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1. INTRODUCTION 

 Nowadays, cost and revenue functions are often estimated using nonparametric, 

deterministic estimators (see, e.g., Cooper, Seiford and Tone (2006), Hackman (2008), or Ray 

(2004)). This involves the computation of one linear program (LP) per observation under 

evaluation in the sample. Obtaining statistical inference from these extremum estimators using 

recent bootstrapping techniques requires again solving a LP in each draw (see, e.g., De Borger, 

Kerstens and Staat (2008) for an application). This can result in a substantial computational 

burden.  

 It has gone unnoticed so far that the computation of the cost function can be simplified 

in the single output case for constant economies of scale. Similarly, the solution of the 

revenue function also simplifies in the single input case under identical economies of scale. 

To the best of our knowledge this is the first contribution showing that an enumeration 

algorithm works for these specific convex Data Envelopment Analysis (DEA) value-based 

models.  

 Our contribution must be seen against the background of a small, burgeoning literature 

focusing on a variety of strategies to speed up the LP computations underlying DEA production 

frontier models. Ali (1993) is probably the first study initiating this research into the 

computational aspects of DEA. Following a taxonomy introduced in some early overview 

articles of Dulá (2002), one can distinguish between preprocessors, enhanced procedures, and 

new algorithms. In contrast to this rather substantial literature, to our knowledge very few 

articles have focused on simplifying the computational burden for computing cost or revenue 

functions. Following up on an earlier contribution by Camanho and Dyson (2005), 

Jahanshahloo, Soleimani-damaneh and Mostafaee (2008) simplify the LP formulations for 

traditional convex cost functions by cutting down on the amount of constraints and decision 

variables. Paryab, Khanjani Shiraz, and Jalalzadeh (2012) also manage to reduce the complexity 

of the LP formulations of nonconvex cost functions with various returns to scale assumptions 

by similarly reducing both the number of constraints and decision variables. Our approach 

continues this line of research by focusing on a specific returns to scale assumption on a convex 

technology and by restricting the numbers of inputs or outputs.  

 The purpose of this note is to prove both results regarding the use of enumeration for 

cost and revenue functions under constant returns to scale and a single output or input, 

respectively. Furthermore, apart from a general argument as to the computational complexity 

of enumeration versus LP, this note provides a small empirical illustration. Section 2 
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introduces basic definitions. Section 3 contains the main results. Section 4 illustrates using a 

numerical example. A concluding section offers some further perspectives. 

 

2. TECHNOLOGY, COST AND REVENUE FUNCTIONS 

 Deterministic, nonparametric technologies are based on activity analysis. A technology 

uses a vector of inputs Nx   to produce a vector of outputs My  . This technology or 

production possibility set is the set of all feasible input-output vectors: T = {(x,y): x can produce 

y}. Alternatively, the input set L(y) denotes all input vectors x producing the output vector y: 

L(y) = {x: (x,y)  T}. Equally so, the output set P(x) is defined as the set of all output vectors y 

that can be obtained from the input vector x: P(x) = {y: (x,y)  T}.  

The standard radial input efficiency measure is defined as: 

 .)()(0,min),( yLxyxDFi    (1) 

Its main properties are: (i) 0 < DFi(x,y)  1, with efficient production on the boundary 

(isoquant) of L(y) represented by unity; (ii) it has a cost interpretation (see, for instance, 

Hackman (2008)). 

Assume that p is a vector of strictly positive input prices ( Np  ). Then, the cost 

function corresponding to a given technology is defined as follows:1 

    , inf :C p y p x x L y   .  (2) 

Figure 1 shows an isoquant of an input set L(y) with two inputs generating the same 

level of outputs. The figure also contains an iso-cost line tangent to this isoquant. For a given 

observation, the radial distance to the isoquant represents its technical efficiency. The radial 

distance to the iso-cost line represents a measure of cost efficiency. Finally, since cost 

efficiency is always lower or equal to technical efficiency, in case there is a difference this can 

be attributed to allocative efficiency. The resulting basic efficiency decomposition states that 

cost efficiency is the product of a technical efficiency component and an allocative efficiency 

component (see Cooper, Seiford and Tone (2006, ch. 8) for further details).  

< FIGURE 1 ABOUT HERE > 

Equally so, assume that r is a vector of strictly positive output prices ( Mr  ), then 

the revenue function corresponding to a given technology is defined by: 

    , max :R r x r y y P x   . (3) 

IESEG Working Paper Series 2013-ECO-22



 3 

 Apart from imposing traditional assumptions on technology (i.e., no free lunch and 

inaction, closedness, free disposal of inputs and outputs, and convexity), the sole key assumption 

we invoke in this contribution is constant returns to scale (CRS) (i.e., when (x,y)T, then 

(x,y)T,  > 0). Several nonparametric technologies have been derived from these axioms 

(Banker, Charnes and Cooper (1984) are among the earlier sources).  

 A convex technology based on K observations ( , )k kx y , 1,...,k K , satisfying the above 

axioms and CRS has been defined in Charnes, Cooper and Rhodes (1978) as follows:  

CRS

1 1

{( , ) , , , , 0, 1,..., }.
K K

N M

k k k k k

k k

T x y x y z y y z x x z k K 

 

         (4) 

This article introducing this technology is considered to mark the start of the DEA literature. 

Computing a cost (1) or revenue (2) function with respect to this CRS technology is a standard 

model in the DEA literature (e.g., Cooper, Seiford and Tone (2006) or Cooper, Seiford and 

Zhu (2011)) and normally requires solving one LP per observation (eventually a simplified 

version as elaborated by Jahanshahloo, Soleimani-damaneh and Mostafaee (2008)). 

 

3. MAIN RESULTS 

Minimal assumptions on observed inputs and outputs are usually formulated as follows. 

Summing over all observations, there is a strictly positive aggregate production of every output 

and a strictly positive aggregate consumption of every input. Every unit produces a positive 

amount of at least one output and employs a positive amount of at least one input (see, e.g., 

pages 44-45 in Färe, Grosskopf and Lovell (1994)). When considering a single output case, this 

implies that all observations have a strictly positive single output. Likewise, for the single input 

case, this implies that all observations use a strictly positive single input. 

 

Proposition 1: In the case of CRS and a single, strictly positive output (M=1), the cost 

function  ,CRSC p y  is computed as follows: 

 
1...

1
, minCRS

k
k K

k

C p y y p x
y

 
   

 
. 

Proof: Assume there is a single, strictly positive output (M=1). Consider the technology CRST  

enveloping the sample     1 1, ,..., ,K KS x y x y . For k = 1,…,K, denote 
k

k
y

y
 . Now, 

                                                                                                                                                                                     
1
 The radial input efficiency measure, being the inverse of the input distance function, is related to the cost 
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define the transformed sample          1 1 1 1 1 1' , ,..., , , ,..., ,K K K K K KS x y x y x y x y        

realizing the same technology T
CRS

. Denote the following sets: 

1 1

( ) : , 1, 0
K K

CRS N

k k k k k

k k

L y x x z x z z

 

 
     
 

  ; 

1 1

( ) : , 1, 0
K K

VRS N

k k k k k

k k

L y x x z x z z

 

 
     
 

  . 

First, we demonstrate that ( ) ( )CRS VRSL y L y . Clearly, ( ) ( )VRS CRSL y L y . Conversely, let 

( )CRSx L y . Then 
1

K

k k k

k

x z x


  for arbitrary 0kz   (k = 1,…,K) with 
1

1
K

k

k

z


  . Now, let 

k
k

z
z


  . Then, 

1 1

K K

k k k k k k

k k

x z x z x  
 

     with 
1

1
K

k

k

z


  . Thus, ( )VRSx L y  leading to the 

desired result. Second,   1 1( ) ( ) ,...,CRS VRS N

K KL y L y Co x x     , where Co(.) denotes 

the convex hull. Since   KK xxCo  ,...,11  is a convex polyhedron by definition, the 

minimum of any non-decreasing linear function (in casu, the cost function) is achieved at 

some vertex point (see Eremin (2002)). Thus,  

    , min :CRS CRSC p y p x x L y     min mink k k
k k

k

y
p x p x

y


 
      

 
. 

           Q.E.D. 

Remark: Using the formulation of the cost function in Camanho and Dyson (2005) (their 

formula (3)) with the conditions of Proposition 1, it can be easily shown that the optimal 

solution is obtained by using exactly one observation. Therefore, this optimal solution can be 

found by minimizing inner products with the price vector over all observations, thereby 

providing an alternative proof of Proposition 1.
2
 However, this proof strategy does not work 

for the revenue function.  

 

Proposition 2: In the case of CRS and a single, strictly positive input (N=1), the revenue 

function  ,CRSR r x is computed as follows: 

 
1...

1
, maxCRS

k
k K

k

R r x x r y
x

 
   

 
. 

                                                                                                                                                                                     

function via duality relation (see Hackman (2008) for details).  
2
 We are grateful to a referee to explicitly outline this alternative way of proof.  
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Proof: Assume there is a single, strictly positive input (N=1). Consider a technology CRST  

enveloping the sample     1 1, ,..., ,K KS x y x y . For k = 1,…,K, denote 
k

k
x

x
 . Now, 

define the transformed sample 

         1 1 1 1 1 1' , ,..., , , ,..., ,K K K K K KS x y x y x y x y        realizing the same 

technology CRST . Using similar arguments as in Proposition 1, we obtain 

   1 1

1 1

( ) ,..., ( ) : 0 , 1, 0 .
K K

CRS M M M

K K k k k k k

k k

P x Co y y y y z y z z   

 

 
          

 
 

Since the price vector Mr   is nonnegative, we have: 

 

    
    
   

1 1

1 1

1 1

( , ) max : ( )

max : ,..., ( )

max : ,..., ( )

max : ,..., .

CRS CRS

M M

K K

M

K K

K K

R r x r y y P x

r y y Co y y

r y y Co y y

r y y Co y y

 

 

 

 



  

     

    

  

 

Since   1 1 ,..., K KCo y y   is a convex polyhedron by definition, the maximum of any non-

decreasing linear function (in casu, the revenue function) is achieved at some extreme point. 

Thus, 

     

 

1 1( , ) max : ( ) max : ,...,

               max max .

CRS CRS

K K

k k k
k k

k

R r x r y y P x r y y Co y y

x
r y r y

x

 



     

 
      

 

 

           Q.E.D. 

 

We include an algorithm for computing CRSC  for all observations: 

Algorithm 1: 

For 1...i K  do: 

1) Select the i
th

 observation 1 1( , ) ( ,..., , )i i i iN ix y x x y  and its input price vector 

1( ,..., )i i iNp p p . 

2) Put C  . 

3) For 1...k K  do: 

a. 1

11

1
N

i
ij kj

jk

y
C p x

y 

   

b. If 1C C  then 1C C  

4) The variable C holds the value of ( , )CRS

i iC p y  for the i
th

 observation. 
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A similar algorithm could be formulated for CRSR . 

 

 Having proven the two main results, we spell out the computational consequences in 

the next corollary. 

 

Corollary 1: In case of CRS and a single output, the cost function can be computed by 

enumeration in a smaller number of operations compared to LP. The same applies to the 

revenue function in case of CRS and a single input. 

Proof: In case of a single output, enumeration requires O(LK(1+N)
2
) arithmetic operations, 

where L is a measure of data storage for a given precision. Ignoring the worst case exponential 

complexity of the simplex method in LP, the Kamarkar interior point (IP) method needs 

O(L(n)
3.5

) operations (with n the number of decision variables) while the most successful IP 

method known so far (i.e., primal-dual Newton step IP method) has a complexity of O(L(n)
3
) 

(see Chong and Zak (2001) or Eiselt and Sandblom (2007) for details). Transposed to our 

models, one thus needs at best O(L(K+N)
3
) operations for LP. Since in general 1K N  , it 

follows that 1K N N    and consequently 2 2( ) (1 )K N N   . Also K N K  which 

combined with the previous inequality leads to 3 2( ) (1 )K N K N   . Hence, enumeration of 

the cost function under CRS and a single output is always quicker compared to LP. The same 

argument applies to Proposition 2.        

  Q.E.D. 

 

While the above corollary is rather obvious from a computational point of view, it is good to 

put this basic result in context. First, there are the often cited rules of thumb in the frontier 

literature stressing that certain relations between the number of observations and the number 

of variables should be observed. For instance, Vassiloglou and Giokas (1990, p. 593) suggest 

that the sample should have at least twice as many observations as there are model variables. 

Second, recent insights into the statistical properties of frontier estimators show that these are 

consistent (with a slow rate of convergence because of the curse of dimensionality), but 

inherently biased towards unity (see, e.g., Fried, Lovell and Schmidt (2008)). This bias 

depends on specific properties of the underlying data: (i) number of observations in the 

sample, (ii) the number of inputs and outputs in the model, and (iii) the density of 

observations around the relevant segment of the frontier. Hence, for all these reasons 

IESEG Working Paper Series 2013-ECO-22



 7 

practitioners ideally must seek to have sample sizes much larger than the number of inputs 

(K>>N), resulting in substantial gains in computer time for the newly proposed method. 

 The numerical and empirical illustration to which we now turn serves to document 

how substantial these gains may well turn out to be in practice.  

 

4. NUMERICAL ILLUSTRATION 

 To illustrate the use of Proposition 1, we provide an artificial example containing six 

observations, each having two inputs x1 and x2 and one output y. Data is provided in the first 

four columns of Table 1. We assume a fixed unit price of 4 for x1 and 5 for x2.  

 

Table 1: Cost Function Computations for Observation 1 with Fixed Input Price Vector 

Obs x1 x2 y C1 

1 2 2 2     18.00  

2 3 2.5 4     12.25  

3 2 4 5     11.20  

4 0.5 4.5 3.5     14.00  

5 5 5 7     12.86  

6 4 4.5 4 19.25 

Unit price 4 5     

 

 The given observations and their resulting CRS efficient frontier are also visualized in 

three dimensions in Figure 2. Notice that the three CRS efficient observations (visible as clear 

red circles) are located on the frontier, while the other inefficient observations (visible as 

masked circles) are situated behind the frontier. Now, consider observation 1 denoted by  in 

Figure 2. At its output level of 2, the intersection with a horizontal plane leads to the isoquant 

of an input set provided in Figure 1.  

< FIGURE 2 ABOUT HERE > 

 To compute CRSC  for observation 1, start by computing C1 for all observations as 

indicated in Algorithm 1. For example, for the second observation this results in 

2
1 (4 3 5 2.5) 12.25

4
C       . This value C1 is computed similarly for all observations 

leading to the values reported in the last column of Table 1. The smallest C1-value, that is 

11.20, yields CRSC  for observation 1 and is indicated by the bordered cell in Table 1. This 
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process can now be repeated for all other observations. In fact, it can also be executed for an 

arbitrary y-level. 

 

5. CONCLUSION 

 This note is the first to prove that an enumeration algorithm can be employed to solve for 

certain specific convex DEA value-based models. Hitherto, enumeration has solely been 

applied to the specific structure of a non-convex production model (see, e.g., Ray (2004)). 

Apart from a general argument as to the computational complexity of enumeration versus LP, 

the empirical illustration reveals that potentially substantial computational gains are realistic. 

Obviously, in case bootstrapping techniques are used to conduct statistical inference (with a 

LP in each draw), the gains in computational burden will prove even more substantial. 

Perhaps, these gains are such as to justify inclusion of the above special cases in some of the 

dedicated DEA software around. 

 Obviously, we do not claim that enumeration is a viable solution strategy for convex 

DEA type of production- and value-based models in general. But, it cannot be excluded that 

enumeration could be applied to some other specific convex DEA models. For instance, to the 

extent that one is willing to select an efficiency measure that always projects onto a vertex point, 

the same procedure could probably be applied to production models under constant returns to 

scale and a single output or input with the measurement orientation along this single 

dimension (see, e.g., Russell and Schworm (2011) for some of the more recent choices). This 

could be a promising avenue for future research.  
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Figure 1: CRS production possibility set for observation 1 in Table 1 with visualization of the 

current cost level (dash-dotted line), technical efficient cost level (dotted line) and the 

minimal cost level (solid line). 

 
Figure 2: 3d-view of the observations given in Table 1, the CRS efficient frontier and its 

section by the horizontal plane at the output level of observation 1. 
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