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A Markov model for measuring service levels in
nonstationary G(t)/G(t)/s(t) +G(t) queues

Stefan Creemers∗, Mieke Defraeye†, Inneke Van Nieuwenhuyse†

Abstract

We present a Markov model to approximate the queueing behavior
at the G(t)/G(t)/s(t) + G(t) queue with exhaustive discipline and
abandonments. The performance measures of interest are: (1) the
average number of customers in queue, (2) the variance of the number
of customers in queue, (3) the average number of abandonments and
(4) the virtual waiting time distribution of a customer when arriving at
an arbitrary moment in time. We use acyclic phase-type distributions
to approximate the general interarrival, service and abandonment time
distributions. An efficient, iterative algorithm allows the accurate
analysis of small- to medium-sized problem instances. The validity
and accuracy of the model are assessed using a simulation study.

1 Introduction

Many service systems exhibit a cyclic demand for service. E.g., in call cen-
ters, emergency departments, banks and retail stores, the number of arrivals
typically displays a daily, weekly or monthly recurring pattern. Figure 2,
for instance, displays the daily fluctuations in arrival rate at the emergency
department of a regional hospital in Belgium; other examples can be found
in Green et al. [2006], Brown et al. [2005] and Dietz [2011], among others.
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Figure 1: Hourly average arrival rates at the emergency department of a
Belgian regional hospital

Apart from the time-varying nature of demand, additional complexities may
arise because of (1) the presence of customer impatience, which causes cus-
tomers to abandon before receiving service if their waiting time is too long
and (2) the general distribution of service and abandonment times. The
Poisson assumption that is common in the literature tends to be invalid in
realistic settings; for instance, Brown et al. [2005] report a lognormal dis-
tribution and Castillo et al. [2009] report Erlang distributed service times
in a call-center context. Moreover, many existing models in the literature
implicitly assume a preemptive service discipline, such that service is inter-
rupted and customers rejoin the queue when a server is scheduled to leave.
An exhaustive service policy, where a customer’s service is completed even
if this requires the server to work past his scheduled time, is often more ap-
propriate (especially in service systems with human customers and servers).
This feature, however, is frequently overlooked in the literature [Ingolfsson
et al., 2007, Chen and Henderson, 2001].

Performance analysis for systems with time-varying arrivals is highly im-
portant when making capacity decisions. Capacity planning models rely on a
performance evaluation method as a subroutine to assess the solution quality
of any given capacity vector. We refer to Green et al. [2007], Whitt [2007],
Defraeye and Van Nieuwenhuyse [2011] for extensive reviews on capacity
planning in time-varying systems.

This article presents a Markov model that approximates the transient and
steady-state behavior of the G(t)/G(t)/s(t) + G(t) queue with exhaustive
discipline and time-varying arrival, service and abandonment rates. The
model enables the evaluation of the following (time-varying) performance
metrics: (1) the expected queue length, (2) the variance of the queue length,
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(3) the expected number of abandonments and (4) the virtual waiting time
distribution of a customer when arriving at an arbitrary moment in time.
The suggested approach extends the randomization method of Ingolfsson et
al. [2007] and Ingolfsson [2005], which targets M(t)/M/s(t) queues with an
exhaustive service policy (an outline on how to include customer impatience
is provided, yet not implemented). To the best of our knowledge, this is the
first analytical model that studies a queue with an exhaustive service policy,
customer impatience and generally distributed (time-varying) arrival, service
and abandonment rates. The approach is intended for small- to medium-sized
systems that have human servers (e.g., banks, retail stores or small-scale
call centers). For larger problem instances, the computational cost increases
substantially. The model is validated and evaluated by means of a simulation
study.

The remainder of the article is organized as follows: Section 2 starts with
a brief overview of the literature on performance measurement in systems
with time-varying arrivals. In Section 3, we present an in-depth description
of the Markov model itself. Section 4 evaluates the accuracy and validity
of the model by means of a computational experiment. In a final section
(Section 5), we highlight the main conclusions and suggest directions for
further research.

2 Related literature

Previous work has mainly focused on systems with time-varying arrival rates.
In this section, we provide a brief overview of the (most frequently) used
methods for performance analysis in such systems.

Stationary approximations are by far the most widely adopted approach.
The arrival rate that is fed into the stationary model can be, for instance,
the instantaneous arrival rate (as in the Pointwise Stationary Approximation
or PSA [Green et al., 1991, Green and Kolesar, 1991, Whitt, 1991]) or the
average arrival rate over a given interval (Stationary Independent Period-by-
Period or SIPP [Green et al., 2001, Whitt, 1991]). However, time-varying
systems typically display a time lag (or congestion lag): peaks in actual of-
fered load lag the arrival rate peaks, with an amount that is proportional
to the expected service time [Green and Kolesar, 1995, Thompson, 1993].
Accounting for this lag can greatly improve the accuracy of SIPP and PSA,
particularly when service times are long (see the lagged variants of SIPP
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and PSA [Green and Kolesar, 1997, 1995, Green et al., 2001]). The Modi-
fied Offered Load (MOL) approximation accounts for the congestion lag by
relying on analytically tractable results for infinite server queues, which can
be found in Eick et al. [1993a,b]. Further details on MOL can be found in
Feldman et al. [2008], Jennings et al. [1996], Liu and Whitt [2009], Jager-
man [1975], Massey and Whitt [1994, 1997] and Davis et al. [1995]. Though
stationary approximations are straightforward and generally applicable, ad-
ditional challenges may arise in complex systems, for which the stationary
model itself is intractable. For instance, the applicability of MOL to the
M(t)/G/s(t) + G model necessarily relies on the availability and accuracy
of approximations for the corresponding stationary M/G/s + G model (see
Whitt [2005] and Iravani and Balciog̃lu [2008]). We refer to Green et al.
[2007], Whitt [2007] and Defraeye and Van Nieuwenhuyse [2011] for further
references on the stationary approximations available in the literature.

For the M(t)/M/s(t) system, performance can be evaluated by numeri-
cally integrating the Chapman-Kolmogorov forward equations, a set of ordi-
nary differential equations (ODEs) that describe the behavior of the system
(see Gross et al. [2008] for general background; Ingolfsson et al. [2007] and
Green and Soares [2007] provide a more thorough discussion). This can be
achieved using an ODE-solver such as the Euler or Runge-Kutta ODE solver
from the Matlab ODE Suite Shampine and Reichelt [1997]. Ingolfsson et
al. [2007] show that this approach requires substantial computational effort
and suggest using the randomization approach instead: this enables a dras-
tic reduction in computational effort, at the cost of a slightly lower accuracy.
The randomization (or uniformization) approach was originally developed for
stationary systems [Jensen, 1953, Grassmann, 1977, Gross and Miller, 1984],
but can be applied successfully to nonstationary queues [Ingolfsson, 2005,
Ingolfsson et al., 2007]. In general, the numerical integration of ODEs as
well as randomization require the use of exponential distributions in order to
obtain accurate results. Furthermore, these approaches currently do not take
into account abandonments (though Ingolfsson [2005] provides an outline on
how to accommodate abandonments in the randomization approach).

Closure approximations [Rothkopf and Oren, 1979, Clark, 1981, Taaffe
and Ong, 1987] approximate the set of forward differential equations by just
two differential equations (one for the mean and one for the variance of the
number in system at each time instant). However, as shown in Ingolfsson et
al. [2007], the approach is cumbersome to implement and is dominated by
other methods (such as MOL or randomization) in terms of both accuracy

4

IESEG Working Paper Series 2013-MAN-02 



and computation speed.
Discrete-time modeling (DTM) is used for performance evaluation of sys-

tems with general service time distributions [Chassioti and Worthington,
2004, Brahimi, 1990, Brahimi and Worthington, 1991, Wall and Worthing-
ton, 1994, 2007]. This approach approximates the general service process
by means of a discrete process using a two-moment matching technique
[Brahimi, 1990, Brahimi and Worthington, 1991]. Wall and Worthington
[2007] report distinct advantages over stationary approximations such as
MOL and PSA, particularly when temporal overloading is present. The com-
plexity and computational effort of DTM, however, increase drastically with
the number of servers; Wall and Worthington [2007] propose an approxima-
tion method to mitigate this effect. Note that the current DTM articles all
study the M(t)/G/s system (i.e., they assume a constant number of servers
and no abandonments).

Deterministic fluid models (intended for systems that do not display
stochasticity) can be used as approximations to derive time-dependent per-
formance in stochastic systems. These methods rely on so-called “fluid scal-
ing”: the system is scaled up (e.g., by multiplying the arrival rates and the
number of servers by the same factor) such that the stochastic randomness
decreases in importance, relative to the system dynamics (see Helber and
Henken [2010] for an example). Fluid approximations are particularly useful
to assess performance in systems that are temporarily overloaded [Whitt,
2006a], but may fail to capture system dynamics accurately in underloaded
systems [Aguir et al., 2004, Altman et al., 2001, Jiménez and Koole, 2004].
Liu and Whitt [2010] suggest an approach that works for overloaded as well
as underloaded systems (separate models are applied in both situations). Ad-
ditional literature on the use of fluid approximations for Markovian models,
can be found in Mandelbaum et al. [1995, 1998, 1999a,b, 2002], Ridley et
al. [2003] and Jiménez and Koole [2004]. For systems with general service
and/or abandonment time distributions, we refer to the more recent work
of Whitt [2006a] on G(t)/GI/s + GI models (with state-dependent arrival
rates), Liu and Whitt [2010, 2011b, 2012a,b] on the G(t)/GI/s(t)+GI queue,
Liu and Whitt [2011a] for a network of G(t)/M(t)/s(t) + GI(t) queues and
references therein. A key characteristic of fluid models is that arrivals and
departures are considered as continuous flows, rather than discrete processes
(an assumption that becomes more acceptable as the number of servers in-
creases). Although Liu and Whitt [2010] report reasonably accurate results
for a system with 20 servers, the assumption of fluid scaling renders these
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approximations less applicable to small-scale settings where the discreteness
of capacity is an essential characteristic of the system.

Finally, discrete-event simulation is frequently used (a comprehensive
textbook can be found in [Law and Kelton, 2000]). The appeal of simu-
lation lies in its inherent flexibility to evaluate the performance of virtually
any given system. As such, simulation proves particularly useful in set-
tings that are analytically intractable. On the downside, simulation tends
to be rather time-consuming, both in terms of runtime and time required
to build the model. Although simulation models are commonly dedicated
and context-specific (e.g., [McGuire, 1994, Garćıa et al., 1995, Evans et al.,
1996, Takakuwa and Shiozaki, 2004, Hung et al., 2007, Ahmed and Alkhamis,
2009] describe simulation applications in EDs with time-varying arrivals) ef-
forts are made to develop generic simulation models (e.g., [Pitt, 1997, Sinreich
and Marmor, 2004, Fletcher et al., 2007a,b, Gunal and Pidd, 2009]). In this
article, we use discrete-event simulation to validate the Markov model.

3 Model

In this section we develop an approximation for the G(t)/G(t)/s(t) + G(t)
queue with exhaustive discipline and abandonments. Analogous to the DTM
models discussed in the previous section, our model observes the state of the
system at discrete moments in time. Unlike the DTM models, however, we do
not rely on discrete distributions, but use continuous-time phase-type (PH)
distributions to match the continuous system processes. Because each phase
of a continuous-time PH distribution has an exponentially distributed visit-
ing time, the system processes are approximated by mixtures of exponential
distributions. A notable downside of DTM is that it requires to keep track
of each server individually. In our approach, however, this is not the case.
Due to the memoryless property of the exponential distribution, it suffices
to keep track of the number of servers associated with a given phase of the
service process.

In what follows, we first define the basic processes that govern the sys-
tem (Section 3.1) and introduce the phase-type distributions that are used to
model these basic processes (Section 3.2). Next, we define a counting process
(Section 3.3) and a procedure to determine the probability that a given num-
ber of customers advances a phase (Section 3.4). In the last subsections, we
present the model itself (Sections 3.5 and 3.7) and discuss the performance
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Figure 2: Division of time

measures (Section 3.6).

3.1 Basic Processes

We observe the state of the system at discrete, equidistant moments in
time. The time between observation moments determines the granular-
ity (and hence the precision) of the model and is denoted by ∆. Define
T = {1, . . . , T}, the set of periods (where T is the last period; the period
that marks the end of the time horizon). There are four basic processes: (1)
the arrival process, (2) the service process, (3) the abandonment process and
(4) the staffing process. At the start of any given period, these processes
are allowed to change. If such a change takes place for at least one of the
processes, the start of the period corresponds with the start of a so-called
“epoch”. Let D(·) =

{
1, 2, . . . , D(·)} denote the set of epochs for a process

(·), where D(·) is the total number of epochs over the time horizon. For each
process (·), define td, the period at which epoch d starts, where t1 = 0 and

ti < tj ≤ tD(·) ≤ T for all i, j : i < j ≤ D(·). Function φ
(·)
t = i maps a period

t onto an epoch i, where i is the ongoing epoch at the start of period t (i.e.,
there exists no epoch j for which ti < tj ≤ t). Figure 2 further illustrates
the division of time.

Each epoch of the arrival, service and abandonment process is character-
ized by a distribution G

(·)
d that has mean µ

(·)
d and standard deviation σ

(·)
d . As

such:

• µ(I)
d and σ

(I)
d represent the mean and standard deviation of the interar-

rival times during an epoch d : d ∈ D(I),

• µ(II)
d and σ

(II)
d represent the mean and standard deviation of the service

times during an epoch d : d ∈ D(II),
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Figure 3: The G (t) /G (t) /s (t) +G (t) queueing system

• µ(III)
d and σ

(III)
d represent the mean and standard deviation of the aban-

donment times during an epoch d : d ∈ D(III).

Each epoch of the staffing process represents a so-called staffing interval (dur-
ing which staffing remains unchanged) and is associated with a number of
servers sd : d ∈ D(IV). In the remainder of this article, Roman numerals I, II,
III and IV are used to label the arrival, service, abandonment and staffing
process respectively. Figure 3 summarizes the single-stage multiserver ser-
vice system with time-varying interarrival times, service times, abandonment
times and staffing levels.

3.2 Phase-type distributions

We adopt continuous-time PH distributions to approximate the general in-
terarrival, service and abandonment time distributions. Continuous-time
PH distributions use exponentially-distributed building blocks to approx-
imate any positive-valued continuous distribution with arbitrary precision
(see Neuts [1981], Latouche [1999] and Osogami [2005] for further details on
PH type distributions). More formally, a PH distribution is the distribution
of time until absorption in a Markov chain with absorbing state 0 and state
space {0, 1, . . . , Z − 1, Z}. It is fully characterized by parameters τ and Z.
τ is the vector of probabilities to start the process in any of the Z transient
states (i.e., phases) and Z is the transient state transition matrix. The in-
finitesimal generator of the Markov chain representing the PH distribution
is:

Q =

(
0 0
t Z

)
,
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where 0 is a zero matrix of appropriate dimension and t = −Ze (with e a
vector of ones of appropriate size).

Various techniques exist to approximate a given distribution by means of a
PH distribution. In this article, we adopt a two-moment matching procedure
that minimizes the required number of phases. Let C2 denote the squared
coefficient of variation of the distribution we want to approximate:

C2 = σ2µ−2. (1)

We distinguish three cases: (1) C2 = 1, (2) C2 > 1 and (3) C2 < 1. In the
first case, we approximate the distribution by means of an exponential distri-
bution with rate parameter λ = µ−1. The parameters of the corresponding
PH distribution are:

τ = 1,
Z = (−λ) .

In the second case, we use a two-phase Coxian distribution where the rate
parameter of the first phase is determined by means of a scaling factor κ:

λ1 =
1

µκ
. (2)

The expected value of the two-phase Coxian distribution is:

µ = λ−1
1 + βλ−1

2 , (3)

where λ2 is the exponential rate parameter of the second phase and β is
the probability of visiting the second phase. The variance of the two-phase
Coxian distribution is:

σ2 = λ−2
1 + 2βλ−2

2 − β2λ−2
2 . (4)

When deriving parameters λ2 and β as a function of parameters µ, C2 and
κ, we obtain:

λ2 =
2 (κ− 1)

µ (2κ− 1− C2)
, (5)

β =
2 (κ− 1)2

1 + C2 − 2κ
. (6)

The parameters of the corresponding PH distribution are:

τ = e1,

Z =

(
−λ1 βλ1

0 −λ2

)
,
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where e1 is a single-entry vector of appropriate size that is populated with
zeroes except for the first entry, which equals one. In the third case, we use
a hypo-exponential distribution (a series of exponential distributions whose
parameters are allowed to differ; a generalization of the Erlang distribution).
The number of required phases equals:

Z = dC−2e. (7)

We assume that the first Z − 1 phases of the hypo-exponential distribu-
tion are exponentially distributed with rate parameter λ1. The last phase is
exponentially distributed with rate parameter λ2. The expected value and
variance of the hypo-exponential distribution are:

µ = (Z − 1)λ−1
1 + λ−1

2 , (8)

σ2 = (Z − 1)λ−2
1 + λ−2

2 . (9)

When deriving parameters λ1 and λ2 as a function of parameters µ, C2 and
Z, we obtain:

λ1 =
(Z − 1)−

√
(Z − 1) (ZC2 − 1)

µ (1− C2)
, (10)

λ2 =
1 +

√
(Z − 1) (ZC2 − 1)

µ (1− ZC2 + C2)
. (11)

The parameters of the corresponding PH distribution are:

τ = e1,

Z =



−λ1 λ1 0 · · · 0 0 0
0 −λ1 λ1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −λ1 λ1 0
0 0 0 · · · 0 −λ1 λ1

0 0 0 · · · 0 0 −λ2


.

For the three cases, Z equals 1, 2 and dC−2e respectively. Figure 4 provides
an overview of the PH distributions that are used in this article.
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3.3 Counting process

We use a counting process to obtain Pr (x, v|u, d), the probability of having

x arrivals during an interval t (of length ∆) for which φ
(I)
t = d, and an arrival

process at final phase v given that the arrival process starts in phase u and
is modeled using a PH distribution with parameters τ

(I)
d and Z

(I)
d .

The counting process has continuous-time rate matrix [Ramaswami, 1988]:

Qd =


Ld Fd 0 0 · · ·
0 Ld Fd 0 · · ·
0 0 Ld Fd · · ·
0 0 0 Ld · · ·
· · · · · · · · · · · · . . .

 ,

where Ld = Z
(I)
d and Fd = t

(I)
d

(
τ

(I)
d

)>
. Cd holds the transition probabilities

of the counting process during an interval of length ∆ during epoch d:

Cd = e∆Qd , (12)

=
∞∑
i=0

∆i

i!
Qi
d, (13)

= e−∆λd,max

∞∑
i=0

(∆λd,max)i

i!
Pi
d, (14)

where λd,max = −min (Diag (Z)) and Pd is obtained as follows:

Pd =
Qd

λd,max

+ I, (15)

where I is an identity matrix of appropriate dimension.
The first block row of Cd holds the distribution of the number of arrivals

(i.e., probabilities Pr (x, v|u, d)). In order to obtain the first block row of Cd,
it suffices to compute the first block row of Pi

d for all i ≥ 0; this can be done
by means of a simple recursion.

3.4 Procedure to determine the probability of advanc-
ing a phase

The following procedure is used to determine the probability to advance a
phase in the service or abandonment process. Let Pr (y|x, u, d)(·) denote the
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probability that y customers successfully complete phase u of process (·)
during an interval of length ∆, given that x customers are present in phase u
at the start of the interval and the process is modeled using a PH distribution
with parameters τ

(·)
d and Z

(·)
d .

In order to compute Pr (y|x, u, d)(·), we use a Markov process that has
infinitesimal generator:

Q
(·)
d,u =



−yλ(·)
d,u yλ

(·)
d,u · · · 0 0 0

−(y − 1)λ
(·)
d,u (y − 1)λ

(·)
d,u · · · 0 0 0

...
...

. . .
...

...
...

0 0 · · · −2λ
(·)
d,u 2λ

(·)
d,u 0

0 0 · · · 0 −λ(·)
d,u λ

(·)
d,u

0 0 · · · 0 0 0


,

where λ
(·)
d,u is the exponential rate that corresponds to the u-th phase of a

PH distribution with parameters τ
(·)
d and Z

(·)
d . C

(·)
d,u holds the transition

probabilities after an interval of length ∆ during epoch d:

C
(·)
d,u = e∆Q

(·)
d,u (16)

=
∞∑
i=0

∆i

i!

(
Q

(·)
d,u

)i
(17)

= e−∆λ
(·)
d,u,max

∞∑
i=0

(∆λ
(·)
d,u,max)i

i!

(
P

(·)
d,u

)i
, (18)

where λ
(·)
d,u,max = yλ

(·)
d,u and where P

(·)
d,u is obtained as follows:

P
(·)
d,u =

Q
(·)
d,u

λ
(·)
d,u,max

+ I. (19)

The first row of C
(·)
d,u holds the distribution of the number of successes (i.e.,

probabilities Pr (y|x, u, d)(·)). The first block row of C
(·)
d,u can be obtained by

computing the first row of
(
P

(·)
d,u

)i
for all i ≥ 0; this can be done by means

of a simple recursion.

13

IESEG Working Paper Series 2013-MAN-02 



3.5 Model building blocks

Let (a, s,b)t denote the state of the system at the start of interval t (of length
∆), where: (1) a is the phase of the arrival process, (2) s is a vector that
holds the number of customers in each service phase and (3) b is a vector
that holds the number of customers in each abandonment phase. S and B
are the sets of all possible vectors s and b respectively. In addition, define
π (a, s,b)t, the probability to visit state (a, s,b)t. The maximum dimension

of the state space at the start of any period depends on (1) Z
(I)
max is the

maximum number of phases of the arrival process, (2) Z
(II)
max is the maximum

number of phases of the service process, (3) smax is the maximum number

of servers, (4) Z
(III)
max is the maximum number of phases of the abandonment

process and (5) Qmax is the maximum number of customers allowed in queue.
In order to determine the state of the system at the start of a period t, we

propose a stepwise procedure. The following steps are executed in sequence:

1. Initialization.

2. Implement process changes (arrival, service, abandonment and staffing
process).

3. Arrival of customers.

4. Service of customers.

5. Abandonment of customers.

In what follows, we discuss each of these steps.

3.5.1 Initialization

When making a transition from a state (a, s,b)t towards a state (a, s,b)t+1,
several state space manipulations take place (e.g., process changes, arrival,
service and abandonment of customers). In order to process these state space
manipulations, we use a temporary probability vector π (δ, a, s,b) (where δ
is a binary variable). π (δ, a, s,b) represents the state of the system after
manipulation, whereas π (1− δ, a, s,b) represents the state of the system
before manipulation takes place. Our method requires the state of the system
to be stored only before and after each manipulation, which enables to save
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memory. This is of critical importance, as is is infeasible to store the state
space over the entire time horizon (even for small instances).

During the initialization step, we initialize this temporary probability
vector. An outline of the initialization step is provided in Algorithm 1.

Algorithm 1 Initialization step at start of period t

Initialize binary variable: δ = 0
for a = 1 to Z

(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do

Initialize temporary probability vector: π (δ, a, s,b) = 0
Initialize temporary probability vector: π (1− δ, a, s,b) = π (a, s,b)t

end for
end for

3.5.2 Implementation of process changes

There are four basic processes and therefore four events can take place when
implementing the process changes. First, a new arrival epoch may start at
the start of period t. In this case, the arrival phase is reset. Departing from
state (1− δ, a, s,b), the following transition takes place:

(1− δ, a, s,b)→ (δ, 1, s,b) .

If a new service epoch starts at the start of period t, the service process
of all customers in service is reset. Departing from state (1− δ, a, s,b), the
following transition takes place:

(1− δ, a, s,b)→ (δ, a, nse1,b) ,

where ns is the sum of all entries in vector s:

ns = tr (sI) , (20)

where tr is the matrix trace operator. If a new abandonment epoch starts
at the start of a period t, the abandonment process of all waiting customers
is reset. Departing from state (1− δ, a, s,b), the following transition takes
place:

(1− δ, a, s,b)→ (δ, a, s, nbe1) ,
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with nb the sum of all entries in vector b:

nb = tr (bI) . (21)

Algorithm 2 summarizes how changes in the arrival, service and abandonment
process are implemented.

Algorithm 2 Implementation of arrival, service and abandonment process
changes at start of period t

if the arrival process changes at the start of period t then
for a = 1 to Z

(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do

Implement change: π (δ, 1, s,b) += π (1− δ, a, s,b)
Initialize temporary probability vector: π (1− δ, a, s,b) = 0

end for
end for
Update binary variable: δ = 1− δ

end if
if the service process changes at the start of period t then
for a = 1 to Z

(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do

Implement change: π (δ, a, nse1,b) += π (1− δ, a, s,b)
Initialize temporary probability vector: π (1− δ, a, s,b) = 0

end for
end for
Update binary variable: δ = 1− δ

end if
if the abandonment process changes at the start of period t then
for a = 1 to Z

(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do

Implement change: π (δ, a, s, nbe1) += π (1− δ, a, s,b)
Initialize temporary probability vector: π (1− δ, a, s,b) = 0

end for
end for
Update binary variable: δ = 1− δ

end if

If the staffing process changes, two options arise: (1) new servers become
available or (2) the number of servers decreases. If new servers become
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available, waiting customers are selected according to a first-come first-serve
(FCFS) policy. We first select customers in the last phase of the abandonment
process because it is likely that they have waited the longest (note that this
is not necessarily the case). For each server that becomes available, the
following state space manipulation is performed:

(1− δ, a, s,b)→
{

(δ, a, s + e1,b− eu) if nb > 0,
(δ, a, s,b) otherwise,

where: (1) eu is a single-entry vector populated with zeroes, except for the
entry at position u, (2) u : max

u
(bu > 0) and (3) bu is the u-th entry of vector

b. Algorithm 3 summarizes the activation of a single server. In case of a
decrease in capacity, we need to account for the exhaustive service policy:
some servers may complete a customer’s service, even if they are scheduled
to leave. We adopt an approach that is similar to the technique used by
Ingolfsson [2005]: since servers that work overtime no longer influence the
performance of future customers, these are removed from the system (along
with the customers they serve). Although in reality, these customers are
still in the system, this modification is necessary to correctly calculate other
performance measures (such as the distribution of the virtual waiting time,
see Section 3.6). A decrease of x servers is accommodated by first removing
all idle servers. If insufficient idle servers are available, c(x,s,t) active servers
are removed:

c(x,s,t) = max (0, x− st + ns) , (22)

where st − ns represents the number of idle servers. Given a distribution of
customers s over the different phases of the service process, the probability
to remove a server that is processing a customer who is in phase u of his
service process equals:

Pr (u|s) =
su
ns

, (23)

where su is the u-th entry of vector s. For each active server that is re-
moved, the following state space manipulation is performed (the transition
probability is indicated above the arrow):

(1− δ, a, s,b)
Pr(u|s)−−−−→ (δ, a, s− eu,b) ,

Algorithm 4 summarizes how changes in the staffing process are implemented.
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Algorithm 3 Activation of a single server

for a = 1 to Z
(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do

for u = Z
(III)
φt

to 1 do
if bu > 0 then

Implement change: π (δ, a, s + e1,b− eu) += π (1− δ, a, s,b)
Customer has entered service, exit loop: u = 1

end if
Initialize temporary probability vector: π (1− δ, a, s,b) = 0

end for
end for

end for
Update binary variable: δ = 1− δ

Algorithm 4 Implement staffing process change at start of period t

if x servers become available at the start of period t then
for i = 1 to x do

Activate a single server: Algorithm 3
end for

else if x servers are removed at the start of period t then
while x > 0 do
for a = 1 to Z

(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do
if c(x,s,t) > 0 then

for u = 1 to Z
(II)
φt

do
Implement change: π (δ, a, s− eu,b) += π (1− δ, a, s,b) Pr (u|s)

end for
Initialize temporary probability vector: π (1− δ, a, s,b) = 0

end if
end for

end for
Update binary variable: δ = 1− δ
Decrement x: x = x− 1

end while
end if
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3.5.3 Arrival, service and abandonment of customers

From the counting process discussed in Section 3.3, we obtain probabilities
Pr (x, v|u, d). Using these probabilities, we can determine the state of the
system after arrivals have taken place. Because the size of the queue is
limited to Qmax customers, we impose a reflecting boundary (i.e., whenever
x customers arrive, with x ≥ Qmax − nb, the resulting queue length equals
Qmax). More formally:

(1− δ, u, s,b)
Pr

(
x,v|u,φ(I)t

)
−−−−−−−−→

{
(δ, v, s,b + xe1) if Qmax ≥ nb + x,
(δ, v, s,b + (Qmax − nb) e1) otherwise.

Algorithm 5 provides an outline of the arrival step.

Algorithm 5 Arrival of customers during interval t

for a = 1 to Z
(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do
for all x = 0 to Qmax do
if Qmax ≥ nb + x then

Arrival of x customers:
π (δ, v, s,b + xe1) += π (1− δ, a, s,b) Pr

(
x, v|a, φ(I)

t

)
else

Arrival of Qmax − nb customers:

π (δ, v, s,b + (Qmax − nb) e1) += π (1− δ, a, s,b) Pr
(
x, v|a, φ(I)

t

)
end if

end for
Initialize temporary probability vector: π (1− δ, a, s,b) = 0

end for
end for
Update binary variable: δ = 1− δ

Customers in service are only allowed to advance a single phase during an
interval of length ∆. The probability of advancing a phase is obtained from
the procedure discussed in Section 3.4. For each phase, a state space manip-
ulation is performed and phases are processed in reverse order. Customers
who are in the last phase of their service process complete service (note that
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Z
(II)
φt

is the last phase of the service process):

(1− δ, a, s,b)
Pr(x|ns,u,φt)

(II)

−−−−−−−−−→
{

(δ, a, s− xeu,b) if su > 0 ∧ u = Z
(II)
φt
,

(δ, a, s,b) otherwise.

If the service process is not modeled using a two-phase Coxian distribution,
customers who are not in the last phase of their service process advance a
phase:

(1− δ, a, s,b)
Pr(x|ns,u,φt)

(II)

−−−−−−−−−→
{

(δ, a, s− xeu + xeu+1,b) if su > 0 ∧ 1 ≤ u < Z
(II)
φt
,

(δ, a, s,b) otherwise.

If the service process is modeled using a two-phase Coxian distribution, there
is a probability that customers in the first phase complete service instead of
advancing a phase. The probability of completing service equals 1 − β

(II)
φt

.
The probability that y out of x customers complete service is binomially
distributed and equals:

Pr (y|x, φt)(II) =
x!

y! (x− y)!

(
1− β(II)

φt

)y (
β

(II)
φt

)x−y
. (24)

The state space transitions are summarized as follows:

(1− δ, a, s,b)
Pr(x|ns,u,φt)

(II)Pr(y|x,φt)(II)−−−−−−−−−−−−−−−−→ (δ, a, s− xeu + (x− y) eu+1,b) .

Algorithm 6 provides an outline of the service step.
With respect to the abandonment process, we adopt a logic that is similar

to the one of the service process. Algorithm 7 provides an outline of the
abandonment step.

After the abandonment step, probabilities π (a, s,b)t+1 are readily avail-
able:

π (a, s,b)t+1 = π (1− δ, a, s,b) . (25)

3.6 Performance measures

Let W ⊆ T denote the set of performance intervals and define ϕ
(·)
w = i,

the function that maps a performance interval w onto an epoch i, where i
is the ongoing epoch of process (·) at the start of performance interval w.
The performance measures of interest are: (1) the expected queue length,
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Algorithm 6 Service of customers during interval t

for u = Z
(II)
φt

to 1 do

for a = 1 to Z
(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do
for all x = 0 to su do
if u = Z

(II)
φt

then
x customers complete service:
π (δ, a, s− xeu,b) += π (1− δ, a, s,b) Pr (x|su, u, φt)(II)

else
if Two-phase Coxian distribution is used then
for all y = 0 to x do
y customers complete service, x− y customers advance:
π (δ, a, s− xeu + (x− y) eu+1,b) +=

π (1− δ, a, s,b) Pr (x|su, u, φt)(II) Pr (y|x, φt)(II)

end for
else
x customers advance a phase:
π (δ, a, s− xeu + xeu+1,b) += π (1− δ, a, s,b) Pr (x|su, u, φt)(II)

end if
end if

end for
Initialize temporary probability vector: π (1− δ, a, s, a) = 0

end for
end for
Update binary variable: δ = 1− δ

end for
while Servers are idle do

Activate a single server: algorithm 3
end while
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Algorithm 7 Abandonment of customers during interval t

for u = Z
(III)
φt

to 1 do

for a = 1 to Z
(I)
φt

do
for all (s ∈ S) ∧ (b ∈ B) do
for all x = 0 to bu do
if u = Z

(III)
φt

then
x customers abandon:
π (δ, a, s,b− xeu) += π (1− δ, a, s,b) Pr (x|bu, u, φt)(III)

else
if Two-phase Coxian distribution is used then
for all y = 0 to x do
y customers abandon, x− y customers advance:
π (δ, a, s,b− xeu + (x− y) eu+1) +=

π (1− δ, a, s,b) Pr (x|bu, u, φt)(III) Pr (y|x, φt)(III)

end for
else
x customers advance a phase:
π (δ, a, s,b− xeu + xeu+1) += π (1− δ, a, s,b) Pr (x|bu, u, φt)(III)

end if
end if

end for
Initialize temporary probability vector: π (1− δ, a, s, a) = 0

end for
end for
Update binary variable: δ = 1− δ

end for

22

IESEG Working Paper Series 2013-MAN-02 



(2) the expected queue length at the start of performance interval w, (3)
the variance of the expected queue length, (4) the variance of the expected
queue length at the start of performance interval w, (5) the expected number
of abandonments during performance interval w and (6) the waiting time
distribution of a virtual customer that arrives at the start of performance
interval w. The virtual waiting time at time t is defined as the time a virtual
customer would have to spend in queue if he were to arrive at time t (cf.
Gross et al. [2008] and Campello and Ingolfsson [2011]). The expected queue
length is approximated by:

Q =
T∑
t=1

Z
(I)
φt∑

a=1

∑
s∈S

∑
b∈B

π (a, s,b)t nb. (26)

The expected queue length at the start of performance interval w equals:

Qw =

Z
(I)
ϕw∑
a=1

∑
s∈S

∑
b∈B

π (a, s,b)w nb. (27)

The variance of the queue length is approximated by:

V =
T∑
t=1

Z
(I)
φt∑

a=1

∑
s∈S

∑
b∈B

π (a, s,b)t (nb −Qt)2 . (28)

The variance of the expected queue length at performance interval w
equals:

Vw =

Z
(I)
ϕw∑
a=1

∑
s∈S

∑
b∈B

π (a, s,b)w (nb −Qw)2 . (29)

LetAw denote the expected number of abandonments during performance
interval w. Aw is computed during the abandonment step; see Algorithm 8
for details (which is an adaptation of Algorithm 7).

Define Pr (Ww = h), the probability that a virtual customer who arrives
at the start of performance interval w receives service during interval w + h
(i.e., the virtual customer receives service after waiting h intervals of length
∆). In order to obtain Pr (Ww = h), we use a death process and stop the
arrival process at the start of performance interval w. The first period during
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Algorithm 8 Expected number of abandonments during performance inter-
val w

for u = Z
(III)
ϕw to 1 do

for a = 1 to Z
(I)
ϕw do

for all (s ∈ S) ∧ (b ∈ B) do
for all x = 0 to bu do
if u = Z

(III)
ϕw then

x customers abandon:
π (δ, a, s,b− xeu) += π (1− δ, a, s,b) Pr (x|bu, u, ϕw)(III)

Aw+= xπ (1− δ, a, s,b) Pr (x|nb, u, ϕw)(III)

else
if Two-phase Coxian distribution is used then
for all y = 0 to x do
y customers abandon, x− y customers advance:
π (δ, a, s,b− xeu + (x− y) eu+1) +=

π (1− δ, a, s,b) Pr (x|bu, u, ϕw)(III) Pr (y|x, ϕw)(III)

Aw+= yπ (1− δ, a, s,b) Pr (x|nb, u, ϕw)(III) Pr (y|x, ϕw)(III)

end for
else
x customers advance a phase:
π (δ, a, s,b− xeu + xeu+1) += π (1− δ, a, s,b) Pr (x|bu, u, ϕw)(III)

end if
end if

end for
Initialize temporary probability vector: π (1− δ, a, s, a) = 0

end for
end for
Update binary variable: δ = 1− δ

end for
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which a server becomes idle, defines the waiting time of the virtual customer.
More formally, the virtual waiting time equals h∆ where h is the first integer
for which Nw+h < sw+h and where Nt denotes the number of customers in
system at time t, if the arrival process is stopped at the start of performance
interval w. Note that Nt does not include customers serviced by servers
working overtime. Algorithm 9 is an adaptation of Algorithm 3 that allows
us to determine the interval during which a server becomes idle. The death
process is outlined in Algorithm 11 (see next section).

3.7 Model summary

Our model enables both the transient and the (periodic) steady-state analysis
of the G(t)/G(t)/s(t) + G(t) queue. Steady-state, however, will usually not
be achieved at the end of the time horizon, hence the model has to run for
multiple consecutive “cycles” (each with a length equal to the time horizon
T ). Let cmax denote the number of cycles after which steady-state results are
obtained. In addition, define εc, the relative difference in queue lengths for
cycles (c− 1) and c:

εc =
T∑
t=1

∣∣∣∣1− Qt,c
Qt,c−1

∣∣∣∣ . (30)

If εc is smaller than the (user-specified) parameter εmax, cycle c is the last
cycle and steady-state results have been obtained. In other words, cmax is
the smallest integer for which εcmax < εmax, where εmax is the predefined
maximum allowed deviation. In the case of a transient analysis, the user can
specify the number of cycles that needs to be processed.

In summary, Algorithm 10 models the system over T periods and cmax

cycles. Algorithms 1–7 and Equation 25 allow to compute the vector of
state space probabilities at the start of period t + 1 when departing from
the vector of state space probabilities at the start of period t. Performance
measures are obtained using Equations 28–29 and Algorithms 8, 9 and 11,
where Algorithm 11 models the death process that is required to calculate
the waiting time distribution of a virtual customer that arrives at the start
of performance interval w. Algorithm 11 is similar to Algorithm 10, however
it does not allow arrivals to take place.
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Algorithm 9 Waiting time distribution of a virtual customer that arrives
at the start of performance interval w

for a = 1 to Z
(I)
ϕw do

for all (s ∈ S) ∧ (b ∈ B) do

for u = Z
(III)
ϕw to 1 do

if bu > 0 then
Implement change: π (δ, a, s + e1,b− eu) += π (1− δ, a, s,b)
Customer has entered service, exit loop: u = 1

else
Update virtual waiting time distribution:
Pr (Ww = wt) += π (1− δ, a, s,b)

end if
Initialize temporary probability vector: π (1− δ, a, s,b) = 0

end for
end for

end for
Update binary variable: δ = 1− δ

4 Results

We use a simulation study to assess the validity and accuracy of the model
over a set of 162 problem instances. Both the Markov model and the simu-
lation model are implemented in Visual Studio C++. All tests are performed
on a Intel I7 3.40 GHz computer, with 8 GB RAM.

In what follows, we first describe the computational experiment (Sec-
tion 4.1) and discuss the main drivers of model accuracy and computation
speeds (Section 4.2). Next, we validate the model and elaborate further on
the trade-off between accuracy and computation times (Section 4.3).

4.1 Experimental setting

Table 1 provides an overview of the parameter settings that are used to
construct the test set. The parameters give rise to 162 problem instances that
are representative of small- to medium-sized systems. Each instance covers
a one-day time horizon (i.e., 1440 minutes) which is divided into smaller
periods of length ∆. In the experiment, ∆ ranges from 0.0625 to 1 minute.
The arrival rate is piecewise constant over 10-minute intervals and the staffing
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Algorithm 10 Model summary

for a = 1 to Z
(I)
φ1

do
for all (s ∈ S) ∧ (b ∈ B) do

Initialize vector: π (a, s,b)1 = 0
end for

end for
Initialize vector: π (1,0,0)1 = 1
Initialize cycle: c = 1
while c < cmax do

Determine whether c = cmax using Equation 30
Initialize period: t = 1
while t < T do

Perform initialization: Algorithm 1
Implement process changes: Algorithms 2, 3 and 4
Arrival of customers: Algorithm 5
Service of customers: Algorithms 3 and 6
if c = cmax and t is the start of performance interval w then

Abandonment of customers: Algorithm 8
Compute Pr (Ww = wt): Algorithm 11

else
Abandonment of customers: Algorithm 7

end if
Compute π (a, s,b)t+1 using Equation 25
Increment period: t = t+ 1

end while
Increment cycle: c = c+ 1

end while
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Algorithm 11 Computation of the virtual waiting time distribution at per-
formance interval w

Initialize period: t = w
while t < T do

Implement process changes: Algorithms 2, 4 and 9
Service of customers: Algorithms 6 and 9
Abandonment of customers: Algorithm 7
Increment period: t = t+ 1
Increment virtual waiting time: h = h+ 1
if h ≥ Wmax then

Maximum waiting time reached, exit loop
end if

end while
while c <∞ do

Initialize period: t = 1
while t < T do

Implement process changes: Algorithms 2, 4 and 9
Service of customers: Algorithms 6 and 9
Abandonment of customers: Algorithm 7
Increment period: t = t+ 1
Increment virtual waiting time: h = h+ 1
if h ≥ Wmax then

Maximum waiting time reached, exit loop
end if

end while
Increment cycle: c = c+ 1

end while
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interval has a length of 30 minutes.
The time-varying arrival rate λ

(I)
t is modeled as a discretized sine function

with cycle equal to T . Let RA(I) ≡ A/λ̄(I) denote the relative amplitude,
with A the absolute amplitude and λ̄(I) the average arrival rate over the time
horizon. More formally:

λ
(I)
t =

λ̄(I)

2

(
2 + RA(I) sin

(
2πt

T

)
+ RA(I) sin

(
2π (t+ 1)

T

))
. (31)

Note that λ̄(I) is determined uniquely by the average capacity c̄, the average
service rate λ̄(II) and the average traffic intensity ρ̄ ≡ λ̄(I)/

(
c̄λ̄(II)

)
. Given

the parameter settings in Table 1, it follows that λ̄(I) ranges between 1 and
57 customers per hour. To limit the size of the test set, we assume that
all processes have the same C2 (i.e., 0.5, 1 or 2) and that the distributional
parameters of the service and the abandonment processes remain constant
throughout the day. We emphasize that these assumptions are not a limi-
tation of the suggested model (that can handle different C2 values for the
arrival, service and abandonment processes, as well as time-dependence in
the process parameters).

The staffing process is modeled as a discretized sine function with relative
amplitude RA(IV). As such:

ct =
c̄

2

(
2 + RA(IV) sin

(
2πt

T

)
+ RA(IV) sin

(
2π (t+ 1)

T

))
. (32)

Note that the capacity function is not shifted compared to the arrival rate
function (which could be done to account for the commonly observed con-
gestion lag).
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Parameter Values

Time horizon T (in min) 1440
Period length ∆ (in min) {0.0625, 0.125, 0.25, 0.5, 1}
Epoch length (arrival process, in min) 10
Epoch length (staffing process, in min) 30
Performance interval length (in min) ∆

Relative amplitude RA(I) 0.5

Average service rate λ̄(II) (customers/hour) {1, 2, 6}
Average abandonment rate λ̄(III) {0.5λ̄(II), λ̄(II)}
Average capacity c̄ {2, 5, 10}
Relative amplitude RA(IV) 0.5

Average traffic intensity ρ̄ ≡ λ̄(I)/
(
c̄λ̄(II)

)
{0.5, 0.75, 0.95}

Squared coefficient of variation C2 {0.5, 1, 2}
Maximum waiting time Wmax (in min) 240
Maximum allowed deviation εmax 0.0001

Table 1: Parameter settings used in the computational experiment

In order to validate the model, we use the expected queue length. Let
QSIM
t denote the queue length at the start of interval t. QSIM

t is obtained by
means of an accurate simulation model (this can be considered as the “true”
value). The relative error (RE) at the start of period t can be expressed as:

REt =

∣∣QSIM
t −Qt

∣∣
QSIM
t

. (33)

To obtain an aggregate performance metric over the time horizon, REt is
weighted with the queue length. As such, the weighted relative error (WRE)
for a given problem instance is defined as follows:

WRE =
T∑
t=1

 QSIM
t

T∑
t=1

QSIM
t

REt

 , (34)

=

T∑
t=1

∣∣QSIM
t −Qt

∣∣
T∑
t=1

QSIM
t

. (35)

4.2 Drivers of accuracy and computation speed

We distinguish three main drivers of accuracy and computation speed:
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1. The length of ∆.

2. The size of the state space.

3. The approximations used in the model.

The choice of ∆ determines the frequency at which the system is observed.
Evidently, larger values of ∆ lead to shorter computation times. Accurate
results, however, can only be obtained if ∆ is sufficiently small. During an
interval of length ∆, events aggregate. The more events aggregate (i.e., the
larger the event frequency), the less accurate the results. Therefore, ∆ should
be chosen such that the number of aggregated events remains small.

The size of the state space only impacts the computation time. The state
space grows exponentially with the required number of phases in the arrival,
service and abandonment processes and grows linearly with the maximum
capacity and the maximum queue length; the latter can be controlled by the
user.

The presented model is an approximation because of three reasons. Firstly,
the general arrival, service and abandonment processes are approximated by
means of PH distributions. Secondly, as discussed in Section 3.5.2, we as-
sume that customers in the last phase of the abandonment process have
waited the longest. This assumption significantly reduces the required com-
putational effort. Thirdly, we assume that any phase in the arrival, service
and abandonment process takes at least one interval to complete. Conse-
quently, distributions other than the exponential distribution require lower
values of ∆ to maintain accuracy. Clearly, the error that is induced by this
last assumption tends to zero as ∆ approaches zero.

We would like to point out that computation speed also depends on the
number of performance intervals that was specified. Because the performance
measures are calculated at each performance interval, an increase in the
number of performance intervals will also increase the required computation
time. This especially is true for the calculation of the virtual waiting time
distribution as it involves the evaluation of a computationally intensive death
process. Note that the computation times reported in this study include the
computation of all aforementioned performance measures.
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Figure 5: Weighted relative error and CPU times of test set

4.3 Model validation and results

Figure 5(a) presents a box-and-whisker diagram of the WRE for different
values of ∆. It is clear that the proposed method yields highly accurate
results, provided that ∆ is sufficiently small. Figure 5(b) shows the required
CPU times in terms of ∆. We observe a clear trade-off between accuracy and
computational effort. In the remainder of this section, we further analyze this
trade-off.

The lower quantiles of Figure 5(a) show that even for high values of ∆,
the model can yield accurate results. As expected, for any value of ∆, the
model is most accurate if C2 = 1. This is illustrated in Table 2 and Fig-
ure 6. If C2 does not equal unity, the PH distributions adopt exponential
distributions with a mean that is smaller than the mean of the approximated
distribution. In other words, the event frequency increases. For these set-
tings, a lower value for ∆ may be required to achieve sufficient accuracy. The
performance is worst for the instances with C2 = 0.5. These are modeled
using a hypo-exponential distribution (see Section 4). For C2 = 0.5, a series
of two identical exponential distributions is used, with a mean that is half
the mean of the approximated distribution. As such, the event frequency
is doubled. The accuracy tends to be better for C2 > 1, thanks to the use
of the two-phase Coxian distribution. This distribution increases the event
frequency, but to a lesser extent than the hypo-exponential distribution.

Likewise, Table 2 shows that the CPU times increase drastically for non-
exponential settings. This is no surprise, as the state space grows exponen-
tially with the number of phases.

32

IESEG Working Paper Series 2013-MAN-02 



0.16

0.18

W
e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r 

(W
R

E
)

0.12

0.14
W

e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r 

(W
R

E
)

0.10

0.12

W
e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r 

(W
R

E
)

0.06

0.08

W
e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r 

(W
R

E
)

0.04

0.06

W
e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r 

(W
R

E
)

0.00

0.02

W
e
ig

h
te

d
 R

e
la

ti
v
e
 E

rr
o
r 

(W
R

E
)

C² = 0.5 C² = 1 C² = 2

Figure 6: Weighted relative error, as a function of C2 (for ∆ = 0.0625)

Weighted relative error (WRE) CPU time (in sec)
∆ C2 = 0.5 C2 = 1 C2 = 2 C2 = 0.5 C2 = 1 C2 = 2

0.0625
Min 0.008 0.001 0.004 332 3 386
Avg 0.056 0.007 0.012 3048 9 3525
Max 0.233 0.020 0.030 9504 19 11618

0.125
Min 0.010 0.002 0.003 230 2 209
Avg 0.069 0.012 0.012 1725 5 2029
Max 0.275 0.037 0.032 4930 10 5855

0.25
Min 0.013 0.004 0.002 112 1 116
Avg 0.095 0.023 0.018 845 2 1009
Max 0.352 0.071 0.072 2184 4 2667

0.5
Min 0.016 0.008 0.002 44 0 52
Avg 0.144 0.044 0.035 366 1 433
Max 0.480 0.136 0.146 1016 3 1212

1
Min 0.028 0.016 0.003 28 0 26
Avg 0.228 0.084 0.075 208 1 243
Max 0.656 0.252 0.277 501 1 624

Table 2: WRE and CPU time (in sec), as a function of C2 (for all considered
∆ values)

Figure 7 plots the trade-off between accuracy and computation time, for
different values of the average utilization (Figure 7(a)), the average service
rate (Figure 7(b)), the average capacity (Figure 7(c)) and the average aban-
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donment rate (Figure 7(d)). In each plot, every observation point represents
the combination of WRE and CPU time for a given value of ∆, averaged
over all instances characterized by a given parameter setting.

Figure 7(a) shows that smaller levels of utilization require less compu-
tational effort in order to maintain the same level of accuracy. The same
holds for service rates and capacity, as is clear from Figures 7(b) and 7(c).
For all three cases, a decrease in utilization/service rate/capacity results in
a decrease of event frequency. In addition, a decrease in capacity also re-
sults in a decrease of the size of the state space. Therefore, a large value
of ∆ may suffice to obtain reasonable accuracy in systems that have low
utilization/service rates/capacity.

From Figure 7(d), it is clear that smaller abandonment rates require more
computational effort in order to maintain the same level of accuracy. This
is somewhat surprising as small abandonment rates decrease the event fre-
quency. They, however, also increase the utilization. Therefore, smaller
values of ∆ may be required in systems that have low abandonment rates.

We can conclude that the trade-off between accuracy and computation
time is mainly influenced by (1) the event frequency, (2) the C2 values of
the arrival, service and abandonment processes and (3) the size of the state
space. As a result, the model is most appropriate in settings with low service
rate, low utilization, low capacity or high abandonment rates.

5 Conclusions and directions for further re-

search

In this article, we have presented a model that approximates the transient
and steady-state behavior of a G(t)/G(t)/s(t) + G(t) queueing system with
an exhaustive service policy. The model yields the following (time-varying)
performance measures: (1) the expected queue length, (2) the variance of the
queue length, (3) the expected number of abandonments and (4) the virtual
waiting time distribution of a customer when arriving at an arbitrary moment
in time. The analysis does not require heavy traffic conditions (a condition
that is common in existing work). Computational experiments showed that
results are highly accurate and that computational effort remains limited,
especially in small- to medium-sized systems. Problem instances with (1) a
low service rate, (2) a low average capacity, (3) a low utilization or (4) a
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Figure 7: Trade-off between accuracy and computation time
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high abandonment rate typically required less computation time to achieve
a given level of accuracy. Other problems can be solved as well, albeit at a
higher computational cost.

Existing models are often incapable of accurately capturing the (time-
varying) behavior of small- to medium-scaled systems. Our model on the
other hand, excels in this. Banks, retail stores and emergency departments
are just a few of the example systems that may benefit from our model.
Our approach could, for instance, be used to evaluate the performance of
alternative personnel schedules or to determine the minimal required staffing
levels. We intend to further explore our method’s applicability within the
context of capacity planning in future research.
Acknowledgements: This research was supported by the Research Foundation-
Flanders (FWO) (grant no G.0547.09).
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