to the
right to point ¢ then the distance’@’ would vanish. Otherwise stated, in this case tieen® longer

any difference between the traditional output-oriented efficiency me&sty(@,y) and the biased
plant capacity measur®F," (x',y): both would measure an identical ratio of distances, hence

PCUo(x,X,y) becomes unity. Note that the latter result is independent of the efficient or inefficient
nature of the point considered, since we have already shown that the efficiency status does not
influence plant capacity measurement. Thus, the output-oriented plant capacity utilisation has an
upper limit of unity, but no lower limit (i.e., this lower limit is determined by the empirical
configuration of the data).

3.1.3 Input-Oriented Plant Capacity Utilisation: A New Definition
We now turn to the new definition of the input-oriented plant capacity measure. Plant
capacity utilisation in the input®CU(x,X,y)) is defined as:
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DFiSR(i f’ XV, y)
DFS¥(x ', x",0)’

PCU (x X, y)= (7)

where DFR(X ', x", y) and DF.°%(X ', x*,0) are both sub-vector input efficiency measures reducing

only the variable inputs relative to the technology, whereby the latter efficiency measure is
evaluated at a zero output level. Obviously, this requires the following three definitions:

DFESR(x ', x, y):min{A 120, Ax)O L(y} is a sub-vector input efficiency measure
reducing variable inputsl.(0) = {xO(,0)0 S is the input set with zero output level, and
DESR(x ', x%,0)= min{)l A20,K" AX D L(O} is the sub-vector input efficiency measure
reducing variable inputs evaluated relative to this input set with a zero output level. Notice that
PCU(xXy) > 1, since 0< DF*¥(x ', x",0) < DF*(x',x"y) < 1. Thus, input-oriented plant
capacity utilisation has a lower limit of unity, but no upper limit.

This leads to the basic input-oriented decomposition:

DFESR(x ', x", y) = DF*(x', xX,0).PCU (% X, Y. (8)

Thus, the traditional sub-vector input-oriented efficiency mea8K&*(x ', x", y) is decomposed

into a biased plant capacity measud& > (X ', x",0) and an unbiased plant capacity measure

PCU (x X, ). We explain the geometric intuition behind these notions in two steps: the basic

relations are developed with the help of Figure 1, and the need for sub-vector variable input-
oriented efficiency measures in defining the input-oriented plant capacity measure is explained with
the help of Figure 2.

The sub-vector input-oriented plant capacity measure compares eptonits horizontal
projection poine”” on the frontier on the line segmdig and also compares the translated peint
(which consumes equal amounts of variable inputs but yields a zero output level) to its horizontal

projection point on the vertical frontier segmeitt with zero outputs. The traditional sub-vector

input-oriented efficiency measu@F >(X ', x", y) is therefore represented by the ratio of distances

0"e""/0"e (< 1). The biased sub-vector plant capacity meaddiFe™(X ', x",0) starts measuring

from the translated poir’. This translated point has identical variable inputs compared togoint

but has a zero output level: it manages to generate the minimum output level atgbmaé which
positive output production levels start. Therefore, the biased plant capacity measure
DFESR(x ', x%,0) is represented by the ratio of distanfeg0e’ (< 1). This plant capacity measure
correctly reveals the minimal variable input level available (represented byg)dot a given

minimal (=zero) output level, but it still starts from an inefficient point (represented by gidint
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The unbiased plant capacity meas@®@U, (x X , y), as the ratio of both these efficiency measures,

is represented by the ratio of distanc8%e("/0"e)/(0a/0¢"). Since the ratio9e” and 0"e are
identical, this simplifies to the rati@”e”"/0a (> 1). Thus, the unbiased plant capacity measure
correctly compares the minimal amount of variable inpitompatible with current output levels
starting from poine with the minimal amount of variable inpuscompatible with a zero output
level starting from the translated pogeft The exact position of poird (or its translatiore”) and
thus its efficiency status does not influence this plant capacity measurement for a given level of
outputs. The minimal (in casu zero) outputan be labelled the plant capacity output. Evidently,
this unbiased plant capacity measB@Ui(x,x'y) is linked to the distande®e””, where the poinb’
is the translation from the output at pdinto the output level comparable with poat

We are now also in a position to explain why P€U(x,X,y) < 1. Imagine that poiné
would shift somewhat up (say anywhere on the line segeehtand be capable to generate a
somewhat higher minimal variable input than the one indicated by @8inThen, the distance to
the plant capacity output (poird) would become larger than the distarize”” and hence
PCU(x,Xy) would increase. Obviously, the reverse would be true if momobuld shift somewhat
below and be capable to generate a somewhat lower variable input than the one indicated by point
e"". then,PCU(x,X',y) would decrease.

We can now also explain wh&CUi(x,x",y) = 1: imagine that poirg would shift below to

point e”, then the distanclee”” would vanish. Otherwise stated, in this case there is no longer any

difference between the traditional sub-vector input-oriented efficiency meR§¥&x ', x*, y) and

the biased plant capacity measub¥ °~(X ', x",0): both would measure an identical ratio of

distances, henc®CU(xX'y) becomes unity. Note that the latter result is independent of the
efficient or inefficient nature of the point considered, since we have already shown that the
efficiency status does not influence plant capacity measurement. Thus, the input-oriented plant
capacity utilisation measure has a lower limit of unity, but no upper limit (i.e., this upper limit is
determined by the empirical configuration of the data).

Figure 2 develops the geometric intuition behind the need for sub-vector variable input-
oriented efficiency measures in defining the input-oriented plant capacity measure. The isoquant
denoting the combinations of fixed and variable inputs yielding a given output LUéyelis
represented by the polylirecd and its vertical and horizontal extensionaa&ndd respectively.

We focus on observatiomto illustrate first the output-oriented plant capacity utilisation measure:
for a given fixed input vector, it scales up the use of variable inputs to reach a translateti point

that allows maximizing the vector of outputs. For the development of the input-oriented plant
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capacity measure, it therefore seems logical to look for a reduction in variable inputs for given fixed
inputs towards the translated poeitthat is situated outside the isoquéfy) because it produces
an output vector of zero (it is compatible with the isoqud@} that is situated lower).
<FIGURE 2 ABOUT HERE>

In brief, while the output-oriented plant capacity measure evaluates capacity by contrasting
the frontier outputs for a given observation with respect to the maximal outputs available
(represented by the horizontal segment starting at mbiof the frontier in Figure 1) net of
inefficiency, the input-oriented plant capacity measure assesses capacity by contrasting the
minimum variable inputs for an observation with given outputs with respect to the minimal variable
inputs for a translated observation producing a zero output (represented bg paitihe vertical
segmentb of the frontier in Figure 1), also net of inefficiency. Otherwise stated, while the output-
oriented plant capacity measure compares output levels relative to the maximum level of outputs
available, the input-oriented plant capacity measure compares variable input levels relative to the

amount of variable inputs compatible with a zero output level.

3.2.  Nonparametric Technologies: Definitions

The choice for nonparametric frontier technologies is related to the fact that primal capacity
notions (like plant capacity) are difficult to estimate using traditional parametric specifi¢ations.
Therefore, plant capacity is measured relative to a nonparametric frontier technology imposing

strong disposability in inputs and outputs and assuming variable returns to scale:
K K K
SC:{(X y: )2235 & 352 Nkzz &1 kzo}- 9
k=1 k=1 k=1

In view of the importance of nonconvexities in production stressed in Tone and Sahoo (2003) and
confirmed in the context of plant capacity estimation by Walden and Tomberlin (2010), we also

employ a nonconvex variable returns to scale technology:
K K K
sNC={(x VoY ¥z ¥ ¥y FL kﬂ{o,l}}' (10)
k=1 k=1 k=1

which only differs from the previous technology in that the activity vedprs(restricted to be
binary integer.

For the sake of clarity, we explicitly add the two linear programming models that need to be
computed in order to obtain the traditional output-oriented plant capacity measure. To simplify

matters, we only treat the case of the traditional convex technology (9): the case of the nonconvex

10
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technology (10) is similar. For an evaluated observati§y°), one can obtain the radial output

measure DKX,y) as follows:
DF, (x*.y") = max®

K
St D Yz 20Y ML, M,
k=1

K

D XwZcS Xy =L N, (11)
k=1

K
2. %=1,
k=1
z, 20,620, k=1,..K
The efficiency measur®F." (x', y) is computed for observatior’(y°) as:
DFof (Xfo,yo) - maxe
8,z

St D Yz 20Y ML, M,

k=1
K
D%z <% n=1..,N, (12)
k=1
K
2% =1,
k=1

z, 20,620, k=1,..K
Note that there are no input constraints on the variable inputs.

Turning now to the new input-oriented plant capacity measure, one computes the radial sub-

vector input measur®F (X ', x*, y) for an evaluated observatiox,{°) as follows:

DFiSR(i fo,Xvo, yC):rE]mA
K
St D) YenZ2 Yo MFL., M,
k=1

K
DXz s ¥ =L, N,
k=1

K

D Xz sAR, n=1..,N, N+ N=N
k=1

K
2.%=1
k=1
z, 20,420, k=1,...K.
The sub-vector efficiency measub¥>%(x ', x*,0) is obtained for observatior°(y®) by solving:

(13)

4 For instance, Fare (1984) shows that a primal capacity notion cannot be obtained for certain popular parametric
specifications of technology (e.g., the Cobb-Douglas).

11
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DFiSR(i fo, XVO, O): mlnA
Az
K
St D Ynz20 m=1..M,
k=1

K
DXz s¥ =L, N,
k=1

K

D Xz sAR, n=1..,N, N+ N=N
k=1

K
2.%=1
k=1
z, 20,120, k=1,...K.
Note that the observed output levels on the right hand side of the output constraints are set equal to

(14)

zero. The determination of input utilization rates for the variable inputs is straightforward in the
output-oriented case (e.g., Fare, Grosskopf and Lovell (1994: § 10.3)), the determination of optimal
variable inputs is equally trivial in this input-oriented case.

Comparing the linear programs (11) to (14) two key observations can be made. First, the
radial output efficiency measure in (11) and (12) looks for expansions in all output dimensions,
while the radial input efficiency measure in (13) and (14) looks for reductions in the variable inputs
only, while accounting for the input constraints related to the fixed inputs. The latter is in line with
the need for a sub-vector approach explained in Figure 2 above. Second, the linear program in (12)
is different from the linear program in (11) in that no input constraints related to the variable input
dimensions are included. In terms of Figure 1, the purpose of removing the constraints with the
current allocation of variable inputs is to be able to translate the obsergatitmnthe direction of
point€ in an effort to seek the maximum output availabl@aintd. The linear program in (14) is
different from the linear program in (13) in that the output constraints are now set at a zero level. In
terms of Figure 1, the sub-vector efficiency measure looks for reductions in variable inputs to be
able to translate the observatiemto the direction of poing”” and beyond in an effort to seek the

minimum amount of variable inputs compatible with a zero output level at point a.

4, NUMERICAL ILLUSTRATION

Consider a numerical example with a single fixed input, two variable inputs and a single
output containing 16 observations. The data is provided in the first five columns of Table 1. The
projection of the efficient frontier (assuming a convex technology) in the input-output space
containing the two variable input dimensions and the output dimension is illustrated in Figure 3. For
this illustration, fixed input is set to a high enough value (at least 3 with the current data) to assure

all observations being considered in the construction of the frontier. The frontier is made slightly
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transparent allowing to observe interesting points behind this frontier. All initial observations are
clearly visible except for those occluded by the vertical plane.

To illustrate the new input-oriented capacity utilization measure (7), consider the additional
point a in Figure 3 withx' =3, x' =(7,5)and y=4. The short run efficiency occurring in the
numerator of (7) is computed using model (13). For pommt this results in

DFS%(x ', x*, y) = 0.791C indicating the allowable radial contraction of the variable inputs. When

applied, this contraction leads to pomin Figure 3. In factDF (X ', x", y) =:C—b:. The short run
ca

efficiency in the denominator of (7) is obtained using model (14). For m@irthis yields

DESR(x ', x%,0)=0.611¢. This value can be observed in Figure 3 as the ratio

DESR(if,xV,O)=||O—Cel||. Combination of both efficiencies using (7) leads to the input-oriented
0

capacity utilization:
DFSR(x ', x",y) _ 0.7910_, ,
DF3*(x ', x",0) 0.6119

Note that this value can be considered as the R, (x X , ) :|z_2: since|cal|od |.

927.

PCU (x X, y)=

If the output of poin& is increased from 4 to 4.5, i.e., it now takes on posdian Figure
|c'b’|
lc'a’

=0.882% while the denominator

3, then the numerator in (7) increasesDtB **(X ', x", y) =

remains unchanged. Consequently, the input-oriented capacity utilization also increases to:

DFS¥(x ', x", y) _0.8823_

PCU,(x X, y)= 1.441€.
(X0 DFS%(x ', x",0) 0.6119
This new value corresponds with the raB€U, (x X, y) =|C—b||. Thus, we observe an increase of
oe

the input-oriented capacity utilization when the output is increased, which necessitates more inputs.
This corresponds with intuition. However, as mentioned above, note that the input-oriented plant
capacity measure never attains a maximum value in contrast to the output-oriented plant capacity
measure. Thus, the input-oriented capacity measure does not measure capacity utilization with
respect to some maximum, but with respect to the minimal amount of variable inputs compatible
with zero outputs (i.e., minimal inputs needed to start producing nonzero outputs).

For completeness sake, the short run efficiencies and the corresponding PCU are computed
for all initial observations, both for a convex and a nonconvex technology. The results are reported

in Table 1 and already reveal that convex and nonconvex results need not be the same.

13



IESEG Working Paper Series 2016-EQM-08

<TABLE 1 ABOUT HERE>
<FIGURE 3 ABOUT HERE>

5. EMPIRICAL ILLUSTRATION

To illustrate the ease of implementing the plant capacity frameworks developed in this
contribution, the decompositions (6) and (8) are computed using the data in Fan, Li and Weersink
(1996). These data contain 471 specialised dairy farms from the province of Quebec in®Canada.
The single output is milk production per cow. The four inputs are: forage consumption; grain and
concentrate consumption; value of capital stock; and labour-person units. These inputs are also
expressed in units per cow. For the purpose of the analysis, the fixed inputs are capital and labour,
and the variable inputs are forage consumption and grain and concentrate consumption.

Table 2 provides basic descriptive statistics for both the traditional output- and the new
input-oriented decompositions (6) and (8), respectively, using both convex (upper part of table) and
nonconvex (lower part of table) technologies. Apart from the percentage of efficient observation
relative to the sample, we report the geometric average (to respect the multiplicative
decomposition), the standard deviation, and the minima or maxima (bold faced) depending on the
context.

<TABLE 2 ABOUT HERE>

Contrasting input and output orientations, we find 10.40% and 2.34% efficient observations
for the radial efficiency measures, 3.40% and 2.34% efficient observations for the biased plant
capacity, and 11.25% and 4.88% efficient observations for the unbiased plant capacity, respectively.
In addition, the geometric average reveals an about 27% input-oriented inefficiency while it shows
an about 17% output-oriented inefficiency. For the biased plant capacity measure, there is an about
40% input-oriented inefficiency compared to a 26% output-oriented inefficiency. Finally, for the
unbiased plant capacity measure, one observes a 20% input-oriented capacity utilisation compared
to an about 7% output-oriented capacity utilisation.

Switching focus on the differences between convex and nonconvex results, several findings
stand out. First, the percentage of efficient observations is equal or higher for the radial efficiency
measures, the biased plant capacity, as well as the unbiased plant capacity. Second, also the level o
efficiency, and the level of biased plant capacity is higher. For the unbiased plant capacity, the
input-oriented level of biased plant capacity is higher, but the output-oriented one is slightly lower.
The latter result is possible because the unbiased plant capacity measure is a ratio of two

efficiencies both of which can be ordered. While these empirical findings are overall in line with

5 We maintain all observations rather than opting for a preliminary screening looking for any potential outliers.
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expectations, these results once more highlight the impact of convexity on plant capacity utilisation
results.

Figure 4 contains four boxplot subfigures summarizing the distributions of the (a) input-
oriented convex results; (b) output-oriented convex results; (c) input-oriented nonconvex results;
and (d) output-oriented nonconvex results. Recall that this boxplot graphically displays a five-
number summary containing the “minimum”, the lower hinge, the median, the upper hinge, and the
“maximum”. The length of the box between both hinges represents the interquartile range, while the
vertical line in the center marks the median. The length of the whiskers denoting the range is here
drawn no longer than 1.5 times the length of the box, such that points plotted beyond the whiskers
are potential outliers and indicate tails heavier than the normal distribution.

In addition to the descriptive statistics highlighted above, these boxplots reveal some
skewness in some of the efficiency measures and plant capacity measures, as well as the existence
of a limited number of potential outliers. In particular, both the position of the median within the
box and the relative length of both whiskers suggest skewed distributions for most efficiency
measures and plant capacity measures, except for the Biased PCU in subfigure (a). In addition,
some to several points plotted beyond the whiskers reveal heavy tails compared to the normal
distribution for most efficiency measures and plant capacity measures, except for the Biased PCU in
subfigure (c).

<FIGURE 4 ABOUT HERE>

Table 3 reports on the first line the Spearman rank correlation coefficients for some
components of the output- and input-oriented decompositions (6) and (8). First, input- versus
output-oriented components are compared given convexity and nonconvexity, respectively.
Correlations are moderately high for the PCU component, which is our central interest. Then,
convex Vversus nonconvex components are compared given input-orientation and output-
orientation, respectively. The rank correlations are now rather high for the PCU component. Thus,
input- and output-orientations seem to differ more than convex and nonconvex results.

The same Table 3 also reports on the second line the results of a formal test statistic
proposed by Li (1996) The null hypothesis of this Li-test states that both distributions are equal for
a given efficiency score and underlying specification of technology. A glance at Table 3 reveals that
one can safely reject the null hypothesis of equal distributions for all cases. Thus, input- as well as
output-oriented and convex as well as nonconvex radial efficiency measures, biased and unbiased

plant capacities are significantly different from one another.

6 This test is valid for both dependent and independent variables. Note that dependency is a characteristic of frontier
estimators: efficiency levels depend on sample size, among others.
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<TABLE 3 ABOUT HERE>

6. CONCLUSIONS

This paper introduces a new input-oriented plant capacity measure that complements the
existing output-oriented plant capacity measure. Instead of focusing on maximal outputs for given
fixed inputs and unlimited amounts of variable outputs, it focuses on reducing variable inputs for
given fixed inputs compatible with an output level of zero. Thus, it measures plant capacity in
relation to the minimal variable inputs at which production at positive output levels starts.

A numerical example serves to illustrate the geometric intuition behind this new input-
oriented plant capacity measure. An empirical illustration using specialised Canadian dairy farms
underscores the differences and similarities between the input- and output-oriented plant capacity
measures. It also emphasises the impact of choosing either a convex or a nonconvex technology,
confirming the earlier conclusion of Walden and Tomberlin (2010) that convexity matters for
estimating plant capacity.

This new definition enlarges the empirical toolbox for practitioners. It also offers a natural
framework when addressing questions whereby capacity is phrased in terms of the inputs. For
instance, the increasing share of internet banking as well as new payment systems (e.g., based on
smart phone applications) decreases the capacity utilisation of existing bank branches. This will
ultimately lead to new questions on the optimal configuration of bank networks in either more or
less the same number, but smaller branches, or more geographically concentrated branches of abou

the same size.
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Table 1: Numerical Example: Input-Oriented Plant Capacity Utilization for Convex (C) and

Nonconvex (NC) Technologies

DER(x",x%y)  DF(x' x"0) PCU, (x X, y)
N X X x, y C NC C NC C NC
1 2 10 70 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2 2 30 6.0 3 0.8542 1.0000 0.8542 1.0000 1.0000 1.0000
3 2 35 65 3 0.7664 0.9231 0.7664 0.9231 1.0000 1.0000
4 2 45 40 3 0.8723 1.0000 0.8723 1.0000 1.0000 1.0000
5 2 50 45 3 0.7810 0.9000 0.7810 0.9000 1.0000 1.0000
6 2 55 20 3 09535 1.0000 0.9535 1.0000 1.0000 1.0000
7 2 6.0 10 3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
8 2 75 40 3 0.6308 0.7333 0.6308 0.7333 1.0000 1.0000
9 3 30 95 5 1.0000 1.0000 0.6260 0.7368 1.5976 1.3571
10 3 100 1.0 5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
11 3 45 9.0 5 0.9086 1.0000 0.5694 0.6667 1.5957 1.5000
12 3 55 105 5 0.7651 0.8571 0.4795 0.5714 1.5955 1.5000
13 3 65 65 5 09132 1.0000 0.5734 0.6923 1.5924 1.4444
14 3 75 75 5 0.7914 0.8667 0.4970 0.6000 1.5924 1.4444
15 3 90 50 5 0.8251 1.0000 0.5190 0.6111 1.5899 1.6364
16 3 100 9.0 5 0.6216 0.7222 0.3905 0.4500 1.5920 1.6049

Table 2: Descriptive Statistics of Efficiency Decompositions (6) and (8)

Convex DF*(x',x%y) DR™(x',x,0) PCU(xX.y) DFo(X,y) DFo(Xy)  PCUs(XXy)
% Ef. Obs. 10.40% 3.40% 11.25% 2.34% 2.34% 4.88%
Geom Avg 0.7280 0.6056 1.2021 1.1690 1.2626 0.9259

St. Dev. 0.1430 0.1460 0.2686 0.1306 0.1725 0.0625
Min./Max. 0.3152 0.2672 3.6443 1.7429 2.0849 0.5175
Nonconvex DF%(x',x%y) DF*(x',x%0) PCU(xx)y)  DFq(xy) DFo(Xy)  PCUo(x,Xy)
% Ef. Obs. 34.82% 8.49% 22.51% 34.82% 9.13% 14.01%
Geom Avg 0.8584 0.7052 1.2172 1.0803 1.2101 0.8927

St. Dev. 0.1326 0.1517 0.2408 0.0990 0.1662 0.0845
Min./Max. 0.3721 0.3327 2.9524 1.4420 1.9521 0.5366

Table 3: Spearman Rank Correlations and Li-tests on Decompositions (6) and (8)

Efficiency Biased PCU

Unbiased PCU

Convex Input vs. Output -0.6793 0.2220
46.82" t 106.79™

Nonconvex Input vs. Output -0.8678 0.0684
2.82" 43.24™

Input Cvs.NC 0.8525 0.9371
52.16™ 23.56"

Output Cvs.NC 0.8092 0.9642
49.47" 5.41"

0.4963
37.80"
0.3681
32.27"
0.7713
11.45"
0.7216
24.53"

T Li test: critical values at 1% level = 2.33Y; 5% level = 1.647); 10% level = 1.287].
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Figure 1: Total Product Curve with Input and Output-oriented Plant Capacity Measures
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Figure 3: Efficient Frontier in Input-Output Space and Projections for a Particular
Observation lllustrating the New Input-Oriented Plant Capacity Utilization Measure

22



IESEG Working Paper Series 2016-EQM-08

Figure 4: Boxplots of Efficiency Decompositions (6) and (8)

Efficiency

A

3n

Lo

20

Lo

1.0

0.4

(a) Input-oriented & Convex

]
o
a
o
E
i
I
I
I
1
_:_ $ P— E—
1
1
I
N - i
o -
T T T
Efficiency Biased PCU Unbiased PCL

23

Efficiency

14 20
}~— ——————~}nm o o

1.0

0.5

(b) Output-oriented & Convex

T
Efficiency

T
Biased PCU

Unbiased PCL




IESEG Working Paper Series 2016-EQM-08

Efficiency

(c) Input-oriented & Nonconvex (d) Output-oriented & Nonconvex
=
ﬁ 1 Q g Q
B
i_‘q _ o
- & B g
" | -]
[im) g
; :
[} I
a1 g 2 B l
1 = — 8 . |
I ks I
1 S 1
1 L= o 1
| | = o= I
— | L 1
1
I
=N - -
Lo = p——
: (el |
= i
1
1 E
i R ! @ | 8
a ' e B
—
I I I I I I
Efficiency Biased PCU Unbiased PCLU Efficiency Biased PCU Unbiased PCLU

24





