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Abstract 

Churn modeling is important to sustain profitable customer relationships in saturated 

consumer markets. A churn model predicts the likelihood of customer defection. This helps 

to target retention offers to the right customers and use marketing resources efficiently. 

Several statistical prediction methods exist in marketing, but all these suffer an important 

limitation: they do not allow the analyst to account for campaign planning objectives and 

constraints during model building. Our key proposition is that creating churn models in 

awareness of actual business requirements increases the performance of the final model for 

marketing decision support. To demonstrate this, we propose a decision-centric framework to 

create churn models. We test our modeling framework on eight real-life churn data sets and 

find that it performs significantly better than state-of-the-art churn models. We estimate that 

our approach increases the per customer profits of retention campaigns by $.47 on average. 

Further analysis confirms that this improvement comes directly from maximizing business 

objectives during model building. The main implication of our study is thus that companies 

better shift from a purely statistical to a more business-driven modeling approach when 

predicting customer churn. 

 

Keywords: Churn Prediction, Marketing Decision Support, Choice Modeling, Ensemble 

Selection 
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1 Introduction 

Today, managers are more than ever interested to build enduring customer relationships and 

to maximize the value of the customer base (e.g., Fader and Hardie 2010). Acquiring new 

customers in saturated markets is challenging, and more expensive than retaining existing 

customers (e.g., Bhattacharya 1998; Colgate and Danaher 2000). Moreover, long-term 

customers generate higher profits, are less sensitive to competitive actions, and may act as 

promoters through positive word of mouth (e.g., Ganesh et al. 2000; Reichheld 1996; 

Zeithaml et al. 1996). Losing customers also creates opportunity costs because of lost sales 

(Rust and Zahorik 1993). Finally, retention is closely coupled with important managerial 

metrics such as the value of the customer base (e.g., Gupta and Zeithaml 2006). 

Although relationship management instruments such as loyalty programs often reduce churn 

(e.g., Kopalle et al. 2012; Lewis 2004; Verhoef 2003), customer attrition remains a major 

threat to the financial health of many companies (e.g., Risselada et al. 2010; Schweidel et al. 

2008; Thomas et al. 2004). For example, T-Mobile USA lost half a million of its most 

lucrative customers in the first quarter of 2012 (Bensinger and Tibken 2012). It is known that 

contract churn rates for many types of communication services are in the three-percent-per 

month range (Kim 2010). This means that a provider needs to refresh nearly 100% of its 

customer base about every three year. 

Churn management is a prominent analytical marketing tool to fight attrition, inform resource 

allocation decisions, and eventually increase firm performance. A churn model predicts 

whether a customer will defect in the near future. The firm then targets the most risky 

customers with retention campaigns to prevent attrition (e.g., Ganesh et al. 2000; Libai et al. 

2009; Shaffer and Zhang 2002). Targeted marketing actions toward risky customers can 

significantly reduce churn rates and increase firm profits (Burez and Van den Poel 2007). 
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Marketing analysts can choose from a variety of forecasting methods to build churn models. 

The choice of the modeling technique is important because it has a direct impact on 

prediction quality and thus on the profitability of all subsequent targeted marketing efforts 

(e.g., Neslin et al. 2006; Risselada et al. 2010). Many studies have thus compared different 

methods to identify a ‘best’ churn modeling technique; Verbeke et al. (2012) provide a 

comprehensive overview. This approach seeks profit improvements through more accurate 

forecasts that, in turn, result from better methods. In this work, we advocate a more direct 

link between churn modeling and campaign profitability.  

Previous churn modeling techniques are general purpose procedures. They embody the 

standard philosophy toward predictive learning: maximize the fit between the model and 

some historical data. Here, model fit refers to a statistical quality criterion such as the 

likelihood. We argue against the adoption of this notion of fit and performance. There is no 

guarantee that a maximum likelihood churn model – or a model that is optimal in terms of 

some other statistical indicator – is also optimal from a business viewpoint. Marketers use 

churn models to aid resource allocation decisions. If a marketing budget facilitates soliciting 

N customers with a retention program, the churn model’s task is to identify the top-N 

customers with the highest attrition risk. Conventional churn modeling techniques are 

agnostic of this application context. Research on marketing decision support systems suggests 

that this mismatch between the actual decision task (resource allocation) and its 

representation in the churn model (likelihood maximization) has a negative impact on 

decision outcomes and performance (e.g., Lilien 2011). Therefore, our key proposition is that 

creating churn models in awareness of business requirements and objectives improves the 

quality of resource allocation decisions and thus the profitability of retention activities.  

We develop a decision-centric churn modeling framework on the basis of a recent machine 

learning approach called ensemble selection (e.g., Partalas et al. 2010). Ensemble selection is 
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a two-stage modeling paradigm that can accommodate arbitrary business-driven accuracy 

indicators. The lift index (defined more formally below) is a well-established measure to 

assess campaign planning models. It embodies the constraints (retention budget) and 

objectives (campaign profit) that characterize a manager’s decision task. This way, the lift 

quantifies the degree to which a model-based targeting uses marketing resources efficiently. 

It is also directly connected to the profitability of a retention campaign (Neslin et al. 2006). 

We incorporate this business-oriented notion of model performance into our modeling 

framework. Using the ensemble selection methodology, we create churn models that 

explicitly maximize lift. We call this approach decision-centric ensemble selection (DCES) 

because it emphasizes the ultimate decision problem during model building.  

To explore the effectiveness of our approach, our first research questions compare DCES to 

conventional churn modeling techniques. 

 RQ1: Does DCES outperform the popular logit choice model? 

 RQ2: How does DCES perform in relation to advanced single classifiers? 

 RQ3: Can DCES beat sophisticated ensemble learners? 

These questions reflect the technical evolution in churn modeling and systematically compare 

DCES to what can be considered the state-of-the-art (e.g., Lemmens and Croux 2006; 

Risselada et al. 2010; Verbeke et al. 2012). The key difference between our approach and 

conventional churn models is that DCES accounts for business objectives during model 

building. We strive to establish a direct link between this feature and model performance in 

our last research question. 

 R4: Does our lift-based modeling philosophy explain the performance of DCES? 

We test our research questions through empirical analysis on a collection of eight real-world 

churn data sets. Our results indicate that DCES performs significantly better than any 

conventional approach, and increases the per customer profits of retention campaigns by $.47 

IESEG Working Paper Series 2013-MARK-06



5 

on average. We also find evidence that the success of DCES comes largely from the 

particular way it accounts for business objectives during model building. A first implication 

of these results is that it is both feasible and effective to use business performance measures 

for creating churn models. As we explain below, DCES grounds on the ensemble principle to 

combine multiple models’ forecasts. A second implication of our study is thus that the search 

for one ‘best’ forecasting method should be abandoned. Whenever a set of alternative churn 

models is available, e.g., because of preliminary experiments, analysts should not try to select 

one seemingly best model for deployment. Instead, they should appropriately combine the 

available models to produce a final forecast. In this sense, our results prompt a change in 

current churn modeling practices. 

We organize the remainder of the article as follows: In the next section, we provide an 

overview of the related literature. We then discuss the lift index as a measure of resource 

allocation efficiency, before we present our DCES framework. Next, we describe the data 

sets employed in our study and answer our research questions. Afterwards, we conclude the 

paper with a discussion of findings and implications. 

2 Related Literature 

Modeling customer churn is an essential part of retention management and belongs to the 

general field of managing customer relations (e.g., Musalem and Joshi 2009). A large number 

of retention models have been proposed in the marketing literature. One stream of research 

concentrates on predicting the length of customer relationships by means of hazard or 

[NBD]/Pareto models (e.g., Bolton 1998; Jerath et al. 2011; Schmittlein and Peterson 1994). 

These models are especially important in the context of customer lifetime value calculations 

(e.g., Gupta et al. 2006). A second stream of research views customer switching to 

competitors as transient and uses migration or Markov models to estimate transition 
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probabilities (see Gupta and Zeithaml 2006 for an overview). Such models can support 

resource allocation decisions where customer state (active or inactive) is unobservable like 

for instance in non-contractual business settings. 

In general, churn models can be grouped into two categories, explanatory and predictive. 

Approaches of the first category develop models to explain churn patterns on the basis of 

various constructs, including the firms’ marketing activities (Lewis 2004), customer 

knowledge (Capraro et al. 2003), or attitudinal concepts such as satisfaction (Bolton 1998; 

Gustafsson et al. 2005) or perceived quality (Zeithaml et al. 1996). Understanding the sources 

of defection is important to improve customer-centric business processes and reduce attrition 

rates in the long run. However, these models are less suitable to support operational business 

decisions in the short run. This is because explanatory models sacrifice some accuracy and 

forecast not as good as models explicitly designed to maximize prediction performance 

(Shmueli and Koppius 2011). Predictive ability is, in itself, important in marketing research 

and practice (Cui and Curry 2005). It is especially important in churn modeling to target 

retention offers to the right customers and use marketing resources efficiently (e.g., Lemmens 

and Croux 2006; Neslin et al. 2006; Risselada et al. 2010). Company databases contain vast 

amounts of customer data. It is plausible that data on, e.g., product/service usage, purchase 

and payment behavior, etc. embodies latent patters that are somewhat indicative of defection. 

In the face of hundreds or thousands of customer characteristics, and possible interactions 

among them, developing a formal theory how these attributes influence churn is impossible; 

simply because cognitive limitations prohibit decision makers from processing such large 

amounts of information (e.g., Lilien et al. 2004). A data-driven, predictive modeling approach 

is thus the only way to fully exploit the available data. In addition, this approach can account 

for nonlinear relationships, which is useful when modeling consumer behavior (West et al. 
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1997). Finally, it is possible to approximate perceptual churn drivers through behavioral data 

(Zorn et al. 2010).  

Data-driven campaign planning models use cross-sectional data to predict whether a 

customer will leave the firm. Likewise, the modeling goal can be to forecast whether a 

customer will stop using a service (i.e., while staying with the company and continuing to use 

other services). A multitude of prediction methods, also called scoring methods (e.g., 

Malthouse and Derenthal 2008; Verhoef et al. 2010), have been developed for this kind of 

classification task (e.g., Hastie et al. 2009). The prevailing approach in churn prediction is to 

use a single model. The logit choice model is often considered “the gold standard” in 

marketing and churn prediction in particular (Cui and Curry 2005). It is simple and easy to 

understand, often performs well (e.g., Neslin et al. 2006; Risselada et al. 2010), and is widely 

available in standard software packages such as SAS or IBM SPSS. In addition to the logit 

model, prior research has also examined various other (more advanced) models (see Verbeke 

et al. 2012 for a comprehensive overview). The main conclusion emerging from previous 

work is that ensemble methods predict churn most accurately (e.g., Lemmens and Croux 

2006). Ensembles are more robust prediction methods that combine the forecasts of multiple 

member models (Malthouse and Derenthal 2008). Much theoretical and empirical research 

has shown that forecast combination improves prediction quality (e.g., Batchelor and Dua 

1995; Gupta and Wilton 1987; Winkler and Makridakis 1983). In particular, model averaging 

reduces the two sources of forecast errors, bias and variance (e.g., Ha et al. 2005). 

The ensemble principle constitutes the basis of our DCES framework. However, whereas 

previous studies use general-purpose ensemble learners such as bagging or boosting to 

predict churn incidents more accurately (e.g., Lemmens and Croux 2006), we focus on the 

model’s ultimate task to support targeting decisions. In particular, given a set of candidate 

churn models, we pursue a combination strategy that concentrates on the selection of 

IESEG Working Paper Series 2013-MARK-06



8 

customers for a retention campaign and explicitly maximizes campaign profitability. To the 

best of our knowledge, the marketing literature does not contain any reference to such a 

decision-centric modeling approach. 

3 Performance Measurement 

The lift measure is a well-established performance indicator for targeting models (e.g., Ling 

and Li 1998). The lift grounds on a list of customers ordered according to their model-

estimated scores (from highest to lowest risk of attrition in churn prediction). We define the 

lift measure Ld for some decile d of the ordered customer list as: 





ˆ

ˆd
dL  , 

( 1 ) 

where  and  denote the fraction of actual churners among all customers and those 

ranked in the top-d decile, respectively. If customers were solicited at random, the fraction of 

actual churners reached with a retention campaign would equal . The lift measure 

quantifies how much a model improves over a random targeting. 

Although lift can be defined for any decile d of the ranked customer list, a sensible choice is 

to set d such that it reflects the available marketing budget. If the budget allows contacting a 

fraction of d customers, it is intuitive to use an equal-sized fraction of customers to assess the 

targeting model. In this sense, the lift measure, with suitable choice of d, embodies a budget 

constraint. Moreover, to achieve maximal lift, a churn model must maximize the number of 

actual churners in the top-d decile. These are exactly the customers one would include in the 

retention campaign. Consequently, the lift measure rewards an efficient resource allocation. 

The higher the lift the more of the marketing budget is used on actual churners. Neslin et al. 

(2006) further extend the business-oriented notion of the lift measure and show that it is 

directly connected to the profitability of a customer retention campaign. As such, the lift 

captures the notion of model performance that is most relevant in churn prediction and 

̂ d̂

̂
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reflects campaign planners’ marketing objectives. This is why we characterize lift as a 

decision-centric performance measure.  

4 Decision-Centric Ensemble Selection 

4.1 Motivation and Overview 

The prevailing approach to develop a churn model is to use some general-purpose prediction 

method. Such methods build a model by minimizing some statistical loss function over 

training data. For example, the logit choice model minimizes the negative log-likelihood, 

whereas decision tree–based methods use information-theoretic criteria. The analyst can 

select the prediction method but has no choice in the loss function. Consequently, there is 

some mismatch between the analyst’s objective and the objective function within the 

prediction method. To achieve more consistency with how analysts assess performance, our 

DCES framework accounts for business objectives during model building. 

DCES grounds on a generic modeling paradigm called ensemble selection (e.g., Partalas et al. 

2010). Ensemble selection consists of three stages: (1) constructing a library of candidate 

models (model library), (2) selecting an “appropriate” subset of models for the ensemble 

(candidate selection), and (3) combining the predictions of the chosen models to produce the 

final (ensemble) forecast (forecast combination). Several alternative approaches follow these 

guidelines and differ mainly in how to organize candidate selection in stage two (e.g., 

Kuncheva 2004). The directed hill-climbing strategy (Caruana et al. 2004) is particularly well 

suited for our purpose because it can accommodate arbitrary accuracy indicators. The 

following subsection detail the stages of this approach, and our specific design decisions to 

develop a churn modeling framework that is driven by actual business objectives. 
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4.2 Model Library 

In the first modeling stage, we construct a large library of candidate churn models. The 

success of any ensemble strategy depends on the diversity of ensemble members (e.g., 

Kuncheva 2004). Our approach to control the error-correlation among candidate models’ 

prediction is twofold. First, we employ different prediction methods, including (1) the 

established logit model; (2) other well-known, easy-to-use algorithms, such as discriminant 

analysis or tree-based procedures; (3) advanced single classifiers, such as artificial neural 

networks or support vector machines; and (4) powerful off-the-shelf ensembles, such as 

bagging or boosting (e.g., Lemmens and Croux 2006). Second, we vary the metaparameter 

settings of individual learners. Metaparameters, such as the number of hidden nodes in a 

neural network (e.g., West et al. 1997), allow the analyst to adapt a prediction method to a 

particular modeling task (Hastie et al. 2009). This suggests that a single method will produce 

somewhat different (i.e., diverse) models if it is invoked with different settings for 

algorithmic parameters. 

Table 1 summarizes the classification methods and metaparameter settings in our model 

library. Our particular selection of prediction methods and metaparameter settings is based on 

previous churn modeling studies (e.g., Verbeke et al. 2012) and literature recommendation 

(e.g., Caruana et al. 2004; Partalas et al. 2010), respectively. Note that some prediction 

methods exhibit multiple metaparameters. In this case, we define a set of candidate values for 

every metaparameter and create churn model for all possible value combinations. A 

comprehensive discussion of all techniques and their algorithmic details is available in Hastie 

et al. (2009). 
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TABLE 1: CLASSIFICATION METHODS AND METAPARAMETER SETTINGS EMPLOYED IN THIS STUDY 

Classification Method Metaparameter
a 

Candidate Settings
b
 

Single Classifiers 

Classification and Regression Tree (CART) 

Recursively partitions a training data set by inducing binary splitting rules so as to 

minimize the impurity of child nodes in terms of the Gini coefficient. Terminal nodes are 

assigned a posterior class-membership probability according to the distribution of the 

classes of the training instances contained in this node. To classify novel instances, the 

splitting rules learned during model building are employed to determine an appropriate 

terminal node. 

Overall number of models: 6 

Min. size of nonterminal nodes 10, 100, 1000 

Pruning of fully grown tree Yes, No 

Artificial Neural Network (ANN) 

Three-layered architecture of information processing-units referred to as neurons. Each 

neuron receives an input in form of a weighted some over the outputs of the preceding 

layer’s neurons. This input is transformed by means of a logistic function to compute the 

neuron’s output, which is passed to the next layer. The neurons of the first layer are simply 

the covariates of a classification task. The output layer consists of a single neuron, whose 

output can be interpreted as a class-membership probability. Building a neural network 

models involves determining connection weights by minimizing a regularized loss-

function over training data.  

Overall number of models: 162 

No. of neurons in hidden layer 

 

1, 2, …, 20 

 

Regularization factor (weight decay) 10
[-4, -3.5, …, 0]

 

k-Nearest-Neighbor (kNN) 

Decision objects are assigned a class-membership probability according to the class 

distribution prevailing among its k nearest (in terms of Euclidian distance) neighbors.  

Overall number of models: 18 

Number of nearest neighbors 10, 100, 150, 200, …, 500, 1000, 

1500, …4000 

Linear Discriminant Analysis (LDA) 

Approximates class-specific probabilities by means of multivariate normal distributions 

assuming identical covariance matrices. This assumption yields a linear classification 

model, whose parameters are estimated by means of maximum likelihood procedures from 

training data. 

Overall number of models: 20 

Covariates considered in the model Full model, stepwise variable selection 

with p-values in the range 0.05, 0.1,…, 

0.95 

Logistic Regression (LogR) 

Approximates class membership probabilities (i.e., a posteriori probabilities) by means of 

a logistic function, whose parameters are estimated from training data by maximum 

likelihood procedures. 

Overall number of models: 20 

Covariates considered in the model Full model, stepwise variable selection 

with p-values in the range 0.05, 0.1,…, 

0.95 
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Naive Bayes (NB) 

Approximates class-specific probabilities under the assumption that all covariates are 

statistically independent. 

Overall number of models: 9 

Histogram bin size  2, 3, …, 10 

Quadratic Discriminant Analysis (QDA) 

Differs from LDA only in terms of the assumption about the structure of the covariance 

matrix. Relaxing the assumption of identical covariance leads to a quadratic discriminant 

function. 

Overall number of models: 20 

Covariates considered in the model Full model, stepwise variable selection 

with p-values in the range 0.05, 0.1,…, 

0.95 

Regularized Logistic Regression (RLR) 

Differs from ordinary LogR in the objective function optimized during model building. A 

complexity penalty given by the L1-norm of model parameters (Lasso-penalty) is 

introduced to obtain a “simpler” model.  

Overall number of models: 29 

Regularization factor  

 

2
[-14, -13, …, 14] 

 

Support Vector Machine with linear kernel (SVM-Lin) 

Constructs a linear boundary between training instances of adjacent classes so as to 

maximize the distance between the closest examples of opposite classes and achieve a pure 

separation of the two groups.  

Overall number of models: 29 

Regularization factor  

 

2
[-14, -13, …, 14] 

 

Support Vector Machine with Radial Basis Function Kernel (SVM-Rbf) 

Extends SVM-lin by implicitly projecting training instances to a higher dimensional space 

by means of a kernel function. The linear decision boundary is constructed in this 

transformed space, which results in a nonlinear classification model.  

Overall number of models: 300 

Regularization factor 2
[-12, -11, …, 12] 

Width of Rbf kernel function 2
[-12, -11, …, -1]

 

Homogeneous Ensemble Learners 

AdaBoost (AdaB) 

Constructs an ensemble of decision trees in an incremental manner. The new members to 

be appended to the collection are built in a way to avoid the classification errors of the 

current ensemble. The ensemble prediction is computed as a weighted sum over the 

member classifiers’ predictions, whereby member weights follow directly from the 

iterative ensemble building mechanism. 

Overall number of models: 11 

No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 500, 1000, 

1500, 2000 

Bagged Decision Trees (BagDT) 

Constructs multiple CART trees on bootstrap samples of the original training data. The 

predictions of individual members are aggregated by means of average aggregation. 

Overall number of models: 11 

 

 

No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 500, 1000, 

1500, 2000 
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Bagged Neural Networks (BagNN) 

Equivalent to BagDT but using ANN instead of CART to construct member classifiers. 

The ensemble prediction is computed as a simple average over member predictions.  

Overall number of models: 5 

No. of member classifiers 5, 10, 25, 50, 100 

Random Forest (RF) 

The ensemble consists of fully grown CART classifiers derived from bootstrap samples of 

the training data. In contrast with standard CART classifiers that determine splitting rules 

over all covariates, a subset of covariates is randomly drawn whenever a node is branched 

and the optimal split is determined only for these preselected variables. The additional 

randomization increases diversity among member classifiers. The ensemble prediction 

follows from average aggregation. 

Overall number of models: 35 

No. of member classifiers 100, 250, 500, 750, 1000, 1500, 2000 

No. of covariates randomly selected 

for node splitting 
M4] 2, 1, 0.5, ,1.0[

 c
 

LogitBoost (LoB) 

Modification of the AdaB algorithm which considers a logistic loss function during the 

incremental member construction. We employ tree-based models as member classifiers. 

Overall number of models: 11 

No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 500, 1000, 

1500, 2000 

Stochastic Gradient Boosting (SGB) 

Modification of the AdaB algorithm, which incorporates bootstrap sampling and organizes 

the incremental ensemble construction in a way to optimize the gradient of some 

differential loss function with respect to the present ensemble composition. We employ 

tree-based models as member classifiers. 

Overall number of models: 11 

No. of member classifiers 10, 20, 30, 40, 50, 100, 250, 500, 1000, 

1500, 2000 

a  Table 1 depicts only metaparameters that have been varied to increase the number of candidate models. A classification method may offer additional parameters that have not been considered in this study. Hastie, 

Tibshirani, and Friedman (2009) provide a fully comprehensive description of all methods and their parameters. 
b We consider all possible combination of metaparameter when a method exhibits more than one parameter. 
c M represents the number of covariates. 
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4.3 Candidate Selection 

In accordance with Caruana et al. (2004), candidate selection begins with finding the best 

performing individual churn model in the candidate library, and appending this model to an 

empty ensemble. To improve performance, we then assess all pairwise combinations of the 

chosen model and one other model from the library. This way, we obtain a collection of 

possible two member ensembles. We select the best-performing size-two ensemble if it 

outperforms the best individual model. Next, we examine the best-performing ensemble of 

size three. That is, we assess all combinations of the current size-two ensemble and one other 

candidate model from the library. The stepwise ensemble growing procedure stops as soon as 

appending additional members does not improve performance. A special characteristic of the 

selection strategy is that it allows a single model to enter the ensemble multiple times 

(Caruana et al. 2004). We illustrate this feature in the following example and discuss its 

implications in section 4.4. 

Table 2 exemplifies candidate selection. Suppose we have five customer records, a zero-one 

response variable y (churn = no/yes), and a library of four candidate models (M1–M4). Each 

model estimates a churn probability for every customer, and we assess these predictions in 

terms of their mean squared error (MSE). 

M4 is the best individual model (lowest error), so we select it as first ensemble member in 

iteration 1. Next, we assess all possible size-two ensembles (including M4) in the second 

iteration. Note that we combine multiple models through averaging their predictions 

(indicated by an “&” in Table 2). Given that combining M4 and M1 improves performance 

(MSE .26, compared to .27 when using only M4), we append M1 to the ensemble and 

continue the selection process. However, the third iteration achieves no further error 

reduction, so that we stop ensemble growing. The final ensemble is then given by the 

combination of M1 and M4. 
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TABLE 2 ENSEMBLE SELECTION ON MSE WITH A FOUR-MODEL LIBRARY 

Iteration y M 1 M 2 M 3 M 4 

 1 .89 .33 .43 .45 

 0 .87 .84 .64 .55 

 0 .31 .37 .90 .69 

 1 .49 .83 .69 .70 

  0 .65 .85 .60 .38 

MSE   .31 .41 .40 .27 

  
M 1 & M 4 M 2 & M 4 M 3 & M 4 M 4 & M 4 

 1 .67 .39 .44 .45 

 0 .71 .69 .59 .55 

 0 .50 .53 .80 .69 

 1 .60 .76 .70 .70 

  0 .52 .62 .49 .38 

MSE   .26 .32 .33 .27 

  
M 1 & M 4 & M 1 M 2 & M 4 & M 1 M 3 & M 4 & M 1 M 4 & M 4 & M 1 

 1 .74 .55 .59 .59 

 0 .76 .75 .69 .66 

 0 .44 .46 .64 .57 

 1 .56 .67 .63 .63 

  0 .56 .63 .55 .47 

MSE   .27 .30 .30 .26 

 

The above example illustrates two technical issues that deserve a mention. First, averaging 

model predictions is feasible only if all models produce forecasts of a common scale. This is 

typically not the case when working with different prediction methods. Therefore, we convert 

all model predictions into churn probabilities. Specifically, we project model outputs to the 

interval [0, 1] by means of a logistic link function (Platt 2000). Second, assessing alternative 

model combinations requires auxiliary validation data. That is, we need one set of data to 

build the candidate models M1–M4, and a second set of (validation) data to measure the 

performance of individual and combined models, respectively. We construct these two 

samples by means of cross-validation because previous studies find it superior to alternative 

approaches (Partalas et al. 2010). 

The candidate selection strategy of Caruana et al. (2004) is generic and not restricted to any 

specific loss function or performance measure, respectively. For convenience, we used MSE 
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in the above example. However, we can gear ensemble construction toward any objective 

functions that depends on the estimated churn probabilities. The lift index fulfills this 

requirement and is directly connected to the profitability of retention campaigns (Neslin et al. 

2006). By maximizing lift during candidate selection, we can thus devise ensembles that 

explicitly pursue actual business objectives during model building. 

4.4 Forecast Combination 

A combination of multiple prediction models occurs during candidate selection and also 

when the final ensemble is employed to generate churn scores for novel customers. We pool 

models by averaging over their predictions, which is the standard approach in ensemble 

learning and forecast combination, respectively (e.g., Armstrong 2001; Kuncheva 2004). 

However, it is noteworthy that we effectively compute a weighted average. This is because 

the candidate selection procedure allows models to enter the ensemble multiple times 

(Caruana et al. 2004). For example, the best-performing size-three ensemble in Table 2 

(M4 & M4 & M1) is equivalent to a weighted average of the form .67 × M4 + .33 × M1. In 

Table 2, multiple inclusions of M4 (i.e., model weighting) do not reduce MSE compared to 

the simpler (equally weighted) ensemble M4 & M1. However, the opportunity to weight 

candidate predictions whenever the data suggest that some members deserve a greater 

influence on the forecast adds to the flexibility of ensemble selection and may increase 

performance under certain circumstances. 

5 Data 

We examine our research questions in an empirical study related to telecommunications 

churn. Customer attrition has been well addressed in the telecommunications industry (e.g., 

Kim 2010). This suggests that providers have developed sophisticated predictors of the churn 

event (i.e., the covariates used to build a churn model), which work well with standard 
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modeling techniques. Therefore, outperforming conventional models on real-world 

telecommunications data is particularly challenging. 

A churn event involves a customer cancelling or not renewing a subscription in a predefined 

time window. To compile a churn modeling data set, the carrier monitors customers’ calling 

patterns and other traits of behavior over some observation period (three to six month for our 

data sets) and determines which customers have actually abandoned their business 

relationship in a follow-up period (the following month for our data sets).  

Eight real-life datasets are used to validate our DCES framework. Our first data set, 

Operator, contains the records of 47,761 customers of a U.S. domestic carrier (Mozer et al. 

2000). Four other data sets, Duke 1–4, also include U.S. customers and were obtained from 

the Center for Customer Relationship Management at Duke University 

(http://www.fuqua.duke.edu/centers/ccrm/datasets/download.html). The size of these data 

sets ranges from 12,410 (Duke 3) to 93,893 (Duke 2) observations. Duke 2 has been used in 

the Duke/NCR Teradata Churn Modeling Tournament (Neslin et al. 2006) and later churn 

prediction studies (e.g., Lemmens and Croux 2006; Verbeke et al. 2012). Two other data sets, 

EuroOp and KDD09, containing 21,143 and 50,000 customers, respectively, refer to the 

European telecommunications market. De Bock and Van den Poel (2011) obtained the 

EuroOp data set from a domestic carrier, and France Telecom–Orange donated the KDD09 

data set for the KDD Cup 2009 (see http://www.kddcup-orange.com/). Finally, our study 

incorporates UCI, a publicly available data set (see www.sgi.com/tech/mlc/db) that contains 

5000 observations.  

The number of covariates to model the binary response variable churn = yes/no varies from 

20 (UCI) to 359 (EuroOp), and each data set contains continuous and categorical predictors. 

Most of the variables in all the data sets are associated with call detail records (e.g., number 

of calls, call duration), customer demographics (e.g., postal code, age group), contract 
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characteristics (e.g., presence of an international calling plan, subscription to additional 

services), relational information (e.g., length of overall relationship, response to mail offer), 

or billing data (e.g., monthly fee, total amount spent). KDD09 is the only exception; this data 

set has been made anonymous for the KDD Cup, so that no variable information is available.  

To prepare our data sets, we perform several standard preprocessing operations. These 

include removing variables that linearly depend on other variables or have zero variance, 

impute missing values in continuous (categorical) variables with the mean (mode) of this 

variable, and standardizing the values of continuous variables. We then create two versions of 

each data set, one for prediction methods that can process categorical data (e.g., tree-based 

methods) and one for methods such as neural networks that require an addition category 

encoding (e.g., Crone et al. 2006). In the latter case, we transform each categorical variable 

into a set of indicator variables to represent every possible category with one binary variable. 

To avoid an excessive growth of the number of variables, we reduce the number of categories 

to maximal five per variable before encoding using agglomerative clustering (Verbeke et al. 

2012). Finally, we randomly partition all data sets into an in-sample training set (60%) and a 

holdout test set (40%). This is a standard approach in predictive modeling and avoids finding 

idiosyncratic characteristics of the training data set that do not hold up in real life (e.g., 

Shmueli and Koppius 2011). We use the training and testing partition to build and evaluate 

prediction models, respectively.  

6 Results 

This section addresses our four research questions. First, we compare DCES to previous 

churn modeling approaches. We then examine whether our lift-based modeling philosophy 

explains performance differences between DCES and conventional churn models.  
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In all experiments, we use the top-decile-lift, L.1 as performance measure. Concentrating on 

the top-decile of customers is consistent with industry practices where retention campaigns 

target only a small fraction of customers. Top-decile lift is also a frequent choice in previous 

churn modeling studies (e.g., Lemmens and Croux 2006; Risselada et al. 2010).  

6.1 RQ1: Does DCES Outperform the Popular Logit Choice Model?  

The prevailing approach in churn prediction is the logit choice model. We compare DCES to 

this benchmark in Table 3 and find that DCES produces higher lift scores on all eight churn 

data sets (Table 3). On the basis of a Wilcoxon signed-rank test, the recommended approach 

for comparing two classifiers over multiple data sets (Demšar 2006), we conclude that DCES 

performs significantly better than the logit choice model (S = 0, p = .008). We then compute 

the median of the pairwise differences of the two models lift scores. This measure is a robust 

estimate of the expected performance difference between DCES and the logit choice model 

when working with other data sets (García et al. 2010). Our results suggest that this 

difference amounts to .185 units in lift.  

TABLE 3: PERFORMANCE OF DCES VERSUS THE LOGIT CHOICE MODEL IN TERMS OF L.1 

Data Set DCES LogR Percent Improvement 

Duke 1 1.471 1.330 11% 

Duke 2 1.612 1.419 14% 

Duke 3 2.444 2.159 13% 

Duke 4 1.838 1.500 23% 

EuroOp 2.622 2.446 7% 

KDD09 1.885 1.837 3% 

Operator 3.770 3.673 3% 

UCI 6.821 3.500 95% 

Median difference DCES vs. LogR .185  

 

The superior performance of DCES may not come as a surprise. It is an advanced modeling 

paradigm and can capitalize on a large library of candidate models when forming the 

ensemble. The logit choice model is still an important benchmark because of its popularity in 
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marketing (e.g., Cui and Curry 2005). Moreover, the results of Table 3 do not originate from 

a simple logit model. For every data set, we build 20 alternative logit models with different 

covariates (Table 1) and then select the best of these models (on the validation sample) for 

the final comparison with DCES (on the test set). A significant improvement of over this 

tuned logit model is a notable achievement.  

6.2 RQ2: How Does DCES Perform in Comparison to Advanced Single Classifiers? 

A variety of single classifiers have been considered for churn prediction (e.g., Verbeke et al. 

2012). Many of these are more advanced than the logit choice model and thus represent a 

more challenging benchmark. We compare DCES to nine such methods in Table 4.  

TABLE 4: PERFORMANCE OF DCES VERSUS SINGLE CLASSIFIERS IN TERMS OF L.1 

Data Set DCES RLR ANN 
SVM-

Lin 

SVM-

Rbf 
NB kNN QDA LDA CART 

Duke 1 1.471 1.325 1.248 1.317 1.337 1.219 1.276 1.294 1.331 1.120 

Duke 2 1.612 1.425 1.505 1.422 1.477 1.042 1.371 1.332 1.424 1.116 

Duke 3 2.444 2.221 2.402 2.107 2.345 1.388 2.138 1.905 2.133 1.942 

Duke 4 1.838 1.500 1.576 1.523 1.452 1.294 1.446 1.394 1.493 1.513 

EuroOp 2.622 2.289 2.133 2.456 2.055 1.624 1.908 2.201 2.387 1.272 

KDD09 1.885 1.823 1.748 1.851 1.213 0.932 1.542 1.707 1.775 1.200 

Operator 3.770 1.363 3.520 1.628 3.088 1.085 3.450 3.269 3.673 2.379 

UCI 6.821 3.143 5.893 2.786 5.857 1.000 4.321 3.643 3.179 4.429 

Avg. rank 1.000 5.125 3.750 5.250 4.875 9.750 6.375 6.750 4.500 7.625 

zj 

 

2.725 1.817 2.807 2.560 5.780 3.551 3.798 2.312 4.376 

pj adj. 

 

.0125 .050 0.01 .017 .006 .008 .007 .025 .006 

Contrast DCES vs. 

classifier j 
.3278 .2270 .3177 .3331 .9028 .3786 .4047 .2835 .6127 

 

According to Table 4, DCES produces the highest lift scores of all models on all data sets. To 

confirm the significance of this result, we test the null-hypothesis of equal performance using 

the Friedman test. This test is based on classifiers’ average performance ranks and best-suited 

to compare multiple models over multiple data sets (Demšar 2006). For the results of Table 4, 

we reject the null hypothesis with high significance (Friedman’s χ
2 

= 43.47, d.f. = 9, p< .001). 

Multiple comparison procedures provide further insight into performance differences and 
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enable us to identify the models that are significantly inferior to DCES. To that end, we 

compute the following test statistic for all k – 1 pairwise comparisons of DCES with one 

other churn model (García et al. 2010): 

   
n

kk
RRz jESj

6

1
 , 

( 2 ) 

where RES and Rj represent the average rank of DCES and benchmark j, respectively, and n is 

the number of data sets. We can translate the zj into a probability (pj) using the standard 

normal distribution table. The resulting p-values require further adjustment to control the 

familywise error level and ensure an overall significance level of = .05. We use the 

Hommel procedure for this purpose because it is one of the most powerful approaches 

available (García et al. 2010). Table 4 shows the zj and the adjusted p-values (pj adj.) 

corresponding to all pairwise comparisons. The results indicate that DCES performs 

significantly better than all single classifiers. 

An important managerial issue is the magnitude of performance improvements. The last row 

of Table 4 reports the performance contrasts between DCES and its competitors, which we 

compute on the basis of median performance differences with the approach of García et al. 

(2010). The contrasts estimate the expected performance difference between two models (i.e., 

when using other data sets than employed in the study). The strongest competitor consists of 

a neural network model (average rank of 3.750). Compared to the ANN benchmark, DCES 

improves L.1 by .227 units on average. Recall that our experimental setup comprises extensive 

tuning of single classifiers. For example, we determine the best network architecture for each 

data set out of 162 alternatives (Table 1). The superiority of DCES to this method may well 

be above .227 units when working with less tuned neural networks. For other benchmarks, 

the expected advantage of DCES ranges from approximately one-quarter to a full unit in L.1.  

6.3 RQ3: Can DCES Beat Standard Ensemble Learners? 
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Previous studies suggest that standard ensemble algorithms represent the most challenging 

benchmark in churn modeling (e.g., Lemmens and Croux 2006; Risselada et al. 2010). We 

compare DCES with six state-of-the-art ensembles, including stochastic gradient boosting, 

which was the best-performing method in the Duke/NCR Teradata Churn Modeling 

Tournament (Neslin et al. 2006).  

TABLE 5: PERFORMANCE OF DCES VERSUS STANDARD ENSEMBLES IN TERMS OF L.1 

Data Set DCES BagDT BagNN RF AdaB SGB LoB 

Duke 1 1.471 1.457 1.382 1.466 1.406 1.435 1.415 

Duke 2 1.612 1.590 1.495 1.601 1.565 1.554 1.560 

Duke 3 2.444 2.392 2.423 2.387 2.330 2.247 2.278 

Duke 4 1.838 1.811 1.651 1.800 1.671 1.760 1.728 

EuroOp 2.622 2.407 2.368 2.358 2.417 2.642 2.661 

KDD09 1.885 1.542 1.775 1.707 1.864 1.878 1.899 

Operator 3.770 3.172 3.812 3.575 3.895 3.631 3.700 

UCI 6.821 6.750 5.964 6.786 4.214 4.214 4.571 

Avg. rank 1.625 4.125 5.000 4.000 4.563 4.688 4.000 

zj 

 
2.315 3.125 2.199 2.720 2.836 2.199 

pj  adj.  .017 .008 .025 .013 .010 .050 

Contrast DCES  vs. 

ensemble j 
.0506 .1131 .0451 .0871 .0761 .0710 

 

Table 5 illustrates that, although not winning on all data sets, DCES still achieves a much 

lower (better) average rank than RF and LogitBoost (LoB), the two runners-up in the 

comparison (1.625 vs. 4.000). Using the Friedman test, we reject the null hypothesis of equal 

performance (Friedman’s χ
2
 = 12.76, d.f. = 6, p = .0470). Furthermore, Hommel’s procedure 

rejects all pairwise hypotheses of equal performance between DCES and one other standard 

ensemble at = .05 for the adjusted p-values in Table 5. Given that the ensemble 

benchmarks have shown excellent performance in previous research (e.g., Ha et al. 2005; 

Lemmens and Croux 2006; Verbeke et al. 2012), outperforming all of them with a significant 

margin provides strong evidence for the effectiveness of DCES. However, we note that the 

advantage in terms of expected gains in lift (last row of Table 5) is smaller than in previous 

comparisons. In this sense, Table 5 confirms the competitiveness of standard ensemble 
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methods. Algorithms of the boosting family perform particularly well. For example, 

Adaboost achieves the highest lift on the Operator data set, while logistic boosting performs 

best in the case of KDD09 and EuroOp. DCES excels on all other data sets.  

6.4 Does Our Lift-Based Modeling Philosophy Explain the Performance of DCES? 

Previous comparisons reveal that DCES performs significantly better than many previous 

churn models. It is important to understand which factors govern its success. In particular, we 

strive to confirm that the appealing performance in terms of lift is a direct consequence of our 

choice to incorporate this measure into the model building process.  

The main characteristics that distinguish DCES from previous churn models are threefold: (1) 

the availability of a large library of candidate models, (2) the practice to average multiple 

models’ predictions, and (3) the lift-maximizing ensemble selection strategy. In the 

following, we explore the individual importance of these factors. This is to apportion DCES 

performance to its characteristic components and to obtain a clear view on their relative 

merits. 

6.4.1 Library Size 

We begin with a sensitivity analysis of the library size. The question asked here is whether 

DCES requires a large model library and to which extent smaller libraries are still effective. 

In particular, we randomly delete 2% of the candidate models from the library, create an 

ensemble using particular selection strategy, and assess its performance in terms of L.1. We 

repeat this procedure 50 times, each time reducing the size of the library by two percent. 

Figure 1 depicts the corresponding development of DCES performance. It also shows the lift-

scores of the logit model (LogR), ANN, and LoB ensemble for comparative purpose. We 

include LogR because of its popularity in churn prediction. The other two benchmarks 

represent the best single and ensemble classifier from previous comparisons, respectively.  
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Figure 1: Development of DCES Performance When Repetitively Removing 2% (of the 

Original Library Size) Randomly Selected Candidate Models for 50 Iterations. 

Figure 1 reveals that DCES is robust toward a random elimination of candidate models. Even 

small libraries of approximately 50 models suffice to perform well. In particular, Figure 1 

shows that DCES is consistently better than LogR and ANN, regardless of the size of the 

model library. Figure 1 also shows that reducing library size never decreases the performance 
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of DCES below the LoB level, in settings where DCES outperformed LoB when using the 

full library. The two data sets where LoB was originally superior show mixed results. 

Whereas LoB achieves higher lift than DCES in almost all sensitivity analysis iterations on 

EuroOp, DCES actually achieves higher lift most of time on KDD09. In view of these results, 

we conclude that the success of DCES does not depend on the size of the model library. 

6.4.2 Forecast Averaging 

A second characteristic of the DCES framework is that it produces a composite forecast by 

combining member model predictions. To what extent does forecast averaging explain the 

success of DCES? If the main driver of its performance is indeed our lift-maximizing 

candidate selection strategy, we would expect approaches that average the predictions of the 

full library (i.e., without candidate selection) to perform as well as DCES. To confirm this, 

we compare DCES to four popular forecast combination approaches (e.g., Armstrong 2001): 

(1) a simple average (SAvg) over all candidate models’ forecasts; (2) a weighted average 

(WAvg), in which a model’s accuracy determines its influence on the composite forecast; (3) 

a trimmed average (TAvg) that is similar to the SAvg, except that we discard, for every 

customer, the n% most extreme churn predictions (highest and smallest) before computing 

the average churn score; and (4) a weighted average resulting from regressing the binary 

churn indicator variable on the library models’ predictions (RAvg).
1
 We calculate the weight 

of library model j, wj, in WAvg as: 



i

ij
j LLw 1.1.

 ( 3 ) 

                                                 
1
 In particular, we conduct a regularized logistic regression (e.g., Hastie et al. 2009). Compared to ordinary 

logistic regression, the regularized approach is more robust toward multicollinearity. This is important when 

using regression for forecast combination because the covariates are the predictions of the library models. These 

are inevitably correlated since they forecast the same phenomenon. 
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where 
j

L 1.  denotes the top-decile lift of model j, which we compute on the validation sample. 

Similarly, TAvg and RAvg employ the validation sample to select the trimming fraction n 

from the interval [.5, .1, …, .95] and build the regression model, respectively.  

TABLE 6: PERFORMANCE OF DCES VERSUS AVERAGE-BASED FORECAST COMBINATION IN 

TERMS OF L.1 

Data Set DCES SAvg WAvg TAvg RAvg 

Duke 1 1.471 1.382 1.382 0.941 1.326 

Duke 2 1.612 1.566 1.568 1.068 1.424 

Duke 3 2.444 2.361 2.366 1.134 2.195 

Duke 4 1.838 1.715 1.718 1.077 1.498 

EuroOp 2.622 2.553 2.553 0.969 0.929 

KDD09 1.885 1.871 1.878 1.254 1.158 

Operator 3.770 3.965 3.979 0.543 1.113 

UCI 6.821 6.143 6.357 1.464 0.179 

Avg. rank 1.250 2.750 2.000 4.625 4.375 

zj 

 
1.897 1.897 4.269 3.953 

pj  adj.  .025 .050 .013 .017 

Contrast ES vs. Avg j .0802 .0763 .9987 .5633 

 

Average-based combination mechanisms can capitalize on the predictions in the model 

library and have been shown to be highly successful in previous studies (e.g., Batchelor and 

Dua 1995; Gupta and Wilton 1987). However, with the exception of the Operator data set, 

they perform not as good as DCES (Table 6). Using the same statistical tests as above, we 

conclude that DCES performs significantly better than all average-based competitors but 

WAvg (Friedman’s χ
2
 = 27.7, d.f. = 4, p < .001).

2
 On the basis of the estimated contrasts (last 

line in Table 6), we expect that DCES improves lift by .08 to .99 points on average. This 

suggests that forecast averaging alone cannot be the reason why DCES performs well. 

Moreover, comparing Table 5 and Table 6, we find that the average-based combination 

schemes do not improve on the standard ensemble learners already well-established in churn 

prediction. This is noteworthy because DCES operates similar to WAvg and RAvg in that it 

                                                 
2
 According to Hommel’s approach, an adjusted p-value of .05, which we show for the comparison of DCES 

with WAvg in Table 6, is not sufficient to reject the null hypothesis of equal performance at = .05. 
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also forms a weighted average over library model predictors. However, WAvg and RAvg 

retain non-zero weights for all predictions and only shrink the influence of less accurate 

models on the combination. DCES operates differently and identifies a subset of models 

before computing the final forecast. 

6.4.3 Lift-Maximizing Candidate Selection  

Having ruled out the influence of library size and model averaging, we conclude that the 

success of DCES comes largely from our lift-maximizing candidate selection strategy. It is 

somewhat intuitive that a churn model built to maximize lift achieves higher lift than a model 

built to maximize some other indicator such as likelihood. However, to support empirical 

evidence, we must seek a formal explanation for the efficacy of DCES and our candidate 

selection strategy in particular.  

Theory suggests that the prosperity of any ensemble is related to the strength and the 

diversity of its members (e.g., Ha et al. 2005; Kuncheva 2004). These goals conflict because 

perfect models that discriminate between switchers and stayers with maximal accuracy must 

be perfectly correlated and thus lack diversity. DCES outperforms standard ensembles and 

this is mainly extent due to its particular strategy for candidate selection. This suggests that 

maximizing lift when building the ensemble model achieves in a better balance between 

strength and diversity than the corresponding mechanisms in standard ensembles.  

To explore how DCES and competing ensemble strategies differ in terms of their emphasis 

on strength and diversity, we perform a kappa-lift analysis. Cohen’s  measures the degree to 

which two models agree in their classifications. Values of one and zero indicate that two 

classifiers agree on every sample, and that the agreement of two classifiers equals what 

would be expected by chance, respectively (Margineantu and Dietterich 1997). The statistic 

is based on discrete predictions, whereas our churn models provide continuous churn 
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probabilities. Therefore, to employ  in a churn context, we convert churn probabilities into 

crisp classifications of the form churn = yes/no. In particular, we assign all customers whose 

estimated probability belongs to the top-decile of the ordered customer list to the group of 

churners, and all other customers to the group of nonchurners. This way, the agreement 

between two models captured by refers to the number of customers they both place in the 

top-decile of most-likely churners and recommend for targeting, respectively. Given an 

ensemble of n members, we compute for all (n × [n – 1])/2 possible pairs of members. 

Similarly, we compute the mean lift score for all possible pairs of ensemble members. This 

allows us to depict the relationship between strength and diversity in a scatterplot (Figure 2). 

To put the composition of DCES ensembles into context, Figure 2 also incorporates the 

pairwise and L.1 statistics for members of the LoB ensemble. Previous analysis suggests that 

LoB is the strongest competitor among the standard ensembles. It should thus have achieved 

a “reasonably good” balance between strength and diversity.
3
  

                                                 
3
 We performed the analysis for all other standard ensembles and observed similar results. Consequently, our 

conclusions are independent from the choice of LoB as reference ensemble. 
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Figure 2: Kappa-Lift Analysis of the Strengh and Diversity of DCES and LoB Ensemble 

Member. 

Note that the number of points in the scatterplot (pairs of ensemble members) is directly 

related to the size of an ensemble. Therefore, Figure 2 reveals that DCES leads to 
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parsimonious ensembles, which normally embrace substantially fewer members than the best 

LoB ensembles.
4
 This is appealing because smaller ensembles consume less memory and 

predict at higher speeds, both of which are important quality criteria for any ensemble 

strategy (e.g., Margineantu and Dietterich 1997). However, the main result of Figure 2 is that 

the pairwise lift scores of ensemble members are usually higher when using DCES. This 

tendency persists for all data sets but KDD09. With respect to diversity, identifying a clear 

pattern is more complicated. Although the Duke 1 and Duke 3 data sets indicate that there 

may be a trend of ensemble members being less diverse (larger ) when pursuing a decision-

centric modeling strategy, we observe no such evidence in the other data sets. This suggests 

that differences in diversity between DCES and LoB are not systematic. In summary, Figure 

2 provides evidence that DCES emphasizes strength over diversity. Compared with LoB, it 

leads to relatively small ensembles of strong individual members.  

This kappa-lift analysis supports our proposition that the success of DCES is mainly due to 

maximizing lift during member selection. By choosing candidate models with high lift, the 

final ensemble includes only members that perform well (are strong) in terms of this metric. 

Figure 2 indicates that high lift can often be achieved without sacrificing diversity. Compared 

to LoB, ensemble members are not generally less diverse when using DCES. The reason 

DCES achieves a better balance between strength and diversity in our churn context is 

precisely that it is able to concentrate on the “right” measure of strength. Standard ensembles 

strategies also balance strength and diversity. However, their notion of strength is different, 

internally fixed by the underlying learning algorithm and agnostic of application 

characteristics. By illustrating the ensembles resulting from LoB in kappa-lift space, Figure 2 

shows that they exhibit comparable degrees of diversity but at lower levels of strength. This 

does not mean that DCES is a better modeling approach in general. It is, however, a more 

                                                 
4
 Recall that the size of LoB ensembles ranges between 10 and 2000 (Table 1) and is tuned for every data set.  
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flexible approach and facilitates governing member selection toward arbitrary performance 

measures. This feature is particularly valuable in applications with some discrepancy between 

accuracy indicators that are typically incorporated in standard learners (e.g., classification 

error, entropy or likelihood) and performance measures that matter from a business 

perspective. Churn prediction is such an application and aims at models with high lift. DCES 

takes this objective into account, and this is why it outperforms alternative approaches. 

7 Discussion  

We set out to develop a framework for decision-centric churn modeling and to test its 

effectiveness in a large-scale empirical study. We compare our approach to several previous 

modeling approaches, including the popular logit model, sophisticated single classifiers, and 

powerful standard ensemble learners. These models are well established in academia and 

corporate practice. However, we find that DCES performs significantly better than any of 

these benchmarks.  

Our results also enable us to identify the factors that explain why DCES performs well. 

Although it can benefit from large model libraries in our study, a sensitivity analysis reveals 

that the number of candidate models is not a key success factor. Thus, combining a few churn 

models is enough, if these are carefully chosen. The unique advantage of DCES stems from 

the opportunity to organize this choice process in a way that reflects actual business 

objectives. Building the ensemble model so as to maximize lift, DCES concentrates on the 

performance criterion that matters from a business standpoint. We find that this facilitates to 

balance strength and diversity, the key determinants of ensemble success, more appropriately 

than alternative ensemble regimes.  

It may seem intuitive that a model optimized toward lift produces higher lift than a model 

optimized toward some other criteria. So why has this approach not been taken in previous 
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work? A possible explanation is that maximizing a discontinuous function such as lift during 

model fitting is highly challenging from a mathematical point of view. However, a more 

important reason is that model fitting is an induction problem. Even if we can overcome 

mathematical obstacles, approaching a statistical problem exclusively from a business angle 

may not be the right approach after all. A conceptual advantage of our DCES framework is 

that it unifies these two worlds. It leverages established statistical methods for building the 

candidate library and then shifts attention to the business perspective when finding the subset 

of models most suitable for solving the decision problem. 

7.1 Implications 

Our results have several implications for the science and practice of churn management. First, 

the finding that the new ES approach significantly outperforms what is considered the state-

of-the-art emphasizes that exploring novel ways to anticipate churn and developing novel 

modeling frameworks is a fruitful avenue of research. Although the field has witnessed much 

advancement, as we show in this work, it is still possible to improve on the best models 

known today, identify likely churners with greater accuracy, and eventually increase the 

effectiveness of churn management activities.  

Second, it is feasible and effective to consider business performance measures when building 

a churn model. Unlike previous approaches, which carry out the whole model-building 

process in a statistical world, DCES takes marketing objectives into account when creating 

the model. This is more aligned with how managers make decisions and increases the 

model’s fit for the ultimate decision support task. In a churn context, the lift measure captures 

typical business objectives. Our results confirm the effectiveness to introduce this notion of 

performance into the model building process from an empirical and theoretical angle.  

Third, our study calls for a change in standard churn modeling practices. Analysts often test 

alternative approaches before deploying a final churn model. Such alternatives may originate 
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from exploring different prediction methods and/or from experimenting with different sets of 

customer characteristics (i.e., covariates). The standard approach is then to pick the single 

“best” model and discard all the others. Our results suggest that an appropriately chosen 

combination of some of these alternative models will increase model performance. This 

selection and combination step is an excellent opportunity to introduce business objectives 

into the modeling process. 

From a managerial perspective, a key question is to what extent better churn models add to 

the bottom line. Much research has shown that customer retention is an important 

determinant of firm performance (e.g., Gupta and Zeithaml 2006). Churn prediction aims at 

targeting retention programs to the ‘right’ customers (i.e., likely churners) and thus supports 

customer retention. This suggests that an indirect link between accurate churn predictions and 

firm performance exists. Neslin et al. (2006) examine the profit impact of churn modeling in 

more detail and quantify the monetary value of improvements in lift. In their most 

conservative scenario, per-customer profit increases by $1.71 per unit change in lift. We find 

in our experiments that the expected improvement of DCES over previous churn models is on 

average .276 lift units (computed over all benchmarks, i.e., the last rows of Tables 3−5). This 

suggests that a company can expect an increase in per-customer profits of $.47 ($1.71 × .276) 

when adopting our DCES approach. Several service markets such as the markets for 

communication or financial services are highly concentrated. For example, the joint market 

share of the two largest companies in the US market for wireless communication, AT&T and 

Verizon Wireless, was roughly 62%, and the market share of the four largest players together 

was above 85% in 2010 (Datamonitor 2011). If a company of this size contacts one percent 

of their customers for a churn management campaign, a $.47 increase in per-customer profits 

can easily amount to changes in profit in the hundreds of thousands of dollars.  
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An additional advantage of DCES is that it requires little human intervention. Modeling tasks 

typically carried out by the analyst include testing different covariates, transformations of the 

covariates to increase their predictive value, and alternative prediction methods. With DCES, 

decision makers can easily automate these tasks. They only need to incorporate the candidate 

models that represent the choice alternatives into the model library. The selection strategy 

will then pick the most beneficial model combination in a decision-centric manner. This frees 

marketers from laborious, repetitive modeling tasks and opens up valuable resources.  

Finally, it is important to note that DCES is easy to adopt. Standard data-mining packages 

such as SAS Enterprise Miner or IBM SPSS Modeler provide a scripting environment to 

extend the base system’s functionality. Implementing our DCES framework in such an 

environment is relatively straightforward and should not require much effort. We also show 

that resource-intensive computations to build up a large model library are dispensable. 

Marketing analysts could simply take the alternative models they routinely benchmark and 

reuse them as a candidate set for DCES. The bottom-line message is that additional efforts to 

use DCES instead of a standard modeling approach are rather small.  

In summary, churn analysts have little to lose and much to gain by shifting to a decision-

centric modeling approach. 

7.2 Avenues for Further Research 

Our study suggests several directions for further research. First, DCES works well for 

predictive modeling but does not allow an interpretation of how customer characteristics 

influence the estimated churn scores. Accuracy is crucial in churn contexts and is linked 

directly to company profits. However, marketers also require comprehensible models to 

understand which customer traits are indicative of churn. This is important to revise 

customer-centric business processes and increase loyalty in the long run. In addition, 

managers are often unwilling to follow the recommendations of a model they don’t fully 
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understand. Therefore, it is important to develop procedures that clarify how covariates 

influence DCES predictions and what are the main drivers of customer churn.  

A second issue pertains to the cross-sectional design of our study. All our data sets represent 

a snapshot, drawn from a company database at a given point in time. However, churn is a 

dynamic phenomenon and the causes for defection change over time. It would thus be 

interesting to explore the potential of DCES in a longitudinal setting.  

The previous point exemplifies a third direction for research. The DCES philosophy is 

generic and can be applied to any discrete or continuous prediction task. It is important to 

validate the appropriateness of DCES in marketing applications other than churn modeling. 

Tasks such as scoring new product acceptance, estimating direct mail response, or predicting 

share of wallet are good examples. The opportunities to account for business objectives and 

constraints in the model-building process extend to these settings. Reproducing our results 

and confirming the effectiveness of a decision-centric modeling philosophy in other 

marketing applications would thus be a particularly fruitful research avenue. 
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