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Abstract

We propose a model of a financial market with multiple assets, which takes into
account the impact of a large institutional investor rebalancing its positions, so as to
maintain a fixed allocation in each asset. We show that feedback effects can lead to
significant excess realized correlation between asset returns and modify the principal
component structure of the (realized) correlation matrix of returns. Our study
naturally links, in a quantitative manner, the properties of the realized correlation
matrix – correlation between assets, eigenvectors and eigenvalues – to the sizes and
trading volumes of large institutional investors. In particular, we show that even
starting with uncorrelated ’fundamentals’, fund rebalancing endogenously generates
a correlation matrix of returns with a first eigenvector with positive components,
which can be associated to the market, as observed empirically. Finally, we show
that feedback effects flatten the differences between assets’ expected returns and
tend to align them with the returns of the institutional investor’s portfolio, making
this benchmark fund more difficult to beat, not because of its strategy but precisely
because of its size and market impact.
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1 Introduction

International financial markets have become increasingly dominated by large institu-
tional investors, who account for a large fraction of holdings and trades in financial
assets. For instance, institutional investors in the US hold $25000 billion in financial as-
sets which represents 17.4% of total outstanding assets. Their positions in the US equity
markets amount to $12500 billion, which corresponds to holding 70% of the total equity
assets in the US (Gonnard et al., 2008; Tonello and Rabimov, 2010). Two major fea-
tures characterize large institutional investors over the last years. First, they build their
portfolios with the use of indices and exchange-traded funds (representing a sector, a
geograpical zone or an asset class for instance), which have become increasingly popular
in the last years, and assets traded on large national exchanges (Gastineau, 2010; Fuhr,
2011; Boudreaux, 2012) . Secondly, while such asset managers do not frequently modify
their allocations, they do actively trade in the market: Carhart (2012) documents that
the average turnover for US mutual funds is 75%.

Large institutional investors build and manage their portfolios comprising numerous
assets taking into account the dependence structure between asset returns. In par-
ticular, the correlation between asset returns is a key ingredient for trading, portfolio
optimization and risk management. It is very often considered as reflecting a structural
correlation between fundamentals of asset returns and hence assumed not to vary a lot
in time. Ever since Markowitz (1952), theoretical studies show that, under the assump-
tion of a constant correlation structure between asset returns, optimal strategies are
fixed-mix strategies, i.e. maintaining a fixed allocation in each asset in the portfolio.
Typically, if the value of an asset increased, its weight in the portfolio increases and the
investor following a fixed-mix strategy sells part of its positions in this asset, so as to
come back to the target allocation for this asset. The fixed-mix strategy implies ’buy-
ing low and selling high’. Numerous theoretical studies (Evstigneev and Schenk-Hoppé,
2002; Dempster et al., 2003; Mulvey and Kim, 2008) have shown that such strategies
can enhance the long-term growth rate of portfolios.

Whereas the price of financial assets is traditionally modeled as an exogenous stochas-
tic process unaffected by investors’ strategies, the presence of institutional investors,
typically following fixed-mix strategies and which have a large impact when trading,
has implications for financial markets, in particular for the indices and ETFs that they
trade, and hence for the components of those indices and ETFs.

Indeed, many empirical studies, such as Aitken (1998); Sias (1996); Sias and Starks
(1997), detailed in Section 1.2, document the impact of large institutional investors.
They show in particular that trading by institutional investors tends to increase the
correlation between the assets that they hold and generate contagion effects to other
investors with similar balance sheets. In addition, the study of empirical correlation
matrices (Friedman and Weisberg, 1981; Bouchaud et al., 2000) shows that the real-
ized correlation matrix of returns displays common features across stock markets – first
eigenvalue which is significantly larger than the others and associated to a ’market’
eigenvector, with positive weights on each component, as shown in Figure 1 in the case
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of the Eurostoxx 50 – which strongly suggest the impact of institutional investors on the
dependence structure of asset returns.

In this paper, we develop a quantitative framework for modeling the impact of trad-
ing by large institutional investors on the dependence structure of asset returns. Our
study shows that rebalancing from institutional investors endogenously increases corre-
lation between asset returns, hence limiting the benefits of diversification and modifying
the structure of optimal strategies for investors in this market. Such feedback effects nat-
urally lead to a realized correlation matrix of returns with a first eigenvalue larger than
the others and associated to a market eigenvector, as observed empirically. The analyti-
cal results that be obtain for realized correlations, asset and fund volatilities, eigenvalues
and eigenvectors of the realized correlation matrix, are useful in a risk-management and
portfolio allocation perspective, not only for large institutional investors whose impact
is modeled in our study, but also for other investors who suffer from contagion effects
that we are able to quantify.

2002 2004 2006 2008 2010
−0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 1: Components of the eigenvector associated to the largest eigenvalue of the
empirical correlation matrix of returns for Eurostoxx 50

1.1 Summary

We propose a multi-period model of a financial market with multiple assets, in which a
large institutional investor maintains a fixed allocation across assets. Simulations of this
model, with realistic parameters estimated from time series of S&P500 stock returns,
suggest that feedback effects from the fund’s rebalancing lead to a significant increase
in realized correlation between asset returns. We exhibit conditions under which the
discrete-time model converges to a diffusion limit. By studying the multi-dimensional
diffusion limit for the price dynamics, we show that the presence of such large insti-
tutional investor maintaining a constant allocation across asset classes may result in a
significant and systematic impact on expected returns and the correlation of returns.
In particular, such fixed-mix strategies dampen asset volatility but increase correlation
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across asset classes. This rebalancing effect leads to a systematic bias in the first princi-
pal component of the correlation matrix, overweighting assets with high turnover in the
benchmark portfolio. In particular, in the presence of feedback effects, and even start-
ing from uncorrelated fundamentals, trading by the large fund endogenously generates
a realized correlation matrix of returns with a first eigenvector with positive compo-
nents. The impact of the large institutional investor biases asset expected returns and
decreases the performance of funds who overweigh (resp. underweigh) assets with large
(resp. low) expected returns. These findings have consequences for risk-management
and asset allocation. We show that the impact of the large institutional investor mod-
ifies the risk/return trade-off of portfolios composed from the same assets: an investor
who factors these effects into his allocations can improve his risk/return trade-off.

1.2 Related literature

Various empirical studies attest to the large market share of institutional investors.
Gonnard et al. (2008) study institutional investors of countries of the Organization for
Economic Co-operation and Development (OECD) while Tonello and Rabimov (2010)
focus on the institutional investors in the US. Such investors comprise mutual funds,
insurance companies and pension funds. Their investments amounted to $40000 billion
for funds in the OECD in 2005, which represents 150% of the gross domestic product of
the OECD. US institutional investors account for more than half of those investments
($25000 billion) and prefer investing in equity markets (50% of their positions).

The preferences of large institutional investors are examined in numerous empirical
studies. Del Guercio (1996) finds empirically that banks, contrary to mutual funds, pre-
fer investing in prudent stocks. Gompers and Metrick (2001) use a database with seven-
teen years of data on large institutional investors and show that they prefer holding liquid
assets, while Ferreira and Matos (2008) find that institutional investors have a strong
preference for the stocks of large firms and firms with good governance. Falkenstein
(2012) shows that mutual funds prefer investing in liquid stocks with low transaction
costs and are averse to stocks with low idiosyncratic volatility. Lakonishok et al. (1992)
study the types of strategies followed by institutional investors and whether they follow
trading practices which are potentially destabilizing for asset prices. The impact of in-
stitutional investors on asset returns is widely studied in the empirical literature. Aitken
(1998) shows that the growth of capital invested by mutual funds and other institutional
investors in emerging markets resulted in a sharp increase of autocorrelation for the as-
sets in those markets. Sias and Starks (1997) also finds that the larger the institutional
ownership of a stock in the NYSE, the larger its autocorrelations while Sias (1996) finds
that an increase in ownership by institutional investors on a given stock results in a
greater stock volatility.

Most theoretical studies model the impact of large institutional investors on a single
asset’s return and volatility. Almgren and Chriss (2000); Almgren and Lorenz (2006);
Almgren (2009) model the permanent and temporary impact of a large investor liquidat-
ing a position on a single asset and derive an optimal liquidation strategy. Alfonsi et al.
(2009) derive the optimal strategy to liquidate a large position on an asset by taking into
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account the order book of the asset. Gabaix et al. (2006) propose an equilibrium model
which takes into account the supply and demand of a large institutional investor and
show that their trades can lead to volatility spikes. They derive an optimal strategy for
the institutional investor, in the presence of its own feedback effects. These theoretical
studies explain quantitatively the facts described in the empirical literature cited previ-
ously, but mainly focus on a single asset and derive optimal strategies for institutional
investors. In particular, they do not model the cross-asset impact of large institutional
investors and the spillover effects that they can generate. Kyle and Xiong (2001) study
a market with two risky assets and three types of traders: noise traders, convergence
traders and long-term investors. They show how the strategies implemented by each
type of traders can result in contagion effects and lead to endogenous correlation which
can not be explained by assets fundamentals.

Our quantitative results show that, even starting from homoscedastic fundamentals,
rebalancing by institutional investors naturally generate heteroscedasticity in the covari-
ance structure of asset returns, hence giving an economic explanation for the variability
of correlations and volatilities observed in financial markets and which have been mod-
eled, in an exogenous way, by various theoretical studies (Engle, 2002; Da Fonseca et al.,
2008; Gouriéroux et al., 2009; Stelzer, 2010; Da Fonseca et al., 2013). In addition, we
find that in the presence of feedback effects from institutional investors, the realized cor-
relation matrix of returns displays the features verified by empirical correlation matrices:
the first eigenvalue is significantly higher than the other eigenvalues and is associated
to an eigenvector with positive components. While studies using random matrix the-
ory such as Bouchaud et al. (2000) are able to explain the emergence of a dominant
eigenvalue for realized correlation matrices, such studies generally lead to a first eigen-
vector which is invariant by rotation, and hence fail to account for the fact that the first
eigenvector is a ’market’ eigenvector, with positive weights on each component.

1.3 Outline

This paper is organized as follows: Section 2 presents a framework for modeling the
impact of trading by a large institutional investor on asset returns. Section 3 studies the
dependence structure of asset returns in the presence of feedback effects from the large
institutional investor. Section 4 analyzes the impact of the large institutional investor
on the risk and returns of assets and for other investors in the market.

2 Asset dynamics in the presence of a large institutional investor

2.1 Multi-period model

Asset fundamentals
Consider a discrete-time market, where trading takes place at dates tk = k∆t and which
comprises n financial assets. The value of asset i at tk is Si

k. Typically, one can consider
that Si is the value of an index or an ETF representing a sector, asset class or geo-
graphic zone. Between tk and tk+1, the value of each asset moves due to ’fundamentals’,

6

IESEG Working Paper Series 2014-ACF-01



represented by an IID sequence (ξk+1)k≥0 = (ξ1k+1, ..., ξ
n
k+1)k≥0 of centered random vari-

ables with covariance matrix Σ. In the absence of other effects, the log-return of asset i
between tk and tk+1 would be

∆t(mi −
Σi,i

2
) +

√
∆tξik+1

where mi is the ’fundamental’ expected return of asset i and Σ is the ’fundamental’
covariance matrix of asset returns. Σ reflects the fundamental structure between the
n assets in the market. While most practitioners consider that the covariance matrix
is constant over a time horizon typically of one year, more statistically-sophisticated
models have been proposed for modeling heteroscedasticity and the variability of the
fundamental covariance matrix (Engle, 2002; Da Fonseca et al., 2008; Gouriéroux et al.,
2009; Stelzer, 2010; Da Fonseca et al., 2013). In this paper, for clarity purpose only,
we assume that the fundamental covariance matrix Σ is contant. Our results can be
extended to the case of a stochastic fundamental covariance matrix by means of more
technicalities, which do not bring more intuition to the problem raised by this paper,
namely disentangling the impact of fundamentals and fund rebalancing on the depen-
dence structure of asset returns.

The large institutional investor
Consider now a large institutional investor/fund investing in this market and following
a (long) fixed-mix strategy, maintaining a fixed allocation in each asset. As discussed in
Section 1, the fixed-mix strategy is widely used by institutional investors, in between
two allocation dates, which correspond to a time frame of several months. At each date
tk, the fund holds a (constant, positive) proportion xi of each asset i which means that
the dollar amount invested by the fund in asset i at this date is equal to xiWk whereWk

is the fund value/wealth at tk. Denoting by φik the number of units of asset i held at tk,
the fixed-mix strategy implies that at each date:

φikS
i
k = xiWk (1)

At each period, the asset values may change due to fundamentals and the fund
rebalances its positions in order to maintain the target proportion xi in each asset i. If
the value of an asset increased (resp. decreased) more than the others, the fund sells
(resp. buys) units of this asset in order to maintain a fixed portion of this asset in its
portfolio. The fixed-mix strategy is a typical example of a contrarian strategy, which
implies ’buying low and selling high’. The rebalancing by the fund, in order to maintain
its target allocation, generates a net demand of φik+1 − φik units of asset i between tk
and tk+1, in a self-financing manner:

Wk+1 =

n∑

i=1

φik+1S
i
k+1 =

n∑

i=1

φikS
i
k+1 (2)

Price impact
The rebalancing of large positions by the fund – this is the case when the fund is large –
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impacts prices in a non-random manner. The impact of large orders on asset returns has
been modeled in numerous manners: linear (Obizhaeva, 2011; Cont et al., 2013), square
root (Bence et al., 2011), or more generally concave (Almgren et al., 2005; Moro et al.,
2009). We assume that the impact of this net demand by the fund on the return of each
asset i is linear and is measured by the depth Di of the market in asset i: a net demand
of Di

100 shares for security i moves the price of i by one percent. Note that we choose a lin-
ear price impact for clarity purpose only, as a general price impact function leads to the
same continuous-time limit as a linear price impact, as shown in (Cont and Wagalath,
2013a).

The discrete-time price dynamics
The value of asset i at date tk+1 has to verify:

Si
k+1 = Si

k exp

(

∆t(mi −
Σi,i

2
) +

√
∆tξik+1

)

︸ ︷︷ ︸
′fundamentals′

×
(

1 +
φik+1 − φik

Di

)

︸ ︷︷ ︸

feedback from the large investor

(3)

However, as φik+1 depends on Si
k+1 given Eq (1), we have to prove that, at each

period, the fund can rebalance its positions in a self-financing way so as to keep its fixed
allocation ie: verify Eq (3). This is done in the following Proposition.

Proposition 2.1 There exists a unique investment strategy which enables the fund to
keep a constant proportion xi invested in each asset i at every period k, in a self-financing
way and (S,W ) verify Equations 1, 2 and 3.

The proof of this proposition is given in Appendix 5.1. At each period, the return of an
asset can be decomposed into a fundamental component and a systematic component
which is generated endogenously by the large fund’s rebalancing. We remark that when
market depths are infinite (Di = ∞), the fund’s rebalancing does not generate any
feedback on asset returns and asset values move according to ’fundamentals’ only, which
are captured by the fundamental covariance matrix Σ and the fundamental expected
returns m.

2.2 Simulation experiments

In this section, we present some results of simulation experiments which illustrate the im-
pact of feedback effects from a large institutional investor following a fixed-mix strategy
on the realized correlation between asset returns and the principal component properties
of the realized correlation matrix of returns.

Choice of parameters We simulate the multi-period model in a very simple example
of homogenous fundamental volatility, correlation and expected return. In order to
compare our numerical results with empirical results on the S&P500 in 2006, we choose
the following realistic parameters. The simulated market comprises n = 500 assets and
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trading is possible everyday (∆t = 1
250 ). Each asset has a fundamental expected return

mi = 11% (equal to the return of the S&P500 in 2006) and a fundamental volatility
√

Σi,i = 10% (equal to the realized volatility of the S&P500 in 2006). We denote by

ρ =
Σi,j√
Σi,iΣj,j

the fundamental correlation between any pair of assets.

We consider an institutional investor maintaining a constant portion xi =
1
n
= 0.2%

invested in each asset i and the initial position of the fund in each asset is equal to one

fifth of the respective asset market depth: for all i,
φi
0

Di
= 1

5 . This choice is legitimated
by empirical studies: Tonello and Rabimov (2010) shows that the size of institutional
investors over the last years is approximately $25000 billion, among which 50%, ie:$12500 billion are invested in US equity markets. As a proxy of market depth, we use,
following Obizhaeva (2011),

D =
Average Daily V olume

0.33 ×Daily V olatility

Given that in 2006 the average daily volume of the US equity market was $80 billion
and the realized volatility of the S&P500 was 10%, we find that the depth of the US
equity markets is 80

0.33× 10%√
250

≈ $38000 billions. Assuming, for example, that 60% of the

institutional investors follow a fixed-mix strategy, this legitimates our choice of
φi
0

Di
=

60% × 12500
38000 = 1

5 .
Note that we choose to compare our numerical results to empirical results on the

S&P500 in 2006 because the recent financial turmoil started in 2007 and, since then, the
US equity market was subject to major fire sales and deleveraging phenomenon, which
were the main source of feedback in those markets, as analysed in Cont and Wagalath
(2013a).

For each of the 10000 simulated scenarios, we compute the realized volatility of asset
returns and the realized correlation between asset returns. The following figures display
the distribution of those quantities, in the case of ρ = 0. We compare those distributions
to the case without feedback effects, which corresponds to the case when market depths
are infinite.

Realized correlation and realized variance Figure 2 shows that the institutional investor’s
strategy increases realized correlation between asset returns. Whereas without feedback
effects, the distribution of realized correlation between the two assets is centered around
its fundamental value ρ = 0, we witness, in the presence of feedback effects, that the
distribution of realized correlation is shifted towards positive values, centered around
an average value of 10% and with values over 20% with significant probability. Even
starting with zero fundamental correlations, feedback effects generate, on average, a
realized correlation of 10% between assets. In addition, numerical experiments show
that the price impact of fixed-mix strategies decreases asset volatility. This is due to
the fact that the fund follows a ’contrarian’ strategy: it buys (resp. sells) assets that
decreased (resp. increased) the most, hence dampening their decrease (resp. increase)
and, overall, dampening the amplitude of price moves.
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Figure 2: Distribution of realized correlation between assets 1 and 2 (with ρ = 0) with
and without feedback effects

Average pairwise realized correlation and highest eigenvalue of the realized correlation ma-

trix Table 1 displays the average for the average pairwise realized correlation over 104

simulations, for different values of fundamental correlation ρ and fund sizes
φi
0

Di
. It shows

that, for each choice of parameters, due to the impact of the large investor, the average
pairwise correlation is higher than its fundamental value in the presence of feedback ef-
fects. Furthermore, we see that the larger the fund’s positions as a fraction of asset depth
(ie: the larger the fund’s positions or the lower the assets’ depth or liquidity), the larger
the impact on the average pairwise correlation. In 2006, the average pairwise one-year
realized correlation in the S&P500 was 21%. Table 1 shows that with a reasonable and
realistic choice of parameters for the fund’s size, for example

φi
0

Di
= 1

5 as discussed in the
beginning of this section, an homogenous fundamental correlation of only 15% combined
to feedback effects generated by the rebalancing of the fund’s positions generate the 22%
average pairwise realized correlation observed empirically.

Table 2 leads to the same conclusions: the presence of the large institutional investor
increases the value of the largest eigenvalue of the realized correlation matrix, compared

to its fundamental value which is given in the column
φi
0

Di
= 0. Furthermore, the larger the

fund’s positions as a fraction of market depth, the larger the eigenvalue of the realized
correlation matrix. While the largest eigenvalue of the one-year realized correlation
matrix of the S&P500 in 2006 was 110, we see that our model leads to this level of
largest eigenvalue starting from a fundamental correlation of 15%, which corresponds to
a fundamental largest eigenvalue of 76, combined to feedback effects, in the case where
φi
0

Di
= 1

5 .
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Average pairwise realized correlation

ρ
φi
0

Di
= 1

10
φi
0

Di
= 1

5
φi
0

Di
= 1

3

0 2% 5% 10%
10% 12% 15% 21%
15% 18% 22% 29%
25% 29% 35% 44%
50% 55% 61% 69%
75% 79% 82% 87%
90% 92% 93% 95%

Table 1: Average for the average pairwise realized correlation for different values of fun-

damental correlation ρ and fund sizes (as a fraction of market depth)
φi
0

Di
. In comparison,

the average pairwise one-year realized correlation of the S&P500 in 2006 was 21%.

Largest eigenvalue of the realized correlation matrix

ρ
φi
0

Di
= 0

φi
0

Di
= 1

10
φi
0

Di
= 1

5
φi
0

Di
= 1

3

0 1 8 9 11
10% 51 64 79 105
15% 76 93 113 146
25% 126 149 175 216
50% 251 277 307 345
75% 375 394 412 434
90% 450 459 467 476

Table 2: Average for the largest eigenvalue of the realized correlation matrix for different

values of fundamental correlation ρ and fund sizes (as a fraction of market depth)
φi
0

Di
.

In comparison, the largest eigenvalue of the one-year realized correlation matrix of the
S&P500 in 2006 was 110.
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2.3 Continuous-time limit

We now analyze the continuous-time limit of the multi-period model: the study of this
limit enables to obtain analytical formulas for realized correlation between asset returns,
eigenvalues and eigenvectors of the realized correlation matrix and asset expected re-
turns, which confirm quantitatively the effects observed in the numerical experiments.

The following theorem describes the diffusion limit of the price process.

Theorem 2.2 Under Assumption 5.2 given in Appendix 5.2, (S⌊ t
∆t

⌋,W⌊ t
∆t

⌋)t≥0 con-

verges weakly to a diffusion process (Pt, Vt)t≥0 = (P 1
t , ..., P

n
t , Vt)t≥0 as ∆t goes to 0 with:

dP i
t = bi(Pt, Vt)dt+ (a(Pt, Vt)dBt)i 1 ≤ i ≤ n

dVt = bn+1(Pt, Vt)dt+ (a(Pt, Vt)dBt)n+1

where a and b are defined in Appendix 5.2 in Eq (27) and Eq (28) respectively and Bt

is an n-dimensional Brownian motion.

In the continuous-time limit, at each date t, the fund allocates xi to asset i. Its holdings
in asset i are:

φit =
xiVt

P i
t

(4)

The proof of this theorem is given in Appendix 5.2. a and b can be computed explicitely
from Lemma 5.4 and Lemma 5.5 in Appendix 5.2. Theorem 2.2 enables to quantify, in a
tractable manner, the impact of the large fund on asset dynamics. In the next sections, in
order to characterize this impact more intuitively, we will study the impact at order one in
liquidity, which enables us to decompose realized correlations, eigenvalues, eigenvectors
and fund volatility into a stationary fundamental part and a liquidity-dependent and
path-dependent part, generated endogenously by the large institutional investor.

In the case where market depths are infinite (for all i, Di = +∞), the expression for
a and b simplifies to

ai,k(P, V ) = P iAi,k and bi(P, V ) = P imi 1 ≤ i ≤ n

where A is a square root of Σ and the price follows a multivariate Black and Scholes
dynamics with expected return m and covariance matrix Σ:

P i
t

P i
0

= exp((mi −
Σi,i

2
)t+ (ABt)i) and

Vt

V0
= exp((X.m− X.ΣX

2
)t+X.ABt) (5)

When market depths are finite, feedback effects from the large fund modify this funda-
mental price dynamics, as described in the next sections.
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3 Dependence structure of asset returns

In this section, we study the impact of the large fund’s rebalancing on the depen-
dence structure of asset returns and we show that this dependence structure may de-
pend more on the type and market cap of the various strategies used by large mar-
ket players than on fundamentals. The fund’s impact can be quantified by study-
ing the realized covariance/correlation matrix of asset returns (Andersen et al., 2003;
Barndorff-Nielsen and Shephard, 2004).

3.1 Realized covariance and correlation between asset returns

Proposition 3.1 shows that realized covariances and correlations can be decomposed
into a fundamental component and an endogenous component generated by the fund’s
rebalancing strategy. When the rebalancing volumes are large compared to the depth of
assets, this endogenous component is exacerbated and can become significant compared
to the fundamental component.

The realized covariance matrix of asset returns between t1 and t2, denoted C[t1,t2], is
defined by

C
i,j

[t1,t2]
=

1

t2 − t1

(
[lnP i, lnP j]t2 − [lnP i, lnP j]t1

)

where [lnP i, lnP j ]t is the quadratic covariation between lnP i and lnP j on [0, t] and the
realized correlation between t1 and t2 is defined by

R
i,j

[t1,t2]
=

C
i,j

[t1,t2]
(

C
i,i

[t1,t2]
C
j,j

[t1,t2]

) 1
2

Proposition 3.1 The realized covariance and realized correlation between assets i and
j returns can be respectively decomposed as follows:

C
i,j

[0,T ] = Σi,j + Λi∆Φi
T

n∑

l=1

xl(Σj,l − Σi,j) + Λj∆Φj
T

n∑

l=1

xl(Σi,l − Σi,j) +O(‖Λ‖2) (6)

R
i,j

[0,T ] =
Σi,j

√
Σi,iΣj,j

+
Λi∆Φi

T
√

Σi,iΣj,j

n∑

l=1

xl(Σj,l −
Σi,j

Σi,i

Σi,l)+
Λj∆Φj

T
√

Σi,iΣj,j

n∑

l=1

xl(Σi,l −
Σi,j

Σj,j

Σj,l)+O(‖Λ‖2)

(7)
where Λ is an n dimensional vector representing the initial holdings of the fund in asset
i as a fraction of market depth:

Λi =
φi0
Di

(8)

and ∆Φi
T is a measure of the volume traded on asset i by the large fund:

∆Φi
T = 1 +

∫ T

0

(

1− s

T

) dφis
φi0

=
1

T

∫ T

0

φis
φi0
ds > 0 (9)
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and E

(
O(‖Λ‖2)
‖Λ‖2

)

is bounded when Λ goes to zero.

The proof of this corollary is given in Appendix 5.3. In the presence of feedback
effects, the realized covariance/correlation matrix is the sum of the fundamental covari-
ance/correlation matrix and an excess realized covariance/correlation matrix generated
by the impact of the fund’s rebalancing strategy.

The magnitude of the institutional investor’s impact on asset returns is naturally
measured by the quantities

Λi =
φi0
Di

which measure the size of the institutional investor’s positions in each asset, as a fraction
of asset market depth and Proposition 3.1 gives the expansion at order one in ‖Λ‖ of the
realized covariances and correlations.

Equation 7 shows that realized correlations between asset returns are impacted by
the strategy followed by the institutional investor, namely� its size Λ� its allocations xi� its rebalancing strategy ∆Φi

They can deviate significantly from fundamentals when the size of the fund’s positions
and trading volumes are large compared to asset market depths. As the size of institu-
tional investors and their market shares has become very large, as discussed in Section 1,
Proposition 3.1 shows that the dependence structure of asset returns may depend more
on the type and market cap of the various strategies used by large market players than
on fundamentals.

We remark that when the fund invests significantly in one asset i0, such that Λi0 > 0,
and even if its positions on the other assets are negligible (Λi = 0 for i 6= i0), the realized
covariance between those assets and i0 is modified and different from the fundamental
covariance, generating a contagion effect from this asset to all other assets held by the
fund.

3.2 Case of zero fundamental correlations

In this section, we examine the case when the fund invests in assets with zero fundamental
correlations: the fundamental covariance matrix Σ is diagonal and we write:

Σi,i = σ2i and Σi,j = 0 i 6= j

We show that rebalancing by the large fund endogenously generates positive realized
correlation between assets with zero fundamental correlation, reducing the benefits of
diversification for the fund. The presence of the fund induces a minimum structural
realized correlation between asset returns, which depends on liquidity and rebalancing
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flows. Even starting from a fundamental correlation matrix which is the identity, feed-
back effects from the large fund naturally lead to the empirically-observed structure
for realized correlation matrices: a dominant eigenvalue, which is of the order of the
number of assets in the market n, and associated to an eigenvector with strictly positive
components, corresponding to the market.

Using Eq (7), we can compute the realized correlation between assets i and j returns:

R
i,j

[0,T ] = Λi
σjxj

σi
∆Φi

T + Λj
σixi

σj
∆Φj

T +O(‖Λ‖2) > 0 (10)

Eq (9) implies that ∆Φi
T > 0 and we deduce that feedback effects from the fund’s re-

balancing generates positive realized correlation between assets with zero fundamental
correlations. Intuitively, this stems from the fact that the systematic strategy used by
the fund creates a similar pattern of behavior for all assets and shows that diversification
effects are reduced by the fund’s own impact. This analytical result confirms quantita-
tively the numerical results of Figure 2. Excess correlation is exacerbated by the size of
the fund relative to market depth (‖Λ‖) and the volumes of rebalancing (∆Φ), which are
endogenously determined by the fund’s strategy (x1, ..., xn). Our results show that when
liquidity effects are accounted for, observed levels of realized correlation across assets are
compatible with the null hypothesis of absence of correlation in fundamentals.

Eq (10) enables us to derive a structural minimum for the realized correlation between
a given pair of assets i and j:

R
i,j

[0,T ] ≥ 2
√

xiΛixjΛj(∆Φi
T∆Φj

T )
1

2 +O(‖Λ‖2)

This lower bound for realized correlation is triggered by the mere presence of the institu-
tional investor following a fixed-mix strategy. In particular, the more the fund invests in
two assets, the greater the correlation it generates endogenously between the two assets.

As the realized correlation matrix R[0,T ] has strictly positive terms, the Perron Frobe-
nius theorem states that it has an eigenvalue which is strictly higher than its other
eigenvalues and which is associated to an eigenvector with strictly positive coordinates.
Furthermore, this eigenvalue belongs to the interval:










1 + (n− 1)




1

n(n− 1)

∑

i6=j

R
i,j

[0,T ]





︸ ︷︷ ︸

average pairwise correlation

; 1 + max
i

∑

j 6=i

R
i,j

[0,T ]










(11)

What is remarkable is that, even starting with a fundamental correlation matrix
which is equal to the identity, and hence has all eigenvalues equal to 1 and no particular
structure for eigenvectors, the impact of the fund naturally generates a correlation matrix
with a dominant eigenvalue, of the order of n and associated to a ’market’ eigenvector.
Our results enable to explain quantitatively the existence of such a market vector associ-
ated to the largest eigenvalue of the correlation matrix, as illustrated in Figure 1, while,
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as discussed in the literature review of Section 1, existing studies modeling the principal
component properties of the realized correlation matrix of returns fail to explain this
empirically-observed feature.

Finally, using Corollary 3.1, we find that the realized variance of asset i returns is
given by

C
i,i

[0,T ] = σ2i
(
1− 2(1− xi)∆Φi

T

)
+O(‖Λ‖2) < σ2i

which implies that feedback effects decrease the realized variance of asset returns. This
is consistent with the fact that the fund buys (resp. sells) assets which decreased (resp.
increased) the most, dampening the amplitude of asset movements.

3.3 Eigenvalues and eigenvectors of the realized correlation matrix

We now analyze the principal component properties of the realized correlation matrix of
returns, in the case of a general fundamental correlation matrix. Our study enables to
establish a quantitative link between the eigenvalues and eigenvectors of the correlation
matrix and the strategy implemented by the fund.

As the realized correlation matrix in the presence of feedback effects can be consid-
ered as a perturbation of the fundamental correlation matrix, one can expect that its
eigenvalues and eigenvectors are also perturbations of the corresponding eigenvalues and
eigenvectors of the fundamental correlation matrix. Recall that the realized correlation
matrix R[0,T ] and the fundamental correlation matrix R are real-valued matrices defined
respectively by:

R
i,j

[0,T ] =
C

i,j

[0,T ]
(

C
i,i

[0,T ]C
j,j

[0,T ]

) 1

2

and R
i,j

=
Σi,j

(Σi,iΣj,j)
1

2

(12)

As they are both symmetric and non-negative, we know that there exist eigenvalues
v1 ≥ ... ≥ vn ≥ 0, v1 ≥ ... ≥ vn ≥ 0 and two orthonormal bases (ψ1, ..., ψn), (ψ1, ..., ψn)
such that for all 1 ≤ j ≤ n:

R[0,T ]ψj = vjψj and Rψj = vjψj (13)

The following proposition gives analytical formulas which quantify the impact of the large
institutional investor on the principal component properties of the realized correlation
matrix R[0,T ].

Assumption 3.2 vj defined in Eq (13) is a simple eigenvalue for the fundamental cor-
relation matrix R.

Proposition 3.3 Under Assumption 3.2, there exists γ > 0 such that if ‖Λ‖ < γ, then
vj is a simple eigenvalue for the realized correlation matrix R[0,T ] and:

vj = vj +
t ψj ∇R ψj + o(‖Λ‖)
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and vj is associated to the unit eigenvector ψj , which is collinear to:

ψj +
∑

k 6=j

tψk ∇R ψj

vj − vk
ψk + o(‖Λ‖)

where vj, vj, ψj , ψj are defined in Eq (13), ∇R is a symmetric matrix defined by
[∇R]i,i = 0 and for i 6= j:

[∇R]i,j =
Λi∆Φi

T
√
Σi,iΣj,j

n∑

l=1

xl(Σj,l −
Σi,j

Σi,i
Σi,l) +

Λj∆Φj
T

√
Σi,iΣj,j

n∑

l=1

xl(Σi,l −
Σi,j

Σj,j
Σj,l)

and o(‖Λ‖)
‖Λ‖ converges almost surely to zero when Λ goes to zero.

Proposition 3.3 is a well-know result of perturbation theory for eigenvalues and eigen-
vectors of symmetric matrices, analogous to the result of (Allez and Bouchaud, 2012,
Eq 2.2). It gives a tractable formula for the eigenvalues and eigenvectors of the real-
ized correlation matrix in the presence of feedback effects from the investor following
the fixed-mix strategy (x1, ..., xn). Due to such feedback effects, the eigenvalues and
eigenvectors of the realized correlation matrix depend on the sizes and allocations of
institutional investors.

This impact naturally modifies the profile of risk in the market for all investors,
and for the large institutional investor itself. Assume for example that the institutional
investor, in order to reduce its volatility, has chosen a strategy (x1, ..., xn) so as to stay
orthogonal to ψ1, the first eigenvector of the fundamental correlation matrix, associated
to the largest eigenvalue and hence the largest regime of volatility. As a consequence,
(x1, ..., xn) is chosen in the subspace generated by ψ2, ..., ψn. However, the impact of the

fund’s rebalancing generates a change in the first eigenvalue, equal to

n∑

k=2

tψk ∇R ψ1

v1 − vk
ψk

whose direction is precisely in the subspace generated by ψ2, ..., ψn, containing the vector
of allocations (x1, ..., xn), hence generating larger-than-expected realized volatility.

Example and numerical tests In this paragraph, we illustrate how feedback effects impact
the principal component properties of the realized correlation matrix of returns in a
simple example where all parameters are homogenous: asset fundamental volatilities are
equal to σ, fundamental correlation between any pair of assets is ρ, the large institutional
investor’s allocation in each asset i is xi =

1
n
and the size of its position in each asset as

a fraction of market depth is Λi = Λ.

Corollary 3.4 Under the assumption of homogenous fundamental asset volatilities σ,
correlations ρ, allocations xi = 1

n
and ratios holdings to market depths Λi = Λ, the

largest eigenvalue of the realized correlation matrix of returns is equal to:

v1 = 1 + (n− 1)ρ+ 2Λ(1− ρ)

(

ρ+
1− 2ρ

n
− 1− ρ

n2

) n∑

j=1

∆Φj
T + o(Λ) (14)
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and is associated to the first eigenvector ψ1 which is proportional to:

αn(x,Λ)






1
...
1




+ βn(x,Λ)











∆Φ1
T

...
∆Φi

T
...

∆Φn
T











+ o(Λ) (15)

where

αn(x,Λ) = 1 + Λ(1− ρ)(−ρ+ 3ρ− 1

n
+

2(1 − ρ)

n2
)

n∑

j=1

∆Φj
T

βn(x,Λ) = (n − 2)Λ(1− ρ)(ρ+
1− ρ

n
)

Eq 14 shows that feedback effects increase the value of the largest eigenvalue of the re-
alized correlation matrix. We simulated 104 price trajectories of our model and, for each
trajectory, we calculated numerically the largest eigenvalue of the realized correlation
matrix and computed the theoretical largest eigenvalue given by Eq (14). Table 3 shows
that the average error made by using the theoretical formula of Eq (14) to estimate the
largest eigenvalue of the realized correlation matrix is 10%, which is significantly lower
than when using the fundamental largest eigenvalue (error of 60%, using fundamental
largest eigenvalue, which is equal to 1 + (n − 1)ρ).

Eq 15 gives the structure of the first eigenvector which is associated to the largest
volatility mode in the market i.e. largest eigenvalue of the realized correlation matrix.
Interestingly, we notice that, whereas in the absence of feedback effects and using the
parameters of Corollary 3.4, the first eigenvector should be proportional to the market

vector






1
...
1




, due to the impact of the fund’s rebalancing trades and in the case of a

well-diversified fund (n large), the first eigenvector is also driven by the vector






∆Φ1
T

...
∆Φn

T






which represents the (time-weighted) rebalancing volumes by the large institutional in-
vestor. In scenarios where the fund trades significantly more in one asset than in others,
its impact on returns will give more weight to this asset in the first eigenvalue of the
correlation matrix.

4 Asset returns and fund performance

In this section, we study the impact of the fund’s rebalancing strategy on asset and
fund expected returns. Recall that, in the absence of feedback effects from the fund, the

18

IESEG Working Paper Series 2014-ACF-01



Theoretical eigenvalue Eq (14) Fundamental eigenvalue
vs Numerical eigenvalue vs Numerical eigenvalue

Average Error 10% 60%

Table 3: Average error for the largest eigenvector of the realized correlation matrix

benchmark return for asset i is mi and hence the benchmark return for the institutional

investor is

n∑

i=1

ximi.

4.1 Asset expected returns

Following the same method as in Corollary 3.1, we can prove the following Proposition
which gives the expansion at order one in ‖Λ‖ of the expected return of each asset.

Proposition 4.1 The (instantaneous) expected return of asset i at date t in the presence
of feedback effects from the institutional investor investor is:

bi(Pt, Vt)

P i
t

= mi
︸︷︷︸

benchmark return

for asset i

+
φit
φi0

Λi(
n∑

l=1

xlml

︸ ︷︷ ︸
benchmark return

for the fund

− mi) +O(‖Λ‖2) (16)

where bi, Λ and φit are defined respectively in Theorem 2.2, Eq (8) and Eq (4).

Trading by the institutional investor generates a systematic non fundamental com-
ponent in the expected return of each asset. The nature of the fund’s impact on the
expected return of asset i depends on the difference between the benchmark expected

return for asset i, mi, and the benchmark expected return for the fund,
n∑

l=1

xlml. When

mi >

n∑

l=1

xlml, Eq (16) shows that bi(Pt,Vt)
P i
t

< mi and trading by the large institutional

investor decreases (resp. increases) the expected return of assets whose benchmark ex-
pected returns are larger (resp. lower) than the benchmark return of the fund. The fund’s
rebalancing strategy endogenously dampens the difference between expected returns of
assets with large fundamental expected returns (compared to the benchmark) and those
with low fundamental expected returns.

Proposition 4.1 enables us to compute the expected return for the large institutional
investor and for other (small) investors.
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Corollary 4.2 At date t, the (instantaneous) expected returns for the large institutional
investor and for a (small) investor holding a portion yit of each asset i are given respec-
tively by

n∑

i=1

ximi +

n∑

i=1

xiΛiφ
i
t

(
n∑

l=1

xlml −mi

)

+O(‖Λ‖2)

n∑

i=1

yitmi +

n∑

i=1

yitΛiφ
i
t

(
n∑

l=1

xlml −mi

)

+O(‖Λ‖2)

The expected return for the large institutional investor is lower (resp. higher) than

its benchmark return

n∑

i=1

ximi if it overweighs (resp. underweighs) assets with large

fundamental expected returns. When the fund overweighs assets with large expected
returns, it will generate, due to its own market impact, lower-than-expected returns.

The expected return for a small fund with positions yt is lower than the small fund’s

fundamental return
n∑

i=1

yitmi when it overweighs assets with large fundamental expected

returns (ie when yit is large for assets i which verify mi >

n∑

l=1

xlml). Whereas large

institutional investors are considered as benchmarks by other investors, we show that,
precisely due to the large market impact of such large institutional investors, other in-
vestors who try to beat the large fund by overweighting (resp. underweighting) assets
with expected returns larger (resp. lower) than the large fund’s benchmark will experi-
ence lower-than-expected returns.

4.2 Optimal strategy and efficient frontier in a simple example

The following example shows how supposedly optimal strategies become sub-optimal due
to the presence of large investors. When the size of the fund is significant, all investors
(including the fund itself) have to take into account the impact of the large fund when
choosing their allocations.

We consider the case of a market with n = 2 assets with zero fundamental correlation
and identical fundamental volatility. We write:

Σ =

(
σ2 0
0 σ2

)

and m =

(
m1

m2

)

and we assume, for example, that m1 > m2. The large institutional investor starts
investing in this market and keeps a constant proportion of each asset in its portfolio,
equal to 50% for each asset:

X =

(
50%
50%

)
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Consider now a small fund investing in those two assets and choosing, at date t,
an allocation y1t in asset 1 and y2t = 1 − y1t of asset 2 by maximizing a mean-variance
criteria. The small fund needs to estimate expected returns, variances and covariances
and then calculates its allocation in each asset by solving a mean-variance criteria:

y1t = argmax{Ut(y); y ∈ R} (17)

where
Ut(y) = yE (return1,t) + (1− y)E (return2,t)

−γ
(

y2E (variance1,t) + (1− y)2 E (variance2,t) + 2y (1− y)E (covariance1,2,t)
)

where γ is a parameter of risk aversion for the small fund.
In the presence of feedback effects from the rebalancing by the large institutional

investor, using Proposition 3.1 and Proposition 4.1, we find that:

U0(y) = ym1 + (1− y)m2 − γσ2
(

y2 + (1− y)2
)

+ (18)

+

(
yΛ1 − (1− y)Λ2

2
(m2 −m1)

)

+γσ2
(
y2Λ1 + (1− y)2Λ2 − y(1− y)(Λ1 + Λ2)

)
+O(‖Λ‖2)

Thanks to Eq (18), the following Proposition follows immediately. Notice that we
choose to focus on date 0 for clarity purpose only.

Proposition 4.3 At date 0, the optimal allocation in asset 1, associated to the mean-
variance criteria in Eq (17), is given by:

y10 =
1

2
+
m1 −m2

4γσ2
︸ ︷︷ ︸

benchmark

optimal strategy

+(Λ1 + Λ2)
m1 −m2

8γσ2
+

Λ1 − Λ2

4
+O(‖Λ‖2)

When there are no feedback effects, the mean variance criteria gives an optimal pro-
portion in each asset which is constant and hence implies that the small fund’s strategy
will be a fixed-mix strategy. We see that the larger the difference between the funda-
mental expected return of asset 1 and 2, the greater the allocation in asset 1 (recall that
m1 > m2). When risk aversion goes to infinity (γ → ∞), the optimal allocations do not
depend on the assets’ fundamental expected returns.

In the presence of feedback effects, the strategy 1
2 + m1−m2

4γσ2 is no longer optimal.
The presence of large institutional investors generates a non-optimality for strategies
which are optimal in the absence of feedback effects. If the small fund does not take
into account the market impact of the large fund, it will choose the benchmark optimal
strategy 1

2+
m1−m2

4γσ2 which is not optimal. On the contrary, if the small fund estimates the

fundamentals of the market (from price series when the large investor was not trading in
the market) and knows the strategy of the large institutional investor (which is realistic,
for example, for large mutual funds whose strategies have to be disclosed), the small fund
will be able to follow the strategy y1t which is optimal for the mean-variance criteria in

21

IESEG Working Paper Series 2014-ACF-01



Eq (17). Figure 3 shows that the efficient frontier is modified in the presence of feedback
effects. We see that taking feedback effects into account enables the small investor to
diminish the volatility of its portfolio for a given return. This stems from the fact
that fixed-mix rebalancing induces a decrease of realized asset volatilities, as shown in
Section 3.2, which can be used by an investor following the optimal strategy y1t to build a
less volatile portfolio. Trading and risk-management decisions by investors need to take
into account the allocations and sizes of large benchmark portfolios built by institutional
investors.
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Figure 3: Efficient frontier with and without feedback effects

4.3 Trade-off between diversification and impact

The rebalancing impact described in the previous sections limits the benefits of invest-
ing in the fixed-mix strategy. Typically, large institutional investors prefer investing a
significant portion of their wealth in such strategies, in order to enhance their returns,
and keep a minimum portion in cash or money-market securities. We show that, whereas
it is indeed favorable for the fund to diversify by investing a portion of its wealth in a
fixed-mix strategy, there exists a critical size for such an investment above which the
impact of rebalancing generates losses for the fund.

Consider that the fund holds a quantity C of cash and it can invest a portion α ∈ [0, 1]
in the fixed-mix strategy and a portion 1 − α at the risk free rate r (typically through
T-Bills). Given Corollary 4.2, the expected return for the fund at date 0 is hence equal
to:

(1− α)r + α

(
n∑

l=1

xlml +

n∑

i=1

xiΛi(

n∑

l=1

xlml −mi)

)

Typically, in order to generate a large return, the fund chooses a vector of allocations
(x1, ..., xn) for the fixed-mix strategy which overweights assets with large expected re-
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turns and hence, for all
n∑

i=1

xiΛi(
n∑

l=1

xlml −mi) < 0. In addition, as the fund invests a

portion α of its cash C in the fixed-mix strategy, we have Λi = αC xi

P i
0
Di

. As a conse-

quence, the expected return for the fund can be written as

α2

(
n∑

i=1

xi
xiC

P i
0Di

(

n∑

l=1

xlml −mi)

)

︸ ︷︷ ︸

<0

+α

(
n∑

l=1

xlml − r

)

︸ ︷︷ ︸

>0

+r (19)

Eq (19) shows that the return of the expected return for the fund is not increasing in α.

There exists α∗ =

n∑

l=1

xlml − r

2

n∑

i=1

x2iC

P i
0Di

(mi −
n∑

l=1

xlml)

such that� the return is increasing on [0, α∗]: when the fund starts investing in the fixed-mix
strategy, such investment actually increases its expected return. The more the
fund invests in the fixed-mix strategy, as long as the portion allocated is lower
than α∗, the larger the expected return for the fund.� the return is decreasing on [α∗, 1]: when the fund invests more than a portion α∗

of its wealth in the fixed-mix strategy, its own rebalancing impact actually lowers
its expected return and, the more it overweighs the fixed-mix strategy (above this
weight of α∗), the lower the expected return for the fund.

The critical size for the investment in the fixed-mix strategy is equal to

α∗C =

n∑

l=1

xlml − r

2

n∑

i=1

x2i
P i
0Di

(mi −
n∑

l=1

xlml)

When the fund invests more than α∗C in the fixed-mix strategy, its performance will be
diminished systematically by its own market impact.

5 Appendices

We denote

Mk =

(
Sk
Wk

)

∈
(
R

∗
+

)n+1
(20)

and

Zik+1 = ∆t(mi −
Σi,i
2

) +
√
∆tξik+1 (21)

As the large fund has long positions, we know that xi ≥ 0 for all 1 ≤ i ≤ n. In addition, we

have
n∑

i=1

xi = 1.
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5.1 Proof of Proposition 2.1

Let us show the following lemma which will imply Proposition 2.1.

Lemma 5.1 There exists θ : (R∗
+)

n+1 × R
n → (R∗

+)
n+1 such that for every compact set K ⊂

(R∗
+)
n+1, there exists ǫK > 0 such that θ is C∞ on K × B(0, ǫK) and such that for all periods

k ≥ 0:

(
Sk+1

Wk+1

)

=








S1
k+1
...

Snk+1

Wk+1








=








θ1(Sk,Wk, Zk+1)
...

θn(Sk,Wk, Zk+1)
θn+1(Sk,Wk, Zk+1)








and (Sk,Wk) verifies Equations 1, 2, and 3. Here Zk+1 is defined in Eq (21).

Proof Let Mk ∈ (R∗
+)
n+1, defined in Eq. Eq (20), and ξk+1 be given, thus fixing the value of

φik =
xiM

n+1
k

Mi
k

. We can write Eq (3) as M i
k+1 = Ai(Mk, Zk+1) +

1
Mi

k+1

Bi(Mk, Zk+1)M
n+1
k+1 for

1 ≤ i ≤ n, where Ai and Bi are defined on (R∗
+)

n+1 × R
n by:

Ai(M,Z) =M i exp(Zi)

(

1− xiM
n+1

M iDi

)

(22)

Bi(M,Z) =M i exp(Zi)
xi

Di

(23)

which implies that M i
k+1 = 1

2

(

Ai(Mk, Zk+1) +
√

A2
i (Mk, Zk+1) + 4Bi(Mk, Zk+1)M

n+1
k+1

)

. Rein-

jecting in Equation 2, we find that Mn+1
k+1 is a fixed point of the function

v(x) =
1

2

n∑

i=1

xiM
n+1
k

M i
k

(

Ai(Mk, Zk+1) +
√

A2
i (Mk, Zk+1) + 4Bi(Mk, Zk+1)x

)

Let us show that v has a unique fixed point on R
∗
+.

Existence Given the expression of v, it is clear that for x large enough, v(x) < x. We then
examine the three following possibilities:� there exists i0 such that Ai0(Mk, Zk+1) > 0, which implies that v(0) > 0 and, as v is a

continuous function of x, that v(x) > x for x small enough;� there exists i0 such that Ai0(Mk, Zk+1) = 0, which implies that

v(x) ≥ 1

2

xiM
n+1
k

M i0
k

√

4Bi0(Mk, Zk+1)x

which is strictly larger than x for x small enough;� ∀i Ai(Mk, Zk+1) < 0 which implies that v(0) = 0. Let us then calculate:

v′(0) =
n∑

i=1

xiM
n+1
k

M i
k

Bi(Mk, Zk+1)

|Ai(Mk, Zk+1)|
=

n∑

i=1

xiM
n+1
k

M i
k

xi

Di

xiM
n+1
k

Mi
k
Di

− 1
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This implies that:

v′(0) >
n∑

i=1

xiM
n+1
k

M i
k

xi

Di

xiM
n+1
k

Mi
k
Di

=

n∑

i=1

xi = 1

assuring that v(x) > x for x small enough.

As v is a continuous function of x, that v(x) > x for large x and v(x) < x for small x, there
exists at least one fixed point x0 > 0 such that v(x0) = x0.

Unicity Suppose that there exist two fixed points of function v, denoted a and b with 0 < a < b.

As v is concave, for 0 < x < a we have v(a)−v(x)
a−x ≥ v(b)−v(a)

b−a = 1, meaning that x ≥ v(x) which is
in contradiction with the fact that x < v(x) for x sufficiently small. As a consequence, v cannot
have more than one fixed point. The unique fixed point of v is Mn+1

k+1 > 0 and we can deduce,
for 1 ≤ i ≤ n:

M i
k+1 =

1

2

(

Ai(Mk, Zk+1) +
√

A2
i (Mk, Zk+1) + 4Bi(Mk, Zk+1)M

n+1
k+1

)

> 0

This proves Proposition 2.1. We now denote ψ : (R∗
+)
n+1 × R

n × R
∗
+ → R defined by:

ψ : (M,Z, x) → x− 1

2

n∑

i=1

xiM
n+1

M i

(

Ai(M,Z) +
√

A2
i (M,Z) + 4Bi(M,Z)x

)

where Ai and Bi are defined respectively in Eq (22) and Eq (23). ψ is C∞. Furthermore, we

have ψ(M, 0,Mn+1) = 0 and Ai(M, 0) = M i
(

1− xiM
n+1

MiDi

)

and Bi(M, 0) = M i xi

Di
according to

Eq (22) and Eq (23), which implies that

A2
i (M, 0) + 4Bi(M, 0)Mn+1 =

(

M i

(

1 +
xiM

n+1

M iDi

))2

(24)

Hence we find that:

∂ψ

∂x
(M, 0,Mn+1) = 1−

n∑

i=1

xiM
n+1

M i

Bi(M, 0)
√

A2
i (M, 0) + 4Bi(M, 0)Mn+1

= 1−
n∑

i=1

xi ×
xiM

n+1

Mi

Di +
xiMn+1

Mi

=

n∑

i=1

xi −
n∑

i=1

xi ×
xiM

n+1

Mi

Di +
xiMn+1

Mi

∂ψ

∂x
(M, 0,Mn+1) =

n∑

i=1

xi

1 + xiMn+1

DiMi

> 0 (25)

As a consequence, if K is a compact set of
(
R

∗
+

)n+1
, the implicit function theorem states

that there exists ǫK > 0 and θn+1 which is C∞ on K × B(0, ǫK) such that:

ψ(M,Z, θn+1(M,Z)) = 0 (26)
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and then, we deduce, for 1 ≤ i ≤ n,

θi(M,Z) =
1

2

(

Ai(M,Z) +
√

A2
i (M,Z) + 4Bi(M,Z)θn+1(M,Z))

)

and θi is C∞ on K × B(0, ǫK). This concludes the proof for the existence and smoothness of θ.

5.2 Proof of Theorem 2.2

Assumption 5.2 There exists η > 0 such that:

E(‖ exp(ηξ)‖) <∞ and E(‖ξ‖η+4) <∞

Define a (resp., b) a Mn+1×n(R)-valued (resp. Rn+1-valued) mapping such that

ai,j(S,W ) =

n∑

l=1

∂θi

∂zl
(S,W, 0)×Al,j (27)

bi(S,W ) =

n∑

j=1

∂θi

∂zj
(S,W, 0)mj +

1

2

n∑

j,l=1

∂2θi

∂zj∂zl
(S,W, 0)Σj,l (28)

where θ is defined in Lemma 5.1, mi = mi − Σi,i

2 and A is a square-root of the fundamental
covariance matrix: A tA = Σ.

Using Lemma 5.1 and (Cont and Wagalath, 2013b, Section 6.1), we directly find the following
Lemma:

Lemma 5.3 Under Assumption 5.2, for all ǫ > 0, r > 0:

lim
∆t→0

sup
‖M‖≤r

1

∆t
P(‖Mk+1 −Mk‖ ≥ ǫ|Mk =M) = 0 (29)

lim
∆t→0

sup
‖M‖≤r

∥
∥
∥
∥

1

∆t
E(Mk+1 −Mk|Mk =M)− b(M)

∥
∥
∥
∥
= 0 (30)

lim
∆t→0

sup
‖M‖≤r

∥
∥
∥
∥

1

∆t
E[(Mk+1 −Mk)(Mk+1 −Mk)

t|Mk =M ]− aat(M)

∥
∥
∥
∥
= 0 (31)

where a and b are defined respectively in Eq (27) and Eq (28).

The following lemmas are a direct consequence of the implicit function theorem and enable
to compute a and b explicitely.

Lemma 5.4 For 1 ≤ l, i ≤ n:

∂θi

∂zl
(M, 0) =

M i

1 + xiMn+1

MiDi










δi,l +
xiM

n+1

MiDi

n∑

j=1

xj

1 +
xjMn+1

MjDj

× xl

1 + xlMn+1

MlDl










(32)

∂θn+1

∂zl
(M, 0) =

Mn+1

n∑

j=1

xj

1 +
xjMn+1

MjDj

xl

1 + xlMn+1

MlDl

(33)
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Proof θn+1 is defined implicitely by ψ(M,Z, θn+1(M,Z)) = 0, where ψ is given in Eq (??). The
implicit function theorem gives, for 1 ≤ l ≤ n,

∂θn+1

∂zl
(M,Z) =

− ∂ψ
∂zl

(M,Z, θn+1(M,Z))
∂ψ
∂x

(M,Z, θn+1(M,Z))
(34)

Given the expression for ψ given in Eq (??), we find that

∂ψ

∂zl
(M,Z, θn+1(M,Z)) =

−1

2

xlM
n+1

M l

(

Al(M,Z) +
A2
l (M,Z) + 2Bl(M,Z)x

√

A2
l (M,Z) + 4Bl(M,Z)x

)

(35)

and
∂ψ

∂x
(M,Z, θn+1(M,Z)) = 1−

n∑

i=1

xiM
n+1

M i

Bi(M,Z)
√

A2
i (M,Z) + 4Bi(M,Z)x

(36)

Using Eq (22) and Eq (23), we find that

A2
l (M,Z) + 2Bl(M,Z)Mn+1 = (M l)2

(

1 +

(
xlM

n+1

M lDl

)2
)

(37)

Given Eq (24) and the fact that θn+1(M, 0) =Mn+1, we find that

∂ψ

∂zl
(M, 0, θn+1(M, 0)) =

−xlMn+1

1 + xlMn+1

MlDl

(38)

Using Eq (34), Eq (38) and Eq (25), we find that

∂θn+1

∂zl
(M, 0) =

Mn+1

n∑

j=1

xj

1 +
xjMn+1

MjDj

xl

1 + xlMn+1

MlDl

Let us now calculate, for 1 ≤ i ≤ n and 1 ≤ l ≤ n, ∂θi
∂zl

(M, 0). Given the definition of θi, we
remark that:

∂θi

∂zl
(M,Z) = − ∂ψ

∂zl
(M,Z, θn+1(M,Z))

δi,l
xiMn+1

Mi

+
Bi(M,Z)∂θn+1

∂zl
(M,Z)

√

A2
l (M,Z) + 4Bl(M,Z)x

(39)

which, evaluated in 0 and given the expression for ∂θn+1

∂zl
and Eq (24) gives:

∂θi

∂zl
(M, 0) =

M i

1 + xiMn+1

MiDi










δi,l +

xiM
n+1

MiDi

n∑

j=1

xj

1 +
xjMn+1

MjDj

× xl

1 + xlMn+1

MlDl










Lemma 5.5 For 1 ≤ j, l ≤ n:

∂2θn+1

∂zj∂zl
(M, 0)

1

Mn+1

∑

1≤p≤n

xp

1 +
xpMn+1

DpMp

=
δj,lxl

1 + xlMn+1

DlMl




1−

2
(
xlM

n+1

DlMl

)2

(

1 + xlMn+1

DlMl

)2




 (40)
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+
2xjxl

(

1 + xlMn+1

DlMl

)(

1 +
xjMn+1

DjMj

)
1

∑

1≤p≤n

xp

1 +
xpMn+1

DpMp






(
xlM

n+1

DlMl

)2

(

1 + xlMn+1

DlMl

)2 +

(
xjM

n+1

DjMj

)2

(

1 +
xjMn+1

DjMj

)2






− 2xjxl
(

1 + xlMn+1

DlMl

)(

1 +
xjMn+1

DjMj

)
1




∑

1≤p≤n

xp

1 +
xpMn+1

DpMp





2

∑

1≤p≤n

xp

(
xpM

n+1

DpMp

)2

(

1 +
xpMn+1

DpMp

)3

∂2θi

∂zj∂zl
(M, 0,Mn+1) = δi,jδj,l

M i

1 + xiMn+1

DiMi




1−

2
(
xlM

n+1

DlMl

)2

(

1 + xlMn+1

DlMl

)2




 (41)

+2M i

(
xiM

n+1

DiMi

)2

(

1 + xiMn+1

DiMi

)3

1
∑

1≤p≤n

xp

1 +
xpMn+1

DpMp



δi,l
xj

(

1 +
xjMn+1

DjMj

) + δi,j
xl

(

1 + xlMn+1

DlMl

)





−2Mi

2
(
xlM

n+1

DlMl

)2

(

1 + xlMn+1

DlMl

)3

xj

1+
xjM

n+1

DjM
j

xl

1+
xlM

n+1

DlM
l




∑

1≤p≤n

xp

1 +
xpMn+1

DpMp





2 +
xi

Di

1 + xiMn+1

DiMi

∂2θn+1

∂zj∂zl
(M, 0)

Proof We first calculate for 1 ≤ j, l ≤ n
∂2θn+1

∂zj∂zl
(M, 0). Deriving Eq (35) with respect to zl and

zj gives the following equation:

∂2ψ

∂zj∂zl
(M,Z, θn+1(M,Z)) +

∂2ψ

∂x∂zl
(M,Z, θn+1(M,Z))

∂θn+1

∂zj
(M,Z) (42)

+
∂2ψ

∂x∂zj
(M,Z, θn+1(M,Z))

∂θn+1

∂zl
(M,Z) +

∂2ψ

∂x2
(M,Z, θn+1(M,Z))

θn+1

∂zj
(M,Z)

θn+1

∂zl
(M,Z)

+
∂ψ

∂x
(M,Z, θn+1(M,Z))

∂2θn+1

∂zj∂zl
(M,Z) = 0

Considering Eq (35), we find that if l 6= j, then ∂2ψ
∂zj∂zl

(M,Z, θn+1(M,Z)) = 0. Deriving Eq

(35) with respect to zl, we find that

∂2ψ

∂z2l
(M,Z, x) = −1

2

xlM
n+1

M l

(

Al(M,Z) +
2A2

l (M,Z) + 2Bl(M,Z)x
√

A2
l (M,Z) + 4Bl(M,Z)x

− (A2
l (M,Z) + 2Bl(M,Z)x)2

(A2
l (M,Z) + 4Bl(M,Z)x)

3
2

)

=
∂ψ

∂zl
(M,Z, x) +

2xlM
n+1

M l

B2
l (M,Z)x2

(A2
l (M,Z) + 4Bl(M,Z)x)

3
2

Evaluating this equation in 0 and using Eq (38) and Eq (24), we find that

∂2ψ

∂zj∂zl
(M, 0,Mn+1) = δj,l

xlM
n+1

(

1 + xlMn+1

DlMl

)3

((

1− xlM
n+1

DlM l

)2

− 1

)

(43)
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Deriving Eq (35) with respect to x, we find that

∂2ψ

∂zl∂x
(M,Z, x) = −2xlM

n+1(M,Z)

M l

B2
l (M,Z)x

(A2
l (M,Z) + 4Bl(M,Z)x)

3
2

which, evaluated in 0, gives

∂2ψ

∂zl∂x
(M, 0,Mn+1) = −2xl

(
Mn+1xl

M lDl

)2
1

(

1 + Mn+1xl

MlDl

)3 (44)

Differentiating Eq (36) with respect to x, we find that

∂2ψ

∂x2
(M,Z, x) = 2

∑

1≤p≤n

xpM
n+1

Mp

B2
p(M,Z)

(A2
p(M,Z) + 4Bp(M,Z)x)

3
2

which implies that

∂2ψ

∂x2
(M, 0,Mn+1) =

2

Mn+1

∑

1≤p≤n

xp

(
xpM

n+1

DpMp

)2

(

1 +
xpMn+1

DpMp

)3 (45)

Using Eq (32), Eq (33), Eq (43), Eq (44) and Eq (45), the relationship given in Eq (42) gives
Eq (40) of Lemma 5.5.

Using Eq (39), we can calculate the second order derivative of θi for 1 ≤ i ≤ n. For
1 ≤ j, l ≤ n:

∂2θi

∂zj∂zl
(M,Z, θn+1(M,Z)) = − δi,l

xiMn+1

Mi

(
∂2ψ

∂zj∂zl
(M,Z, θn+1(M,Z))

)

− δi,l
xiMn+1

Mi

(
∂2ψ

∂x∂zl
(M,Z, θn+1(M,Z))

∂θn+1

∂zj
(M,Z)

)

+δi,j
∂θn+1

∂zl
(M,Z)

2B2
i (M,Z)θn+1(M,Z)

(A2
i (M,Z) + 4Bi(M,Z)θn+1(M,Z))

3
2

−2
B2
i (M,Z)∂θn+1

∂zj
(M,Z)∂θn+1

∂zl
(M,Z)

(A2
i (M,Z) + 4Bi(M,Z)θn+1(M,Z))

3
2

+
Bi(M,Z)

√

A2
i (M,Z) + 4Bi(M,Z)θn+1(M,Z)

∂2θn+1

∂zj∂zl
(M,Z)

which, for Z = 0, gives Eq (41).

Define the differential operator G : C∞
0 (Rn+1) 7→ C∞

0 (Rn+1) by

Gh(x) =
1

2

∑

1≤i,j≤n
(aat)i,j(x)∂i∂jh+

n∑

i=1

bi(x)∂ih

where a and b are defined in Eq (27) and Eq (28) respectively. a and b are continous and
Lemmas 5.4 and 5.5 show that for all x ∈ R

n+1, ‖a(x)‖ + ‖b(x)‖ ≤ K‖x‖. (Ethier and Kurtz,
1986, Theorem 2.6, Ch.8) states that the martingale problem for (G, δS0,W0) is well-posed. So,
by Lemma 5.3 and (Ethier and Kurtz, 1986, Theorem 4.2, Ch.7), this implies that the process
(S⌊ t

∆t
⌋,W⌊ t

∆t
⌋) converges in distribution to the solution (P, (Pt, Vt)t≥0) of the martingale problem

for (G, δS0,W0) when ∆t→ 0.
Furthermore, as a and b are C∞, they are locally Lipschitz and hence, by (Ikeda and Watanabe,

1981, Theorem 3.1, Ch.4), the solution of the martingale problem for (G, δS0,W0) is the unique
strong solution of the stochastic differential equation given in Theorem 2.2.
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5.3 Proof of Proposition 3.1

We know that

C
i,j

[0,T ] =
[lnP i, lnP j ]T

T
=

1

T

∫ T

0

ci,js ds

where cs is the derivative of the quadratic covariation and corresponds to the instantaneous
covariance matrix of asset returns. By direct computation from Theorem 2.2 and Lemma 5.4,
we find that

ct = Σ+ Σ( tΓt − In)Ft + Ft(Γt − In)Σ (46)

+Ft(Γt − In)Σ(
tΓt − In)Ft

where Ft and Γt are n× n matrices such that Ft is diagonal with i-th term equal to

F
i,i
t =

ΦitΛi
1 + ΦitΛi

and Γi,jt =




∑

1≤p≤n

xp

1 + ΦptΛp





−1

xj

1 + ΦjtΛj
(47)

with Φit =
φi
t

φi
0
.This implies that:

C[0,T ] = Σ +
1

T

∫ T

0

(
Σ( tΓs − In)Fs + Fs(Γs − In)Σ

)
ds (48)

+
1

T

∫ T

0

(
Fs(Γs − In)Σ(

tΓs − In)Fs
)
ds

where Fs and Γs are defined in Eq (47). We study the expression of C[0,T ] given in Eq (48). Let
us start with the term

1

T

∫ T

0

(Fs(Γs − In)Σ) ds

We have

[Fs(Γs − In)]i,k =
ΛiΦ

i
s

1 + ΦisΛi









∑

1≤p≤n

xp

1 + ΦpsΛp





−1

xk

1 + Φk(s)Λk
− δi,k






which implies that

∫ T

0

[Fs(Γs − In)Σ]i,jds =

∫ T

0

∑

1≤k≤n
[Fs(Γs − In)]i,kΣk,jds

= −
∫ T

0

ΛiΦ
i
s

1 + ΦisΛi
Σi,jds+

∫ T

0

ΛiΦ
i
s

1 + ΦisΛi

∑

1≤k≤n




∑

1≤p≤n

xp

1 + ΦpsΛp





−1

xk

1 + Φk(s)Λk
Σk,jds

We then remark that
∣
∣
∣
∣
∣

∫ T

0

ΛiΦ
i
s

1 + ΦisΛi
Σi,jds−

∫ T

0

ΛiΦ
i
sΣi,jds

∣
∣
∣
∣
∣
≤ |Σi,j |Λ2

i

∫ T

0

(Φis)
2

1 + ΦisΛi
ds
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and hence ∣
∣
∣
∣
∣

∫ T

0

ΛiΦ
i
s

1 + ΦisΛi
Σi,jds−

∫ T

0

ΛiΦ
i
sΣi,jds

∣
∣
∣
∣
∣
≤ |Σi,j |Λ2

i

∫ T

0

(Φis)
2ds (49)

Furthermore, we remark that:
∣

∣

∣

∣

∣

∣

∫ T

0

ΛiΦ
i
s

1 + Φi
sΛi

∑

1≤k≤n





∑

1≤p≤n

xp

1 + Φp
sΛp





−1

xk

1 + Φk(s)Λk

Σk,jds−

∫ T

0

ΛiΦ
i
s

∑

1≤k≤n

xkΣk,jds

∣

∣

∣

∣

∣

∣

≤

n
∑

k=1

xk |Σk,j |

∫ T

0

Φi
sΛi

∣

∣

∣

∣

∣

∣

1

1 + Φi
sΛi

1

1 + Φk(s)Λk





∑

1≤p≤n

xp

1 + Φp
sΛp





−1

− 1

∣

∣

∣

∣

∣

∣

ds

≤
n
∑

k=1

xk |Σk,j |

∫ T

0

Φi
sΛi

(1 + Φk(s)Λk) (1 + Φi
sΛi)

∣

∣

∣

∣

∣

∣





∑

1≤p≤n

xp

1 + Φp
sΛp





−1

− (1 + Φk(s)Λk)
(

1 + Φi
sΛi

)

∣

∣

∣

∣

∣

∣

ds

≤
n
∑

k=1

xk |Σk,j |

∫ T

0

Φi
sΛi

∣

∣

∣

∣

∣

∣





∑

1≤p≤n

xp

1 + Φp
sΛp





−1

− (1 + Φk(s)Λk)
(

1 + Φi
sΛi

)

∣

∣

∣

∣

∣

∣

ds

≤
n
∑

k=1

xk |Σk,j |

∫ T

0

Φi
sΛi

∣

∣

∣

∣

∣

∣

∣

∣

Φi
sΛi + Φk(s)Λk + Φi

sΦk(s)ΛiΛk +









∑

1≤p≤n

xp

1 + Φp
sΛp

− 1

∑

1≤p≤n

xp

1 + Φp
sΛp









∣

∣

∣

∣

∣

∣

∣

∣

ds

≤

n
∑

k=1

xk |Σk,j |

∫ T

0

Φi
sΛi

∣

∣

∣

∣

∣

∣

∣

∣

Φi
sΛi + Φk(s)Λk + Φi

sΦk(s)ΛiΛk +









∑

1≤p≤n

xp

1 + Φp
sΛp

−
∑

1≤p≤n

xp

∑

1≤p≤n

xp

1 + Φp
sΛp









∣

∣

∣

∣

∣

∣

∣

∣

ds

≤
n
∑

k=1

xk |Σk,j |

∫ T

0

Φi
sΛi











Φi
sΛi + Φk(s)Λk + Φi

sΦ
k
sΛiΛk −











∑

1≤p≤n

xpΦ
p
sΛp

1 + Φp
sΛp

∑

1≤p≤n

xp

1 + Φp
sΛp





















ds

≤

n
∑

k=1

xk |Σk,j |

∫ T

0

Φi
sΛi

∣

∣

∣

∣

∣

∣

Φi
sΛi +Φk

sΛk +Φi
sΦ

k
sΛiΛk +

∑

1≤p≤n

xpΦ
p
sΛp

∑

1≤p≤n

xp(1 + Φp
sΛp)

∣

∣

∣

∣

∣

∣

ds (50)

where we used that
n∑

p=1

xp = 1 and that for strictly positive real numbers (yi)1≤i≤n, we have

the convexity inequality

(
n∑

p=1

xp

yp

)−1

≤
n∑

p=1

xpyp.

Given Lemmas 5.4 and 5.5, we find that, for 1 ≤ i, k ≤ n,
ai,k(Pt,Vt)

P i
t

,
an+1,k(Pt,Vt)

Vt
, bi(Pt,Vt)

P i
t

and bn+1(Pt,Vt)
Vt

, defined in Eq (27) and Eq (28), are bounded uniformly in Λ. As a con-

sequence, by applying Itô’s formula to (φ(t)i)p(φ(t)j)q(φ(t)k)r for p, q, r ≥ 0, we find that
E((φ(t)i)p(φ(t)j)q(φ(t)k)r) ≤ K exp(Ct) where C does not depend on Λ.
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Given that Φis =
Φi

s

φi
0
and using Eq (49), we find that

∫ T

0

ΛiΦ
i
s

1 + ΦisΛi
Σi,jds =

∫ T

0

ΛiΦ
i
sΣi,jds+O(‖Λ‖2)

where E

(
O(‖Λ‖2)
‖Λ‖2

)

is bounded when Λ goes to zero.

Similarly, using Eq (50), we find that

∫ T

0

ΛiΦ
i
s

1 + ΦisΛi

n∑

k=1

(
n∑

p=1

xp

1 + ΦpsΛp

)−1
xk

1 + ΦksΛk
Σk,jds =

∫ T

0

ΛiΦ
i
s

n∑

k=1

xkΣk,jds+O(‖Λ‖2)

We then use the same methodology to study the other terms of C[0,T ] given in Eq (48). We

conclude this proof by using Ito’s formula and the fact that Φi0 =
φi
0

φi
0
= 1, which gives the

relationship

1 +

∫ T

0

(

1− s

T

)

dΦis =
1

T

∫ T

0

Φisds = ∆ΦiT

which leads to the decomposition of C[0,T ] given in Proposition 3.1. The decomposition of R[0, T ]

follows directly, as R[0, T ]
i,j =

C
i,j

[0,T ]
(

Ci,i([0,T ])Cj,j

[0,T ]

) 1
2
.

5.4 Proof of Corollary 3.4

Proof In our example, the fundamental correlation matrix R̃(0) is such that [R̃(0)]i,i = 1 and

[R̃(0)]i,j = ρ for i 6= j. As a consequence, it has a simple eigenvalue v1(0) = 1 + (n − 1)ρ,

associated to the eigenvector ψ1(0) =
1√
n






1
...
1




, and an eigenvalue of order n−1: vk(0) = 1−ρ

for 2 ≤ k ≤ n, associated to eigenvectors (ψk(0))2≤k≤n, which form an orthonormal basis of the

hyperplan of Rn: H = {z ∈ R
ns.t.

n∑

i=1

zi = 0}. As the largest eigenvalue of the fundamental

correlation matrix, v1(0), is a simple eigenvalue, we can use Proposition 3.3 to compute the
largest eigenvalue and the first eigenvector of the realized correlation matrix of returns in the
presence of feedback effects.

Given the parameters of our example, we find that for i 6= j

[∇R]i,j = Λ(1 − ρ)(ρ+
1− ρ

n
)

(

2 +

∫ T

0

(

1− s

T

)

dΦ̃i(s) +

∫ T

0

(

1− s

T

)

dΦ̃j(s)

)

We hence find the expression for v(Λ) given in Corollary 3.4 by direct computation of Proposition
3.3.

Proposition 3.3 states that the first eigenvalue of the realized correlation matrix of returns
in the presence of feedback effects is given by:

ψ1 = ψ1 +
1

nρ

n∑

k=2

(
tψk∇Rψ1

)
ψk + o(Λ)
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as v1(0) − vk(0) = nρ for k ≥ 2. Given the fact that (ψk)2≤k≤n is an orthonormal basis of

H = {z ∈ R
ns.t.

n∑

i=1

zi = 0}, the term

n∑

k=2

(
tψk∇Rψ1

)
ψk is the orthogonal projection of ∇Rψ1

on H. Given the equation defining H, this orthogonal projection pH on H is expressed as

pH(z) =










z1 − 1
n

∑

1≤i≤n
zi

...

zn − 1
n

∑

1≤i≤n
zi










As
[
∇Rψ1

]

i
= 1√

n
Λ(1 − ρ)(ρ + 1−ρ

n
)
∑

j 6=i

(

2 + ∆ΦiT +∆ΦjT

)

, and given the expression for pH,

we find the expression for ψ1 given in Corollary 3.4
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