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Abstract

Computer mediated transactions ([Varian, 2010]) allow insurance companies to cus-

tomize their contracts while transaction costs limits this tendency toward customiza-

tion. To capture this, we develop a complete-information framework in which it is costly

to design a new market segment when the segmentation policy (number and design of

segments) is endogenously chosen. Both the case of a private and a public insurer are

considered. Without transaction cost, these two insurance systems are equivalent in

terms of social welfare and participation. With transaction costs, this equivalence is

not anymore true and the analysis of this di�erence is the subject of this article.

*I am grateful to David Cranich, Louis Eeckhoudt, Nicolas Houy, Izabella Jelovac, Rabia Nessah, Richard

Rubble and Ed Schlee for their comments or remarks on an earlier version of this paper. This earlier version

of this paper has been presented in PET 14 (Seattle), in IIOC 2015 (Boston), and in the seminar GATE-EM

Lyon. Needless to say, the usual disclaimers apply.
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1 Introduction

In his well-known article devoted to the organization of the (health) insurance market,

[Diamond, 1992] reports that roughly 12% of the revenue of the U.S. health insurance in-

dustry goes to the administrative expenses. These expenses, called transaction costs in

this article, represent all the bureaucratic �xed costs to run and manage an insurance com-

pany and do not by de�nition include the (expected) cost of claims. For instance, when

the insurance company decides to propose a new insurance contract designed to a speci�c

market segment, there are selling and marketing costs1 that are examples of such trans-

action costs. While there is large body of academic literature in �eld of microeconomics

of insurance (see for example the recent review of [Dionne et al., 2013]), only few papers

explicitly analyze the case in which there are transaction (or production) costs. A recent

review of this speci�c insurance literature can be found in [Ramsay and Oguledo, 2012], see

also [Ramsay et al., 2013]. Following the seminal article of [Rothschild and Stiglitz, 1976],

it is frequently assumed in the literature that the market segmentation is exogenous; there

are typically two homogenous market segments and only one type of insurance system is

considered, most often a private one. The aim of the present work is to bridge the gap in

that we endogenize the market segmentation when there are transaction costs but we also

consider a public and a private insurer.

We develop a framework in which the market segmentation is endogenous in that both

the design and the number of market segments are chosen by the insurer when there is a

positive set-up cost to design a new market segment. With the advances of the technology,

big data, connected objects..., called more fundamentally computer mediated transactions

by [Varian, 2010, Varian, 2014] (see also [Derez, 2016]), it is now possible to write terms in

the insurance contract that were previously unobservable. A simple example of this is the

possibility to use a GPS device, that is, a computer transmitter (say in the trunk of the car)

that records among other things the vehicle's speed. As a result, this allows the insurance

company to observe the driving style of a policy holder, and thus to o�er a "pay how you

drive contract". Computer mediated transactions, when possible, can be seen as a way to

sharply limit adverse selection and moral hazard and thus facilitates personalization and

customization of contracts2.

1[Rejda, 2014] o�er an overview of the various (practical) methods for selling and marketing insurance

products for di�erent types of insurance, health, life, property and casualty.
2It is frequently noted that with big data, the adverse selection could indeed be reversed

([Siegelman, 2014], i.e., the insurer would be able to know more about the risk than the agent herself.
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In a world with complete information but without transaction costs, the two insurance

systems, public and private, turns out to be equivalent in terms of social welfare and partici-

pation. The private (pro�t-maximizer) insurer o�ers each (potential) policyholder a contract

in which the premium is equal to her reservation price (i.e., each of agent is left without any

surplus3) while the public (social welfare-maximizer) insurer o�ers each (potential) policy-

holder a contract in which the premium is equal to her expected loss (i.e., the expected pro�t

is equal to zero). All the agents are insured under each system (i.e., full participation) and

the social welfare is identical. With transaction costs, for instance when there is a positive

set-up cost to design a new market segment, perfect customization is not anymore possible

and the analysis of its consequences is the subject of the present work.

We consider a single (public/private) insurer in complete information�the perfectly in-

formed monopolist�that faces a continuum of agents (or types) and we build on the idea

that it is costly to design a new market segment. In our framework, the segmentation of the

policy holders into risk groups (or market segments) occurs not because of the informational

asymmetry, as in most models (see e.g., [Bossert and Fleurbaey, 2002]), but because of the

existence of transaction costs that increase with the number of market segments (or groups).

It is important to point out at this stage that our purpose is not to claim that informational

asymmetry is not an important issue for an insurance company4. It is rather to say that

market segmentation is also an important issue in the insurance industry that have not been,

to the best of our knowledge, explicitly studied. The framework developed here should thus

be thought of as a complement of the classical insurance models rather than a substitute.

Throughout this article, a segmentation policy is de�ned by the choice of the number of

groups, their design and the premiums.

As usual in Economics, the private insurer is assumed to choose the segmentation policy to

maximize its expected pro�ts. The optimization problem turns out to be a simple example

of a mixed-integer problem (MIP) as the design of the market segments is a continuous

problem while the choice of the number of segments is a discrete one. An important feature

of the optimal segmentation policy chosen by the private insurer is that it is never optimal

to insure the riskiest agents. Although there are many possible social objective functions,

See e.g., [Villeneuve, 2000] for such a model although his argument is not related to big data.
3Such a situation is generally called perfect (or �rst-degree) price discrimination in Economics
4For instance, with genetic testing, an insurer may have the possibility to be completely informed about

the type of a potential policy holder. However, such genetic testing is not allowed in many jurisdictions, see

the Oviedo conventions in Europe http://www.coe.int/en/web/bioethics/oviedo-convention. An interesting

discussion of genetic testing and insurance is provided in [Durnin et al., 2012].
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following [Brown and Sibley, 1986, Steinberg and Weisbrod, 2005] among others, the public

insurer is assumed to choose the segmentation policy to maximize the total policyholders'

surplus under a budget constraint of zero expected total pro�t. We show that as long as

the constraint of zero expected pro�t is equal to zero, full participation is socially optimal.

However, this fairly general result gives no clue regarding the choice of the segmentation

policy and/or the desirability of cross-subsidization. We thus explicitly consider two di�erent

ways of choosing the segmentation policy, one without cross-subsidization, i.e., such that the

expected pro�t of each group is equal to zero, and one with cross-subsidization, i.e., only

the (aggregate) budget constraint is satis�ed. In both case, we make the assumption that

the riskiest agents are proposed a contract. Without cross-subsidization, the algorithm used

to design the groups is simple; the public insurers �rst tries to design a group with the

riskiest agents. If it is possible, the public insurer then tries to design a second group and

so on and so forth as long as this is possible. When there are transaction costs, only a �nite

number of groups can be designed. Of course, if transaction costs are too high, no group

can be designed. We then explicitly analyze the case with cross-subsidization, which leads

to more complex problem as there are many ways to introduce such cross-subsidization. We

shall assume that the public insurer behaves as a pro�t maximizer and then uses the entire

pro�t realized to create a new, subsidized, subset of insured agents. Quite interestingly, the

two approaches (with an without cross-subsidization) may generate a trade-o� between the

social welfare (i.e., surplus) and the level of participation (i.e., the percentage of agents that

are insured). As the segmentation problem turns out to be a mixed-integer problem for the

insurer (public or private), we consider the particular case of our model (square root utility

function/uniform distribution...) that allows us to o�er a numerical analysis. The analysis

of this simple model interestingly shows that the desirability of the public insurance system

increases with transaction costs. When transaction costs are "high", the social welfare but

also the level of participation under a public system of insurance are much higher than

under a private insurance system. In such a high transaction costs case, we also show that

the public insurer faces a trade-o� between social welfare and (the level of) participation.

The paper is organized as follows. Section two of this paper is devoted to the framework.

Section three and our are devoted respectively to the benchmark (i.e., no transaction costs)

and the case in which there are positive transaction costs. Section �ve is devoted to the

numerical analysis through is a simple particular case of our fairly general framework. Section

six is devoted to the conclusion and possible extensions. All the proofs are relegated in

appendix A.
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2 Framework

We present in this section the main assumptions of our set-up. Let θ denotes the probability

of damage (type) but also the index of the agent. Throughout this paper, an agent will

be labeled using her type θ. The underlying damage may be the income loss that results

from a car accident, a �re, a theft... we don't specialize the model to a speci�c category of

insurance.

Assumption 1 The type θ is distributed in Θ := [0, 1] according to some regular distribution

function F that admits a density f .

Since the set of types is the unit compact of the set of reals, assumption 1 means that

we consider a continuum of agents. In practice, such a continuum of agents makes no sense.

However, working with a set of agents that has the cardinality of the continuum nicely

captures the idea of a large economy. From the point of view of an insurer, this means when

considering a subset of agents called a market segment (or simply a group), de�ned by the

interval [a, b] (with a > 0 and b < 1), a weak law of large number is shown to hold. As

we shall see, working with a continuum also makes the segmentation model more tractable

as it reduces to a continuous problem. Regarding now the regularity of the function F ,

we shall assume F to be twice continuously-di�erentiable and strictly increasing on (0, 1).

As a result, the density f(θ) is continuously-di�erentiable and strictly positive on (0, 1).

Moreover as usual, each agent θ will be supposed to be an expected utility maximizer and

the utility function U is assumed to be a positive, twice continuously di�erentiable (strictly)

increasing and (strictly) concave function of the wealth. Let W > 0 be the initial (�nite)

wealth of each agent, and let L ∈ (0,W ] be the loss of each agent in case of damage. As

in [Stiglitz, 1977, Chade and Schlee, 2014], agents are di�erentiated by the probability of

damage only. Although this framework is probably the simplest one from an economic point

of view, it is yet rich enough to analyze various topics in the microeconomics of insurance.

Moreover, as we shall see, cross-subsidization (for a public insurer) still makes sense although

each agent is endowed with the same wealth. The �nal wealth of each agent is the random

variable that takes two values only;W−L with probability θ andW with the complementary

probability 1− θ so that the expected utility (of the �nal wealth) of agent θ thus is equal to

v(θ) = θU(W − L) + (1− θ)U(W )) (1)

and is a decreasing function of θ. In our model, each agent may have the possibility to be

insured against the loss due to the damage.
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Assumption 2 Information is complete, i.e., the utility function, the type of each agent

and the distribution function of the types are known from the insurer.

In most models, the insurance company faces an adverse selection problem in that it is

unable to make a discrimination between the agents since the probability of damage (i.e.,

the type) is assumed to be unknown. Only the distribution function of the type is known.

We argue here that with the development of new technologies and the possibility to use

powerful computers, it makes now sense to consider models in which the insurer has (or may

have) much more information about the types of the agents than few decades ago. Consider

for instance the case of automobile insurance. It is well-known that age and sex5 are two

important factors explaining the probabilities of accidents (e.g., [Dionne et al., 2013]). But

with the advances of the technology, it is now possible for the auto insurance industry

to o�er "telematics-based" insurance products. By using a GPS devices with integrated

accelerometers installed in the car (i.e., satellite sensors), this mechanism will transmit a huge

number of information such as date, location, speed etc... and the premium can be based on

these information. As a result, instead of paying a premium based on an average probability

(of an underlying group of agents), an agent who has chosen such a pay-how-you-drive

contract will pay a premium based on her own type. More generally, with computer mediated

transactions (see [Varian, 2010], see also [Varian, 2014]), it is now possible introduce terms

in the contracts that were previously unobservable.

In practice, the segmentation of customers is obviously chosen by the insurance com-

pany, possibly with the help of statistical methods (e.g., [Samson, 1986, Smith et al., 2000,

Yeo et al., 2002]. It is common for insurers to group heterogeneous policy-holders into dif-

ferent risk groups (also called class rating, market segments, groups...) based on a set of

observable factors such as age, gender, occupation etc... The segmentation process is a key

activity for the insurance company as a poor market segmentation may generate important

losses. In a complete information model, the segmentation of the market is direct in that

each agent is assigned by the insurer to a group as a function of her type, i.e., each agent

is proposed a single insurance contract. This contrasts with incomplete information models

à la Rothschild and Stiglitz in which each agent is proposed a menu of contracts where the

�nal choice of the contract is left to the agent.

5Since 2012, in the European Union, insurance companies have to charge the same price to men and

women for the same insurance products, without distinction on the grounds of sex.
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Assumption 3 The design of a new contract (i.e., a new group of policyholders) generates

a constant transaction cost equal to K.

In theory, transaction costs represent all the administrative �xed expenses required

to design, process and administrate a new contract proposed by the insurer to a group

of agents. For concreteness, following [Allard et al., 1997, Liu and Browne, 2007] (see also

[Ramsay and Oguledo, 2012]), we assume that K is the (per-contract) �xed cost of designing

and marketing an insurance contract, i.e., K can be thought of as a set-up cost6. As a result,

if n ≥ 1 market segments have been designed by the insurer, the total transaction cost is

equal to

Kn = nK (2)

Equation (2) can be thought of as the simplest transaction cost function such that when n

tends to in�nity, Kn also tends to in�nity. As a result, it makes only sense for an insurer to

choose a �nite number n ≥ 0 of market segments, possibly zero if K is too high. However,

the real di�cult task for the insurer is the design of the groups. In the particular case

in which there is no set-up cost, i.e., K = 0, this task is easy as a personalized contract

C(θ) = (P (θ), I(θ)), based solely on her type, is proposed to each agent θ. When K > 0, the

insurer public or private can not anymore o�er such a customized contract to each agent.

Instead, the set of agents has to be divided into a number n ≥ 0 of groups and each agent

assigned to the same group is proposed the same insurance contract.

Assume that the insurer has decided to set n ≥ 1 groups or market segments and let

Gi := [θi, θi+1) ⊆ [0, 1] be the market segment i, de�ned as the right-open interval Gi :=

[θi, θi+1) for i = 1, ..., n such that Gi

⋂
Gj = ∅ for i 6= j, i.e., each agent is assigned to

one group only. By de�nition of a market segment, each agent θ assigned to the group Gi

by the insurer is proposed the same non-mandatory insurance contract Ci = (Pi, Ii) on a

take it or leave it basis. The premium Pi that each agent has to pay to be insured and

Ii ≤ L is the indemnity paid by the insurer in case of damage. To be accepted by an agent θ

assigned to the group Gi, the so-called participation constraint must thus be satis�ed. As we

work with a complete information model, there is thus no incentive constraint. Moreover, in

complete information, the choice of the design of the group Gi, i.e., θi, θi+1 and the choice

6Note interestingly that contrary to most goods, an insurance contract is nominative, and thus can not be

subject to parallel trade, i.e., those who pay a low premium can not resell their contract to those who pay a

high premium. As a result, the costs associated to the prevention and the mitigation of parallel trade, which

may be important for goods such as pharmaceuticals, books, computers, cars (see e.g., [Braouezec, 2012])

are nonexistent for insurance contracts.
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of the premium Pi must be done in a consistent way. If not, say if only the subgroup

[θ̃i, θi+1) (with θ̃i > θi) accept the contract for which the premium is equal to Pi, then, Pi

is inconsistent with θi since θi is simply irrelevant. When the choices are consistent, all the

agents of the group Gi should thus accept the contract. As in [Johnson and Myatt, 2003,

Malueg and Schwartz, 1994, Oren et al., 1984] among others in a non-insurance framework,

we shall consider the case of adjacent intervals.

Assumption 4 For each n ≥ 1, a market segmentation is de�ned as a collection of adjacent

intervals G1, ..., Gn, where Gi := [θi, θi+1) and θn+1 ≤ 1.

In such a case, the family (Gi)
n
i=1 forms a partition of the compact subset [θ1, θn+1] ⊆ [0, 1].

This property of adjacent intervals is actually a convexity property. If agents θ and θ, with

0 ≤ θ < θ ≤ 1, are proposed a contract (which is accepted), possibly not the same, then, for

any α ∈ (0, 1), agent θ = αθ+(1−α)θ is proposed an insurance contract. For a public insurer,

it would be strange to choose not to insure an intermediate category of agents. Considering

a market segmentation as a collection of adjacent market segments can be thought of as a

natural underwriting principle. The situation is more delicate for the private insurer as the

optimal market segmentation needs not be such that all the market segments are adjacent

intervals. In appendix B, we show that a typical situation in which some market segments

are possibly non-adjacent is when the density is bimodal. We also discuss the optimal

market segmentation when groups are allowed to be non-adjacent7. Beyond the reduction

of dimensionality of the problem, the main interest of this assumption is that it allows us to

easily compute, for each n ≥ 1, the level of participation, i.e., the fraction of agents that are

insured. Let

C([0, 1]n+1) := {(θ1, ..., θn+1) ∈ [0, 1]n+1 : 0 ≤ θi ≤ θi+1, i = 1, 2, ..., n,with θn+1 ≤ 1} (3)

be the set of market segmentation, and note that C([0, 1]n+1) is a compact and convex of

subset of [0, 1]n+1. For notational simplicity, and when there is no confusion, we shall write

θi instead of θ
(n+1)
i , and we shall talk about groups or market segments rather than intervals.

Let ~θ(n+1) = (θ1, ..., θn+1) ∈ C([0, 1]n+1) be a given market segmentation.

De�nition 1 A segmentation policy is de�ned by the choice of a number n ≥ 1 of groups

(or contracts), a market segmentation ~θ(n+1) and a set of premiums P1, ..., Pn.

7In the last section of this article, we o�er a numerical analysis based on a speci�c model in which θ

is assumed to be uniformly distributed in [0, 1], and it is shown in appendix B that the optimal market

segmentation must form a collection of adjacent market segments.
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As usual in Economics, the public insurer is assumed to choose the segmentation policy

in order to maximize the total surplus subject to a budget constraint of no expected pro�ts

(e.g., [Brown and Sibley, 1986, Steinberg and Weisbrod, 2005]) while the private insurer is

assumed to choose the segmentation policy in order to maximize its total expected pro�ts.

Under a private system of insurance, the riskiest agents typically remain uninsured in that

they are not proposed any contract. In such a situation, as recalled in [Rejda, 2014, chap 8],

a government insurance program might be necessary to insure those agents. In this paper,

with or without cross-subsidization, the riskiest agents, i.e., a group of the form [θ̃, 1], will be

proposed a contract from the public insurer as long as the budget constraint can be satis�ed.

For this to make economic sense, we make the implicit assumption, as usual in pure adverse

selection models, that the type θ is exogenous to the agent, i.e., it is not in�uenced by her

own decision. Otherwise, it would be economically why unclear why these riskiest agents

should be always insured.

3 No transaction cost : The benchmark

We call benchmark the situation in which there is no transaction cost (i.e., K = 0) since,

as we shall see, the two insurance systems are equivalent in terms of e�ciency, i.e., social

welfare and participation, i.e., percentage of agents that are insured. This case is obviously

particular since it is possible for the insurer to costlessly design a customized insurance

contract to each agent, that is, to propose a contract C(θ) = [P (θ);L(θ)] based on a take

or leave it basis that explicitly depends on the type θ of the agent. In this case, a group is

simply the singleton {θ}. As we shall now see, the optimal contract, whether the insurer is

public or private, is such that L(θ) = L for each θ ∈ [0, 1], i.e., the optimal contract is a full

coverage one.

Consider a given agent θ and assume she has been o�ered a full coverage insurance con-

tract with a premium equal to P . Since the insurance contract is not mandatory, depending

on the premium P , the agent θ may refuse it. Let P (θ) be her willingness to pay, that is the

maximum premium the agent θ is ready to pay for the full coverage insurance contract that

pays L in case of damage. By de�nition, P (θ) is such that U(W − P (θ)) = v(θ) so that

P (θ) = W − U−1(v(θ)), θ ∈ [0, 1] (4)

For a full coverage insurance contract, a closed formula can be obtained for the willingness-

to-pay. This is indeed not the case for a partial coverage insurance contract since the

willingness-to-pay can only be de�ned implicitly (see equation (62) in appendix B).
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Lemma 1 For all θ ∈ (0, 1) P (θ) > θL and such that P (0) = 0, P (1) = L. Moreover, P (θ)

is an increasing and concave function of θ.

From risk-aversion, an agent θ ∈ (0, 1) is always ready to pay more than her expected

loss, i.e., P (θ) > θL. The two extreme agents, i.e., θ = 0 and θ = 1 are special in that

the �rst one never �nd useful to be insured while the other one is willing to pay her entire

wealth.

Private insurer. As is well-known from Stiglitz (1977) (see also proposition 1 in the

review paper of Dionne et al. 2013), the pro�t-maximizing menu in such a case is simple.

The optimal indemnity I∗(θ) is equal to L for each θ so that each agent is fully insured, and

the optimal premium to be charged to agent θ, P ∗prv(θ), is equal to P (θ)), her maximum

willingness to pay for the full insurance contract (see equation (4)). As a result, while each

agent is insured, she is left without any surplus. For a given agent θ, the welfare, pro�t and

surplus, thus is equal to the expected pro�t W −U−1(v(θ))− θL, that is, the premium paid

by agent θ equal to P ∗prv(θ) = W − U−1(v(θ) minus the expected cost of claims equal to θL.

Public insurer. Since a risk-averse agent will always decide to be fully insured as long

as the premium is actuarially fair, the public insurer can o�er to each agent θ a full coverage

insurance contract such that the premium P ∗pub(θ) is equal to her expected loss θL. As a

result, the expected pro�t is equal to zero so that the welfare is equal to the surplus of agent

θ, that is P (θ)− P ∗pub(θ) = W − U−1(v(θ))− θL.

From the above discussion, whether the insurer is public or private, for each agent θ,

the welfare is invariably equal to W − U−1(v(θ)) − θL. Let Ψ∗prv and Ψ∗pub be the social

welfare under the private and the public insurance system and note that Ψ∗prv is equal to

the (maximum) total expected pro�ts of the private insurer. The following proposition

summarizes the above discussion.

Proposition 1 When there are no transaction costs, under both insurance systems, public

and private

1. all the agents are insured, that is, there is no exclusion.

2. the social welfare is equal to

Ψ∗prv = Ψ∗pub = W −
∫ 1

0

U−1(v(θ))f(θ)dθ − L θ (5)

where θ :=
∫ 1

0
θf(θ)dθ is the average probability based on the overall set of agents.

10
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The no-transaction cost case is particular since under both insurance system, private and

public

1. The social welfare is identical.

2. Each agent is o�ered a full coverage insurance contract.

3. A continuum of contracts is o�ered.

The �rst property means that there is no loss of e�ciency since under both systems,

the social welfare is identical. If one considers the social welfare as the unique measure to

evaluate the "quality" of the market, then, the two insurance systems should be equivalent.

The second property says that the contract proposed by the insurer (public or private) to

each agent is such that the indemnity in case of damage is equal to the loss. Finally, the

last property says that since a customized contract is proposed to each agent, a continuum

of contracts is o�ered since there is a continuum of agents. Of course, in real insurance

markets, this property makes no sense. The number of contracts (or groups) is always �nite

and much smaller than the number of policyholders. Within our framework, it su�ces to

introduce a set-up cost per contract, arbitrarily small, to obtain this �niteness property.

However, exactly how the insurer, public or private will design the groups and what will be

the consequences on e�ciency is the subject of this paper.

4 Positive transaction costs

An important feature of the benchmark is that a full coverage contract is proposed to each

agent whether the insurer is public or private. With transaction costs, we shall also con-

sider full coverage insurance contracts whether the insurer is public or private. Under this

assumption, it becomes easier to compare the two cases, i.e., with and without transaction

costs. In any event, in appendix B, partial insurance contracts are discussed.

Consider a given agent θ and assume that she has been assigned to the group Gi. All

the agents assigned to that group are proposed the uniform contract Ci := (Pi, L) on a

take-it-or-leave-it basis, where Pi is the premium each agent of Gi has to pay. As usual, it is

assumed that agent θ accepts the contract if P (θ) ≥ Pi and refuses it otherwise. The surplus

of agent θ who is o�ered the contract Ci thus is equal to CS(θ) = max{0, P (θ)− Pi}. Since
the choice of each group Gi is assumed to be consistent with the choice of the premium, as
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we have seen, this means that Pi ≤ P (θi) so that all the agents of that group accept the

contract. The surplus of policyholders assigned to the group Gi thus is equal to

CSi =

∫ θi+1

θi

CS(θ))f(θ)dθ = [F (θi+1)− F (θi)](W − Pi)−
∫ θi+1

θi

U−1(v(θ))f(θ)dθ (6)

Let A(θi, θi+1) be the average probability (i.e., it is a conditional expectation) of the group

Gi = [θi, θi+1) de�ned as

A(θi, θi+1) :=

∫ θi+1

θi

θf(θ)dθ

F (θi+1)− F (θi)
(7)

and note that this average probability is such that θi < A(θi, θi+1) < θi+1. It is not di�cult

to show that A(θi, θi+1) is an increasing function of θi and θi+1. Let

E(Ri) =

∫ θi+1

θi

Pif(θ)dθ − L
∫ θi+1

θi

θf(θ)dθ = [Pi − A(θi, θi+1)L] [F (θi+1)− F (θi)] (8)

de�nes the (expected) gross pro�t of the group i and note that the second term in the rhs

of equation (8) simply follows from equation (7). With such a formulation, equation (8)

can interestingly be interpreted in terms of price, average cost and quantity. The premium

Pi is the price paid, A(θi, θi+1)L is the average cost of claims and �nally [F (θi+1) − F (θi)]

is the quantity sold. We call (expected) net pro�t of the group Gi the quantity de�ned as

E(Ri)−K, that is, the di�erence between the (expected) gross pro�t E(Ri), and the set-up

cost K. For a given market segmentation, using equations (7) and (8), it is not di�cult to

show that the total (expected) net pro�t of the insurer is equal to

EΠ(~θ(n+1)) := ER(~θ(n+1))− nK =
n∑
i=1

Pi[F (θi+1)− F (θi)]− L
∫ θn+1

θ1

θf(θ)dθ︸ ︷︷ ︸
ER(~θ(n+1))

−nK (9)

where ER(~θ(n+1)) =
∑n

i=1 E(Ri) is the expected total gross pro�t.

At this stage, since each group Gi = [θi, θi+1) has the cardinality of the continuum, it is

fairly intuitive to think that a law of large numbers should hold. Let X(θ) be the loss of

agent θ ∈ Gi be a Bernoulli random variable equal to L with probability θ and zero with the

complementary probability. The aggregate loss of the group Gi is de�ned as the following

non-denumerable sum of independent random variables

X =

∫
Gi

X(θ)dF (θ) =

∫
Gi

X(θ)f(θ)dθ (10)
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We know from [Judd, 1985] that we can not expect to prove a strong law of large numbers

when one considers a continuum of independent random variables. However, as shown by

[Uhlig, 1996], a weak law of large numbers can be shown to hold. Let (Xn)n∈N be a sequence

of random variables. [Uhlig, 1996] proves that for a continuum of IID random variables

(he actually assumes no correlation), one can obtain a convergence in mean-square, that

is, when n → ∞, E(Xn − X)2) → 0. The result of [Uhlig, 1996] can unfortunately not be

directly applied here as we work with a continuum of independent random variables that

are not identically distributed. However, it is easy to obtain a weaker result, namely that

when n → ∞, E|Xn −X|) → 0 where Xn =
∑n

j=1X(θj)f(θj)(θj − θj−1), with θ0 = θi and

θn = θi+1 (as usual, when n tends to in�nity, max(θj − θj−1) must converges to zero). From

the hierarchy of convergence, if Xn converges to X in mean, this implies that Xn converges

to X in probability.

4.1 Optimal segmentation policy of the private insurer

Consider a given group of agents Gi = [θi, θi+1). From equation (8), as long as Pi ≤ P (θi), the

total quantity F (θi+1)− F (θi) but also the average probability A(θi, θi+1) remain identical.

The expected gross pro�t of the group Gi thus is an increasing function of the premium Pi ∈
[0, P (θi]. As a result, it is optimal for a pro�t-maximizer insurer to set Pi = P (θi) for each

i = 1, ..., n. The segmentation policy thus reduces to the choice of ~θ(n+1) := (θ1, ..., θn+1), the

market segmentation, and n ∈ N, the number of market segments. Formally, the optimization

problem of the private insurer is given by

max
(n;~θ(n+1))∈N×C([0;1]n+1)

EΠ(~θ(n+1)) :=
n∑
i=1

P (θi)[F (θi+1)− F (θi)]− L
∫ θn+1

θ1

θf(θ)dθ− nK (11)

and is a simple example of a mixed-integer programming problem (MIP) because the choice

of the market segmentation is a continuous problem while the choice of the number of groups

is an integer problem. Given equation (11), it is clear that the optimal number of market

segments is necessarily �nite, possibly zero. Let

Kprv = sup{K ≥ 0 : n∗prv(K) = 1} (12)

and note that Kprv is such that EΠ(θ∗1, θ
∗
2) = 0. Let n∗prv(K) := n∗ ∈ N be the optimal

number of market segment and ~θ∗(n∗+1) = (θ∗1, ..., θ
∗
n+1) be the optimal market segmentation.

Proposition 2 Assume that K ≤ Kprv. The optimal segmentation policy (n∗, ~θ∗(n∗+1)) ∈
N∗ × C([0; 1]n

∗+1 that solves the MIP de�ned by equation (11) is such that
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1. θ∗1 > 0 and θ∗n+1 < 1 for any choice of n ≥ 1.

2. n∗ →∞ when K → 0

Note that the following proposition would hold under a more general transaction cost

function, e.g., if Kn is a piece-wise constant function such that lim
n→∞

Kn →∞. Part 1 of the

above proposition says that under the optimal segmentation policy, as long as K is positive,

agents of the group [0, θ∗1] and agents of the group [θ∗n∗ , 1] are uninsured. Only safest and the

riskiest agents are not proposed any insurance contract. Part 2 says that, as expected, when

K goes to zero, the optimal number of market segments tends to in�nity. In this limiting

case, almost 100% of the agents are proposed an insurance contract.

4.2 Optimal segmentation policy of the public insurer

As already said, the segmentation policy of the public insurer is chosen to maximize the

social surplus under a budget constraint that the (expected) total net pro�t is equal to zero.

It will be convenient to express the premium Pi as a function of the average probability of

the group Gi. Let the premium of the group Gi be de�ned as

Pi = A(θi, θi+1)Li ≤ P (θi) (13)

where Li is a positive number chosen by the insurer. For a given number n ≥ 1 of groups,

since Pi ≤ P (θi) for each i = 1, ..., n, from equation (8), the expected gross pro�t of the

insurer is equal to

E(Ri) = (Li − L)A(θi, θi+1)[F (θi+1)− F (θi)] (14)

and is non-negative as long as Li ≥ L. On can also de�ne the quantity Li as follows

Li = (1 + λi)L so that the parameter λi can now be interpreted as the loading factor of the

group Gi. The expected pro�t thus is positive as long as the loading factor is positive. For

a given n ≥ 1, let ~θ(n+1) = (θ1, ..., θn+1) be a given market segmentation and note that the

total expected net pro�t is equal to

EΠ(~θ(n+1)) =
n∑
i=1

(Li − L)A(θi, θi+1)[F (θi+1)− F (θi)]− nK (15)

Proposition 3 Let n ≥ 1 and assume that the expected total net pro�t of the public insurer

given by equation (15) is equal to zero. Then, for any choice of n ≥ 1, the total policyholders'

surplus reduces to Ψ(θ1, θn+1) and its maximization leads to θ∗∗1 = 0 and θ∗∗n+1 = 1, that is,

full participation is socially optimal.
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Proposition 3 is a fairly general result as it depends only on risk-aversion. When at least

one market segment is designed, it simply says that all the agents should be insured regardless

of transaction costs. However, it gives no clue regarding the choice of the segmentation policy

and/or the desirability of cross-subsidization since the policyholders' surplus turns out to be a

telescopic sum that depends only on θ1 and θn+1. Nothing can thus be said on θ2, ..., θn. Note

importantly that proposition 3 does not rule out cross-subsidization because the constraint

only states that the total (expected) net pro�t has to be equal to zero. It thus allows the

public insurer to make some positive pro�t with one (or more than one) market segment as

long as this pro�t is (entirely) used to subsidize another group of agents. We shall consider

two ways of determining the optimal segmentation policy of the public insurer; with and

without cross-subsidization. In both cases, we make the following addtional assumption.

For each n ≥ 1, the public insurer sets

θn+1 = 1 (16)

The above assumption means that for any choice of n ≥ 1, the public insurer always

decide to o�er a contract to the riskiest agents. If only one group can be designed, i.e.,

n = 1, this group is of the form G1 = [θ1, 1] for some θ1 < 1. This assumption thus gives a

priority to the riskiest agents, which can indeed be thought of as an underwriting principle.

This choice contrasts with the private insurer since it is never optimal to o�er a contract to

the riskiest agents from (see proposition 2), i.e., for a private insurer, it is always the case

that θn+1 < 1 for each n ≥ 1.

No cross-subsidization. By construction, the premium of the group Gi is equal to

Pi = A(θi, θi+1)Li ≤ P (θi). Since there is no cross-subsidization, the quantity Li must

be chosen such that the expected pro�t of the group i must be equal to zero. No cross-

subsidization thus is equivalent to

E(Ri) = K, for each i = 1, ..., n (17)

Using equation (14), it is easy to show that E(Ri) = K is equivalent to Li = L +
K

[F (θi+1)−F (θi)]A(θi,θi+1)
. Inserting Li in equation (13), the premium charged to each agent of

the group Gi thus is equal to

P (θi, θi+1, K) := Pi = A(θi, θi+1)L+
K

[F (θi+1)− F (θi)]
i = 1, ..., n (18)

Fact 1 Assuming that θi+1 ∈ (0, 1) is given, the premium Pi = P (θi, θi+1, K) is an increasing

function of θi such that P (θi, θi+1, K) tends to in�nity when θi tends to θi+1, for i = 1, ..., n.
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Figure 1: No solution
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Figure 2: Multiple solutions

The premium given by equation (18) is interesting to look at since it is the sum of

two types of average costs. The �rst one, equal to A(θi, θi+1)L, re�ects the expected cost of

claims of agents assigned to the group Gi. The second one, equal to
K

[F (θi+1)−F (θi)]
, re�ects the

average transaction cost of that group Gi and is a decreasing function of the size the of group.

If we use the loading factor λi, the premium of the group is equal to Pi = (1+λi)A(θi, θi+1)L

so that λi = K
L

1
A(θi,θi+1)[F (θi+1)−F (θi)]

and it is clear that everything else equal, the higher the

transaction cost K, the higher the loading factor.

Fact 2 If there exists a group Gi = [θi; θi+1) such that P (θi, θi+1, K) ≤ P (θi), then, all the

agents accept the contract Ci = (Pi, L) and the expected pro�t of the group Gi is equal to

zero.

Let K > 0 and consider the design of the �rst group [θ, 1], composed with the riskiest

agents. From fact 1, we know that the premium P (θ, 1, K) charged to each agent of the group

[θ, 1] is an increasing function of θ. Since P (θ) is also an increasing functions of θ, it may

be the case that there is no θ ∈ (0, 1) such that P (θ) ≥ P (θ, 1, K). This may happen when

K is too high, see Fig. 1. Consider now the opposite case in which K = 0. From equation

(18) for a given group G = [θ, 1] the premium thus reduces to A(θ, 1)L. Since A(1, 1) = 1
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and P (1) = L, it thus follows that A(1, 1)L = P (1). When agents are su�ciently risk-averse

and when A(θ, 1) is a convex function of θ, there will exist θ < 1 such that A(θ, 1)L = P (θ).

By continuity, this equality will remain true for K low enough. Assume now that there

exists θ ∈ (0, 1) such that P (θ, 1, K) = P (θ). From fact 2, all the agents assigned to the

group G = [θ, 1] will accept the contract, and the expected net pro�t of that group will be

equal to zero by construction, i.e., the budget constraint is satis�ed. However, when such

a θ ∈ (0, 1) exists, it may fail to be unique, see Fig. 2. In such a case, it is natural to

consider the smallest value of θ < 1, call it θ
(1)
min, such that P (θ

(1)
min, 1, K) = P (θ

(1)
min). By

doing so, the public insurer is able to design the largest group, that is, that minimizes the

average transaction cost per policyholder. Note that we obtain simultaneously the design

of the group and the premium to be charged to each agent of that group. But this is only

the �rst step. Once θ
(1)
min < 1 is known, one may �nd try to design another group and so on

and so forth. Let (θ
(n)
min, ..., θ

(1)
min) be an ordered vector such that θ

(i+1)
min < θ

(i)
min. The following

de�nition provides a formal de�nition of the algorithm used to obtain a segmentation policy.

De�nition 2 The segmentation policy of the public insurer without cross-subsidization is

obtained using the following iterative process. Let θ
(0)
min) = 1 and assume (θ

(n)
min, ..., θ

(1)
min) is

known. At step n+ 1, if it exists, θ
(n+1)
min is obtained by solving

θ
(n+1)
min = inf{θ ∈ (0, θ

(n)
min) : P (θ) ≥ P (θ, θ

(n)
min, K)} (19)

and so on and so forth.

To the best of our knowledge, this kind of iterative process has not been considered in

the insurance literature. It is however similar in the spirit to the one proposed in Malueg

and Schwartz (1994) in a non-insurance framework to maximize the social welfare. There is

however an important di�erence. In Malueg and Schwartz (1994), there is no cost, so that

the pro�t is always non-negative no matter how the prices and the segments are chosen. In

our model, even without transaction cost, there is still a positive cost given by the expected

cost of claims. Depending on the premium and the market segments chosen by the insurer,

the (expected) net pro�t could be negative. As in Malueg and Schwartz (1994), in our model,

the creation of n market segments is a Pareto improvement over the case in which there are

only n− 1 groups. Let

Kpub = sup{K ≥ 0 : n∗pub(K) ≥ 1} (20)

When K = Kpub, since the market segmentation is the result of an iterative process (see

de�nition 2), it can only be claimed that n∗pub(Kpub) ≥ 1 and this explains the de�nition of
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Kpub. In lemma A 3, we show that Kpub < Kprv, which means that when K < Kpub, both

system of insurance are feasible. However, when K ∈ (Kpub, Kprv), only a private system of

insurance can be implemented.

Lemma 2 Assume that the public insurer implements the iterative process proposed in def-

inition 2. For any positive K ≤ Kpub, there exists a �nite integer n(K) ≥ 1 such that

equation (19) is not satis�ed, that is, the total number of market segments which is designed

is necessarily �nite.

Let n(K) = n∗pub(K) := n∗∗ ∈ N be the socially optimal number of market segment,

de�ned as the maximum number of market segments which is possible to design using the

iterative process. Using the previous notations8, the (optimal) groups thus are given by

G1 = [θ∗∗1 , θ
∗∗
2 ), ..., Gn∗∗ = [θ∗∗n∗∗ , 1] and note that, as opposed to the private insurer, each θ∗∗i ,

i = 1, ..., n∗∗ explicitly depends on K. To satisfy the budget constraint, the premium of each

group must be strictly positive so that P (θ∗∗1 ) > 0 and as a result, θ∗∗1 > 0. Thus, as long

as K > 0, agents of the group [0, θ∗∗1 ] are not insured for any choice of n ≥ 1 so that full

participation can not be achieved.

Cross-subsidization. There are actually several ways to introduce cross-subsidization

in our framework and the subject raises the following natural question. Who should be

subsidized and by whom ? A simple naive answer could state that agents with the highest

risk should be subsidized by the richest ones. However, as we explicitly assume that the

wealth of each agent is identical, such a wealth argument can not be used. We have seen

that as long as K is positive, when using the iterative process, there always exists a fraction

of agents that remain without insurance. Since full participation is socially optimal, it thus

makes sense for the public insurer to realize some positive pro�t with those agents that are

proposed a contract, and then to use this pro�t to create a new, subsidized, market segment.

In what follows, we o�er an approach which is a mix of the two approaches already seen.

On the one hand, the public insurer acts as a pro�t maximizer 9 under the constraint given

by equation (16). On the other hand, the entire resulting pro�t, call it Π† > 0, is used to

create a new group of agents Gsub := [θsub, θ1], where θsub is, as in the no cross-subsidization

case, the smallest value of θ < θ1 such that E(Rsub) = K − Π†. Since Π† > 0 is entirely

8Up to an elementary permutation, for each n ≥ 1, one can move from the ordered vector (θ
(n)
min, ..., θ

(1)
min)

to the ordered vector (θ∗∗1 , ..., θ
∗∗
n ).

9This approach can not, by assumption, maximize the total surplus. However, as it maximizes the total

expected pro�t, it maximizes the amount used to subsidize another group of agents.
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used to subsidy the group Gsub, the total expected net pro�t of the public insurer is equal

to zero. Note that Π† depends on K and is obviously a non-increasing function of K. This

approach can thus be seen as an alternative way, with cross-subsidization, to achieve full

participation, the socially optimal result.

De�nition 3 The segmentation policy of the public insurer with cross-subsidization is ob-

tained using the following two steps algorithm.

1. Solve the pro�t maximization given by equation (11) under the constraint given by

equation (16) and let Π† > 0 be the resulting total net pro�t.

2. Use Π† > 0 to design (if possible) an additional group of the form [θsub, θ1].

Let (θ†1, ..., θ
†
n†−1

, 1) be the optimal segmentation policy that results from step 1 and let

Gsub = [θsub, θ
†
1] the new segment that it is possible to create by using the total pro�t Π† > 0.

Following what has been done before (see equation (18)), this entails to �nd θsub, when it

exists, such that

P (θsub, θ
†
1, K,Π

†) = A(θsub, θ
†
1)L+

K − Π†

[F (θ†1)− F (θsub)]
= P (θsub) (21)

where P (θsub...) is the premium charged to agents of the group Gsub. When K = Π†,

everything is as if there were no �xed cost. As a result, this simply means that each agent

of the group Gsub pays a premium equal to the actuarial cost, equal to the expected cost of

claims of that group. Of course, if Π† > K, this means that the premium paid will be lower

than this actuarial cost. At the extreme, it is even possible that Π† is so large (e.g., when

K is close to zero) that the premium given by equation (21) is equal to zero, i.e., θsub = 0

by using only a fraction γ of the pro�t Π†. In such a case, the remaining pro�t is equal to

(1− γ)Π† and is used to be redistributed among the groups.

To distribute the remaining pro�t, one possibility is to consider the same group and to

de�ne a new premium, equal to P ′i (ti) = Pi(1− ti) where −ti can be seen as a negative tax

(i.e., a subsidy). It su�ces now to choose ti, for i = 1, ..., n† such that

Π†(P ′1(t1), ..., P ′n†(tn†)) = (1− γ)Π† (22)

There are however more than one way to do this. We now consider a simple algorithm

for the public insurer to distribute this remaining pro�t. It works as follows.
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1. Set ti = 0 for i = 1, ..., n† − 1 and choose tn† ∈ (0, 1]. If there exists tn† ∈ (0, 1) such

that Π†(P1, ..., Pn†−1, P
′
n†(tn†)) = (1 − γ)Π†, the problem is solved and the algorithm

stops.

2. If not, i.e., if tn† = 1, choose tn†−1 ∈ (0, 1]. If there exists tn†−1 ∈ (0, 1) such that

Π†(P1, ..., P
′
n†−1

(tn†−1), P ′
n†(1)) = (1 − γ)Π†, the problem is solved and the algorithm

stops.

3. and so on and so forth.

It is easy to see that this algorithm will converge after at most n† iterations. To see this,

assume that ti = 1 so that P ′i (ti) = 0 for each i = 1, ..., n†. As a result, Π†(0, ..., 0) = 0 and

is obviously lower than (1− γ)Π† > 0.

Social welfare versus participation : a potential tradeo�. For a given λ > 0, let

Ψ†pub(λ), (1− f †pub(λ)) and Ψ∗pub(λ), (1− f ∗pub(λ)) be the social welfare and the percentage of

participation with and without cross-subsidization respectively. In the cross-subsidization

case, since the segmentation policy is chosen to maximize the total expected net pro�t in

the �rst step (i.e., before subsidization), the total surplus is thus necessarily lower than in

the no cross-subsidization case. However, it may be the case that the creation of the new

group Gsub leads to a participation rate which is higher than in the no cross-subsidization,

i.e., f †pub(λ) < f ∗pub(λ) while Ψ†pub(λ) < Ψ∗pub(λ). In such a scenario, this generates a tradeo�

between social welfare and participation and it would be necessary to introduce an additional

criteria to choose the public system to implement, i.e., with or without cross-subsidization.

5 Example and numerical analysis

To perform the numerical analysis, we now consider a more speci�c model which also allows

us to obtain more precised analytical results regarding the optimal market segmentation of

the private insurer. We assume that the utility function is equal to U(W ) =
√
W and that

the density f is a uniform one, i.e., f(θ) = 1 for all θ ∈ [0, 1]. Moreover, we assume that

W = L = 1 so that an agent who is not insured is at risk to loose her entire unit wealth. It

is important to note that the qualitative results found in this section are robust to change

in the speci�cation of the utility and/of the density. From equation (4) the maximum price

agent θ ∈ (0, 1) is ready to pay for the full coverage insurance contract is equal to

P (θ) = 1− (1− θ)2 (23)
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Regarding the transaction cost function, we shall assume that under both insurance

system, the distribution cost K is a fraction of Ψ∗prv, the maximum expected pro�ts of the

private insurer when there are no transaction cost, that is, K = λΨ∗prv, where λ ∈ (0, 1). It

is easy to show that under the speci�c model, Ψ∗prv = 1
6

= Ψ∗pub so that the transaction cost

function reduces to

Kn = n
λ

6
n ≥ 1 (24)

In what follows, we shall express the two critical thresholds Kpub and Kprv using λpub and

λprv respectively.

5.1 Optimal segmentation policies

As in the previous section, we �rst consider the case of the private insurer and then the case

of the public one.

Private insurer. We have already seen that the optimization problem can be decomposed

into a two-stage optimization problem. In appendix B, we show that when the density f is

a uniform one, the optimal groups must be adjacent. Let us assume that the number n ≥ 1

of market segments is given. Using equation (37), the optimization problem is reduced to

max
~θ(n+1)∈C([0,1]n+1)

E(R(~θ(n+1))) = (θn+1 − θ1)−
n∑
i=1

(θi+1 − θi)(1− θi)2 − 1

2
(θ2
n+1 − θ2

1) (25)

While simple in appearance, solving the �rst order condition of the above optimization

problem is still di�cult because the partial derivative with respect to θi is a non-linear

function (indeed a quadratic function) of θi−1, θi and θi+1. The next proposition allows to go

further than proposition 2 and it also provides a simple condition to check that the second

order condition is satis�ed.

Proposition 4 For each n ≥ 1, ~θ∗(n+1) = (θ∗2, θ
∗
2, ..., θ

∗
n+1) is such that

1. θ∗i ∈
[

2
3
θ∗i+1;

2θ∗i+1+1

3

)
i = 1, ..., n.

2. If θ∗i+1 − θ∗i > θ∗i − θ∗i−1 for i = 2, ..., n, then, ~θ∗(n+1) is the unique maximum.

The following table reports numerical computations of the candidate point for n = 1, ..., 7.

One can readily observe that the properties of the candidate points provided in proposition

4 are indeed satis�ed. Let E(R(~θ∗(n+1)) := φ∗n.
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Table 1

Optimal market segmentation as a function of n = 1, 2, ..., 7

θ∗1 θ∗2 θ∗3 θ∗4 θ∗5 θ∗6 θ∗7 θ∗8 φ∗n

n = 1 0.5 0.75 - - - - - - 0.03125

n = 2 0.3916 0.5875 0.8298 - - - - - 0.05685

n = 3 0.3141 0.4711 0.6515 0.8785 - - - - 0.07595

n = 4 0.25934 0.3891 0.5325 0.698 0.9088 - - - 0.090

n = 5 0.2198 0.3297 0.4486 0.58 0.7327 0.9286 0.1006

n = 6 0.190 0.2853 0.387 0.4965 0.6183 0.7595 0.942 0.109

n = 7 0.1674 0.251 0.3395 0.434 0.536 0.649 0.781 0.952 0.115

The following fact provides the optimal number of market segments but also the resulting

fraction of agents that are uninsured.

Fact 3 The optimal number of market segments n∗prv(λ) and the fraction of agents uninsured

denoted f ∗prv(λ) are given in the following table as a function of λ.

λ 1% 2% 3% 6% 7% 10% 11% 13% 16% 18% 19%

n∗prv(λ) 16 12 8 5 4 3 3 2 1 1 0

f ∗prv(λ) 10.3% 14% 18.9% 29.1% 35% 43.6% 43.6% 56% 75% 75% 100%

The optimal number of market segments turns out to be highly sensitive to the magnitude

of transaction costs. When λ increases from 1% to 10%, the optimal number of market

segments is reduced from 16 to 3. It is only when λ is high enough, say higher than 10%

that we encounter the classical case of two/three market segments. It is easy to show that

λprv = 18.75%.

Public insurer : no cross-subsidization. It is easy to show from equation (7) that the

average probability of the group Gi is equal to A(θi, θi+1) = θi+θi+1

2
. For a given λ > 0, using

equation (18) the premium of the group Gi is equal to

Pi =
θi + θi+1

2
+

λ

6(θi+1 − θi)
(26)

To design the �rst group, i.e., a group of the form [θ
(1)
min, 1], one must �nd the smallest

value of θ such that 1+θ
2

+ λ
6(1−θ) = 1 − (1 − θ)2. When there is no transaction cost, we

have already seen that the insurer can proposed a personalized contract C(θ) to each agent.
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However, the public insurer could also make use of the iterative process. Assume that the

public insurer does so when λ = 0. To design this �rst group, one must solve 1+θ
2

= 1−(1−θ)2,

which is equivalent to solve the quadratic equation 1
2
− 3

2
θ + θ2 = 0. The unique admissible

root is equal to θ = 1
2
so that the �rst group is equal to [50%, 100%]. To now design the

second group, one must solve
θ+ 1

2

2
= 1− (1− θ)2, which is equivalent to solve the quadratic

equation 1
4
− 3

2
θ+ θ2 = 0. The unique admissible root is equal to θ = 3

4
−
√

5
4
≈ 0.191 so that

the second group is equal to [19.1%, 50%]. The following fact shows that with six groups,

the social result is very close to the one without transaction costs.

Fact 4 Assume that there are no transaction costs, i.e., λ = 0 and let n = 6. Using the

iterative process given in equation (19 ), the six following groups can be designed, G1 =

[0.125%, 0.753%) G2 = [0.753%, 2.25%), G3 = [2.25%, 6.67%), G4 = [6.67,%19.1%), G5 =

[19.1%, 50%), G6 = [50%, 100%] and the resulting social welfare is approximately equal to

Ψ∗pub = 1
6
.

It is interesting to note that the group G6 = [50%, 100%], composed with the riskiest

agents, already contains 50% of the agents and is the largest group. The premium paid by

each agent of that group is equal to P (0.5) = 0.75 and this means that agents of the subgroup

[50%, 75%) subsidize agents of the subgroup [75%, 100%] since they pay a premium which

is higher than their expected loss. The next largest group is the group G5 that contains

approximately 30% of the agents and the smallest one is the group G1 = [0.125%, 0.753%),

that contains less than 1% of the agents. The six market segments cases yields a social result

very close to the benchmark as the social welfare is almost equal to Ψ∗pub = 1
6
and only 0.12%

of the agents remains uninsured.

Consider now what happens with transaction cost. When λ = 1%, only the three follow-

ing groups can be designed, G1 = [8%, 19.9%), G2 = [19.9%, 50.7%), G3 = [50.7%, 100%)

so that 8% of the agents remain uninsured. When λ = 10%, only the two following groups

can be designed, G1 = [29.8%, 60.9%) and G2 = [60.9%, 100%) and approximately 30% of

the agents remain uninsured. Even when λ = 10%, the largest groups still contains ap-

proximately 40% of the agents. It is interesting to note that the lower bound of the group

composed with the riskiest agents is not very sensitive to λ. When λ is multiplied by a factor

of 10, i.e., from 1% to 10%, this lower bound (equal to 50.7% when λ = 1% and equal to

60.9% when λ = 10%) is only multiplied by 1.2. The following fact provides the socially

optimal number of market segments but also the fraction of agents uninsured for few values

of λ. The critical threshold λpub ≈ 11.2%.
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Fact 5 The socially optimal number of market segments n∗pub(λ) and the fraction of agents

uninsured under the public policy f ∗pub(λ) are given in the following table as a function of λ.

λ 1% 2% 3% 6% 7% 10% 11% 11.2%

n∗pub(λ) 3 3 3 2 2 2 2 0

f ∗pub(λ) 8% 9.5% 11.3% 24.5% 25.6% 29.8% 32.2% 100%

The above table shows that, as opposed to the private insurer, the (socially) optimal

number of market segments is not very sensitive to transaction cost since this number always

remains between 2 and 3. However, as the above table shows, the fraction of agents uninsured

is indeed sensitive to the magnitude of the set-up cost. Note that for each value of λ and for

each group Gi, P (θ∗∗i ) < θ∗∗i+1L.

5.2 Comparative analysis

When λ is low, we (almost) fall under proposition 1 and the two insurance systems are (al-

most) equivalent. Cross-subsidization is not an issue. For cross-subsidization to be e�ective,

a non negligible fraction of agents should remain without insurance and this is the case when

λ is (relatively) high. In what follows, Ψ∗prv(λ), Ψ∗pub(λ) and Ψ†pub(λ) will denote the social

welfare (as a function of λ > 0) of the private insurer, public insurer without and with

cross-subsidization respectively.

Private versus public insurance system without cross-subsidization.

The numerical results based on this simple model suggest that when λ increases, f ∗prv(λ)−
f ∗pub(λ) and Ψ∗pub(λ) − Ψ∗prv(λ) tend to increase. When λ is very small, the two system are

(almost) equivalent in terms of exclusion and social welfare as we fall under proposition 1.

Fact 6 The desirability of the public insurance system increases with λ.

To illustrate this fact, since λpub = 11.2%, we have chosen to consider λ = 10%. As

a result, it is always optimal to design two or three market segments, depending on the

insurance system under consideration.

The public insurer is able to design the two following groups

Groups : G1 = [29.8%, 61%), G2 = [61%, 100%) (27)

Premiums : P1 = 0.5072 P2 = 0.8479 (28)
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The private insurer is able to design the three following groups

Groups : G1 = [31.4%; 47.1%), G2 = [47.1%; 65.1%), G3 = [65.1%, 87.8%) (29)

Premiums : P1 = 0.5295, P2 = 0.72, P3 = 0.8827 (30)

It is interesting to note that most of the agents, but not all, pay a lower price under the

public insurance system. However, policy holders such that θ ∈ [61%, 65%) are indeed better

o� under a private system since the premium they have to pay is equal to 0.72, instead of

0.847 under a public system. From the knowledge of the groups, one immediately obtains

that f ∗pub(10%) = 29.8% and that f ∗prv(10%) = 43.6%. Numerical computations lead to

Ψ∗pub(10%) = 0.0978 and Ψ∗prv(10%) = 0.07. If we consider the private insurance system as

the current one, moving toward a public system would increase the social welfare by 40%

and would decrease the fraction of non insured agents by 30%. Since this numbers, i.e., 40%

and 30% are high, this clearly shows that in such a case, the insurance system should be

public.

Public insurance system : cross-subsidization versus no cross subsidization. As

already seen, to �nd the optimal market segmentation, we thus solve the pro�t maximization

problem given by equation (25) under the constraint that θn+1 = 1 for each n ≥ 1. The

following table reports the optimal market segmentation for n = 1, 2, 3. More is said on the

solution on the optimization problem in appendix B. We shall here once again assume that

λ = 10%.

Table 2

Optimal market segmentation, n = 1, 2, 3, 4

θ†1 θ†2 θ†3 θ†4 θ†5 Gross pro�t

n = 1 0.667 1 - - - 0.0179

n = 2 0.458 0.687 1 - - 0.04894

n = 3 0.345 0.518 0.722 1 - 0.07142

n = 4 0.276 0.4141 0.569 0.751 1 0.08728

When λ = 10%, the optimal number of market segments is equal to three. From the

above table, one can easily derive the groups and the premiums given below.

Groups : G1 = [34.5%; 51.8%), [51.8%; 72.2%), G3 = [72.2%, 100%] (31)

Premiums : P1 = 0.571, P2 = 0.767, P3 = 0.9227 (32)
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Compared with a pure pro�t maximizer insurer, the fraction of agents excluded from

the market is much lower, 34.5% instead of 43.6% since the riskiest agents are now insured.

The total net pro�t is equal to Π∗ = 0.07142 − 0.1×3
6

= 0.02142. Using equation (21) with

θ∗∗1 = 0.345 in this speci�c model, we thus have to �nd the smallest value of θsub such that

P (θsub, 0.345) =
θsub + 0.345

2
+

0.1
6
− 0.02142

(0.345− θsub)
= 1− (1− θsub)2 (33)

Solving equation (33) leads to θsub = 0.1095. When the public insurer uses the pro�t

Π∗ = 0.02142 generated to subsidize the creation of a subsidized group Gsub, it actually

becomes possible to design the group

Group : Gsub = [10.95%; 34.5%) (34)

Premium : Psub = 0.20701 (35)

We summarize the results, that is, the fraction of agents excluded and the social welfare.

� Without cross-subsidization

� Social welfare : Ψ∗pub(10%) = 0.0978

� Number of market segments : 2

� Fraction of agents excluded : f ∗pub(10%) = 29.8%.

� With cross-subsidization

� Social welfare : Ψ†pub(10%) = 0.0927

� Number of market segments : 4

� Fraction of agents excluded : f †pub(10%) = 10.95%

These �nding are summarized in the following fact.

Fact 7 When λ = 10%, the public insurer faces a tradeo� between the social welfare and

participation. Without cross-subsidization, the social welfare is higher than the one with

cross-subsidization but fraction of agents excluded is also higher.

As usual in Economics, to decide whether more participation is better in some sense than

higher total surplus, one would have to consider a social welfare function that describes the

preferences of the public insurer, i.e., the marginal rate of substitution between total surplus

and fraction of agents excluded from the market.
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5.3 Robustness check

We performed some robustness check for a model in which

� the density f is a two parameters beta density, i.e., f(θ) ∝ θα−1(1−θ)β−1, where α > 0

and β > 0 are the two parameters and as usual the symbol ∝ means "proportional to".

� the utility function is U(W ) = W p, p ∈ (0, 1).

� a loss L = ζW , with ζ ∈ (0, 1] which is a fraction of the initial wealth.

For full coverage insurance contract, the willingness to pay given by equation (4) becomes,

after simple manipulations, equal to

P (θ, p, ζ) = W
(

1− [θ(1− ζ)p + (1− θ)]
1
p

)
(36)

The willingness to pay P (θ, p, ζ) of a given agent θ is a decreasing function of p and ζ and

is equal to equation (23) when p = 0.5 and ζ = 1. Everything else equal, the lower is p, the

lower is the number of market segments. As long as the premium P (θ, θ) a convex function,

the results di�er quantitatively but not qualitatively. For instance, when the beta density is

linear or when it is a monotonic function of θ, the premium turns out to be a convex function

of θ and the results are qualitatively similar to those found within the simplest model.

6 Conclusion

We developed in this paper a simple framework of complete information in which an insurer,

public or private, decides to segment the market not because of the lack of information about

the types, but because of the existence of transaction costs that increase with the number of

market segments. For a public insurer, we have shown a fairly general result that states that

all the agents should be insured. However, as this general result does not provide any clue to

implement this outcome, we considered a simple algorithm to segment the set of policyholders

in which there is no-cross-subsidization. We also considered an alternative approach, with

cross-subsidization but assuming pro�t maximization, and it has been shown that the two

approaches, with and without cross-subsidization, may generate a tradeo� between total

surplus and participation. While we argue that, with the development of technology such as

computer mediated transactions (see [Varian, 2010]), it really makes sense today to analyze

complete information models, it would also be interesting, from a theoretical point of view,

to endogenize the market segmentation when information is incomplete.
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Appendix A : Proofs

Proof of Lemma 1. By de�nition, P (θ) is such that U(W − P (θ)) = θU(W − L) + (1 −
θ)U(W ) so that P (θ) = W − U−1(θU(W − L) + (1 − θ)U(W )). When θ is equal to 0 or

1, we immediately obtain that P (0) = 0 and P (1) = L. Since U is assumed to be strictly

concave, U(E(X) > EU(X), it is not di�cult to show that P (θ) > θL for all θ ∈ (0, 1). Let

C = U(W )−U(W−L) > 0 and let G(θ) = U−1(−θC+U(W )). It is easy to see that P (θ) can

be written as P (θ) = W −G(θ). By direct di�erentiation, G′(θ) = −C(U−1(−θC +U(W )))′

and G′′(θ) = C2(U−1(−θC + U(W )))′′. Since U is increasing and concave function, U−1 is

an increasing and convex function10, it thus follows that P (θ) is an increasing and concave

function θ ∈ (0, 1)�

Proof of proposition 2. Recall from equation (11) that the expected total gross pro�t

is equal to

ER(~θ(n+1)) =
n∑
i=1

P (θi)[F (θi+1)− F (θi)]− L
∫ θn+1

θ1

θf(θ)dθ (37)

and note that since the total value of the transaction costs depends only on n ∈ N∗, the
MIP can be treated as a two-stage optimization problem. For a given number n ≥ 1 of

market segment(s), the insurer chooses in a �rst step the optimal market segmentation

~θ∗(n+1) to maximize the expected total gross pro�t given by equation (37), and chooses in

a second step n ≥ 1 to maximize EΠ(~θ∗(n+1)). Let n ∈ N∗ and recall that C([0, 1]n+1)

is a convex and compact cone of [0, 1]n+1. Since ER(~θ(n+1)) is a continuous function of

~θ(n+1) ∈ C([0, 1]n+1), by Wierstrass theorem (see e.g., Bertsekas 1999, proposition A 8 p

654), for each n ∈ N∗, there exists ~θ∗(n+1) = arg max
~θ(n+1)∈C([0,1]n+1)

ER(~θ(n+1)). Let ~θ∗(n+1) =

(θ∗1, ..., θ
∗
n+1) ∈ C([0; 1]n+1) be a candidate point to maximize equation (37). Note that

all the functions are regular enough by assumption so that it makes sense to compute the

gradient and note that ∇ER(~θ(n+1)) = ∇EΠ(~θ(n+1)).

Proof of part 1. By direct di�erentiation, the gradient of equation (37) is given by the

10See e.g., the proposition 2 in M Mres̆ević, (2008), "Convexity of the inverse function", The teaching of

Mathematics, Vol XI, pp 21-24.
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following set of n+ 1 non-linear equations with n+ 1 unknowns.

∂ER(~θn+1)

∂θ1

= P
′
(θ1)F (θ2))− P ′(θ1)F (θ1)− P (θ1)f(θ1) + Lθ1f(θ1) (38)

∂ER(~θn+1)

∂θi
= P (θi−1)f(θi) + P

′
(θi)F (θi+1)− P ′(θi)F (θi)− P (θi)f(θi) i = 2, ..., n(39)

∂ER(~θn+1)

∂θn+1

= P (θn)f(θn+1)− Lθn+1f(θn+1) (40)

The �rst claim, called claim 0 is obvious and we omit the proof.

Claim 0: For each n ≥ 1, the optimal market segmentation ~θ∗(n+1) is such that θ∗i+1 > θ∗i

for all i = 1, ..., n.

Claim 1: θ∗1 > 0. To prove it, assume the contrary is true, i.e., θ∗1 = 0. Using equation

(38), since ~θ∗(n+1) is a maximum, this means that P
′
(0)F (θ∗2)) − P ′(0)F (0) − P (0)f(0) ≤ 0.

Since F (0) = 0 and P (0) = 0, it thus follows that equation (38) is reduced to P
′
(0)F (θ∗2)) ≤ 0.

Since P
′
(0) > 0 and F (θ∗2) ≥ 0, the unique solution is θ∗2 = 0, and this contradicts claim 0 �

Claim 2: θ∗n < 1. To prove this, note since θ∗n+1 ≤ 1, from claim 0, θ∗n < θ∗n+1 ≤ 1 �

Let us write the candidate point ~θ∗(n+1) as
~θ∗(n+1) = (~θ∗(n); θ

∗
n+1), where ~θ∗(n) = (θ∗1, ..., θ

∗
n).

We have shown that ~θ∗(n) is such that θ∗1 < θ∗2 < ... < θ∗n < 1, i.e., it is an interior point of

C([0; 1]n. It thus follows that ∇ER(~θ∗(n)) = ~0, where ~0 is the n-dimensional null vector. To

complete the proof, it remains to show that
∂ER(~θ∗n+1)

∂θn+1
= 0.

Claim 3: θ∗n+1 < 1 and P (θ∗n) = Lθ∗n+1.

Note that from equation (40), θ∗n+1 = 1 can not a priori be excluded so that one must

explicitly consider the case in which the density is such that f(1) = 0 and f(1) > 0.

� f(1) > 0. To prove the claim, assume the contrary, i.e., that θ∗n+1 = 1. Using equation

(40), since ~θ∗(n+1) is a maximum, this means that f(1)(P (θ∗n)− L) ≥ 0. Recalling that

P (θ) ≤ L for all θ ∈ [0, 1], the unique possibility to satisfy f(1)(P (θ∗n)−L) ≥ 0 is when

P (θ∗n) − L = 0 and it is the case when θ∗n = 1. But this contradicts claim 2. It must

thus be the case that θ∗n+1 < 1 and
∂ER(~θ∗n+1)

∂θn+1
= 0. From equation (40), this implies

that f(θ∗n+1)(P (θ∗n)− Lθ∗n+1) = 0, so that P (θ∗n) = Lθ∗n+1.

� f(1) = 0. If θ∗n+1 = 1, then, equation (40) is always to zero regardless of P (θ∗n)−L ≤ 0.

Assume that P (θ∗n)− L = 0. Then, θ∗n = 1 and this contradicts claim 2. Assume now

that P (θ∗n) − L < 0. There thus exists θ̃ < 1 such that P (θ∗n) = θ̃L. But then, for all
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θ ∈ (θ̃, 1], the premium is lower than the expected loss. As a result, by o�ering the

contract to the subset [θ∗n, θ̃], the expected gross pro�t increases and this contradicts

the fact that θ∗n+1 = 1 is optimal. It must thus be the case that θ∗n+1 < 1 so that
∂ER(~θ∗n+1)

∂θn+1
= 0 and P (θ∗n) = Lθ∗n+1 �

Remark A 1 From claim 3, we know that for the group Gn, P (θ∗n) = Lθ∗n+1, that is θ
∗
n =

P
−1

(Lθ∗n+1). If P (θ∗i ) = Lθ∗i+1 for all i = 1, ..., n − 1, then, it is also true that θ∗i =

P
−1

(Lθ∗i+1) so that the maximization problem reduces to the choice of θ∗n+1 only since θ
∗
n−1 =

P
−1

(P
−1

(Lθ∗n+1)), θ∗n−2 = P
−1

((P
−1

(P
−1

(Lθ∗n+1))) and so on and so forth until θ∗1. Such a

very particular solution should not be true in general. We thus conjecture that for each n ≥ 3,

there exists i ∈ {1, ..., n−1} such that P (θ∗i ) > Lθ∗i+1. Consider for instance the case of n−1.

From the analysis of the gradient (i.e., equation (39) is equal to zero and (40) is equal to zero),

it is not di�cult to show that P (θ∗n−1) > Lθ∗n is equivalent to P
′
(θ∗n)

Lf(θ∗n)

[
F (θ∗n+1)− F (θ∗n)

]
<

θ∗n+1 − θ∗n. By noting that F (θ∗n+1) = F (θ∗n + (θ∗n+1 − θ∗n)) and by expanding F at order 2,
P
′
(θ∗n)

Lf(θ∗n)

[
F (θ∗n+1)− F (θ∗n)

]
< θ∗n+1 − θ∗n is equivalent to P

′
(θ∗n)

Lf(θ∗n)

[
f(θ∗n) + 1

2
(θ∗n+1 − θ∗n)f ′(θc)

]
< 1

with θc ∈ (θ∗n, θ
∗
n+1). No clear conclusion can be drawn without further assumptions. If we

further assume that f is uniform, P (θ∗n−1) > Lθ∗n is equivalent to P
′
(θ∗n)
L

< 1 (since f = 1

and f ′ = 0) and this has to be true for n high enough.

Before we prove part 2, we prove two useful lemma. Let ER(~θ∗(n+1)) := φ∗n and let φ∗ be

the maximum total expected gross pro�t of the private insurer when there are no transaction

costs. This quantity has been denoted earlier by Ψ∗prv

Lemma A 1 There exists n∗ ∈ N that maximizes φ∗n − nK

Proof. Note that (φ∗n)n∈N, with φ∗0 = 0, de�nes a numerical sequence which is strictly

increasing with n ≥ 1 and such that φ∗n < φ∗. Let Kn = nK. Since (Kn)n∈N, with K(0) = 0

de�nes a sequence which is an increasing function of n ∈ N such that limn→∞Kn → ∞,

there exists n∗ ∈ N that maximizes φ∗n − Kn. In case of non-uniqueness, as a tie-breaking

assumption, we assume that the insurer chooses the smallest value of n∗.

Before we prove that when K → 0, n∗(K) → ∞, we show the convergence of φ∗n to φ∗

when K = 0.

Lemma A 2 lim
n→∞

φ∗n → φ∗.
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Proof. Consider an uniform market segmentation ~θu given by θui = i
n+2

for i = 1, 2, ..., n +

1. Let φun := E(Rn(~θu)) = W (1 − F ( 1
n+2

)) −
∑n+1

i=1

(
F ( i+1

n+2
)− F ( i

n+2
)
)
U−1(v( i

n+1
)) −

L
∫ 1

1
n+2

θf(θ)dθ. Since F is C2 on (0, 1), it is thus continuous so that limn→∞ F ( 1
n+2

)→ F (0) =

0. Since U−1 is monotonic and bounded and since F is increasing and continuous, when

n→∞, the term
∑n+1

i=1

(
F ( i+1

n+2
)− F ( i

n+1
)
)
U−1(v( i

n+1
)) converges to

∫ 1

0
U−1(v(θ))dF (θ) =∫ 1

0
U−1(v(θ))f(θ)dθ (e.g., Rudin (1976) p 126, theorem 6.9), where the equality comes from

the fact that F is C1 (indeed C2) on (0, 1) so that dF (θ) = f(θ)dθ. Since it is obvious that

when n → ∞,
∫ 1

1
n+2

θf(θ)dθ converges to
∫ 1

0
θf(θ)dθ, it thus follows that limn→∞ φ

u
n → φ∗.

To conclude, it su�ces to note that the uniform market segmentation needs not be optimal,

so that φ∗n ≥ φun, for all n ∈ N. As a result, lim
n→∞

φ∗n → φ∗ �

Proof of part 2. We now prove by contradiction that when K → 0, n∗(K) → ∞.

Assume that for all K > 0, there exists n such that n∗(K) ≤ n. Without loss of generality,

assume that n∗(K) = n. This thus means that φ∗n − nK ≥ φ∗n+1 − (n + 1)K and note that

φ∗n+1 − (n + 1)K ≥ φ∗n − nK is equivalent to φ∗n+1 − φ∗n ≥ K. Since φ∗n+1 − φ∗n > 0, there

exists K small enough such that φ∗n+1 − (n + 1)K > φ∗n − nK, that is, n∗(K) ≥ n + 1 and

this contradicts the premises that there exists n such that n∗(K) ≤ n for all K > 0 �

Proof of proposition 3. Using equation (6) when Pi = A(θi, θi+1)Li ≤ P (θi), it is not

di�cult to show that the total surplus TS(~θ(n+1)) is equal to

TS(~θ(n+1)) = W (F (θn+1)−F (θ1))−
n∑
i=1

[F (θi+1)−F (θi)]A(θi, θi+1)Li−
∫ θn+1

θ1

U−1(v(θ))f(θ)dθ

(41)

Assume that the total expected net pro�t given by equation (13) is equal to zero. It is not

di�cult to show that
n∑
i=1

(Li − L)A(θi, θi+1)[F (θi+1)− F (θi)]− nK = 0 is equivalent to

n∑
i=1

[F (θi+1)− F (θi)]A(θi, θi+1)Li = L

∫ θn+1

θ1

θf(θ)dθ + nK (42)

When one inserts the rhs of equation (42) into equation (41), the total surplus is equal to

TS(~θ(n+1)) = W (F (θn+1)− F (θ1))−
∫ θn+1

θ1

[θL+ U−1(v(θ))]f(θ)dθ − nK (43)

and reduces to a function of θ1, θn+1, and n ≥ 1 only. To simplify the notation, let

TS(~θ(n+1)) := Ψ(θ1, θn+1). Note that from the above equation, it is easy to see that ∂Ψ(θ1,θn+1)
∂θ1

depends only on θ1 while
∂Ψ(θ1,θn+1)

∂θn+1
depends only on θn+1. As a result, one can examine the

optimality condition separately. Let us assume that n ≥ 1 is given.
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Consider �rst the maximization of Ψ(θ1, θn+1) with respect to θ1. It is not di�cult to see

that the �rst order condition with respect to θ1 is given by

∂Ψ(θ∗1, θn+1)

∂θ1

= 0⇐⇒ θ∗1L+ U−1(v(θ∗1))−W = 0 ∀θn+1 > θ1 (44)

Since U−1(v(0)) = W and U−1(v(1)) = W − L, it is easy to see that θ∗1 = 0 and θ∗1 = 1

are solutions of equation (44) while θ∗1 = 1 is not a maximum. By concavity of U , for

all θ ∈ (0, 1), U(W − θL) > v(θ), and this is equivalent to W − θL > U−1(v(θ)), i.e.,

θL+U−1(v(θ))−W < 0. As a result, ∂Ψ(θ1,θn+1)
∂θ1

< 0 for all θ1 ∈ (0, 1) and all n ≥ 1, so that

θ∗1 = 0 is a maximum. In the same way, it is now easy to show that the function Ψ(θ1, θn+1)

is maximized when θn+1 = 1, i.e., θ∗n+1 = 1 �

Proof of lemma 2. For this proof, we change the notations since we assume that

the �rst group is [θ
(1)
min, 1], the second group is [θ

(2)
min, θ

(1)
min) etc...that is, for each n ≥ 1,

θ
(n)
min > θ

(n+1)
min where the recursion is given by equation (19). Assume now that at step n ≥ 1

of the iterative process, i.e., n ≥ 1 market segments have been designed so that only the

group [0, θ
(n)
min] have not been proposed any insurance contract. Note that (θ

(n)
min)n≥1 de�nes a

decreasing sequence that converges to zero. At step n+1, will possible to design n+1 market

segments if there exists θ
(n+1)
min < θ

(n)
min, possibly unique, de�ned as given in equation (19),

where, from , equation (18), P (θ
(n+1)
min , θn, K) = A(θ

(n+1)
min , θn)L+ K

[F (θ
(n)
min)−F (θ

(n+1)
min )]

. Note that

when it exists, θ
(n+1)
min ) must be strictly positive since otherwise, the budget constraint would

be violated. Since θ
(n+1)
min is strictly positive, it is clear that K

[F (θ
(n)
min)−F (θ

(n+1)
min )]

> K

F (θ
(n)
min)

so that

P (θ
(n+1)
min , θ

(n)
min, K) > K

F (θ
(n)
min)

. Since (θ
(n)
min)n≥1 is a decreasing sequence that converges to zero,(

K

F (θ
(n)
min)

)
n≥1

de�nes an (unbounded) increasing sequence. Since
(
P (θ

(n+1)
min )

)
n≥1

de�nes a

decreasing sequence that converges to zero, there exists a smallest integer n(K) ≡ n ≥ 1

such that K
F (θn)

> P (θ
(n+1)
min ) for each n ≥ n, i.e., the number of market segments which is

possible to design is lower than n for each K > 0 �

Lemma A 3 Kpub < Kprv

Proof. For simplicity but without loss of generality, assume that n∗∗(Kpub) = 1 and

let [θ∗∗1 (Kpub); 1] be this unique group. By assumption, E(R(θ∗∗1 (Kpub), 1)) − Kpub = 0.

Consider now the private insurer and assume that n = 1. Let [θ∗∗1 , θ̇] be the group designed,

where θ̇ > θ∗∗1 is the value of θ that maximizes the expected gross pro�t of the private

insurer. We have already shown that θ̇ < 1. As a result, E(R(θ∗∗1 , θ̇)) > E(R(θ∗∗1 , 1)) so that
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E(Π(θ∗∗1 , θ̇)) > 0. Since (θ∗∗1 , θ̇)) needs not be the optimal market segment, i.e., (θ∗1, θ
∗
2), it

thus follows that E(Π(θ∗1, θ
∗
2)) ≥ E(Π(θ∗∗1 , θ̇)) > 0, that is E(R(θ∗1, θ

∗
2)) − Kpub > 0. As a

result, since Kprv > Kpub �

Proof of proposition 4. Let φ(~θ(n+1)) = E(R(~θ(n+1))) and note that the maximization

of φ with respect to ~θ(n+1) is equivalent to the minimization of g = −φ. From equation (25),

it thus follows that

g(~θ(n+1)) = −(θn+1 − θ1) +
n∑
i=1

(θi+1 − θi)(1− θi)2 +
1

2
(θ2
n+1 − θ2

1) (45)

Let g′i be the �rst (partial) derivative of the function g with respect to θi and g
′′
i,j be the

second (partial) derivative of g(~θ(n+1)) with respect to θi and θj. It is easy to show that the

gradient of g(~θ(n+1)) is equal to

g′1 = (1− θ1)(3θ1 − 2θ2) (46)

g′i = (1− θi−1)2 − (1− θi)[2θi+1 + 1− 3θi] i = 2, ..., n (47)

g′n+1 = −1 + (1− θn)2 + θn+1 (48)

Solving ∇g(~θ∗(n+1)) = ~0 yields the following system of n + 1 non-linear equations with

n+ 1 unknowns.

θ∗1 =
2

3
θ∗2 > 0 (49)

(1− θ∗i−1)2 = (1− θ∗i )[2θ∗i+1 + 1− 3θ∗i ] > 0 i = 2, ..., n (50)

θ∗n+1 = 1− (1− θ∗n)2 > 0 (51)

Remark 1 As expected from the general analysis of the gradient, in this speci�c model in

which L = 1, equation (51) is equivalent to P (θ∗n) = θ∗n+1.

Consider the upper bound. From equation (49), since (1 − θ∗i ) > 0 and (1 − θ∗i−1)2 > 0

for each i = 2, ..., n, it must be the case that [2θ∗i+1 + 1− 3θ∗i ] > 0 and this proves the upper

bound. It is clear that P (θ∗i ) ≥ θ∗i+1 for each i = 1, ..., n, i.e., 1− (1− θ∗i−1)2 ≥ θ∗i . Using now

equation (50), 1− (1− θ∗i−1)2 ≥ θ∗i is equivalent to 1− (1− θ∗i )[2θ∗i+1 + 1− 3θ∗i ] ≥ θ∗i so that

1 > 2θ∗i+1 + 1− 3θ∗i and this gives the lower bound �

For (θ∗1, ..., θ
∗
n+1) to be a (local) minimum of the function g, the Hessian matrix, denoted

Hg(θ
∗
1, ..., θ

∗
n+1), must be positive de�nite. Note that in our model, as in all partitioning

models, the Hessian matrix is tridiagonal. In [An�eli¢ and Da Fonseca, 2011], they review
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various interesting results to prove that a tridiagonal matrix is positive de�nite11 . We

shall actually use their theorem 1.2 which is indeed not speci�c to tridiagonal matrix and is

sometimes known as Gershgorin theorem (or a variant of it). It provides a set of conditions

under which a symmetric matrix is positive de�nite.

Theorem ([Axelsson, 1996] corollary 4.10 p. 133 or [An�eli¢ and Da Fonseca, 2011] theorem

1.2)). If A = (ai,j) ∈ Rn,n is a symmetric matrix with strictly positive diagonal entries

(that is, ai,i > 0 for all i = 1, ..., n) and is moreover strictly diagonal dominant (that is

|ai,i| >
∑
j 6=i

|ai,j| for all i = 1, ..., n), then A is positive de�nite. If A is strictly diagonal

dominant with strictly negative entries, then, it is negative de�nite.

Lemma A 4 The Hessian matrix Hg(θ
∗
1, ..., θ

∗
n+1) has strictly positive diagonal entries.

Proof. Let g′′i,i denotes the second derivative with respect to θi. From equation (54), one

obtains that g′′1,1 = 3 − 6θ1 + 2θ2. Evaluated at (θ∗1, ..., θ
∗
n+1), since θ∗1 = 2

3
θ∗2, g

′′
1,1 = 3 − 2θ∗2

and thus is strictly positive since θ∗2 < 1. From equation (55), evaluated at (θ∗1, ..., θ
∗
n+1),

g′′i,i = 2(2 + θ∗i+1 − 3θ∗i ) for i = 2, ..., n. From the positivity of the rhs of equation (50), we

know that (2θ∗i+1 + 1 − 3θ∗i ) > 0. Since 2 + θ∗i+1 − 3θ∗i > 2θ∗i+1 + 1 − 3θ∗i when θ
∗
i+1 < 1, it

thus follows that (2 + θ∗i+1 − 3θ∗i ) > 0 since θ∗i+1 < 1 so that g′′i,i > 0 for all i = 2, ..., n. Since

g′′n+1,n+1 = 1, the result follows �

Remark 2 Since θ∗i > θ∗i−1, (1 − θ∗i−1) > (1 − θ∗i ) so that (1 − θ∗i−1)2 > (1 − θ∗i )(1 − θ∗i−1).

From equation (50), for i = 2, ..., n, it thus follows that (1− θ∗i−1) < 2θ∗i+1 + 1− 3θ∗i which is

in turn is equivalent to θ∗i+1 − θ∗i > 1
2
(θ∗i − θ∗i−1).

Lemma A 5 Let n ≥ 2. If ~θ∗(n+1) is such that θ∗i+1 − θ∗i > θ∗i − θ∗i−1 for i = 2, ..., n, then,

1. Hg(θ
∗
1, ..., θ

∗
n+1) is strictly diagonal dominant

2. ~θ∗(n+1) is the unique maximum.

Proof of part 1.. We already know that evaluated at the point (θ∗1, ..., θ
∗
n+1), g′′1,1 =

3−2θ∗2 > 0. Since g′′1,2 = −2+2θ1 < 0 (i.e., |g′′1,2| = 2−2θ1), the diagonal dominance condition

11Some of the results are interesting but we have not found them suitable for our model. If A = (ai,j) ∈
Rn,n is a tridiagonal matrix, few theorems presented show that the positive de�nitness of A turns out to be

related to 1
cos2( π

n+1 )
.
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for the �rst row thus is g′′1,1 > |g′′1,2|, which is equivalent to the positivity of 3− 2θ∗2− 2 + 2θ∗1.

Since θ∗1 = 2
3
θ∗2, the positivity is always satis�ed. From equation (55), one easily obtains

that g′′i,i−1 = −2(1 − θi−1) < 0, g′′i,i+1 = −2(1 − θi) < 0. Since g′′i,i = 2(2 + θi+1 − 3θi) for

i = 2, ..., n− 1, evaluated at (θ∗1, ..., θ
∗
n+1), the diagonal condition thus is 2(2 + θ∗i+1 − 3θ∗i ) >

2(1−θi)+2(1−θi−1) and is satis�ed if θ∗i+1−θ∗i > θ∗i −θ∗i−1. For i = n, one easily obtains that

g′′n+1,n+1 = 1 and g′′n+1,n = −2(1− θ∗n) so that the diagonal condition is satis�ed if θ∗n > 1/2.

We already know that... Since for n = 1, θ∗1 = 1/2, it thus follows that for n ≥ 2, θ∗n > 1/2.

From Gershgorin theorem, Hg(θ
∗
1, ..., θ

∗
n+1) is positive de�nite so that ~θ∗(n+1) is a minimum of

g and thus a maximum of φ �

Proof of part 2.. It now remains to show that ~θ∗(n+1) is unique. To do so, assume the

contrary. For simplicity, assume that there are two vectors denoted ~θ∗a = (θ∗a,1, ..., θ
∗
a,n+1)

and ~θ∗b = (θ∗b,1, ..., θ
∗
b,n+1) of C([0, 1]n+1) that minimize the function g, that is, ~θ∗a and ~θ∗b

satisfy the �rst order condition and are such that g(~θ∗a) = g(~θ∗b ) < g(~θ(n+1)) for all ~θ(n+1) ∈
C([0, 1]n+1)\{~θ∗a; ~θ∗b}. Let

S = {~θ(n+1) ∈ C([0, 1]n+1) : ~θ(n+1) = λ~θ∗a + (1− λ)~θ∗b , λ ∈ (0, 1)} (52)

that is, the set of points which are convex combination of ~θ∗a and ~θ∗b . Since C([0, 1](n+1))

is a convex cone, it thus follows that S ⊂ C([0, 1](n+1)). It is not di�cult to show that if

θi+1 − θi > θi − θi−1 for i = 2, ..., n is satis�ed for ~θ∗a and ~θ∗b , it also holds for each vector

of ~θ(n+1) ∈ S. But this means for each ~θ(n+1) ∈ S, the Hessian matrix is positive de�nite,

which is equivalent to the strict convexity of the function g(~θ(n+1)) for ~θ(n+1) ∈ S. And this

contradicts the possibility of two minima �

Proposition A 1 For any choice of n ≥ 1, maximizing equation (25) subject to the con-

dition θn+1 = 1 for each n ≥ 1 leads to the existence of positive numbers (νi)
n
i=1 such that

θ†i = 1− νi
(

1

3ν1 − 2ν2

)
for i = 1, ..., n.

Proof. We use the objective function de�ned in equation (25) with θn+1 = 1 for each

n ≥ 1.

f(θ1, ..., θn) = (1− θ1)−
n∑
i=1

(θi+1 − θi)(1− θi)2 − 1

2
(1− θ2

1) (53)

Let f ′i be the �rst (partial) derivative of the function f with respect to θi. It is not
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di�cult to show that the gradient of f(θ1, ..., θn) is equal to

f ′1 = −(1− θ1) + (1− θ1)2 + 2(1− θ1)(θ2 − θ1) (54)

f ′i = −(1− θi−1)2 + (1− θi)2 + 2(1− θi)[(1− θi)− (1− θi+1)] i = 2, ..., n− 1 (55)

f ′
n

= −(1− θn−1)2 + 3(1− θn)2 (56)

For a given n ≥ 1, let the vector (θ†1, θ
†
2, ..., θ

†
n) ∈ C([0, 1]n) be such that f ′i = 0 for each

i = 1, ..., n.

Lemma A 6 For each n ≥ 1, there exists strictly positive numbers ν0, ν1, ..., νn such that

(1− θ†n−k) = νn−k(1− θ†n).

Proof. For k = 0, it is obvious that νn = 1. For k = 1, by using equation (56), it is

easy to see that f ′
n

= 0 is equivalent to (1− θ†n−1) =
√

3(1− θ†n) and as a result, νn−1 =
√

3.

For k = 2 (i.e., to obtain νn−2), consider equation (55) when f ′n−1 = 0 for i = n − 1. One

obtains that (1−θ†n−2)2 = 3(1−θ†n−1)2−2(1−θ†n−1)(1−θ†n). Since (1−θ†n−1) = νn−1(1−θ†n),

it thus follows that (1 − θ†n−2)2 = 3(1 − θ†n−1)2 − 2(1 − θ†n−1)(1 − θ†n). This can be written

as (1 − θ†n−2)2 = (3ν2
n−1 − 2νn−1)(1 − θ†n)2, which leads to νn−2 =

√
(3ν2

n−1 − 2νn−1). Let

(1 − θ†n−k) = νn−k(1 − θ†n) and consider the case in which i = n − k, for k = 3..., n − 2 in

equation (55) when f ′n−k = 0. By plugging (1 − θn−k) = νn−k(1 − θn) into equation (55),

after some manipulations, we obtain that νn−k−1 =
√

3ν2
n−k − 2ν2

n−kν
2
n−k+1. It remains to

consider the case in which n = k− 1. It su�ces to insert (1− θ†1) = ν1(1− θ†n) into equation

(54) for f ′1 = 0. Since θ†n < 1, after simpli�cations, we obtain that θ†n = 1− 1
3ν1−2ν2

. �

We have shown that

(1− θ†i ) = νi(1− θ†n) for i = 1, ..., n (57)

It su�ces to insert θ†n = 1− 1
3ν1−2ν2

into equation (57) to obtain the following corollary.

Corollary A 1 θ†i = 1− νi
3ν1−2ν2

for i = 1, ..., n

This concludes the proof �

In the special case in which n = 3, this gives ν3 = 1, ν2 =
√

3 and ν1 =
√

9− 2
√

3. As

a result, θ†1 = 1 −
√

9−2
√

3

3
√

9−2
√

3−2
√

3
≈ 0.3454, and θ†2 and θ†3 can be computed in the same way.

While tedious, it is not di�cult to repeat this analysis for di�erent values of n > 3.
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Appendix B

In this appendix, we consider the possibility to design non-adjacent groups for a private

insurer and the possibility to o�er partial insurance for a public insurer.

7 Allowing groups to be non-adjacent

We consider the private insurer. Let (θi, θi) de�nes the groupGi for i = 1, ..., n with θi ≤ θi+1.

We now derive few simple results on the optimal market segmentation given by (θ∗i , θ
∗
i ) for

i = 1, ..., n. For some results, the assumption that f is continuous is even not required.

When market segments are assumed to be adjacent, the optimal market segmentation is

the solution of an unconstrained optimization problem in which the insurer has to choose

n variables, i.e., (θ1, θ2, ..., θn). When segments are allowed to be non-adjacent, the optimal

market segmentation is the solution of a constrained optimization problem in which the

insurer has to choose 2n variables, i.e., (θi, θi) for i = 1, ..., n subject to the constraint

θi+1−θi ≥ 0. The real di�culty is of course to assess whether a given constraint θi+1−θi ≥ 0

is binding or not.

Properties of the optimal market segmentation

Fact A 1 Under the optimal market segmentation (θ∗i , θ
∗
i ), i = 1, ..., n, the expected pro�t of

each market segment i, Eπ(θ∗i , θ
∗
i ) is positive.

Proof. Assume the contrary is true, that is, there is an index i such that Eπ(θ∗i , θ
∗
i ) < 0. In

such a case, it su�ces not to o�er a contract to the market segment i. As a result, the pro�t

of the segment i is now equal to zero (there are now n − 1 market segments) and the total

expected pro�t increases, which contradicts the optimality of the market segmentation �

Since the expected pro�t of each group is positive under the optimal market segmentation,

the premium of each group has to be positive.

Corollary A 2 For i = 1, ..., n, the premium of the group Gi, P (θ∗i ), is positive so that θ∗i

is positive.

Fact A 2 P (θ∗n) = θ
∗
nL and θ

∗
n < 1

See the proof of claim 3 of proposition 2.
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Fact A 3 For i = 1, ..., n, P (θ∗i ) ≥ θ
∗
iL.

Proof. Assume the contrary is true for a given group i, that is, P (θ∗i ) < θ
∗
iL. By continuity

of the function P (θ), there exists θ̃i ∈ (θ∗i , θ
∗
i ) such that P (θ∗i ) = θ̃iL. Since the expected

(gross) pro�t is negative on the subgroup [θ̃i, θ
∗
i ], the expected pro�t increases by not o�ering

a contract to this subgroup and this contradicts the optimality of θ
∗
i �

Fact A 4 Let Gi and Gi+1 be two groups under the optimal market segmentation.

1. If Gi and Gi+1 are not-adjacent, then, P (θ∗i ) = θ
∗
iL.

2. If Gi and Gi+1 are adjacent, then, P (θ∗i ) ≥ θ
∗
iL.

Proof. Part 1. Let Gi = [θ∗i , θ] and assume that everything is (optimally) chosen except

θ, the upper bound of that group. The premium paid by the group Gi = [θ∗i , θ] is equal to

P (θ∗i ) and θ has to be chosen. Since the expected pro�t of the group Gi is an increasing

function of θ as long as θ is such that P (θ∗i ) ≤ θL, it thus follows that the optimal value of

θ, denoted by θ
∗
i , is such that P (θ∗i ) = θ

∗
iL since the optimal groups Gi and Gi+1 are not

adjacent by assumption, i.e., θ
∗
i < θ∗i+1. Part 2 see the proof of fact A 3 . �

From an economic point of view, it thus follows from the above results, that for each n ≥ 1,

the subset of agents [0, θ∗1) and the subset of agents [θ
∗
n, 1] are never proposed an insurance

contract so that they remain uninsured. However, if there exists an index i ∈ {1, ..., n− 1}
such that Gi and Gi+1 are not adjacent under the optimal market segmentation, then, the

subset of agents (θ
∗
i , θ
∗
i+1) also remain uninsured. As said, the di�culty lies on the assessment

of whether or not a constraint i is binding or not.

On the possibility of optimal groups that are not adjacent

Consider �rst the case of a single group G = [θ, θ] and let (θ∗, θ
∗
) be the optimal market

segmentation, i.e., that maximizes ER(θ, θ)

Lemma A 7 Assume that n = 1. If f is C1 on (0, 1), then, ∇ER(θ∗, θ
∗
) = ~0 leads to

[P
′
(θ∗)− L]f(θ∗) = −1

2
f ′(θc)(θ

∗ − θ∗)P ′(θ∗) θc ∈ (θ∗, θ
∗
) (58)

Moreover, if f is strictly increasing (decreasing), then θ∗ > θ̂ (θ∗ < θ̂), where θ̂ ∈ (0, 1) is

the unique value of θ such that P
′
(θ̂) = L,
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Proof. Note that, up to the notations, the gradient is given by equations (38) and (40)

with n = 1. We have already seen that P (θ∗) = θ
∗
L, with θ

∗
< 1. Plugging P (θ∗) = θ

∗
L

into equation (38) yields to P
′
(θ∗)[F (θ

∗
)− F (θ∗)] = f(θ∗)[(θ

∗ − θ∗)L. Noting that F (θ
∗
) =

F (θ∗+(θ
∗−θ∗)), since F is assumed to be C2, F (θ

∗
)−F (θ∗) = (θ

∗−θ∗)f(θ∗)+ 1
2
(θ
∗−θ∗)2f ′(θc),

where θc ∈ (θ∗, θ
∗
). By inserting F (θ

∗
)− F (θ∗) in equation (38), this proves, equation (58).

Since P (θ) is an increasing and (strictly) concave function of θ such P (θ) > θL for

θ ∈ (0, 1), with P (0) = 0 and P (1) = L, there exists a unique θ̂ ∈ (0, 1) such that P
′
(θ̂) = L,

i.e., for all θ ∈ (0, θ̂), P
′
(θ) > L while for all θ ∈ (θ̂, 1), P

′
(θ) < L. Assume now that f is

strictly increasing, i.e., f ′ > 0 for all θ ∈ (0, 1). If θ∗ ≤ θ̂, then, the lhs of equation (58) is

positive (or equal to zero) while the rhs is negative and is impossible. As a result, it is only

when θ∗ > θ̂ that equation (58) can be satis�ed. Similar arguments show that θ∗ < θ̂ when

f is strictly decreasing �

Consider now the case in which n = 2 and assume that the insurer can choose market

segments which may not be adjacent intervals. Let G1 = [θ1, θ1] and G2 = [θ2, θ2) where

θ1 ≤ θ2 be two such groups. Let EΠ(θ1, θ1, θ2, θ2) := ER1(θ1, θ1) + ER2(θ2, θ2) be the

expected total gross pro�t where ERi(...), i = 1, 2 is given by equation (8). As already said,

one can formulate the problem as the following optimization problem.

max
θ1,θ1,θ2,θ2

ER1(θ1, θ1) + ER2(θ2, θ2) (59)

s/c θ2 − θ1 ≥ 0 (60)

As it is a constrained optimization problem, it can be formulated using KKT. Let µ be

the multiplier associated to the constraint. This is written µ(θ2 − θ1) = 0, that is, µ = 0 if

the constraint is not binding and µ > 0 if the constraint is binding.

Assume now that under the optimal market segmentation, the two optimal groups are

not adjacent, i.e., µ = 0 since the constraint is not binding. This means that the constraint

is not e�ective, and that there exists 0 < θ∗1 < θ
∗
1 < θ∗2 < θ

∗
2 < 1 such that equation (58)

holds for (θ∗1, θ
∗
1) and (θ∗2, θ

∗
2) separately.

Proposition A 2 When f is the uniform density, the optimal market segmentation chosen

by the pro�t maximizing insurer must be composed of adjacent market segments.

Assume that the two optimal groups are not adjacent and that f is the uniform density.

In such a case, the rhs of equation (58) is equal to zero since f ′(θ) = 0 for all θ ∈ (0, 1). It

thus follows that for i = 1, 2, [P
′
(θ∗i )−L]f(θ∗i ) = 0, so that P

′
(θ∗i ) = L since f(θ) = 1 for all
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a b 

Figure 3: Example of a bimodal distribution

θ ∈ (0, 1). As a result, θ∗i = θ̂ for i = 1, 2. Since θ̂ is unique, this thus means that θ∗1 = θ∗2 so

that the two groups are overlapping and this contradicts the premises that the groups are

non adjacent. Since this is true for an arbitrary number of groups, this concludes the proof

of the proposition �

We shall now show that a typical example in which market segments are not adjacent is

when the density is bimodal. On Fig. (3), a and b are two local max of the density.

Lemma A 8 Assume that the density is bimodal as in Fig. (3) and let n = 2. Let G1 =

[θ∗1, θ
∗
1] and G2 = [θ∗2, θ

∗
2] be the two optimal groups and let θi,c ∈ (θ∗i , θ

∗
i ), i = 1, 2. If θ

∗
1 < θ̂

and if θ∗2 > θ̂ and θ
∗
2 ≤ b, (θ∗i , θ

∗
i ) may solve the �rst order condition given by equation (58)

for each i = 1, 2.

Proof. Recall that the �rst order condition is given by

[P
′
(θ∗)− L]f(θ∗) = −1

2
f ′(θc)(θ

∗ − θ∗)P ′(θ∗) θc ∈ (θ∗, θ
∗
) (61)

Since θ
∗
1 < θ̂, it thus follows that θ∗1 < θ̂ so that [P

′
(θ∗1)− L] > 0. If θ1,c ∈ (a, θ̂), see Fig.

(3), f ′(θ1,c) is negative so that equation (61) may be satis�ed. Since θ∗2 > θ̂, it thus follows

that [P
′
(θ∗2) − L] < 0. Since θ

∗
2 ≤ b, see Fig. (3), f ′(θ2,c) > 0 so that equation (61) may be

satis�ed �

A similar result can be obtained when n = 2 when the density is U-shaped. From this

analysis, it is quite clear that the conditions under which two market segments are non-

adjacent are rather particular.
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8 On partial coverage public insurance contracts

Partial insurance contracts through a deductible

From [Mossin, 1968], we know that an expected utility maximizer agent θ should optimally

choose a partial insurance coverage when the premium is actuarially unfavorable. Formally,

if an agent θ is assigned to the group Gi = [θi, θi+1) and if the premium Pi > θL, then,

there exists c(θ) > 0 such that Pi = (1 + c(θ))θL where c(θ) can be interpreted as the

implied loading factor for agent θ. Following [Razin, 1976], the [Mossin, 1968] result can be

formulated by incorporating a deductible D ≤ L in the contract, possibly chosen by the

policy holder θ. In such a case, the premium can written as Pi(D) = (1 + c(θ))θ(L − D)

and it is clear that the no deductible case, i.e., D = 0, is equivalent to complete coverage.

With a deductible, the contract o�ered to a group Gi is Ci = (Pi(D), L−D) where L−D
is the payment of the insurer in case of damage. It is shown in [Razin, 1976] (see also

[Briys and Louberge, 1985]) that if the loading factor is positive, i.e., c(θ) > 0, then, an

expected utility maximizer would optimally choose a positive deductible, i.e., D∗(θ) > 0. To

examine whether or not a public insurer should only o�er partial coverage contracts, assume

that the public insurer has designed the group Gi = [θi, θi+1). With transaction costs, to

satisfy the budget constraint of that group, the premium Pi must clearly be higher than θiL.

From equation (18), depending on the inputs of the model (density, utility function...), it

may be the case that there is an index i such that P (θi) > θi+1L. In such a case, it might be

worthwhile for the public insurer to o�er a partial coverage insurance contract to all agents

of this group. There are thus two cases

1. P (θi) < θi+1L.

2. P (θi) > θi+1L.

Consider �rst the case in which P (θi) < θi+1L and note that there exists θ̂i ∈ (θi; θi+1)

such that P (θi) = θ̂iL. In such a case, the contract is actuarially favorable to all the agents

of the subgroup (θ̂i, θi+1) and they �nd optimal to be fully insured. However, all the agents

of the subgroup [θi, θ̂i) �nd the contract actuarially unfavorable and would have preferred a

partial coverage insurance contract. In this case, whether or not a partial insurance coverage

will increase the aggregate surplus of the group is unclear. Consider now the case in which

P (θi) > θi+1L, that is, all the agents of the groupGi �nd the contract actuarially unfavorable.

In such a case, o�ering a partial insurance coverage might be welfare increasing for such a

group.
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Formulating the optimization problem

We here assume that the partial (public) insurance contract is designed through a deductible

arrangement D < L. Consider a given potential policy holder θ and a given deductible

D < L. Let P (θ,D) be the maximum price agent θ is ready to pay for such a partial

insurance contract, that is, that pays only L −D in case of damage. Recalling that v(θ) is

the expected utility without insurance, P (θ,D) is the solution of the following equation (i.e.,

the expected utility)

θU(W − P (θ,D)−D) + (1− θ)U(W − P (θ,D)) = v(θ) (62)

so that P (θ,D) can only be de�ned implicitly. It is only in the no-deductible case that there

is an explicit expression for P (θ,D). We have seen that when Pi > θi+1L, all the agents of

the group Gi would be prefer a partial coverage contract. Let Pi(D) be the premium o�ered

to the group Gi and assume that all the agents accept the contract. The aggregate surplus

thus is equal to

CSi(D) =

∫ θi+1

θi

(
P (θ,D)− Pi(D)

)
f(θ)dθ (63)

For a given group Gi = [θi, θi+1), the optimization problem of the public insurer can thus

be formulated as follows.

max
D≥0

CSi(D) (64)

s/c

P (θ,D) ≥ Pi(D) ∀θ ∈ Gi

E(Ri(D) = K

Even when one speci�es the model, this problem has to be solved numerically.
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