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A new approach for quantitative risk analysis

Stefan Creemers∗, Erik Demeulemeester†, Stijn Van de Vonder†

Abstract

Project risk management aims to provide insight into the risk pro-
file of a project as to facilitate decision makers to mitigate the impact
of risks on project objectives such as budget and time. A popular
approach to determine where to focus mitigation efforts, is the use of
so-called ranking indices (e.g. the criticality index, the significance
index etc.). Ranking indices allow the ranking of project activities (or
risks) based on the impact they have on project objectives. A distinc-
tion needs to be made between activity-based ranking indices (those
that rank activities) and risk-driven ranking indices (those that rank
risks). Because different ranking indices result in different rankings of
activities and risks, one might wonder which ranking index is best?
In this article, we provide an answer to this question. Our contribu-
tion is threefold: (1) we set up a large computational experiment to
assess the efficiency of ranking indices in the mitigation of risks; (2)
we develop two new ranking indices that outperform existing ranking
indices and (3) we show that a risk-driven approach is more efficient
than an activity-based approach.

1 Introduction

It is well known that projects worldwide are still struggling to meet their
objectives (The Standish Group 2009). During project execution, unforeseen
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Figure 1: Overview of the risk analysis process

events arise that disrupt plans and budgets and that result in substantial
overruns. Risk management is widely recognized as a compulsory discipline
to deal with this kind of project uncertainty.

The Project Management Institute (2008) defines risk management as the
process that deals with the planning, identification, analyzing, responding,
monitoring and controlling of project risks. In this article, we focus on the
risk analysis process and its effect on the risk response process. The risk
analysis process can be divided into a number of subprocesses: risk priori-
tization, quantitative risk assessment and quantitative risk evaluation. Risk
prioritization is a qualitative procedure that allows to prioritize the risks that
were identified in an earlier stage of the risk management process. It requires
ordinal estimates of both the probability of occurrence and the impact of a
risk. These ordinal estimates are then used to create a shortlist of high pri-
ority risks (analogous to the Pareto principle). Further risk analysis efforts
should focus on these high priority risks. Quantitative risk assessment is the
procedure in which experts provide detailed estimates of the probability of
occurrence and the impact of high priority risks. These estimates are used in
the quantitative risk evaluation procedure to analyze the impact of the short-
listed risks on overall project objectives. Figure 1 provides a short overview
of the dynamics of the risk analysis process.
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Good risk management requires a risk analysis process that is scientifi-
cally sound and that is supported by quantitative techniques (Hubbard 2008).
A wide body of knowledge on quantitative techniques has been accumulated
over the last two decades. Monte Carlo Simulation is the predominant quanti-
tative risk evaluation technique in both practice and in literature. Advocates
of alternative techniques such as neural networks, fuzzy logic and decision
tree analysis have debatable arguments in favor of these techniques, but have
so far failed to persuade most project schedulers of their practical usage (re-
fer to Sadeghi et al. (2009) and Georgieva et al. (2009) among others for an
evaluation of risk analysis techniques).

The goal of risk analysis is to generate insight into the risk profile of
a project and to use these insights to drive the risk response process (The
Project Management Institute 2008). The insights generated include: the
probability of achieving a specific project outcome, the distribution function
of the project completion time, etc. The risk response process will use these
insights to define practical risk responses that allow project managers to
mitigate risks (i.e. to reduce the impact of risks on project objectives). A
popular approach to determine where to focus mitigation efforts is the use
of so-called ranking indices (e.g. the criticality index, the significance index,
etc.). Ranking indices allow the ranking of project activities (or risks) based
on the impact they have on project objectives. A distinction needs to be
made between activity-based ranking indices (those that rank activities) and
risk-driven ranking indices (those that rank risks). Remark that the impact
of an activity (or risk) on a project objective may differ depending on the
ranking index used, resulting in the question: which ranking index is best?
It is exactly this question that we will address in this article.

The contribution of this article is threefold: (1) we set up a large com-
putational experiment to assess the potential of ranking indices in mitigat-
ing risks; (2) we develop two new ranking indices that outperform existing
ranking indices and (3) we show that a risk-driven approach outperforms an
activity-based approach. For our study, we assume risks to impact the du-
ration of activities and hence use the project completion time to gauge the
performance of ranking indices (i.e. we assess the potential of ranking indices
to mitigate risks that delay the completion time of a project). In order to
approximate the distribution of the project completion time, we adopt Monte
Carlo simulation.

The remainder of this article is organized as follows: in Section 2 we
review the basic principles of stochastic project scheduling. Section 3 in-
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troduces the risk-driven approach and compares it to the activity-based ap-
proach. Section 4 presents the ranking indices. In Section 5 the computa-
tional experiment is outlined and results are discussed. Section 6 draws some
conclusions.

2 Stochastic project scheduling

The Critical Path Method (CPM) is developed in the 50’s by DuPont Corpo-
ration and provides the foundations of modern project scheduling. It repre-
sents a project as an activity network which is a graph G = (N,A) that con-
sists of a set of nodes N = {1, 2, . . . , n} and a set of arcs A = {(i, j)|i, j ∈ N}.
The nodes represent project activities whereas the arcs that connect the
nodes represent precedence relationships. Activities 1 and n are referred to
as the dummy-start and the dummy-end activity and represent the start and
the completion of the project respectively. Each activity j has a deterministic
activity duration dj and can only start when its predecessors have finished.
CPM adopts an early start schedule in which activities are scheduled to start
as soon as possible. The early start schedule may be represented by a vec-
tor of earliest start times s = {s1, s2, . . . , sn}. The earliest start time of an
activity j is defined as follows:

sj = max {fi|(i, j) ∈ A} , (1)

where fj is the earliest finish time of an activity j and equals:

fj = sj + dj. (2)

By convention, the project starts at time instance 0 (i.e. s1 = 0). According
to CPM, the project completion time c is computed as follows:

c = fn. (3)

The longest path of the scheduled activities is called the critical path and
the activities on this path are critical activities.

Since the establishment of CPM, many extensions of the basic model have
been introduced: generalized precedence relationships, resource-constrained
project scheduling, multi-mode scheduling, critical chain buffer management,
etc. We refer to Demeulemeester and Herroelen (2002) for an extensive
overview of the field. In this article, we are particularly interested in what
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is called stochastic project scheduling or stochastic CPM. Stochastic CPM
acknowledges that activity durations are not deterministic. We model the
duration of an activity j as a positive random variable Dj. Because the
duration of an activity is a random variable, the earliest start and finish
times of an activity are random variables as well. Let Sj and Fj denote
the random variable of the earliest start and finish times of an activity j
respectively. The project completion time is a random variable C which is
a function of Dj. Calculating the distribution function of C is proven to
be #P -complete (Hagstrom 1988) and thus requires approximative methods
such as Monte Carlo simulation (Van Slyke 1963). Monte Carlo simulation is
used to virtually execute a project a large number of times, providing insight
and allowing the project manager to enhance the actual execution of the
project.

We will use Monte Carlo simulation to generate random variates of Dj.
Let dj = {dj,1, dj,2, . . . , dj,q} denote the vector of q random variates of Dj

(where q represents the number of simulation iterations). We refer to dj as
the vector of realized durations of Dj. In addition, define sj the vector of
realized earliest start times of an activity j:

sj = max {fi|(i, j) ∈ A} , (4)

where fj is the vector of realized earliest finish times of an activity j and
equals:

fj = sj + dj. (5)

The vector of realized project completion times c is defined as follows:

c = fn. (6)

It is clear that sj, fj and c are vectors of random variates of random variables
Sj, Fj and C respectively.

3 Towards a risk-driven approach

One of the main challenges in project risk management is to estimate and to
model the uncertainty of activity durations. Often, it is assumed that the du-
ration of an activity follows a distribution that captures all uncertainty that
originates from the occurrence of risks (popular distributions include: the
triangular distribution, the beta distribution and the normal distribution).
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As such, risk assessment boils down to providing estimates of activity dura-
tion distribution parameters. We refer to this approach as the activity-based
approach.

In this article we argue that the activity-based approach is inherently
flawed. As Hulett (2009) points out, there is no clear link between the im-
pact of identified risks on the duration of an activity and the distribution
of the activity duration itself (i.e. the activity-based approach is unable to
identify the root causes of the uncertainty in the duration of an activity). In
addition, our experience learns that practitioners have a hard time assessing
uncertainty by estimating the parameters of an activity duration distribution.

To resolve the problems of the activity-based approach, we devise a risk-
driven approach in which the impact of each risk is assessed individually and
is mapped to the duration of an activity afterwards. Our approach is based
on previous work by Schatteman et al. (2008) and Van de Vonder (2006)
and is similar to the risk-driver approach of Hulett (2009). Contrary to the
activity-based approach, we focus on risks as primary sources of uncertainty.
In what follows, we adopt an integrated approach that relies on Monte Carlo
simulation to evaluate the impact of risks on activity durations and on the
project completion time. Figure 2 presents a visual overview from which
it is clear that a risk-driven approach assesses the impact of root risks on
the uncertainty of the activities and on the project completion time. An
activity-based approach on the other hand, assesses only the uncertainty of
the activities without observing the root risks that cause this uncertainty.

To further support the risk-driven approach, we provide the following
example. Consider an activity whose duration is impacted by two risks. The
first risk has a small impact yet a large probability of occurrence whereas
the second risk has a large impact but a small probability of occurrence.
The probability distribution of the duration of the activity is presented in
Figure 3. From the figure it is clear that fitting a distribution would result
in significant errors (the best fit of the triangular distribution is indicated
by the dotted line). In addition, it would be very hard for practitioners to
estimate the parameters of the fitted distribution. Assessing the probability
of occurrence and the impact of both risks on the other hand, would be a
manageable task and would result in the correct distribution of the duration
of the activity.

In order to formally define risks and their impacts, let R = {1, 2, . . . , r}
denote the set of risks and let M = {Mj,e|j ∈ N ∧ e ∈ R} denote the set of
risk impacts, where Mj,e is the random variable of the risk impact of a risk
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e on the duration of an activity j. Let mj,e represent the vector of random

variates of Mj,e and define d
(E)
j =

{
d
(E)
j,1 , d

(E)
j,2 , . . . , d

(E)
j,q

}
, the vector of random

variates of the duration of an activity j subject to a set of risks E ⊆ R:

d
(E)
j = dj +

∑
e∈E

mj,e, (7)

where dj is the deterministic (i.e. risk-free) duration of an activity j. From

d
(E)
j we obtain s

(E)
j =

{
s
(E)
j,1 , s

(E)
j,2 , . . . , s

(E)
j,q

}
, f

(E)
j =

{
f
(E)
j,1 , f

(E)
j,2 , . . . , f

(E)
j,q

}
and

c(E) =
{
c
(E)
1 , c

(E)
2 , . . . , c

(E)
q

}
by generalizing Equations 4, 5 and 6:

s
(E)
j = max

{
f
(E)
i |(i, j) ∈ A

}
, (8)

f
(E)
j = s

(E)
j + d

(E)
j , (9)

c(E) = f (E)
n . (10)

The expected project delay over q simulation iterations is defined as follows:

∆(E) =
1

q

q∑
p=1

c(E)
p − c, (11)

where c is the risk-free project completion time and is computed using Equa-
tion 3.

4 Effective risk mitigation

Most commercial risk analysis software packages provide the functionality
to generate insight into the source of project overruns. The activities (or
the risks) that contribute most to the project overrun are identified using

ranking indices. Let (·)(E)
j and (·)(E)

e denote the ranking values of a ranking
index (·) for an activity j and a risk e when activity durations are subject
to a set of risks E. The larger the ranking value, the larger the contribution
of the activity (or the risk) to the project overrun. The ranking of activities
(or risks) is typically visualized using a tornado graph (see Figure 4 for an
example of a tornado graph).

In the remainder of this Section, we will first provide an overview of the
existing ranking indices. Next, we will introduce two new ranking indices
that will be compared with the existing ones in a computational experiment.
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Figure 4: Tornado graph

4.1 Literature review

In this Section, we provide an overview of the existing ranking indices to
determine the contribution of activities (or risks) to the project overrun. We
refer to Elmaghraby (2000) and Demeulemeester and Herroelen (2002) for a
more detailed discussion on the ranking indices discussed below.

4.1.1 Critical Activities (CA)

A common practice in project risk management is to focus mitigation efforts
on the critical activities of the deterministic early start schedule s (Goldratt
1997). The Critical Activities (CA) ranking values are computed as follows:

CA
(E)
j = δj, (12)

where δj equals 1 if j is critical in s and 0 otherwise.
While easy to implement, CA does not recognize the uncertain nature of a

project. In addition, all activities on the critical chain have an equal ranking
value, thereby severely limiting the discriminative power of the ranking index.
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4.1.2 Activity Criticality Index (ACI )

In stochastic CPM, the critical path is not fixed. For instance, the occurrence
of risks may alter the critical path in a given network. The Activity Criticality
Index (ACI ) recognizes that almost any path and any activity can become
critical with a certain probability (Van Slyke 1963). When using Monte Carlo
simulation, the ACI of an activity is simply the proportion of simulation
iterations in which the activity was critical:

ACI
(E)
j =

1

q

q∑
p=1

δ
(E)
j,p , (13)

where δ
(E)
j,p equals 1 if j is critical in s

(E)
p and 0 otherwise (s

(E)
p is the early

start schedule during a simulation iteration p when activity durations are
subject to a set of risks E).

4.1.3 Significance Index (SI )

The Significance Index (SI ) was developed by Williams (1992) as an answer
to criticism on ACI. When using Monte Carlo simulation, SI is computed as
follows:

SI
(E)
j =

1

q

 1
q∑
p=1

c
(E)
p


[

q∑
p=1

(
d
(E)
j,p

d
(E)
j,p + TF

(E)
j,p

c(E)
p

)]
, (14)

= E

[
d
(E)
j

c(E)d
(E)
j TF

(E)
j

]
, (15)

where TF
(E)
j,p is the total float of an activity j during a simulation itera-

tion p when activity durations are subject to a set of risks E and TF
(E)
j ={

TF
(E)
j,1 ,TF

(E)
j,2 , . . . ,TF

(E)
j,q

}
(refer to Demeulemeester and Herroelen (2002)

for a definition of total float).

4.1.4 Cruciality Index (CRI )

The cruciality index (CRI ) is defined as the absolute value of the correlation
between the duration of an activity and the total project duration. When
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using Monte Carlo simulation, CRI is computed as follows:

CRI
(E)
j =

∣∣∣corr
(
d
(E)
j , c(E)

)∣∣∣ . (16)

4.1.5 Spearman Rank Correlation (SRC )

Cho and Yum (1997) have criticized CRI because it assumes a linear re-
lationship between the duration of an activity and the project completion
time. They propose the use of a non-linear correlation measure such as the
Spearman rank correlation coefficient. The Spearman Rank Correlation in-
dex (SRC ) is computed as follows:

SRC
(E)
j =

∣∣∣corr
(

rank
(
d
(E)
j

)
, rank

(
c(E)

))∣∣∣ . (17)

4.1.6 Schedule Sensitivity Index (SSI )

The PMI Body of Knowledge (2008) and Vanhoucke (2010) define a ranking

index that combines ACI and the variance of d
(E)
j and c(E). When using

Monte Carlo simulation, SSI is computed as follows:

SSI
(E)
j = ACI(E)

√√√√Var
(
d
(E)
j

)
Var (c(E))

. (18)

4.1.7 Risk-Driven Ranking Indices

All prior ranking indices have been criticized in the literature (refer to Williams
(1992), Elmaghraby (2000) and Cui et al. (2006)) and are primarily designed
to rank activities, not risks. In this (and later) Sections we will introduce
risk-driven ranking indices.

To the best of our knowledge, Hulett (2009) is the only reference that
explicitly refers to a risk-driven ranking index. He proposes a simple adapta-
tion of the CRI such that it calculates the absolute correlation between the
impact of a risk and the project completion time. When using Monte Carlo
Simulation, the Cruciality Index for Risks (CRIR) is computed as follows:

CRIR(E)
e =

∣∣corr
(
me, c

(E)
)∣∣ , (19)
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where
(
me =

∑
j∈N me,j

)
and e ∈ E. A similar adaptation may be made

with respect to SRC :

SRCR(E)
e =

∣∣corr
(
rank (me) , rank

(
c(E)

))∣∣ . (20)

No simple risk-driven adaptation exists for the other activity-based rank-
ing indices (i.e. CA, ACI, SI and SSI ).

4.2 Two new ranking indices

The aim of the new ranking indices is to redistribute the project delay over
the combinations of activities and risks that cause the delay. More formally,
the Critical Delay Contribution (CDC) of an activity j and a risk e may be
expressed as follows:

CDC
(E)
j,e =

1

q

q∑
p=1

mj,e,pδ
(E)
j,p

(
c
(E)
p − c

)
∑
j∈N

∑
e∈E

q∑
p=1

mj,e,pδ
(E)
j,p

, (21)

= E

 mj,ey
(E)
j∑

j∈N

∑
e∈E

mj,ey
(E)
j

∆(E), (22)

where y
(E)
j =

{
δ
(E)
j,1 , δ

(E)
j,2 , . . . , δ

(E)
j,q

}
.

From CDC
(E)
j,e it is easy to obtain both an activity-based as well as a

risk-driven ranking index:

CDCR(E)
e =

∑
j∈N

CDC
(E)
j,e , (23)

CDCA
(E)
j =

∑
e∈E

CDC
(E)
j,e . (24)

CDCA and CDCR are both new ranking indices whose dynamics are best
explained using an example. Consider the project presented in Figure 5. The
project has three non-dummy activities (i.e. the start and the completion of
the project are represented by activity 1 and 5 respectively). The risk-free
activity durations are (d2 = 2); (d3 = 3) and (d4 = 6). Precedence relations
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Act 1

Act 2 Act 3

Act 4

Act 5

Figure 5: Example project network

Activity Risk mj,e,p

mj,e,pδ
(E)
j,p

(
c
(E)
p −c

)
∑
j∈N

∑
e∈E

mj,e,pδ
(E)
j,p

 CDC

p = 1 p = 2 p = 3

j = 2 e = 1 +1(0) +1(0.66) +1(0.75) CDC
(E)
2,1 = 0.47

e = 2 − +2(1.33) − CDC
(E)
2,2 = 0.44

j = 3 e = 3 − − +3(2.25) CDC
(E)
3,3 = 0.75

j = 4 e = 1 +1(1) +1(0) +1(0) CDC
(E)
4,1 = 0.33

c
(E)
p 7 8 9 E

[
c(E)

]
= 8

c
(E)
p − c 1 2 3 ∆(E) = 2

Table 1: Computing the CDC

(finish-start) exist between activities 1 and 2, activities 1 and 4, activities 2
and 3, activities 3 and 5 and activities 4 and 5. The risk-free project com-
pletion time is (c = 6). Three risks have been identified and their respective
risk impacts are presented in Table 1. For the sake of simplicity, we consider
only three simulation iterations (i.e. q equals 3). For example, we observe
that activities 2 and 3 are critical during simulation iteration (p = 2) and
that the critical path has a length of eight time units, resulting in a project
delay of two time units (i.e. c

(E)
p − c = 8 − 6 = 2). As a consequence,

during simulation iteration (p = 2), the CDC of risk 1 on activity 2 equals(
1(8−6)
1+2

= 2/3
)

.
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Risk 1 Risk 2 Risk 3 CDCA
(E)
j

Act 2 0.47 0.45 − 0.92
Act 3 − − 0.75 0.75
Act 4 0.33 − − 0.33

CDCR(E)
e 0.8 0.45 0.75 ∆(E) = 2

Table 2: Aggregation of CDC

Table 2 illustrates how the numbers in Table 1 may be aggregated both
at the level of each activity as well as at the level of each risk, resulting in
ranking values CDCA

(E)
j and CDCR(E)

e respectively. Similarly to the other
activity-based ranking indices, CDCA ranks activities. The performance of
both CDCA and CDCR will be evaluated in the upcoming Section.

5 Computational Experiment

Contrary to most of the literature, we will not assess the performance of
ranking indices by means of counterexamples. Our goal is to evaluate the
resilience of ranking indices in a wide variety of settings, using an exten-
sive experimental design. At the core of our experimental design are the
PSPLIB J120 project networks (Kolisch and Sprecher 1996). For each of
these networks and for each of the 48 distinct risk profiles defined below,
we will evaluate the mitigation potential of the ranking indices discussed in
Section 4. A similar approach is followed in Vanhoucke (2010), who considers
only activity-based ranking indices.

In what follows, we will first discuss the experimental design itself. Next
we deal with the experimental setup and finally, we present the results in
Section 5.3.

5.1 Experimental design

For each of the projects in the PSPLIB J120 data set, uncertainty is in-
troduced by modeling a number of risks. Five parameters were selected to
characterize the risks: (1) risk uniformity; (2) risk quantity; (3) risk probabil-
ity; (4) risk impact and (5) risk correlation. The settings of these parameters
are based on our experience in the risk management field.
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Risk uniformity deals with the number of activities that are impacted by a
single risk. Often, clusters of activities have a similar task content and hence
are subject to similar risks. We refer to these clusters of activities as activity
groups (Schatteman et al. 2008). When risk uniformity is low, the number of
activities impacted by any risk e ∈ R follows a discrete uniform distribution
with minimum and maximum equal to 1 and 3 activities respectively. A
low risk uniformity setting results in an average of 60 activity groups in
a project network. The average number of activities in an activity group
equals 2. When risk uniformity is high, the number of activities impacted
by any risk e ∈ R follows a discrete uniform distribution with minimum and
maximum equal to 1 and 11 activities respectively. A high risk uniformity
setting corresponds to an average of 20 activity groups in a project network
whereas the average number of activities in an activity group equals 6.

Risk quantity indicates the number of risks that are identified during
the risk identification process. A low risk quantity setting corresponds to a
project in which activities are impacted by 25 risks. When risk quantity is
high, 50 risks impact the activities of a project. Risks are randomly assigned
to a single activity group.

Risk probability indicates the probability of occurrence of a risk whereas
risk impact defines the impact of a risk on the duration of an activity. We
define two types of risks: (1) risks with a large impact but with a small
probability of occurrence and (2) risks with a small impact but with a large
probability of occurrence. Risks are randomly assigned a risk type, where
each risk has a 25 percent chance of being of type 1 (as such, risks have
a 75 percent chance of being of type 2). For both risk types, we allow for
high and low settings of risk probability and risk impact. Table 3 presents
the relevant parameter settings. Remark that: (1) the impact of a risk
is modeled as a proportional extension of the duration of an activity and
follows a triangular distribution and (2) the risk probability is modeled using
a continuous uniform distribution.

Risk correlation indicates whether the occurrences of a risk (on activities
in the impacted activity group) are correlated. We investigate three possible
scenarios. A first scenario deals with the setting in which there is perfect
correlation (i.e. either all activities in the activity group are impacted or none
are). The second scenario, assumes that risk occurrences are independent
(i.e. there is no correlation between risk occurrences). In a third scenario,
we assume that the risk correlation is random, indicating that the occurrences
of a risk are correlated with a random correlation factor that is drawn from

15

IESEG Working Paper Series 2013-MAN-03



Risk Risk Risk probability impact
Probability Impact Type min max min most likely max

High High Type 1 0.05 0.05 1.0 2.0 9.0
Type 2 0.1 0.7 0.0 1.0 2.0

High Low Type 1 0.05 0.05 0.5 1.0 4.5
Type 2 0.1 0.7 0.0 0.5 1.0

Low High Type 1 0.025 0.025 1.0 2.0 9.0
Type 2 0.05 0.35 0.0 1.0 2.0

Low Low Type 1 0.025 0.025 0.5 1.0 4.5
Type 2 0.05 0.35 0.0 0.5 1.0

Table 3: Parameter settings for risk probability and risk impact

a continuous uniform distribution with minimum and maximum equal to 0
and 1 respectively.

The possible settings of the five parameters combine to 48 distinct risk
profiles that are to be evaluated. For each risk profile and over all project
networks in the PSPLIB J120 data set, we will evaluate the performance of
the ranking indices discussed in Section 4.

5.2 Experimental setup

We test the mitigation potential of each ranking index using a stepwise pro-
cedure. In each step, the selected ranking index is used to identify the risk
that contributes most to the delay of the project. Next, this risk is eliminated
(i.e. is fully mitigated). After mitigation, we rerun the simulation and re-
calculate the expected project delay. Once more, the selected ranking index
is used to identify and to mitigate the risk that has the largest impact on
the project delay. This process continues until all risks have been mitigated.
More formally, let E (·)x denote the set of risks after mitigation of x risks
using ranking index (·), with (E (·)0 = R), (E (·)r = ∅) and x ∈ {0, 1, . . . , r}.
An outline of the procedure is provided in Algorithm 1.

In our experiment, we evaluate a total of 12 ranking indices. The ten
ranking indices discussed in Section 4 (CA, ACI, SI, CRI, SRC, SSI, CRIR,
SRCR, CDCA and CDCR) as well as two additional ranking indices: (1)
RAND randomly selects a risk from those risks still active and may be con-
sidered as a worst-case scenario and (2) OPT is a greedy optimal ranking
index that evaluates the elimination of all risks after each simulation run and
selects the best risk to mitigate. OPT may be considered as a best-case sce-
nario but has limited practical value due to its computational requirements.
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Algorithm 1 Computational experiment
for all Ranking indices (·) do

for all Project networks in the PSPLIB J120 data set do
for all Risk uniformity settings do

Assign activities to activity groups
for all Risk quantity settings do

Set r and define R = {1, 2, . . . , r}
for all Risk probability settings do

for all Risk impact settings do
for e = 1 to r do

Set the probability and impact of each risk
end for
for all Risk correlation settings do

Set the correlation of risk occurrences
Set x = 0 and let E (·)0 = R
while x < r do

for p = 1 to q do

Compute s
(E(·)x)
p and determine c

(E(·)x)
p

end for
Compute ∆(E(·)x) using Equation 11
From ∆(E(·)x) compute performance measure RRD(E(·)x) using
Equation 25 for the current combinations of risk parameter set-
tings
if (·) is activity-based then

For each activity j compute ranking value (·)(E(·)x)
j using Equa-

tion 24 and Equations 12 – 18
Select the highest ranked activity and use the two-step pro-
cedure outlined in Section 5.2 to identify e∗, the best risk to
mitigate

else
For each risk e compute ranking value (·)(E(·)x)

e using Equa-
tions 19 – 23
Select the highest ranked risk e∗

end if
Mitigate risk e∗ (i.e. E (·)x+1 = E (·)x \ e∗)
Increment x

end while
end for

end for
end for

end for
end for

end for
end for
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Realized impacts
Risk

mj,e,p 1 2 3
∑
j∈N

mj,e,p

1 2 1 1 4
Act 2 0 0 2 2

3 0 0 0 0∑
e∈E

mj,e,p 2 1 3 6

Expected impacts
Risk

E [mj,e] 1 2 3
∑
j∈N

E [mj,e]

1 2 1 1 4
Act 2 0 0 1 1

3 0 0 1 1∑
e∈E

E [mj,e] 2 1 3 6

Table 4: Example activity risk impact matrix

With respect to the activity-based ranking indices, selecting the largest
risk is a two-step procedure. In a first step, the highest-ranked activity is
selected. In a second step, the risk that has the largest expected impact on
the selected activity is identified as the highest-ranked risk. For instance,
observe the matrix of realized (during a simulation iteration p) and expected
risk impacts presented in Table 4. It is clear that activity 1 has the largest
realized impact over all simulations. Risk 1 has the largest expected impact
on activity 1 and hence is selected as the risk that contributes most to the
project overrun (i.e. risk 1 is the highest-ranked risk). It is however clear
that risk 3 in fact has the most severe impact on the durations of the different
activities.

In order to evaluate the performance of the different ranking indices, we
will use Monte Carlo simulation. The simulation experiment was coded in
Visual C++ and was executed on a Pentium IV 2.67 GHz personal computer.
To obtain statistically significant results, we simulated the execution of a
project 1000 times: (1) for each of the 600 projects in the PSPLIB J120
data-set; (2) for each of the 48 risk profiles; (3) for each of the 12 ranking
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indices and (4) for each step in the mitigation process (i.e. depending on the
risk quantity, either 25 or 50 risks are mitigated). In total, almost 13 billion
simulation iterations were performed.

5.3 Computational results

In order to compare the performance of the ranking indices, define RRD(E(·)x)

as the Relative Residual Delay after mitigation of x risks using ranking index
(·):

RRD(E(·)x) =
∆(E(·)x)

∆(E(·)0)
, (25)

where ∆(E(·)0) is the expected project delay before any mitigation takes place.
It is clear that a smaller value for RRD(E(·)x) corresponds to a more effective
ranking index.

Another measure to assess the performance of a ranking index (·) is the
Mitigation Efficiency Index (MEI(·)). MEI(·) is defined as follows:

MEI(·) = 1− 2

r∑
x=1

RRD(E(·)x)

r − 1
(26)

The details of the dynamics of this measure may be found in the Appendix.
In short, MEI(·) is supported on the [−1, 1] real interval, where a value of
(MEI(·) = 0) indicates that the performance of the ranking index equals that
of the random procedure. A value of (MEI(·) = 1) on the other hand, refers
to the optimal case in which mitigating a single risk is sufficient to resolve all
project uncertainty. It is clear that a value of (MEI(·) = 1) is unattainable
in general.

Figure 6 gives an overview of the average performance of the activity-
based ranking indices with respect to measure RRD(E(·)x) for the range start-
ing from (x = 0) until (x = 10) (i.e. ten risks have been mitigated). The data
are aggregated over all 600 project networks in the PSPLIB J120 data sets
and over all 48 risk profiles. We observe that the mitigation of risks results
in a decrease of the expected project delay for each ranking index. Because
RAND randomly selects risks, its improvement is linear with the number of
risks mitigated. All other ranking indices follow a convex function, imply-
ing that risks with a larger impact on the project delay are selected first.
One might conclude that CDCA (the activity-based ranking index proposed
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in this article) outperforms all other activity-based ranking indices. How-
ever, it is clear that there still exists a gap between the performance of the
activity-based indices and the OPT procedure.

Similarly to Figure 6, Figure 7 presents the performance of risk-driven
ranking indices with respect to measure RRD(E(·)x). We observe that CRIR
and SRCR have similar performance and are able to outperform the activity-
based ranking indices. Of larger importance, however, is the observation
that CDCR (the risk-driven ranking index proposed in this article) easily
outperforms CRIR and SRCR and even matches the performance of the
OPT procedure. It is clear that CDCR sets a new standard in the field of
ranking indices.

Table 5 presents the performance of the different ranking indices with
respect to measure MEI(·). We observe that MEI(RAND) is close to zero,
indicating that the RAND procedure has no real mitigation potential. The
OPT procedure boosts the highest values of MEI(·) and is rivalled only by
CDCR. Virtually no difference exists between the performance of the OPT
procedure and the CDCR ranking index. With respect to the activity-based
ranking indices, it is clear that CDCA takes the pole position.

Furthermore, we observe that risk correlation seems to have a very limited
impact on the performance of the ranking indices (certainly for those ranking
indices that perform well). Only with respect to SRCR (the risk-driven
ranking index that adopts a Spearman correlation coefficient) the correlation
of the occurrences of risks makes a difference. More specifically, an increased
correlation in the occurrence of risks results in a lower MEI(SRCR). As such,
SRCR is less robust when compared to the other ranking indices. Similar
conclusions hold for risk uniformity and risk probability. Their impact on
the performance of ranking indices is subtle to non-existing. Risk quantity
on the other hand substantially affects the MEI(·) of the different ranking
indices. We observe that the identification of more risks results in a decreased
performance (i.e. if there are more risks, the mitigation of a single risk tends
to be less effective). Risk impact has a negative effect on the MEI(·) of a
ranking index. Lower risk impacts correspond to higher values of MEI(·) (i.e.
the relative effect of mitigating a risk increases if there are only few risks
that impact project objectives).
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Figure 6: Mitigation potential of activity-based ranking indices
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Figure 7: Mitigation potential of risk-driven ranking indices
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Index Avg Corr MEI(·)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-.02 0 % -.04 -.02 -.05 -.03 -.03 -.02 -.01 -.01 -.04 -.02 -.02 -.01 -.01 -.00 -.01 -.01

RAND -.02 RND -.04 -.02 -.02 -.01 -.03 -.02 -.01 -.00 -.02 -.01 -.02 -.02 -.02 -.01 -.01 -.00
-.01 100 % -.03 -.01 -.01 -.00 -.01 -.00 -.01 -.00 -.00 -.00 -.01 -.01 -.01 .00 .01 -.01
.74 0 % .64 .67 .66 .69 .76 .81 .78 .82 .66 .69 .68 .70 .79 .83 .80 .84

OPT .73 RND .63 .66 .65 .68 .76 .81 .78 .82 .65 .69 .67 .70 .78 .83 .79 .83
.73 100 % .63 .66 .64 .68 .76 .81 .77 .82 .64 .68 .66 .69 .78 .83 .79 .83
.13 0 % .09 .12 .10 .13 .10 .15 .11 .16 .10 .13 .12 .15 .13 .18 .13 .18

CA .13 RND .08 .11 .10 .13 .10 .15 .11 .16 .10 .13 .12 .14 .13 .17 .13 .18
.13 100 % .08 .11 .11 .13 .09 .14 .11 .16 .10 .13 .12 .14 .12 .17 .13 .18
.07 0 % .01 .07 .03 .08 .03 .09 .05 .10 .03 .08 .04 .09 .06 .12 .08 .14

ACI .08 RND .02 .07 .04 .08 .03 .09 .05 .10 .06 .10 .06 .10 .08 .14 .08 .13
.09 100 % .05 .09 .06 .10 .05 .10 .04 .10 .07 .11 .07 .11 .07 .13 .08 .13
.06 0 % .03 .07 .04 .08 .04 .08 .04 .08 .03 .08 .04 .08 .05 .09 .07 .12

SI .08 RND .04 .08 .05 .08 .04 .08 .04 .08 .07 .09 .06 .09 .08 .13 .07 .12
.09 100 % .08 .10 .08 .10 .05 .09 .05 .09 .09 .11 .08 .10 .07 .10 .08 .10
.62 0 % .44 .49 .47 .52 .66 .73 .69 .75 .51 .55 .53 .57 .72 .77 .73 .78

CRI .62 RND .44 .49 .47 .52 .67 .73 .69 .75 .51 .55 .53 .57 .71 .77 .72 .78
.62 100 % .45 .50 .47 .52 .66 .73 .68 .74 .50 .55 .53 .58 .71 .77 .73 .78
.61 0 % .47 .53 .47 .52 .68 .74 .66 .72 .53 .57 .48 .52 .70 .75 .66 .74

SRC .60 RND .46 .52 .46 .52 .67 .73 .65 .71 .52 .56 .47 .51 .68 .73 .65 .72
.59 100 % .45 .51 .45 .51 .65 .72 .64 .70 .51 .55 .46 .50 .67 .72 .64 .71
.63 0 % .46 .52 .48 .54 .68 .74 .68 .75 .53 .57 .53 .58 .72 .78 .72 .78

SSI .63 RND .46 .51 .48 .54 .68 .75 .69 .76 .52 .57 .53 .58 .71 .77 .71 .77
.62 100 % .46 .51 .48 .54 .68 .74 .68 .75 .50 .55 .52 .57 .72 .77 .71 .77
.65 0 % .46 .53 .48 .55 .70 .77 .72 .78 .54 .59 .56 .60 .75 .80 .76 .81

CDCA .65 RND .45 .52 .48 .54 .70 .77 .72 .78 .53 .59 .55 .60 .75 .80 .76 .81
.65 100 % .46 .53 .48 .55 .70 .76 .72 .78 .53 .58 .55 .60 .75 .80 .76 .81
.69 0 % .57 .61 .60 .63 .72 .77 .74 .78 .60 .62 .63 .65 .74 .79 .76 .80

CRIR .69 RND .57 .60 .60 .63 .72 .77 .74 .79 .59 .63 .62 .65 .74 .79 .75 .80
.69 100 % .57 .61 .59 .63 .72 .77 .74 .79 .59 .62 .61 .65 .75 .80 .76 .80
.70 0 % .59 .63 .63 .66 .74 .78 .75 .78 .63 .66 .66 .67 .76 .79 .74 .78

SRCR .66 RND .56 .60 .59 .62 .70 .74 .71 .74 .59 .62 .62 .64 .71 .75 .70 .74
.63 100 % .53 .56 .56 .59 .66 .70 .67 .69 .56 .59 .59 .60 .67 .71 .66 .70
.74 0 % .63 .67 .66 .69 .76 .81 .78 .82 .66 .69 .68 .70 .79 .83 .79 .83

CDCR .73 RND .63 .66 .65 .68 .76 .81 .77 .82 .65 .68 .67 .69 .78 .83 .79 .83
.73 100 % .62 .66 .64 .68 .76 .81 .77 .82 .64 .68 .66 .69 .78 .83 .79 .83

Risk uniformity High Low
Risk quantity High Low High Low
Risk probability High Low High Low High Low High Low
Risk impact H L H L H L H L H L H L H L H L

Table 5: Mitigation efficiency of the different ranking indices
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6 Conclusions

In this article we introduced a quantitative, new approach to project risk
analysis that allows to address the risk response process in a scientifically-
sound manner. We have shown that a risk-driven approach is more efficient
than an activity-based approach when it comes to analyzing risks. Therefore,
project risk management should focus on assessing the uncertainty caused by
risks themselves (i.e. the root cause) rather than evaluating the uncertainty
at the level of activities.

In addition, we developed two new ranking indices to assist project man-
agers in determining where to focus their risk mitigation efforts. Ranking
indices allow to identify the activities (or risks) that contribute most to the
delay of a project (popular ranking indices include the criticality index and
the significance index). We developed both an activity-based ranking index
(that ranks activities) and a risk-driven ranking index (that ranks risks). We
refer to these ranking indices as CDCA and CDCR respectively. Both rank-
ing indices outperform existing ranking indices, with CDCR nearly matching
the performance of a greedy-optimal procedure. CDCR sets a new standard
in the field of ranking indices.

Our conclusions are supported by an extensive simulation experiment
and were proven to be robust for a broad range of parameter settings. The
contributions of this article may be summarized as follows: (1) we assess
the performance of a wide variety of ranking indices using a large simulation
experiment; (2) we develop two new ranking indices that outperform existing
ranking indices and (3) we show that risk analysis should be risk-driven rather
than activity-based.

Appendix

The efficiency of a ranking index may be seen as its ability to correctly iden-
tify those risks that have the largest impact on project objectives. As such,
for any good ranking index the following holds: RRD(E(·)x−1)−RRD(E(·)x) ≥
RRD(E(·)x) − RRD(E(·)x+1) (i.e. RRD(E(·)x) has to be convex in the interval

x ∈ [1, r]). We illustrate this logic in Figure 8. RRD

(
E

(·)
x

)
is convex if:

∀x ∈ [1, r] : RRD(E(·)x) ≤
xRRD(E(·)r) +

[
(r − x) RRD(E(·)0)

]
r

. (27)
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Figure 8: Illustration of mitigation efficiency

Because
(

RRD(E(·)r) = 0
)

and
(

RRD(E(·)0) = 1
)

, the condition translates

into:
∀x ∈ [1, r] : 1− x

r
− RRD(E(·)x) ≥ 0. (28)

To assess the mitigation potential of a ranking index, we want to eval-
uate the level of convexity of RRD(E(·)x). For this purpose, we develop the
Mitigation Efficiency Index:

M̂EI
(·)

=
r∑

x=1

1− x

r
− RRD(E(·)x), (29)

=
r − 1

2
−

r∑
x=1

RRD(E(·)x), (30)

which corresponds to the surface of the gray area in the graph presented in

Figure 8. In order to obtain a relative measure, we divide M̂EI
(·)

by
(
r−1
2

)
:

MEI(·) = 1− 2

r∑
x=1

RRD(E(·)x)

r − 1
. (31)
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