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Abstract: We use a Monte Carlo experiment to compare the quadratic and translog functional 

forms in terms of their ability to approximate known frontiers that possess convex curvature.  

Unlike some of the existing simulation studies that have studied this topic, we find that both 

functional forms provide a reliable approximation to a true frontier.  Our results lend support to 

existing explanations concerning the translog form’s innate propensity to yield convex, rather 

than concave, frontier estimates. 
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Two recent simulation studies comparing the ability of distance functions to represent production 

technology have concluded that quadratic directional output distance function (Chambers et al., 

1996, 1998) fares better than translog Shephard (1970) output distance function.  Färe et al. 

(2010) performed this comparison in the quantity space, whereas Chambers et al. (2013) 

implemented it in the price space.  As a possible explanation, both papers mention the translog 

function’s intrinsic propensity to produce frontier estimates that possess convex curvature—a 

problem when modeling output distance functions, but a useful feature for parameterizing input 

distance functions (Shephard, 1953).  In this paper we perform a series of Monte Carlo 

experiments to compare a quadratic directional input distance function to a translog Shephard’s 

input distance function in terms of their ability to approximate different families of true 

production technologies.  We rely on the first- and second-order derivatives of these functions in 

order to determine which of them performs best. 

In the next section of this short note we give a quick overview of the two functional 

forms whose performance we assessed in this study.  Section 2 describes our simulation design 

and our most interesting results.  Section 3 concludes. 

 

1. The Functional Form Alternatives 

In this section, which builds on Chambers et al. (2013) and Färe et al. (2010), we 

introduce the functional forms that we consider in this paper.
1
  These parametric forms are 

derived from the two representations of the underlying technology, namely, Shephard’s (1953) 

input distance function and Luenberger’s (1992) benefit function, which we term “the directional 

                                                           
1
 We cite these “reference” papers repeatedly throughout the text, due to their importance in 

motivating the present study. 



IESEG Working Paper Series 2014-EQM-03 

input distance function” (Chambers et al. 1996), and the condition that they are of the form 

“generalized quadratic.” 

Let Nx   be an input vector and My   an output vector, so that the input 

requirement set in terms of these vectors is 

 

   yproducecanxxyL N : . 

 

We assume that  yL  meets the standard properties, such as non-emptiness, closeness, 

convexity, and disposability.  Shephard’s input distance function is defined as 

    yLxxyDi   :sup, , and we note that, under weak disposability of inputs, 

 

   yLxxyDi 1,  

and 

    0,,,   xyDxyD ii , 

 

where  i  tells us that the distance function fully represents the technology and  ii  states that it 

is homogeneous of degree +1 in inputs. 

 The second representation of  yL  is in terms of the directional input distance function, 

      yLgxgxyDi   :sup;,


, where 0  gg N  is the directional vector, which 

indicates how x is projected towards the boundary of  yL . This distance function satisfies 

 

   yLxgxyDi  0;,


 

(1) 

(i) 

(ii) 

(iii) 
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and 

    0,;,;,   gxyDggxyD ii


, 

 

i.e.  gxyDi ;,


, like Shephard’s distance function, fully represents the technology.  However, it 

satisfies the translation property (iv), rather than homogeneity (ii). 

 Next we show how homogeneity and translation properties influence the choice of 

functional forms.  We say that a function 2:F  is a generalized quadratic function if  

 

       













 

 

2

1

2

1

2

1

0

i j

jiij

i

ii qhqhaqhaaqF  , 

 

where iji aa ,  and :,h .  Färe and Sung (1986) showed that if a function is 

generalized quadratic and homogeneous it is either 

 

       
 


2

1

2

1

2

1

0 lnlnln
i j

jiij

i

ii qqaqaaqF , 

 

i.e. translog, or 

 

 
r

i j

r

j

r

iij qqaaqF

1
2

1

2

1

22

0 












 

 

, 

 

(iv) 

(2) 

(3) 

(4) 
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i.e. the quadratic mean of order r (Denny 1974, Diewert 1976).  Since the latter functional form 

has only second order terms, we choose the translog function (3) when parameterizing 

Shephard’s input distance function. 

 If a generalized quadratic function meets the translation property, there exist only two 

solutions to the resulting functional equation (Färe and Lundberg, 2006), namely
2
 

 

  
 


2

1

2

1

2

1

0

i j

jiij

i

ii qqaqaaqF , 

 

i.e. the quadratic function , or 

 

      .0,expexpln
2

1

1 1

 
 




I

i

I

j

jiij qqaqF  

 

Consistent with existing studies that compared the performance of the two distance functions, we 

will use the quadratic functional form to parameterize the directional input distance function. 

 

2. Monte Carlo Simulation Design and Results 

We assume that two inputs produce a single socially desirable output and consider two 

families of true technologies.  Those belonging to the first family have a fifth-order polynomial 

structure, i.e. 

 

                                                           
2
 Here we have chosen  1,1g . 

(5) 

(6) 
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    5.15

15

4

14

3

13

2

12110221 :, yxxxxxxxxyL PPPPPPPP   . 

 

The second group consists of so-called logarithmic technologies, given by  

 

        5.1

10221 expexp:, 1 yxxxxyL
L

LLL  . 

 

We closely follow the design of Färe et al. (2010) and Chambers et al. (2013), since our 

main goal is to test whether their main conclusions remain unchanged when the true frontier is 

convex.  Varying the vectors of coefficients P and L  enables us to alter the curvature of the 

true frontier.  We consider three such variations for both families of true technologies, labeled by 

P1, P2, P3, L1, L2, and L3, whose corresponding coefficient values are summarized in Table 1.  

We choose the coefficients so that the frontiers of P1 and L1 are relatively flat and subsequently 

change them to add more curvature.  Normalizing the outputs with an arbitrary quantity allows 

us to obtain the plots of these frontiers, similar to those given in Figure 1. 

We then randomly draw quantities of the first input and impose assumptions on the 

parameters of underlying distributions to ensure that the technology is well-behaved.  For the 

polynomial technologies these quantities are generated as  ,~1 Gammax , and two 

assumptions are placed on the distribution parameters.  Taking 5  and 5.0  yields 

relatively unequal quantities of 1x  and 2x  for nearly all observations, whereas assuming 18  

and 25.0  gives relatively balanced input values.  In the case of the translog technologies, 1x  

is drawn from the uniform distribution on the interval  8.2,8.0 .  Both outputs are assumed to be 

standard uniform and the sample size equals 50, 100, and 500 observations, giving us a total of 

(7) 

(8) 
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twenty-seven true models.  Finally, we complete the data generating process by assuming that 

  Pxx 22  when the true technology is polynomial and   Lxx 22  when it is translog, 

where  1,0~   and  1,0~   represent technical inefficiency and the conventional 

disturbance term, respectively. 

The next step of the experiment involves using these data to estimate distance functions.  

Since we can assume that    21,,exp xxyDi , the specification error can be added as 

      exp,,exp 21 xxyDi .  After rearranging, plugging this result in the expression 

representing distance function’s homogeneity, assuming 1

2

 x , and rearranging again we have 

the following result: 

 

     exp1,,1 212 xxyDx i . 

 

After taking the log of both sides and assuming the translog form for the normalized distance 

function   1,,ln 21 xxyDi , this specification can be estimated using the Aigner et al. (1977) 

method.
3
  Its estimated parameters can subsequently be used to recover the coefficients of the 

associated translog Shephard’s input distance function  exp : 

 

                                                           
3
 Relying on Shephard’s input distance functions’ homogeneity to obtain suitable econometric 

specifications is common in the literature. See Atkinson et al. (2003a, 2003b) and Grosskopf et 

al. (1997) for more details. 

(9) 
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           
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













 

 

 As far as the directional distance function is concerned, we can first assume that 

 gxxyDi ;,, 21


  and then add the two-sided error to the right-hand side of that equation.  

Combining this result with the expression for the function’s translation property, taking 

22 gx , and assuming  1,1g  yields the following composed-error specification after a 

series of rearrangements (Färe et al., 2005):
4
 

 

    22122 , gxxyDgx i


. 

 

 This normalized distance function is parameterized using the quadratic functional form 

and estimated using the same method.
5
  Its parameter estimates yield the coefficients of the 

corresponding quadratic directional distance function  , given by 

 

      i

i

i

i

ji

j

ij

i

iioi yxxxxyygxyD 
 


2

1

2

1

2

1

2

1

2

111 212;, 


 

                                                           
4
 Unlike in the previous case, an infinite number of suitable econometric specifications can be 

obtained by varying the assumptions placed on the mapping vector g , which is located in the 

third quadrant, suggesting that the inputs are being contracted. 

5
 Chambers et al. (2013) relied on the same method, while Färe et al (2013) chose parametric 

linear programming algorithm of Aigner and Chu (1968). 

(10) 

(11) 

(12) 
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 We use the vectors of maximum-likelihood parameter estimates   ˆ,ˆ,ˆ  and   ˆ,ˆ,ˆ  to 

recover quadratic and translog input set frontiers in order to assess whether either of these 

families of estimates fares better than the other.  We assume that 0  , normalize both 

outputs with the sample average y , and use 1x  to get the relevant best-practice quantities of 

  ˆ,ˆ,ˆˆ
22 xx   and   ˆ,ˆ,ˆ~

22 xx   for the quadratic and translog estimates, respectively.  

Finally, we use the pairs  21
ˆ, xx  and  21

~, xx  together with the distance functions’ parameter 

estimates to compute the associated marginal rate of technical substitution (MRTS) and the 

Morishima (1967) elasticity of substitution at each observation and then compare them to the 

true MRTS and elasticity for both parameterizations.
6
 

 The true MRTS and elasticity can be obtained using the expressions (1) and (2) and are 

the negative of 12 xx   and 
12

2

12

2

1
xx

xx
x




, respectively, where Pxx 22   for the polynomial 

technologies and Lxx 22   for the log technologies.  The estimated MRTS can be interpreted as 

the relative shadow price of inputs [Färe and Primont (1995)] and is given by 
 
  2

1

xD

xD




, where 

                                                           
6
 In addition to these two benchmarks, Färe et al. (2010) and Chambers et al. (2013) also 

compute the Euclidean distance between the true and estimated frontier points. They 

subsequently average across these three discrepancies before assessing the results using a single 

criterion, which is based on that average.  Here we use only two benchmarks and choose to 

compare the translog and quadratic functions’ ability to approximate the true MRTS separately 

from elasticity. 
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 D  denotes either  gxxyDi ;,, 21


 or  21,, xxyDi .  Consequently, the difference between the 

estimated and true MRTS is 

 

 
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

 , 

 

where kx2  equals either P

kx2  or L

kx2 , depending on the type of true technology.  Our first criterion 

is based on these discrepancies and is given by     

k kK
2121 . 

 The estimated Morishima elasticity of substitution is the log derivative of the shadow 

price of inputs with respect to the log of the ratio of input quantities.  Since the frontier of the 

input set is convex, this elasticity must be positive.  Similar to Färe et al. (2010) and Chambers et 

al. (2013), the difference between the estimated and true elasticity equals 
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(14) 

(13) 

(15) 

(16) 
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Note that the true elasticity of substitution corresponding to the true log models is given by 

L

11   and that, as before, kx2  is either P

kx2  or L

kx2 .  Our second criterion assesses the average 

difference between the true and estimated curvature of the frontier and is given by 

    

k kK
2121 . 

We formulate four econometric specifications for every true technology and estimate 

them using the Aigner et al. (1977) approach.  Three of them rely on the quadratic function and 

are defined by rotating the directional distance function’s mapping vector from  1,3g  to 

 1,1g  and then to  3,1g —a setup allows us to see if the approximation quality depends on 

the direction of input contraction.  The fourth specification relies on the translog Shephard’s 

distance function that assumes a proportional reduction of both inputs.  Approximation quality 

criteria that are based on the MRTS and elasticity are reported for each of the 108 cases in Tables 

2 and 3, respectively. Figures 2 and 3 contain a selection of frontier estimates, obtained using 

input vectors  21
ˆ, xx  and  21

~, xx .  Even though both functions can sometimes violate the global 

convexity of a true frontier, we chose not to impose any curvature conditions, since our main 

focus is the comparison of the functions’ innate modeling properties. 

We start by comparing the overall performance of the quadratic directional distance 

function and the translog Shephard’s distance function.  The MRTS-based discrepancies suggest 

that the translog functional form, whose corresponding benchmark quantities are reported in the 

bottom panel of Table 2, fares better than the quadratic function in approximately 85% (46 out of 

54) of cases when the known technology is polynomial, and in about 56% (17 out of 27) of cases 

when it has a log configuration.  In type-A models, where the translog frontier estimates often 

violate local convexity, the translog function outperforms the quadratic in all 27 cases.  This is 



IESEG Working Paper Series 2014-EQM-03 

perhaps our most notable result, which contrasts sharply with the findings of Färe et al. (2010), 

who report that “… in the case of the true polynomial technologies, the quadratic function’s 

global behavior is clearly superior to that of the translog function,” as well as those of Chambers 

et al. (2013), who mention that “… the quadratic parameterizations are overall better than 

translog in approximating both types of true technologies….”  However, as shown in Table 3, the 

advantage swings back in the quadratic function’s favor when modeling the curvature.  It 

dominates the translog function in 61% of cases when the true technology is polynomial and 

almost every time when it has a log structure. 

Table 3 also suggests that while most of the quadratic specifications that assume 

 3,1g  beat the translog function, the latter can outperform the quadratic function when the 

mapping vector is rotated toward  1,3g .  Consistent with the results of previous related 

studies, a quadratic specification whose mapping vector is most in line with the approach used to 

add inefficiency to the true models appears to dominate any of its quadratic counterparts.  In 

other words, since this inefficiency component was simply added to the second input, it is the 

specification that assumes a predominantly southern direction of contraction that does the best 

job of tracking a true technology. 

Another sign that the translog function may be better at approximating convex than 

concave frontiers is its large sample performance, which typically improves in true polynomial 

models, both when it is used to model the MRTS and the elasticity of substitution.
7
  However, 

this result no longer holds in true log models, where the translog function’s sample size related 

performance mostly deteriorates and whose corresponding translog frontier estimates usually 

                                                           
7
 This, too, differs from the results of Färe et al. (2010), who report precisely the opposite for 

concave frontiers. 



IESEG Working Paper Series 2014-EQM-03 

violate global convexity of the true frontier (Figure 3).  Sample size-related performance of the 

quadratic function is very good, but it depends on the directional vector in both types of true 

models.  Table 2 suggests that as the number of observations increases, the MRTS-based 

benchmark decreases in 11 out of 18 cases when  1,3g , nearly always when  1,1g , and 

every time when  3,1g .  Elasticity discrepancies associated with this functional form also 

decrease with an increase in sample size in the overwhelming majority of cases.  The last two 

results are consistent with findings reported in existing simulation studies, suggesting that the 

quadratic function fares relatively well regardless of whether the known frontier is convex or 

concave. 

Finally, the last set of findings that contradict the conclusions of our reference studies 

concerns the translog function’s handling of an increase in the true curvature.  Benchmark values 

in columns 2 and 4 (type-A models), as well as columns 8 and 10 (log models) of the bottom 

panel of Table 3 suggest that approximation quality usually improves when we add more 

curvature to a convex frontier.  By contrast, the quadratic function always fares best when the 

true frontier is relatively flat. 

 

3. Conclusion 

Recent simulation studies by Färe et al. (2010) and Chambers et al. (2013) have 

compared the quadratic and translog functional forms and found that the former dominates the 

latter when used to approximate the concave frontier of the output set.  Their authors have 

suggested that the key reason may be the translog function’s inherent propensity to yield globally 

convex frontier estimates even when the true frontier is concave.  We investigate this possibility 

by estimating a selection of convex frontiers of the input set and show that the translog function 
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does behave much better.  Although the quadratic function’s overall performance remains 

adequate, its dominance of the translog form has diminished.  For example, we found evidence 

that the translog form sometimes outperforms quadratic even when the true technology has a 

polynomial structure.  The performance of either function can be rather uneven, and it depends 

on the characteristics of the known technology. 

To put this analysis in a more general context, we note that our conclusions are consistent 

with the results of simulation studies by Wales (1977) and Guilkey et al. (1983), who have 

compared the performance of various functional forms, including the translog, but did not 

consider the quadratic function. Even though the translog form is clearly imperfect at modeling 

convex frontiers, it can sometimes outperform other functional forms, including those that are 

better than translog at approximating concave frontiers.  Whenever possible, we recommend 

using both of these forms in empirical studies in order to model a true technology as best as 

possible.
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Table 1 

 

Parameters Defining the True Technology 

 

 

 

Polynomial Technologies 

 

 P1 P2 P3 

P

0  15.00 16.40 18.00 
P

1  ‒2.80 ‒3.40 ‒3.85 
P

2  0.15 0.22 0.25 
P

3  ‒0.10×10
‒3 

‒0.50×10
‒3

 0.10×10
‒4

 
P

4  ‒0.20×10
‒3

 ‒0.15×10
‒3

 ‒0.22×10
‒3

 
P

5  ‒0.10×10
‒5

 ‒0.20×10
‒4

 ‒0.10×10
‒4

 

 

 

 

 

Logarithmic Technologies 

 

 L1 L2 L3 

L

0  0.91 1.17 1.44 
L

1  ‒0.32 ‒0.57 ‒0.82 
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Table 2 

 

Approximation Criterion Based on the Marginal Rate of Technical Substitution 

 

 

Directional Input Distance Function 

 

 P1A P2A P3A P1B P2B P3B L1 L2 L3 

g = (3, 1) 

K=50 

K=100 

K=500 

0.691 

0.642 

0.674 

0.620 

0.583 

0.607 

0.586 

0.553 

0.574 

0.736 

0.731 

0.717 

0.708 

0.716 

0.691 

0.706 

0.651 

0.651 

2.786 

3.135 

3.471 

2.049 

2.154 

2.010 

2.278 

2.233 

2.060 

g = (1, 1) 

K=50 

K=100 

K=500 

0.589 

0.550 

0.530 

0.582 

0.542 

0.516 

0.569 

0.522 

0.489 

0.612 

0.583 

0.556 

0.592 

0.553 

0.531 

0.603 

0.540 

0.512 

2.128 

2.265 

2.175 

1.827 

1.753 

1.557 

2.115 

1.807 

1.690 

g = (1, 3) 

K=50 

K=100 

K=500 

0.467 

0.370 

0.310 

0.578 

0.411 

0.338 

0.453 

0.369 

0.305 

0.440 

0.362 

0.314 

0.465 

0.370 

0.301 

0.453 

0.370 

0.303 

1.245 

1.199 

1.009 

1.304 

1.168 

0.955 

1.466 

1.296 

1.094 

 

 

Shephard’s Input Distance Function 

 

 P1A P2A P3A P1B P2B P3B L1 L2 L3 

K=50 

K=100 

K=500 

0.384 

0.306 

0.253 

0.369 

0.293 

0.231 

0.368 

0.282 

0.216 

0.459 

0.407 

0.432 

0.464 

0.408 

0.387 

0.456 

0.412 

0.368 

1.306 

1.331 

1.435 

1.482 

1.513 

1.568 

1.928 

2.012 

2.016 
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Table 3 

 

Approximation Criterion Based on the Morishima Elasticity of Substitution 

 

 

Directional Input Distance Function 

 

 P1A P2A P3A P1B P2B P3B L1 L2 L3 

g = (3, 1) 

K=50 

K=100 

K=500 

0.301 

0.298 

0.290 

0.424 

0.416 

0.412 

0.454 

0.450 

0.447 

0.655 

0.644 

0.621 

0.942 

0.936 

0.916 

1.131 

1.114 

1.102 

1.331 

1.321 

1.319 

1.571 

1.576 

1.573 

1.808 

1.809 

1.800 

g = (1, 1) 

K=50 

K=100 

K=500 

0.206 

0.195 

0.184 

0.315 

0.306 

0.299 

0.361 

0.349 

0.344 

0.460 

0.450 

0.423 

0.756 

0.716 

0.688 

0.913 

0.882 

0.869 

1.325 

1.295 

1.260 

1.560 

1.553 

1.528 

1.774 

1.728 

1.716 

g = (1, 3) 

K=50 

K=100 

K=500 

0.162 

0.107 

0.064 

0.200 

0.160 

0.141 

0.214 

0.189 

0.181 

0.494 

0.289 

0.178 

0.552 

0.412 

0.330 

0.719 

0.489 

0.442 

1.290 

1.169 

1.057 

1.351 

1.270 

1.224 

1.422 

1.398 

1.366 

 

 

Shephard’s Input Distance Function 

 

 P1A P2A P3A P1B P2B P3B L1 L2 L3 

K=50 

K=100 

K=500 

0.523 

0.385 

0.401 

0.440 

0.422 

0.364 

0.426 

0.402 

0.348 

0.476 

0.447 

0.386 

0.726 

0.700 

0.697 

0.860 

0.861 

0.868 

1.869 

2.002 

1.850 

1.901 

1.925 

1.853 

1.800 

1.824 

1.816 
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Figure 1 

Frontiers of the Input Set Corresponding to the True Polynomial and Log Technologies 
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Figure 2 

Frontier Estimates Corresponding to Selected Polynomial Technologies 
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Figure 3 

Frontier Estimates Corresponding to Selected Log Technologies 
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