IESEG

SCHOOL OF MANAGEMENT

October 2013

WORKING PAPER SERIES
2013-ECO-22

Nonparametric cost and revenue functions
under constant economies of scale: An
enumeration approach for the single output
or input case

Walter Briec
LAMPS, Université de Perpignan

Kristiaan Kerstens
CNRS-LEM and IESEG School of Management

Ignace Van de Woestyne
Hogeschool-Universiteit Brussel

IESEG School of Management
Lille Catholic University

3, rue de la Digue

F-59000 Lille

www.ieseq.fr

Tel: 33(0)3 20 54 58 92

Fax: 33(0)3 20 57 48 55


http://www.ieseg.fr/

IESEG Working Paper Series 2013-ECO-22

Nonparametric cost and revenue functions
under constant economies of scale:

An enumeration approach for the single output or input case’

Walter Briec”
Kristiaan Kerstens

Ignace Van de Woestyne

Abstract:
This note shows how the linear programs needed to compute cost and revenue functions
under constant returns to scale and a single output or input, respectively, can be replaced with a
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Keywords: nonparametric cost and revenue functions, enumeration, linear programming.

* LAMPS, Université de Perpignan, France.

** CNRS-LEM (UMR 8179), IESEG School of Management, 3 rue de la Digue, F-59000
Lille, France. k.kerstens@ieseqg.fr Corresponding author.

***  Hogeschool-Universiteit Brussel, Brussels, Belgium.

July 2013

" This is a revised version of LEM - Document de travail 2011-11.


mailto:k.kerstens@ieseg.fr

IESEG Working Paper Series 2013-ECO-22

1. INTRODUCTION
Nowadays, cost and revenue functions are often estimated using nonparametric,

deterministic estimators (see, e.g., Cooper, Seiford and Tone (2006), Hackman (2008), or Ray
(2004)). This involves the computation of one linear program (LP) per observation under
evaluation in the sample. Obtaining statistical inference from these extremum estimators using
recent bootstrapping techniques requires again solving a LP in each draw (see, e.g., De Borger,
Kerstens and Staat (2008) for an application). This can result in a substantial computational
burden.

It has gone unnoticed so far that the computation of the cost function can be simplified
in the single output case for constant economies of scale. Similarly, the solution of the
revenue function also simplifies in the single input case under identical economies of scale.
To the best of our knowledge this is the first contribution showing that an enumeration
algorithm works for these specific convex Data Envelopment Analysis (DEA) value-based
models.

Our contribution must be seen against the background of a small, burgeoning literature
focusing on a variety of strategies to speed up the LP computations underlying DEA production
frontier models. Ali (1993) is probably the first study initiating this research into the
computational aspects of DEA. Following a taxonomy introduced in some early overview
articles of Dula (2002), one can distinguish between preprocessors, enhanced procedures, and
new algorithms. In contrast to this rather substantial literature, to our knowledge very few
articles have focused on simplifying the computational burden for computing cost or revenue
functions. Following up on an earlier contribution by Camanho and Dyson (2005),
Jahanshahloo, Soleimani-damaneh and Mostafaee (2008) simplify the LP formulations for
traditional convex cost functions by cutting down on the amount of constraints and decision
variables. Paryab, Khanjani Shiraz, and Jalalzadeh (2012) also manage to reduce the complexity
of the LP formulations of nonconvex cost functions with various returns to scale assumptions
by similarly reducing both the number of constraints and decision variables. Our approach
continues this line of research by focusing on a specific returns to scale assumption on a convex
technology and by restricting the numbers of inputs or outputs.

The purpose of this note is to prove both results regarding the use of enumeration for
cost and revenue functions under constant returns to scale and a single output or input,
respectively. Furthermore, apart from a general argument as to the computational complexity

of enumeration versus LP, this note provides a small empirical illustration. Section 2



IESEG Working Paper Series 2013-ECO-22

introduces basic definitions. Section 3 contains the main results. Section 4 illustrates using a

numerical example. A concluding section offers some further perspectives.

2. TECHNOLOGY, COST AND REVENUE FUNCTIONS
Deterministic, nonparametric technologies are based on activity analysis. A technology

uses a vector of inputs xell" to produce a vector of outputs y 1" . This technology or

production possibility set is the set of all feasible input-output vectors: T = {(x,y): x can produce
y}. Alternatively, the input set L(y) denotes all input vectors x producing the output vector y:
L(y) = {x: (x,y) € T}. Equally so, the output set P(x) is defined as the set of all output vectors y
that can be obtained from the input vector x: P(x) = {y: (x,y) € T}.

The standard radial input efficiency measure is defined as:

DF(x,y)=min {2 [2>0,(Ax) eL(y)}]. (1)

Its main properties are: (i) 0 < DFj(x,y) < 1, with efficient production on the boundary
(isoquant) of L(y) represented by unity; (ii) it has a cost interpretation (see, for instance,
Hackman (2008)).

Assume that p is a vector of strictly positive input prices (pell ). Then, the cost

function corresponding to a given technology is defined as follows:*
C(p.y) = inf{p-x: xeL(y)}. (2)

Figure 1 shows an isoquant of an input set L(y) with two inputs generating the same
level of outputs. The figure also contains an iso-cost line tangent to this isoquant. For a given
observation, the radial distance to the isoquant represents its technical efficiency. The radial
distance to the iso-cost line represents a measure of cost efficiency. Finally, since cost
efficiency is always lower or equal to technical efficiency, in case there is a difference this can
be attributed to allocative efficiency. The resulting basic efficiency decomposition states that
cost efficiency is the product of a technical efficiency component and an allocative efficiency
component (see Cooper, Seiford and Tone (2006, ch. 8) for further details).

< FIGURE 1 ABOUT HERE >

Equally so, assume that r is a vector of strictly positive output prices (r eJ "), then

the revenue function corresponding to a given technology is defined by:

R(r,x) = max{r-y: yeP(x)}. (3)
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Apart from imposing traditional assumptions on technology (i.e., no free lunch and
inaction, closedness, free disposal of inputs and outputs, and convexity), the sole key assumption
we invoke in this contribution is constant returns to scale (CRS) (i.e., when (x,y) €T, then
AX,y) €T, Vo > 0). Several nonparametric technologies have been derived from these axioms
(Banker, Charnes and Cooper (1984) are among the earlier sources).

A convex technology based on K observations (x,,V,), k=1,..., K, satisfying the above

axioms and CRS has been defined in Charnes, Cooper and Rhodes (1978) as follows:

T ={(x,y) | xeO}, yeO!, ZK:zkyk >y ,ZK:zkxk <x,z,>20,k=1..,K} (4
This article introducing this technologyk_ils considere(;_:o mark the start of the DEA literature.
Computing a cost (1) or revenue (2) function with respect to this CRS technology is a standard
model in the DEA literature (e.g., Cooper, Seiford and Tone (2006) or Cooper, Seiford and
Zhu (2011)) and normally requires solving one LP per observation (eventually a simplified

version as elaborated by Jahanshahloo, Soleimani-damaneh and Mostafaee (2008)).

3. MAIN RESULTS
Minimal assumptions on observed inputs and outputs are usually formulated as follows.

Summing over all observations, there is a strictly positive aggregate production of every output
and a strictly positive aggregate consumption of every input. Every unit produces a positive
amount of at least one output and employs a positive amount of at least one input (see, e.g.,
pages 44-45 in Fare, Grosskopf and Lovell (1994)). When considering a single output case, this
implies that all observations have a strictly positive single output. Likewise, for the single input

case, this implies that all observations use a strictly positive single input.

Proposition 1: In the case of CRS and a single, strictly positive output (M=1), the cost

function C** (p, y) is computed as follows:

C(p,y)=y min {i-p-xk}.

k=1..K yk

Proof: Assume there is a single, strictly positive output (M=1). Consider the technology T

enveloping the sample S={(x1,y1),...,(xK,yK)}. For k = 1,...,K, denote &, =— . Now,

k

! The radial input efficiency measure, being the inverse of the input distance function, is related to the cost
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define the transformed sample S'= {(51 X8, Y1 ) (S X O Vi )} = {(51 XY ) e (S X y)}

realizing the same technology T°*®. Denote the following sets:

K K
I—CRS(Y):{XED L XZZZk@Xk,ZZk 21z, 20};
k=1

1
LVRS _ DN . > - S - =1 >0
(V)=1xell: x2> 76%,) 2, =17,20.
P} k=t

First, we demonstrate that L<*°(y)=L"°(y). Clearly, L™ (y) < L®*(y). Conversely, let

K K
xe L™ (y). Then x> z,6,x, forarbitrary z >0 (k=1,...,K) with & ="z, >1. Now, let
k=1 k=1

7 K K ] K ]
7, :;". Then, x>a) 75X =Y .7,6% with >z, =1. Thus, xe L™ (y) leading to the
k=1 k=1 k=1

desired result. Second, LCRS(y):LVRS(y)=Co({51x1,...,5KxK})+D ", where Co(.) denotes

the convex hull. Since Co({élxl,...,éKxK}) is a convex polyhedron by definition, the

minimum of any non-decreasing linear function (in casu, the cost function) is achieved at

some vertex point (see Eremin (2002)). Thus,

C® (p,y)=min{p-x: xeL™(y)} :mkin{p~5k -xk}zmkin{lk~ p.xk}.
Q.E.D.
Remark: Using the formulation of the cost function in Camanho and Dyson (2005) (their
formula (3)) with the conditions of Proposition 1, it can be easily shown that the optimal
solution is obtained by using exactly one observation. Therefore, this optimal solution can be
found by minimizing inner products with the price vector over all observations, thereby
providing an alternative proof of Proposition 1.2 However, this proof strategy does not work

for the revenue function.

Proposition 2: In the case of CRS and a single, strictly positive input (N=1), the revenue

function R (r,x)is computed as follows:

CRS _ 1
R (r,x)_ka_%{—-r-yk}.

function via duality relation (see Hackman (2008) for details).
2 We are grateful to a referee to explicitly outline this alternative way of proof.
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Proof: Assume there is a single, strictly positive input (N=1). Consider a technology T
. X
enveloping the sample S :{(xi,yl),...,(xK,yK)}. For k = 1,...,K, denote p, =—. Now,

define the transformed sample
S':{(Mxl,,ulyl),...,(,quK,yKyK)}:{(x,ulyl),...,(x,y,(y,()} realizing the  same

technology T“®°. Using similar arguments as in Proposition 1, we obtain

PCRS(X):(Co({ﬂlyl,...,yKyK})H—D T))mD M :{yeD M:0< yégzk,ukyk,gzk =1z, 20}
Since the price vector r (] " is nonnegative, we have:

R (r, %) = max{r-y:y e P* (x)}
maX{r~y:ye(CO({myl,---,uKyK})+(—D ¥)) e “f}

=max{r'y: ye(Co({ﬂly1 ..... ,uKyK})+(—D T))}

Since CO{(,LLl Yoo My Vi )} is a convex polyhedron by definition, the maximum of any non-

decreasing linear function (in casu, the revenue function) is achieved at some extreme point.
Thus,

RCRS

(r,x):max{r-y: ye PCRS(X)} :max{r-y: yeCo({Myl,...,yKyK})}

=mg><{r-uk-yk}=mg><{xi-r-yk}-

k

Q.E.D.
We include an algorithm for computing C* for all observations:
Algorithm 1:
For i=1..K do:
1) Select the i observation (X, ¥:) = (Xipy e Xy » Y;y) @nd its input price vector
p; =(pi1""’ piN)'
2) Put C=c0.

3) For k=1..K do:
N
a. Clzh-z Py %

Yia j=l

b. If C1<C then C=C1
4) The variable C holds the value of C%*(p.,y,) for the i observation.
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A similar algorithm could be formulated for R,

Having proven the two main results, we spell out the computational consequences in

the next corollary.

Corollary 1: In case of CRS and a single output, the cost function can be computed by
enumeration in a smaller number of operations compared to LP. The same applies to the
revenue function in case of CRS and a single input.

Proof: In case of a single output, enumeration requires O(LK(1+N)?) arithmetic operations,
where L is a measure of data storage for a given precision. Ignoring the worst case exponential
complexity of the simplex method in LP, the Kamarkar interior point (IP) method needs
O(L(n)*?) operations (with n the number of decision variables) while the most successful IP
method known so far (i.e., primal-dual Newton step IP method) has a complexity of O(L(n)%)
(see Chong and Zak (2001) or Eiselt and Sandblom (2007) for details). Transposed to our

models, one thus needs at best O(L(K+N)®) operations for LP. Since in general K >N >1, it

follows that K+N>1+N and consequently (K +N)?>>(1+N)?. AlsoK +N > K which

combined with the previous inequality leads to (K +N)® > K(1+ N)?. Hence, enumeration of

the cost function under CRS and a single output is always quicker compared to LP. The same
argument applies to Proposition 2.
Q.E.D.

While the above corollary is rather obvious from a computational point of view, it is good to
put this basic result in context. First, there are the often cited rules of thumb in the frontier
literature stressing that certain relations between the number of observations and the number
of variables should be observed. For instance, Vassiloglou and Giokas (1990, p. 593) suggest
that the sample should have at least twice as many observations as there are model variables.
Second, recent insights into the statistical properties of frontier estimators show that these are
consistent (with a slow rate of convergence because of the curse of dimensionality), but
inherently biased towards unity (see, e.g., Fried, Lovell and Schmidt (2008)). This bias
depends on specific properties of the underlying data: (i) number of observations in the
sample, (ii) the number of inputs and outputs in the model, and (iii) the density of

observations around the relevant segment of the frontier. Hence, for all these reasons
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practitioners ideally must seek to have sample sizes much larger than the number of inputs
(K>>N), resulting in substantial gains in computer time for the newly proposed method.
The numerical and empirical illustration to which we now turn serves to document

how substantial these gains may well turn out to be in practice.

4, NUMERICAL ILLUSTRATION
To illustrate the use of Proposition 1, we provide an artificial example containing six
observations, each having two inputs x; and x, and one output y. Data is provided in the first

four columns of Table 1. We assume a fixed unit price of 4 for x; and 5 for x,.

Table 1: Cost Function Computations for Observation 1 with Fixed Input Price Vector

Obs X1 X7 y C1
1 2 2 2 18.00
2 3 2.5 4  12.25
3 2 4 5| 11.20
4 0.5 4.5 3.5 14.00
5 5 5 7 12.86
6 4 4.5 4  19.25
Unit price 4 5

The given observations and their resulting CRS efficient frontier are also visualized in
three dimensions in Figure 2. Notice that the three CRS efficient observations (visible as clear
red circles) are located on the frontier, while the other inefficient observations (visible as
masked circles) are situated behind the frontier. Now, consider observation 1 denoted by @ in
Figure 2. At its output level of 2, the intersection with a horizontal plane leads to the isoquant
of an input set provided in Figure 1.

< FIGURE 2 ABOUT HERE >

To compute C®*® for observation 1, start by computing C1 for all observations as

indicated in Algorithm 1. For example, for the second observation this results in

Cl=%-(4-3+5-2.5):12.25. This value C1 is computed similarly for all observations

leading to the values reported in the last column of Table 1. The smallest C1-value, that is

11.20, yields C“*® for observation 1 and is indicated by the bordered cell in Table 1. This
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process can now be repeated for all other observations. In fact, it can also be executed for an

arbitrary y-level.

5. CONCLUSION
This note is the first to prove that an enumeration algorithm can be employed to solve for

certain specific convex DEA value-based models. Hitherto, enumeration has solely been
applied to the specific structure of a non-convex production model (see, e.g., Ray (2004)).
Apart from a general argument as to the computational complexity of enumeration versus LP,
the empirical illustration reveals that potentially substantial computational gains are realistic.
Obviously, in case bootstrapping techniques are used to conduct statistical inference (with a
LP in each draw), the gains in computational burden will prove even more substantial.
Perhaps, these gains are such as to justify inclusion of the above special cases in some of the
dedicated DEA software around.

Obviously, we do not claim that enumeration is a viable solution strategy for convex
DEA type of production- and value-based models in general. But, it cannot be excluded that
enumeration could be applied to some other specific convex DEA models. For instance, to the
extent that one is willing to select an efficiency measure that always projects onto a vertex point,
the same procedure could probably be applied to production models under constant returns to
scale and a single output or input with the measurement orientation along this single
dimension (see, e.g., Russell and Schworm (2011) for some of the more recent choices). This

could be a promising avenue for future research.
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Figure 1: CRS production possibility set for observation 1 in Table 1 with visualization of the
current cost level (dash-dotted line), technical efficient cost level (dotted line) and the
minimal cost level (solid line).

Figure 2: 3d-view of the observations given in Table 1, the CRS efficient frontier and its
section by the horizontal plane at the output level of observation 1.
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