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Abstract

This contribution has two main objectives. First, it aims to compare empirically input-

oriented technical and economic capacity notions. Second, it aims to compare these

technical and economic capacity notions on both convex and nonconvex technologies.

After defining these input-oriented technical and economic capacity notions, this con-

tribution focuses on empirically comparing these different capacity utilization notions

using a secondary data set. Anticipating two key empirical conclusions, we find that

all these different capacity notions follow different distributions, and also that these

distributions almost always differ under convex and nonconvex technologies.
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1 Introduction

Analysing efficiency and productivity using frontier technologies has become a standard em-

pirical tool serving a variety of academic, regulatory and managerial purposes. Indeed there

is a huge academic literature applying these methodologies for analyzing private and pub-

lic sector performance-related issues. Focusing on empirical surveys of certain well-studied

sectors, one can point, for example, to banking (Harker and Zenios (2001)), education (Wor-

thington (2001)), health care (Ozcan (2008)), insurance (Cummins and Weiss (2000)), justice

system (Voigt (2016)) and real estate (Anderson, Lewis, and Springer (2000)). Apart from

this surge of empirical applications, there has equally been an extended series of methodolog-

ical innovations in this literature surveyed in, for example, Hatami-Marbini, Emrouznejad,

and Tavana (2011) or Thanassoulis, Silva Portela, and Despić (2008).

An important area of regulatory applications has been the implementation of incentive

regulatory mechanisms (e.g., price cap regulation) using frontier-based performance bench-

marks in countries with liberalized network industries (e.g., electricity, gas, water utilities).

One survey focusing on its use in the electricity sector is Jamasb and Pollitt (2000). An

example of a managerial application is the use of frontier methods to save resources allowing

to use these as internal funds to pursue a growth strategy in a US bank (see, e.g., Sherman

and Ladino (1995)).

However, this frontier literature has largely ignored integrating the important notion

of capacity utilization. Consequently, part of what appears like inefficiency may in fact be

due to the short-run fixity of certain inputs, depending on the exact definition of capacity

utilization. It is of equal importance to account for heterogeneity in capacity utilization when

measuring productivity growth (e.g., Luh and Stefanou (1991)).

Capacity utilization of fixed inputs is relevant for both managers and policy makers

at various levels of aggregation and in all economic sectors. For instance, at the country

level capacity utilization is traditionally employed as a leading macro-economic indicator to

forecast inflation (e.g., Christiano (1981)). The management of excess vessel capacities has

recently become a key policy issue in fisheries due to degrading bio-stocks in this common

pool resource. As an example, a variety of capacity measures has been employed to evaluate

vessel decommissioning schemes (e.g., Walden, Kirkley, and Kitts (2003)). To curb overfish-

ing, governments must determine sustainable capacity levels by implementing a variety of

policy measures (e.g., licenses, fishing day restrictions, etc.). To define these policy measures,

scientists have developed short-run industry models based on vessel capacity estimates to
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allow planning the industry and infer realistic decommissioning schemes (see, e.g., Lindebo

(2005)).

However, different notions of capacity co-exist in the literature (e.g., Christiano (1981) or

Johansen (1968)). It is common to distinguish between technical or engineering concepts on

the one hand and economic capacity concepts on the other hand. Johansen (1968) developed

a technical or engineering approach by introducing a plant capacity notion. Plant capacity

is defined as the maximal amount that can be produced per unit of time with existing plants

and equipment without restrictions on the available variable inputs. This definition has been

transposed into a production frontier context using output-oriented efficiency measures by

Färe, Grosskopf, and Kokkelenberg (1989).

Most economic capacity concepts are based on the cost function. In the literature there

are basically at least three ways of defining a cost-based capacity notion (see, e.g., Nelson

(1989)). Each of these notions attempts to isolate the short-run inadequate or excessive

utilization of fixed inputs. A first notion of potential outputs is defined in terms of the

outputs produced at short-run minimum average total cost given existing plant and input

prices (for instance, Hickman (1964)). It stresses the need to exploit scale economies in

the short-run. A second definition of potential outputs is conceived in terms of the outputs

produced at minimum average total cost in the long-run (e.g., Cassels (1937), among others).

It is rarely used because its intertwining with the notion of scale economies. A third definition

corresponds to the outputs at which the short-run and long-run average total cost curves are

tangent. Since this tangency point is at the intersection of short-run and long-run expansion

paths, this notion has considerable theoretical appeal (for example, Klein (1960) or Segerson

and Squires (1990)).

We are unaware of any study comparing these technical and economic capacity notions.

One plausible hypothesis explaining this lack of comparative studies is that the economic

capacity notions at least implicitly adopt an input orientation, while the technical plant

capacity notion is traditionally based on output-oriented efficiency measures. However, re-

cently Cesaroni, Kerstens, and Van de Woestyne (2017) develop an input-oriented plant

capacity notion based on input-oriented efficiency measures. Therefore, a first major goal

of this contribution is to make a theoretically coherent input-oriented comparison between

these technical and economic capacity notions. As a point of comparison, we also include

the output-oriented plant capacity notion which has been used quite often in the literature

in the last three decades since its inception (see Cesaroni, Kerstens, and Van de Woestyne

(2017) for a literature review).
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It is well-known that the axiom of convexity has a potential impact on the empirical

analysis based on technologies (see, e.g., Tone and Sahoo (2003)). In our context, for instance,

Walden and Tomberlin (2010) document the effect of maintaining or dropping convexity on

the output-oriented plant capacity utilization concept. Equally so, Cesaroni, Kerstens, and

Van de Woestyne (2017) reveal the impact of convexity on the input-oriented plant capacity

utilization notion.

However, most researchers tend to ignore the potentially important impact of convexity

on the cost function. This is related to a property of the cost function in the outputs that is

ignored by most people. Indeed, some seminal contributions to axiomatic production theory

indicate that the cost function is nondecreasing and convex in the outputs if and only if

the technology is convex (e.g., Jacobsen (1970)). Otherwise, the cost function is nonconvex

in the outputs. Briec, Kerstens, and Vanden Eeckaut (2004) refine this general property

and prove that cost functions estimated on nonconvex technologies yield larger or equal

cost estimates compared to cost functions estimated on convex technologies. These both

types of cost functions are identical when there is a single output and constant returns to

scale prevail. The large majority of empirical studies have ignored to put these properties

to a test. In our context, to the best of our knowledge the impact of convexity on cost-

based notions of capacity utilisation has never been evaluated. Therefore, a second major

goal of this contribution is to make a coherent input-oriented comparison between technical

and economic capacity notions using both convex and nonconvex technologies to assess the

impact of the convexity hypothesis.

This contribution is structured as follows. Section 2 summarizes the basic definitions

of the technology and the cost function. The next Section 3 reviews in detail both the

economic and technical capacity utilization definitions. This includes, among others, looking

at the issue of normalization, given the existence of inefficiencies, and a priori determining

the eventual impact of convexity. In the next Section 4 we develop an empirical illustration

making use of an existing secondary data set, which makes our results replicable. The focus

is on descriptive statistics, a formal testing of the resulting distributions, and a comparison

of Spearman rank correlations. A final section concludes.

2 Technology and Cost Functions: Basic Definitions

In this section we define technology and some basic notation. Given an N -dimensional input

vector x ∈ RN
+ and an M -dimensional output vector y ∈ RM

+ , the production possibility
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set or technology T can be defined as follows: T = {(x, y)|x can produce y}. The input set

associated with T denotes all input vectors x capable of producing a given output vector y:

L(y) = {x|(x, y) ∈ T}. In a similar way, the output set associated with T denotes all output

vectors y that can be produced from a given input vector x: P (x) = {y|(x, y) ∈ T}.

Throughout this contribution, technology T satisfies some combination of the following

standard assumptions:

(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ T and if (0, y) ∈ T , then y = 0.

(T.2) T is a closed subset of RN
+ × RM

+ .

(T.3) Strong input and output disposal, i.e., if (x, y) ∈ T and (x′, y′) ∈ RN
+ × RM

+ , then

(x′,−y′) ≥ (x,−y)⇒ (x′, y′) ∈ T .

(T.4) (x, y) ∈ T ⇒ δ(x, y) ∈ T for δ ∈ Γ, where:

(i) Γ ≡ ΓCRS = {δ : δ ≥ 0};

(ii) Γ ≡ ΓVRS = {δ : δ = 1}.

(T.5) T is convex.

Briefly discussing these traditional axioms on technology, it is useful to recall: (i) inaction

is feasible, and there is no free lunch, (ii) closedness, (iii) free disposal of inputs and outputs,

(iv) returns to scale assumptions (i.e., constant returns to scale (CRS) and variable returns

to scale (VRS)), and (v) convexity of technology (see, e.g., Hackman (2008) for details). Not

all these axioms are maintained in the empirical analysis.1 In particular, key assumptions

distinguishing some of the technologies in the empirical analysis are CRS versus VRS, and

convexity versus nonconvexity.

The input distance function completely characterizes the input set L(y) and it can be

defined as follows:

Di(x, y | T ) = max{λ : λ ≥ 0, (x/λ, y) ∈ T} = max{λ : λ ≥ 0, x/λ ∈ L(y)}. (1)

The main properties of this input distance function are: (i) Di(x, y | T ) ≥ 1, with effi-

cient production on the boundary (isoquant) of L(y) represented by unity; (ii) it has a cost

interpretation (see, e.g., Hackman (2008)).

1Note that the convex VRS technology does not satisfy inaction.
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The inverse of this input distance function DFi(x, y) = [Di(x, y | T )]−1 is known as the

radial input efficiency measure. Hence, the radial input efficiency measure is defined as:

DFi(x, y) = min{λ | λ ≥ 0, λx ∈ L(y)}. (2)

Its key property is that it is situated between zero and unity (0 < DFi(x, y) ≤ 1), with

efficient production on the boundary (isoquant) of the input set L(y) represented by unity.

Switching to a dual representation of the technology, the cost function can be defined as

the minimum expenditures needed to produce a given output vector y for a given a vector

of semi-positive input prices (w ∈ RN
+ ):

C(y, w | T ) = min
x
{wx : (x, y) ∈ T} = min

x
{wx : x ∈ L(y)}. (3)

Duality relations link these primal and dual representations of technology. Duality allows

a well-behaved technology to be reconstructed from the observations on cost minimizing

producer behavior, and the reverse. The duality between input distance function (1) and

cost function (3) is:

Di(x, y | T ) = min
w
{wx : C(y, w | T ) ≥ 1}, x ∈ L(y), (4)

C(y, w | T ) = min
x
{wx : Di(x, y | T ) ≥ 1}, w > 0. (5)

It is common to establish such duality relations under the hypothesis of a convex technology

or a convex input set (e.g., (Hackman, 2008, Ch. 7)). Briec, Kerstens, and Vanden Eeckaut

(2004) are the first to establish a local duality result between nonconvex technologies subject

to various scaling laws and their corresponding nonconvex cost functions.

Next, the radial output efficiency measure can be defined as:

DFo(x, y) = max{θ | θ ≥ 0, θy ∈ P (x)}. (6)

It offers a complete characterization of the output set P (x). Its main properties are that it

is larger than or equal to unity (DFo(x, y) ≥ 1), with efficient production on the boundary

(isoquant) of the output set P (x) represented by unity, and that the radial output efficiency

measure has a revenue interpretation (e.g., Hackman (2008)).

Partitioning the input vector into a fixed and variable part, we have (x = (xf , xv)) with

xf ∈ RNf

+ and xv ∈ RNv
+ such that N = Nf + Nv. Furthermore, we can make the same
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distinction regarding the input price vector (w = (wf , wv)).

In a similar way, a short-run technology T f = {(xf , y) ∈ RNf

+ × RM
+ , x

f can produce y}
and the corresponding input set Lf (y) = {xf ∈ RNf

+ : (xf , y) ∈ T f} and output set P f (xf ) =

{y|(xf , y) ∈ T f} can be defined. Note that technology T f is obtained by a projection of

technology T ∈ RN+M
+ into the subspace RNf+M

+ (i.e., by setting all variable inputs equal to

zero). The same applies by analogy to the input set Lf (y) and the output set P f (xf ).

By analogy, the short-run total cost function is defined as follows:

C(w, xf , y | T ) = min
xv
{wvxv + wfxf : (xv, xf , y) ∈ T}. (7)

The short-run total cost function is simply the short-run variable cost function and the

observed fixed costs. The short-run variable cost function is defined:

V C(wv, xf , y | T ) = min
xv
{wvxv : (xv, xf , y) ∈ T}. (8)

The sub-vector input efficiency measure reducing only the variable inputs is defined as

follows.

DF SR
i (xf , xv, y) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(y)}. (9)

Next, we need the following particular definitions of technologies L(0) = {x | (x, 0) ∈ S}
is the input set with zero output level. The sub-vector input efficiency measure reducing

variable inputs evaluated relative to this input set with a zero output level is as follows.

DF SR
i (xf , xv, 0) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(0)}. (10)

Now, for K observations (xk, yk) ∈ RN+M
+ , (k = 1, . . . , K) a unified algebraic represen-

tation of convex and nonconvex nonparametric frontier technologies under CRS and VRS

assumptions is possible as follows:

TΛ,Γ =

{
(x, y) : x ≥

K∑
k=1

xkδzk, y ≤
K∑
k=1

ykδzk, z ∈ Λ, δ ∈ Γ

}
, (11)

where

(i) Γ ≡ ΓCRS = {δ : δ ≥ 0};

(ii) Γ ≡ ΓVRS = {δ : δ = 1};
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and

(i) Λ ≡ ΛC =

{
z :

K∑
k=1

zk = 1 and ∀k ∈ {1, . . . , K} : zk ≥ 0

}
;

(ii) Λ ≡ ΛNC =

{
z :

K∑
k=1

zk = 1 and ∀k ∈ {1, . . . , K} : zk ∈ {0, 1}

}
.

Observe there is one activity vector z operating subject to a nonconvexity or convexity

constraint as well as a scaling parameter δ allowing for some particular scaling of all K

observations determining the technology. The activity vector z of real numbers summing

to unity represents the convexity axiom, while this same sum constraint with each vector

element being a binary integer is representing nonconvexity. The scaling parameter δ is free

under CRS and fixed at the unit level under VRS.

To compute the input efficiency measure (2) or cost function (3) relative to convex tech-

nologies in (11) requires solving a nonlinear programming (NLP) problem for each evaluated

observation. This NLP can be easily transposed into the familiar linear programming (LP)

problem around in the literature (see Hackman (2008)).2 For the nonconvex technologies,

nonlinear binary mixed integer programs must be solved, but alternative solution strategies

are available (see Kerstens and Van de Woestyne (2014)).

It is now useful to condition the above notation of the efficiency measures and cost

functions relative to these nonparametric frontier technologies by distinguishing between

constant (convention CRS) and variable (convention V RS) returns to scale assumptions,

and between convexity (convention C) and nonconvexity (convention NC).

3 Economic and Technical Capacity Utilization: Liter-

ature Review and Definitions

A variety of capacity notions coexist in the economic literature. It is customary to distinguish

between technical (engineering) and economic (mainly cost-based) capacity concepts (see,

e.g., Johansen (1968); Nelson (1989)). We first address the economic concepts using a cost

function approach, and then turn to the technical or engineering notion.

2By substituting tk = δzk in (11), one can rewrite the sum constraint on the activity vector z. One must
realize that the constraints on the scaling factor are integrated into the latter sum constraint and the LP
appears.
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3.1 Economic Capacity Concepts

At least three ways of defining a cost-based notion of capacity have been proposed in the

literature (see Nelson (1989)). Each of these notions aims to isolate the short-run excessive or

inadequate utilization of existing fixed inputs (e.g., capital stock). A first notion is defined

in terms of the output produced at short-run minimum average total cost given existing

input prices (see Hickman (1964), among others). A second definition focuses on the outputs

for which short-run and long-run average total costs curves are tangent (e.g., Segerson and

Squires (1990)). This tangency point notion is known under two variations depending on

what are supposed to be the decision variables. One notion assumes that outputs are constant

and determines optimal variable and fixed inputs. Another notion assumes that fixed inputs

cannot adjust, but outputs, output prices and fixed input prices do adjust. A third and final

definition of economic capacity considers the output determined by the minimum of the

long-run average total costs (e.g., Cassels (1937), Klein (1960)).

To apply these notions of economic capacity utilization using nonparametric frontier

technologies, one can characterize the above three economic capacity notions, one of which

has two variants, in a multiple output context in the following series of definitions (see, e.g,

De Borger, Kerstens, Prior, and Van de Woestyne (2012)).

Definition 3.1. The minimum of the short-run total cost function C(y, wv, xf |V RS) (7) is

C(y, wv, xf |CRS).

The minimum of the single output short-run average total cost function can be determined

indirectly in the multiple output case by solving for a variable cost function relative to a CRS

technology (V C(y, wv, xf |CRS)), and simply adding observed fixed costs FC = wfxf . The

resulting short-run total cost function C(y, wv, xf |CRS)(= V C(y, wv, xf |CRS) +FC) offers

the reference point for this capacity notion. In the convex case, computing a cost function

boils down to a well-known linear program. But, in the nonconvex case one must solve a

mixed binary integer linear program.

Definition 3.2. (i): Tangency cost with modified fixed inputs Ctang1(y, w, xf∗|V RS) is

C(y, w|V RS) = C(y, wv, xf∗|V RS).

(ii): Tangency cost with modified outputs Ctang2(y(p, wf , xf ), w, xf |V RS) is

C(y(p, wf , xf ), w|V RS) = C(y(p, wf , xf ), wv, xf |V RS),

where xf∗ represents optimal fixed inputs, p ∈ RN
+ is a vector of input prices, and y(p, wf , xf )
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represents outputs that have been adjusted in terms of given output prices, fixed input prices

and the given fixed inputs.

First, the tangency point between short- and long-run costs can also be estimated us-

ing nonparametric cost frontiers. One can actually envision two types of tangency points

depending on which variables one assumes to be decision variables.

One tangency cost notion assumes that outputs remain constant and then determines

optimal variable and fixed inputs Ctang1(y, w, xf∗ | V RS). This can be solved indirectly

by minimizing a long-run total cost function C(y, w | V RS) yielding optimal fixed inputs

(xf∗). By definition, the short-run and total cost function with fixed inputs equal to these

ex post optimal fixed inputs FC(y, wv, xf∗ | V RS) yields exactly the same solution in terms

of optimal costs and optimal variable inputs C(y, wv, xf∗ | V RS) = V C(y, wv, xf∗ | V RS) +

FC(y, wv, xf∗ | V RS). Hence, the optimal solution for C(y, w | V RS) generates the tangency

point we are looking for. In the convex case, computing this cost function requires solving

again a linear program. In the nonconvex case, one needs to solve a mixed binary integer

linear programming problem.

Another tangency point, favored by Nelson (1989, p. 277) and analyzed in detail in

Briec, Kerstens, Prior, and Van de Woestyne (2010), assumes that fixed inputs cannot

be adjusted in the short-run, but that outputs, output prices (p ∈ RM
+ ) and fixed input

prices are adjustable such that installed capacity is utilized ex post at a tangency cost level

(Ctang2(y(p, wf , xf ), w, xf | V RS)). Though one may object that outputs are assumed to be

exogenous in a competitive cost minimization model, this tangency notion offers a useful

reference point, since it retrospectively indicates the output quantities and prices as well as

the fixed input prices at which existing fixed inputs would have been optimally utilized. For

an arbitrary observation, this tangency cost level may imply an output level (y(p, wf , xf ))

below or above current outputs. In the convex case, optimal costs at this tangency point

are determined by solving for each observation a nonlinear system of inequalities (Briec,

Kerstens, Prior, and Van de Woestyne (2010)). In the nonconvex case, however, one must

solve for each observation a mixed binary integer nonlinear system of inequalities.

Definition 3.3. The minimum of the long-run total cost function C(y, wv, xf |V RS) is ob-

tained as C(y, wv, xf |CRS).

The minimum of long-run average total costs can be determined indirectly by solving for

a long-run total cost function defined relative to a CRS technology C(y, w | CRS). In the

convex case, computing this cost function again involves solving a linear program. For the

nonconvex case, one must solve a mixed binary integer linear programming problem. For
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convenience, the way of computing all plant and economic capacity concepts in the convex

as well as nonconvex case are spelled out in the Appendix.

In a frontier context, some of the above cost-based capacity concepts or some combination

there-off have been reported in Giménez and Prior (2007), Prior-Jiménez (2003), or Sahoo

and Tone (2009), among others. Note that we have ignored the discussion of alternative

capacity concepts based on the revenue function (e.g., Lindebo, Hoff, and Vestergaard (2007))

or the profit function (e.g., Coelli, Grifell-Tatjé, and Perelman (2002)).

3.2 Plant Capacity Concepts

Johansen (1968) proposed a plant capacity notion that has been made operational by Färe,

Grosskopf, and Kokkelenberg (1989) and Färe, Grosskopf, and Valdmanis (1989) using a pair

of output-oriented efficiency measures. The plant capacity notion is defined by Johansen as

“the maximum amount that can be produced per unit of time with existing plant and

equipment, provided that the availability of variable factors of production is not restricted.”

Cesaroni, Kerstens, and Van de Woestyne (2017) develop a plant capacity notion using a

pair of input-oriented efficiency measures. All of these proposals use V RS technologies.

We now recall the definitions of the output- and input-oriented plant capacity utilization

(PCU).

Definition 3.4. The output-oriented plant capacity utilization (PCUo) is defined as:

PCUo(x, x
f , y|V RS) =

DFo(x, y|V RS)

DF f
o (xf , y|V RS)

, (12)

where DFo(x, y|V RS) and DF f
o (xf , y|V RS) are output efficiency measures relative to V RS

technologies including respectively excluding the variable inputs as defined before. Notice

that 0 < PCUo(x, x
f , y|V RS) ≤ 1, since 1 ≤ DFo(x, y|V RS) ≤ DF f

o (xf , y|V RS). Thus,

output-oriented plant capacity utilization has an upper limit of unity, but no lower limit.

Following the terminology introduced by Färe, Grosskopf, and Kokkelenberg (1989), Färe,

Grosskopf, and Valdmanis (1989) and Färe, Grosskopf, and Lovell (1994) one can distinguish

between a so-called biased plant capacity measure DF f
o (xf , y|V RS) and an unbiased plant

capacity measure PCUo(x, x
f , y|V RS), where the ratio of efficiency measures ensures to

eliminate any existing inefficiency.

Cesaroni, Kerstens, and Van de Woestyne (2017) define a new input-oriented plant ca-
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pacity measure as follows:

Definition 3.5. The input-oriented plant capacity utilization (PCUi) is defined as:

PCUi(x, x
f , y|V RS) =

DF SR
i (xf , xv, y|V RS)

DF SR
i (xf , xv, 0|V RS)

, (13)

where DF SR
i (xf , xv, y|V RS) and DF SR

i (xf , xv, 0|V RS) are both sub-vector input efficiency

measures reducing only the variable inputs relative to the technology, whereby the latter

efficiency measure is evaluated at a zero output level. Notice that PCUi(x, x
f , y|V RS) ≥ 1,

since 0 < DF SR
i (xf , xv, 0|V RS) ≤ DF SR

i (xf , xv, y|V RS). Thus, input-oriented plant capac-

ity utilization has a lower limit of unity, but no upper limit. Similar to the previous case,

one can distinguish between a so-called biased plant capacity measure DF SR
i (xf , xv, 0|V RS)

and an unbiased plant capacity measure PCUSR
i (x, xf , y|V RS), the latter being cleaned of

any prevailing inefficiency.

While these definitions in itself are sufficiently clear, it may be useful to underscore

that both these concepts differ with respect to the property of attainability. As stressed by

Johansen (1968, p. 362) the output-oriented plant capacity notion is not attainable in that

the extra variable inputs necessary to reach the maximal plant capacity output may not be

available at the firm level. And even if these extra variable inputs are available at the firm

level, restrictions on the available extra variable inputs at the sector level may prevent that

all firms simultaneously can reach their maximal plant capacity output. By contrast, the

input-oriented plant capacity notion is always attainable in that one can always reduce the

amount of existing variable inputs such that one reaches an input set with zero output level.

Doing so is possible at the firm level as well as at the sectoral level.

3.3 Economic Capacity Concepts: Normalization and Impact of

Convexity

Since the literature has abundantly shown that inefficiencies are part and parcel of economic

life, following the plant capacity concepts it may be useful to normalize the economic capacity

concepts as well. We are inspired by the notion of overall efficiency (see Färe, Grosskopf, and

Lovell (1994) or Hackman (2008)), whereby in the case of the cost function one divides the

minimal cost by the observed costs (wx). Starting from the Definitions 3.1, 3.2 and 3.3, we

can now define the normalized economic capacity concepts as follows:
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Definition 3.6. (i): The normalized minimum of the short-run total cost function

NC(y, wv, xf |V RS) is C(y, wv, xf |CRS)/wx.

(ii): Normalized tangency cost with modified fixed inputs NCtang1(y, w, xf∗|V RS) is

C(y, w|V )/wx = C(y, wv, xf∗|V RS)/wx.

(iii): Normalized tangency cost with modified outputs NCtang2(y(p, wf , xf ), w, xf |V RS) is

C(y(p, wf , xf ), w|V RS)/wx = C(y(p, wf , xf ), wv, xf |V RS)/wx.

(iv): The normalized minimum of long-run total cost function is defined as

NC(y, wv, xf |V RS) is C(y, wv, xf |CRS)/wx.

Notice that all of these normalized economic capacity concepts are bounded

above at unity, except for the normalized tangency cost with modified outputs

NCtang2(y(p, wf , xf ), w, xf |V RS) which can be smaller or larger than unity. To

understand this phenomenon we must first realize that for observed outputs, we

have: C(y, w|V RS) 6= C(y, wv, xf |V RS). As a consequence, in Definition 3.2 the

optimal tangency cost may be smaller or larger to each of the sides of this in-

equality. To be explicit, on the one hand we obtain C(y(p, wf , xf ), w|V RS) =

C(y(p, wf , xf ), wv, xf |V RS)
>
=
<
C(y, w|V RS), and on the other hand we get:

C(y(p, wf , xf ), w|V RS) = C(y(p, wf , xf ), wv, xf |V RS)
>
=
<
C(y, wv, xf |V RS).

Finally, when comparing convex and nonconvex results, there are cases where plant and

economic capacity concepts can be ordered a priori. First, we state these results for the

biased plant capacity concepts as well as the non-normalized economic capacity concepts.

Proposition 3.1. (i): For the output-oriented plant capacity utilization, we have:

DF f
o (xf , y|V RS,C) ≥ DF f

o (xf , y|V RS,NC).

(ii): For the input-oriented plant capacity utilization, we have: DF SR
i (xf , xv, 0|V RS,C) ≤

DF SR
i (xf , xv, 0|V RS,NC).

(iii): For the minimum of the short-run total cost function, we have: C(y, wv, xf |V RS,C) ≤
C(y, wv, xf |V RS,NC).

(iv): For the tangency cost with modified fixed inputs, we have: Ctang1(y, w, xf∗|V RS,C) ≤
Ctang1(y, w, xf∗|V RS,NC).

(v): For the tangency cost with modified outputs, we have:

Ctang2(y(p, wf , xf ), w, xf |V RS,C)
>
=
<
Ctang2(y(p, wf , xf ), w, xf |V RS,NC) .
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(vi): For the minimum of long-run total cost function, we have: C(y, wv, xf |V RS,C) ≤
C(y, wv, xf |V RS,NC).

Thereafter, we do the same for unbiased plant capacity concepts and the normalized

economic capacity concepts.

Proposition 3.2. (i): For the output-oriented plant capacity utilization, we have:

PCUo(x, x
f , y|V RS,C)

>
=
<
PCUo(x, x

f , y|V RS,NC).

(ii): For the input-oriented plant capacity utilization, we have:

PCUi(x, x
f , y|V RS,C)

>
=
<
PCUi(x, x

f , y|V RS,NC).

(iii): For the minimum of the short-run total cost function, we have:

NC(y, wv, xf |V RS,C) ≤ NC(y, wv, xf |V RS,NC).

(iv): For the tangency cost with modified fixed inputs, we have: NCtang1(y, w, xf∗|V RS,C) ≤
NCtang1(y, w, xf∗|V RS,NC).

(v): For the tangency cost with modified outputs, we have:

NCtang2(y(p, wf , xf ), w, xf |V RS,C)
>
=
<
NCtang2(y(p, wf , xf ), w, xf |V RS,NC) .

(vi): For the minimum of long-run total cost function, we have: NC(y, wv, xf |V RS,C) ≤
NC(y, wv, xf |V RS,NC).

Now we are in a position to start developing our empirical illustration.

4 Empirical Illustration

4.1 Data

To illustrate how the economic and plant capacity notions can be used, we draw upon a

secondary data set that is an unbalanced panel of three years (1984-1986) of French fruit

producers based on annual accounting data collected in a survey (see Ivaldi, Ladoux, Ossard,

and Simioni (1996) for details). Two main criteria determined the selection of farms: (i) the

production of apples must be larger than zero, and (ii) the productive acreage of the orchard

must be at least five acres. Three aggregate inputs are combined to produce two outputs. The

three inputs are: (i) capital (including land), (ii) labor, and (iii) materials. The two aggregate
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outputs are (i) the production of apples, and (ii) an aggregate of alternative products. Also

input prices are available in French francs. The first input capital is considered as fixed.

Summary statistics for the 405 observations in total and details on the definitions of all

variables are available in Appendix 2 in Ivaldi, Ladoux, Ossard, and Simioni (1996). Observe

that the limited length of the panel (just three years) justifies the use of an intertemporal

frontier accumulating all observations in the technology: this approach fundamentally ignores

technical change.

Table 1: Descriptive statistics for French fruit producers (1984-1986)
Variable Trimmed meana Minimum Maximum

Capital (fixed input) 85602.58 8891 500452

Labor (variable input 229569 79569 1682201

Materials (variable input) 157610.9 19566 1523776

Volume of apple production (output) 2.146273 0.00061 37.98153

Volume of other products (output) 1.37793 0.000672 25.895

Price of capital 1.167934 0.167802 7.889478

Price of labor 1.059968 0.492821 1.771435

Price of materials 6.72676 1.732421 22.61063

Note: a10% trimming level.

Table 1 presents basic descriptive statistics for the inputs, the outputs, and the input

prices. One observes basically a lot of heterogeneity and a rather wide range for all inputs

and outputs. The range for some of the input prices is smaller. More details on the data are

available in Ivaldi, Ladoux, Ossard, and Simioni (1996).

In the following, we first discuss the biased plant capacity utilization and non-normalized

economic capacity utilization (CU) notions. Thereafter, we study the unbiased plant capacity

utilization and normalized economic capacity utilization notions.

4.2 Comparing the Biased and Non-Normalized Capacity Utiliza-

tion Notions

Table 2 shows basic descriptive statistics for all biased and non-normalized capacity utiliza-

tion notions. We report the average, the standard deviation, and the minima and maxima

depending on the context. The relations between convex and nonconvex results are con-

ditioned by the relations described in Proposition 3.1. First, ignoring the CU notion that

cannot be ranked (i.e., NNCtang2), on average convex and nonconvex results are rather

markedly different, except for BPCUi where the difference is quite small. Second, the range
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of the results are sometimes different, but some share one of the extremes, except for BPCUi

and NNCtang2 for which the range is identical.

Table 2: Descriptive statistics for all biased and non-normalized CU-notions
Convex BPCUo BPCUi NNSRC NNCtang1 NNCtang2 NNLRC

Average 5.414862 0.42333 620247.8 718839.9 315274.8 511506.1

Standard deviation 4.678063 0.194978 827159.9 1124454 1058872 758764.8

Minimum 1 0.047301 10454.19 150112.7 132380.2 8507.063

Maximum 35.29532 1 6238552 11815722 21170527 6095270

Nonconvex BPCUo BPCUi NNSRC NNCtang1 NNCtang2 NNLRC

Average 2.891018 0.430783 816915.6 1160906 301561.7 683063.1

Standard deviation 2.935252 0.202152 981389.5 1730077 1043655 880893.2

Minimum 1 0.047301 14486.9 150112.7 132380.2 13147.43

Maximum 32.45654 1 7100639 13448388 21170527 6754195
BPCUo: Biased short-run output-oriented plant capacity utilization (DF f

o (xf , y|V RS, .)).
BPCUi: Biased short-run input-oriented plant capacity utilization (DF SR

i (xf , xv, 0|V RS, .)).
NNSRC: Non-normalized short-run total cost(C(y, wv, xf |CRS, .)).
NNCtang1: Non-normalized tangency cost with modified fixed inputs (Ctang1(y, w, xf∗|V RS, .) ).

NNCtang2: Non-normalized tangency cost with modified outputs (Ctang2(y(p, wf , xf ), w, xf |V RS, .) ).

NNLRC: Non-normalized long-run total cost(C(y, wv, xf |CRS, .) ).

Table 3 reports the results of a formal test statistic proposed by Li (1996) and refined by

Fan and Ullah (1999) and Li, Maasoumi, and Racine (2009) lately. The null hypothesis of

this Li-test states that both distributions are equal for a given efficiency score or cost frontier

estimate and for a given underlying specification of technology. The alternative hypothesis

is simply that both distributions are different. This test is valid for both dependent and

independent variables. Note that dependency is a characteristic of frontier estimators: frontier

efficiency and cost levels depend on sample size, among others.

Table 3: Li test between the biased PCU and non-normalized cost frontier concepts.
Variables BPCUo BPCUi NNSRC NNCtang1 NNCtang2 NNLRC

BPCUo 24.798*** 115.112*** 288.454*** 289.826 296.06*** 288.455***

BPCUi 173.884*** -1.437* 288.455*** 176.102*** 296.06*** 176.052***

NNSRC 288.609*** 174.2108*** 3.701*** 16.523*** 79.0476*** 0.489

NNCtang1 133.985*** 174.24*** 32.1426*** 10.798*** 104.128*** 27.855***

NNCtang2 295.933*** 174.268*** 66.876*** 67.016*** -2.485*** 80.181***

NNLRC 288.541*** 288.543*** 3.873*** 59.186*** 76.095*** 5.925***

Li test: critical values at 1% level= 2.33(∗ ∗ ∗); 5% level= 1.64(∗∗); 10%level= 1.28(∗).

Table 3 is structured as follows. First, components on the diagonal (in bold) depict the

Li-test statistic between the convex and nonconvex cases. Second, the components under

the diagonal show the Li-test statistic between convex CUs, and the components above the

diagonal show the Li-test statistic between nonconvex CUs. The following three conclusions
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emerge from studying Table 3. First, for the convex capacity notions (below the diagional)

all capacity concepts follow two by two significantly different distributions. Second, for the

nonconvex capacity notions (above the diagional) almost all capacity concepts follow two

by two significantly different distributions, except NNSRC and NNLRC that have indis-

tinguishable distributions. Third, all capacity notions follow different distributions under

convexity compared to nonconvexity, though the Li-test statistic is only marginally signifi-

cant for BPCUi at the 10 % level.

Table 4 reports the Spearman rank correlation coefficients for biased and non-normalized

capacity utilization notions. This table is structured in a similar way as Table 3. In this table,

components on the diagonal (in bold) depict the rank correlation between the convex and

nonconvex cases. The components under the diagonal show the rank correlation between

convex CUs and the components above the diagonal show the rank correlation between

nonconvex CUs.

Table 4: Spearman rank correlations between the biased PCU and non-normalized cost fron-
tier concepts.

Variables BPCUo BPCUi NNSRC NNCtang1 NNCtang2 NNLRC

BPCUo 0.918** 0.304** -0.631** -0.543** -0.106* -0.643**

BPCUi 0.271** 0.996** -0.694** -0.707** -0.404** -0.701**

NNSRC -0.498** -0.708** 0.967** 0.939** 0.469** 0.975**

NNCtang1 -0.543** -0.697** 0.934** 0.965** 0.579** 0.947**

NNCtang2 -0.122* -0.379** 0.479** 0.641** 0.981** 0.462**

NNLRC -0.646** -0.684** 0.960** 0.950** 0.460** 0.988**

** Correlation is significant at the 0.01 level (2-tailed).

* Correlation is significant at the 0.05 level (2-tailed).

The following three conclusions emerge from studying Table 4. First, for the convex

results, one can observe that BPCUi rank correlates better with all cost-based CU notions

in absolute values than BPCUo, and that NNSRC and NNLRC have the highest rank

correlation among cost-based CU notions. Second, for the nonconvex results, exactly the

same two conclusions emerge. Third, comparing convex and nonconvex results, the rank

correlations are remarkably high overall, and these are highest for BPCUi and lowest for

BPCUo.
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4.3 Comparing the Unbiased and Normalized Capacity Utilization

Notions

Table 5 shows basic descriptive statistics for all unbiased and normalized capacity utilization

notions. We report the average, the standard deviation, and the minima and maxima de-

pending on the context. In this case, the relations between convex and nonconvex results are

determined by the relations described in Proposition 3.2. First, ignoring the three CU no-

tions that cannot be ranked, on average convex and nonconvex results are rather markedly

different for the three other CU notions (i.e., NSRC, NCtang1 and NLRC). Second, the

range of the results differ sometimes. But, some share one of the extremes, except for PCUi

and NCtang2 for which the range is again identical.

Table 5: Descriptive statistics for all CU-notions
Convex PCUo PCUi NSRC NCtang1 NCtang2 NLRC

Average 0.710459 1.733724 0.331119 0.43418 0.391276 0.260619

Standard deviation 0.221112 1.636011 0.173495 0.189827 2.280111 0.161353

Minimum 0.070056 1 0.053327 0.103932 0.017937 0.036357

Maximum 1 21.14141 1 1 45.5131 1

Nonconvex PCUo PCUi NSRC NCtang1 NCtang2 NLRC

Average 0.690958 2.539953 0.464158 0.629439 0.372487 0.378417

Standard deviation 0.244674 2.156585 0.253099 0.247589 2.270101 0.218591

Minimum 0.096771 1 0.069012 0.133735 0.017937 0.039328

Maximum 1 21.14141 1 1 45.5131 1

PCUSR
o : Unbiased short-run output-oriented plant capacity utilization (PCUSR

i (x, xf , y|V RS, .)).
PCUSR

i : Unbiased short-run input-oriented plant capacity utilization (PCUSR
o (x, xf , y|V RS, .)).

NSRC: Normalized short-run total cost (C(y, wv, xf |CRS, .)/wx).

NCtang1: Normalized tangency cost with modified fixed inputs (Ctang1(y, w, xf∗|V RS, .)/wx).

NCtang2: Normalized tangency cost with modified outputs (Ctang2(y(p, wf , xf ), w, xf |V RS, .)/wx).

NLRC: Normalized long-run total cost(C(y, wv, xf |CRS, .)/wx).

Table 6 reports the Li-test statistics and it is structured in a similar way as Table 3

above. A glance at Table 6 yields the following conclusions. First, for the convex capacity

notions (below the diagional) almost all capacity concepts follow two by two significantly

different distributions, except NCtang2 and NLRC that have indistinguishable distributions.

Second, for the nonconvex capacity notions (above the diagional) all capacity concepts follow

two by two significantly different distributions. Third, all capacity notions follow different

distributions under convexity compared to nonconvexity.
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Table 6: Li test for all unbiased CUs
Variables PCUo PCUi NSRC NCtang1 NCtang2 NLRC

PCUo 10.251*** 96.205*** 25.171*** 4.083*** 83.440*** 49.933***

PCUi 74.606*** 31.005*** 105.896*** 93.404*** 143.246*** 116.441***

NSRC 48.981*** 160.506*** 6.621*** 9.953*** 20.426*** 3.725***

NCtang1 30.828*** 157.123*** 13.382*** 25.034*** 58.883*** 27.888***

NCtang2 78.834*** 148.022*** 17.429*** 51.662*** -2.852*** 14.522***

NLRC 65.281*** 163.884*** 10.122*** 43.685*** 0.851 12.632***

Li test: critical values at 1% level= 2.33(∗ ∗ ∗); 5% level= 1.64(∗∗); 10%level= 1.28(∗).

Table 7 reports the Spearman rank correlation coefficients for unbiased and normalized

capacity utilization notions. In this table, the components on the diagonal show the rank

correlation between convex and nonconvex case. The components under the diagonal show

the rank correlation between convex CUs and the components above the diagonal show the

rank correlation between nonconvex CUs.

Table 7: Spearman rank correlations for all unbiased CUs
Variables PCUo PCUi NSRC NCtang1 NCtang2 NLRC

PCUo 0.706** 0.418** 0.253** 0.042 -0.403** 0.224**

PCUi 0.181** 0.888** 0.443** 0.307** -0.661** 0.521**

NSRC -0.241** 0.650** 0.893** 0.734** 0.041 0.935**

NCtang1 -0.295** 0.156** 0.569** 0.807** 0.273** 0.769**

NCtang2 -0.326** -0.534** -0.025 0.630** 0.997** 0.016

NLRC -0.084 0.749** 0.894** 0.585** -0.074 0.957**

** Correlation is significant at the 0.01 level(2-tailed).

* Correlation is significant at the 0.05 level(2-tailed).

For the convex results, one can notice that PCUi rank correlates better with all cost-based

CU notions in absolute values than PCUo, except for the NCtang1 CU notion. Furthermore,

NSRC and NLRC again obtain the highest rank correlation among cost-based CU notions.

Finally, PCUo essentially has a zero correlation with NLRC. For the nonconvex results,

exactly the same two conclusions emerge (but now without any exception). In addition,

PCUo has now a close to zero correlation with NCtang1. Comparing convex and nonconvex

results, the rank correlations are still high overall, and these are highest now for NCtang2

and again lowest for PCUo.
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5 Conclusions

This contribution has set itself two major goals. A first major goal has been to make a theo-

retically coherent input-oriented comparison between these technical and economic capacity

notions. As a point of comparison, also the output-oriented plant capacity notion has been

included. A second major goal has been to make this coherent input-oriented comparison

among capacity notions using both convex and nonconvex technologies to assess the impact

of the convexity axiom. Theoretically, the investigation of this convexity hypothesis has led

us to establish the cases where plant and economic capacity concepts can be ordered a priori

(see Propositions 3.1 and 3.2).

The empirical results have shown the following key results. First, there appears quite

some heterogeneity among the different technical and economic capacity notions in terms of

descriptive statistics. Second, formal testing has revealed that in almost all cases technical

and economic capacity notions follow different distributions. Thus, each of these concepts

seems to capture a different part of economic reality. Furthermore, each and every capacity

concept seems also to follow almost always a different distribution under convexity and

nonconvexity. Thus, convexity matters from a distributional viewpoint. Third, the study

of Spearman rank correlation coefficients reveals that almost uniformly the input-oriented

plant capacity notion correlates better with the cost-based capacity notions than the output-

oriented plant capacity notion. Furthermore, the rank correlations are overall high for convex

and nonconvex results. Thus, convexity seems to matter less from a ranking point of view.

Therefore, two key conclusions emerge from this contribution. First, the recently intro-

duced input-oriented plant capacity notion lends itself more naturally to comparisons with

cost-based capacity notions than the more traditional output-oriented plant capacity notion.

Thus, while the output-oriented plant capacity notions enjoys some popularity in empirical

applications (see the literature review in Cesaroni, Kerstens, and Van de Woestyne (2017)),

applied researchers should probably consider using the new input-oriented plant capacity

notion that is more in line with the traditional cost-based capacity notions widespread in

economics.

Second, convexity matters also for both technical and economic capacity notions. There-

fore, it seems essential to further empirically explore potential differences between estimates

based on convex and nonconvex technologies and cost functions in even greater detail (e.g.,

the impact on economies of scope, the effect on mergers and acquisitions, etc.). Thus, even

though theoretically the impact of convexity is known since a while, it is important to fur-
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ther explore the impact of convexity on key economic value relations in practice. The current

evidence provided shows that this impact is nonnegligible when measuring capacity and that

convexification may not be harmless.

As an agenda for future research, we can mention three issues. First, it would be good if

our empirical results regarding both the comparison of input-oriented technical and economic

capacity notions as well as the impact of the convexity axiom in this context would be

corroborated in additional empirical work by other researchers. Second, while the input-

oriented plant capacity notion compares well with cost-based capacity notions, one may

wonder whether the traditional output-oriented plant capacity would fit much better with

capacity notions based on the revenue function (see, e.g., Lindebo, Hoff, and Vestergaard

(2007) or Segerson and Squires (1995)). This conjecture remains to be explored. Third, the

fact that the output-oriented plant capacity notion is not attainable while the new input-

oriented plant capacity notion satisfies attainability merits further investigation. It is an open

question whether and how the output-oriented plant capacity notion can be made attainable.
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Appendix: Computing Plant and Economic Capacity

Notions (Supplementary Material)

This appendix is devoted to show how in a non-parametric frontier framework the compo-

nents of of the various capacity concepts can be estimated. To specify the models for the

estimation, we first recall the notation introduced in this contribution. The vector of N

inputs (x ∈ RN
+ ) allows producing a vector of M outputs (y ∈ RM

+ ). The vector of input

prices is given by w ∈ RN
+ . These vectors of inputs and input prices can be partitioned into

a fixed and variable part (denoted x = (xv, xf ) and w = (wv, wf )). Assume that for each of

the K observed production units that need to be evaluated (k = 1, . . . , K), we know both

the vector of M outputs obtained from the vector of N inputs as well as the corresponding

input prices. Let Y denote the (K ×M) matrix of observed outputs and let X denote the

(K×N) matrix of observed inputs. Elements of these matrices can be denoted as follows: for

the k-th producer, the quantity of the inputs is denoted xk with a corresponding input price

wk, while the quantity of the outputs is denoted by yk. The corresponding fixed and variable

input components are denoted by xfk and xvk. Finally, since non-parametric frontier technolo-

gies are founded on activity analysis, we need a vector of activity variables z = (z1, . . . , zK)

indicating the intensity levels at which each of these K observed activities is conducted.

Computing Plant and Economic Capacity Notions: Convex Case

The estimation of the plant and economic capacity components under convexity by using

non-parametric frontier methods implies the resolution of the following series of linear pro-

gramming problems for each observation (xo, yo).

The output-oriented radial technical efficiency measure DFo(x, y|V RS) is computed by

optimizing the following linear program:

max θ

s.t
K∑
k=1

zkyk ≥ θyo,

K∑
k=1

zkxk ≤ xo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(14)
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The short-run output-oriented radial technical efficiency measure DF f
o (xf , y|V RS) re-

quires the optimization of the following linear program:

max θ

s.t
K∑
k=1

zkyk ≥ θyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(15)

The input efficiency measure reducing only the variable inputs (DF SR
i (xf , xv, y|V RS))

is computed by optimizing the following linear program:

min λ

s.t
K∑
k=1

zkyk ≥ yo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ λxvo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(16)

The input-oriented short-run efficiency measure reducing variable inputs evaluated rela-

tive to the input set with a zero output level (DF SR
i (xf , xv, 0|V RS)) is computed by opti-

mizing the following linear program:

min λ

s.t
K∑
k=1

zkyk ≥ 0,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ λxvo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(17)
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The minimum of the short-run total cost function C(y, wv, xf |V RS) is computed as

wf
ox

f + C(y, wv, xf |CRS) where:

C(y, wv, xf |CRS) = min wv
ox

v

s.t
K∑
k=1

zkyk ≥ yo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ xv,

xv ≥ 0, zk ≥ 0, k = 1, . . . , K.

(18)

To obtain the tangency cost with modified fixed inputs Ctang1(y, w, xf∗|V R), one needs

to find the optimal value for the following linear programming problem:

C(y, w|V RS) = min wox

s.t
K∑
k=1

zkyk ≥ yo,

K∑
k=1

zkxk ≤ x,

K∑
k=1

zk = 1,

x ≥ 0, zk ≥ 0, k = 1, . . . , K.

(19)

To obtain the tangency cost with modified outputs Ctang2(y(p, wf , xf ), w, xf |V RS), one

can solve the following model:

C(y(p, wf , xf ), wv, wf |V RS) = min wv
ox

v + wf
optx

f
o

s.t
K∑
k=1

zkyk ≥ yopt,

K∑
k=1

zkxk ≤ xv,

K∑
k=1

zkxk ≤ xfo ,

K∑
k=1

zk = 1,

xv ≥ 0, zk ≥ 0. k = 1, . . . , K.

(20)

where (yopt, w
f
opt) is obtained by solving the following nonlinear system of inequalities (see
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Briec, Kerstens, Prior, and Van de Woestyne (2010) for details).

p.yk − wv
o .x

v
k − w

f
opt.x

f
k − (p.yopt − wv

o .x
v − wf

opt.x
f
o) ≤ 0, k = 1, ..., K,

K∑
k=1

zkyk ≥ yopt,

K∑
k=1

zkxk ≤ xv,

K∑
k=1

zkxk ≤ xfo ,

K∑
k=1

zk = 1,

yopt ≥ 0, xv ≥ 0, p ≥ 0, wf
opt ≥ 0, zk ≥ 0, k = 1, . . . , K.

(21)

To obtain the minimum of long run total cost function C(y, w|V RS), we require finding

the optimal value of the following linear programming problem:

C(y, w|CRS) = min wox

s.t
K∑
k=1

zkyk ≥ yo,

K∑
k=1

zkxk ≤ x,

zk ≥ 0, x ≥ 0.

(22)

Computing Plant and Economic Capacity Notions: Nonconvex Case

The estimation of the plant and economic capacity components under nonconvexity by using

non-parametric frontier methods implies the resolution of the following series of mathematical

programming problems for each observation (xo, yo).

The output-oriented radial technical efficiency measure DFo(x, y|V RS) is computed by

optimizing the following binary mixed integer program:

max θ

s.t
K∑
k=1

zkyk ≥ θyo,

K∑
k=1

zkxk ≤ xo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ∈ {0, 1}, k = 1, . . . , K.

(23)
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The output-oriented short-run radial technical efficiency measure DF f
o (xf , y|V RS) re-

quires the optimization of the following model:

max θ

s.t
K∑
k=1

zkyk ≥ θyo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zk = 1,

θ ≥ 0, zk ∈ {0, 1}, k = 1, . . . , K.

(24)

The input efficiency measure reducing only the variable inputs (DF SR
i (xf , xv, y|V RS))

is computed by optimizing the following binary mixed integer program:

min λ

s.t
K∑
k=1

zkyk ≥ yo,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ λxvo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ∈ {0, 1}, k = 1, . . . , K.

(25)

The input-oriented short run efficiency measure reducing variable inputs evaluated rela-

tive to the input set with a zero output level (DF SR
i (xf , xv, 0|V RS)) is computed by opti-

mizing the following binary mixed integer program:

min λ

s.t
K∑
k=1

zkyk ≥ 0,

K∑
k=1

zkx
f
k ≤ xfo ,

K∑
k=1

zkx
v
k ≤ λxvo,

K∑
k=1

zk = 1,

θ ≥ 0, zk ∈ {0, 1}, k = 1, . . . , K.

(26)
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The minimum of short-run total cost function C(y, wv, xf |V RS) is computed as wf
ox

f +

C(y, wv, xf |CRS) in which:

C(y, wv, xf |CRS) = min wv
ox

v

s.t
K∑
k=1

αzkyk ≥ yo,

K∑
k=1

αzkx
f
k ≤ xfo ,

K∑
k=1

αzkx
v
k ≤ xv,

K∑
k=1

zk = 1,

xv ≥ 0, α ≥ 0, zk ∈ {0, 1}, k = 1, . . . , K.

(27)

To obtain the tangency cost with modified fixed inputs Ctang1(y, w, xf∗|V RS), one needs

to find the optimal value of the following binary mixed integer programming problem:

C(y, w|V RS) = min wox

s.t
K∑
k=1

zkyk ≥ yo,

K∑
k=1

zkxk ≤ x,

K∑
k=1

zk = 1,

x ≥ 0, zk ∈ {0, 1}, k = 1, . . . , K.

(28)

To obtain the tangency cost with modified outputs Ctang2(y(p, wf , xf ), w, xf |V RS), one

can solve the following model.

C(y(p, wf , xf ), wv, wf |V RS) = min wv
ox

v + wf
optx

f
o

s.t
K∑
k=1

zkyk ≥ yopt,

K∑
k=1

zkxk ≤ xv,

K∑
k=1

zkxk ≤ xfo ,

K∑
k=1

zk = 1,

xv ≥ 0, zk ∈ {0, 1}, k = 1, . . . , K,

(29)
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where (yopt, w
f
opt) is obtained by solving the following nonlinear binary mixed integer system

of inequalities (an extension of Briec, Kerstens, Prior, and Van de Woestyne (2010)).

p.yk − wv
o .x

v
k − w

f
opt.x

f
k − (p.yopt − wv

o .x
v − wf

opt.x
f
o) ≤ 0, k = 1, ..., K,

K∑
k=1

zkyk ≥ yopt,

K∑
k=1

zkxk ≤ xv,

K∑
k=1

zkxk ≤ xfo ,

K∑
k=1

zk = 1,

yopt ≥ 0, xv ≥ 0, p ≥ 0, wf
opt ≥ 0, zk ∈ {0, 1} k = 1, . . . , K.

(30)

To obtain the minimum of the long-run total cost function C(y, w|V RS), we require

finding the optimal value of the following binary mixed integer programming problem:

C(y, w|CRS) = min wox

s.t
K∑
k=1

αzkyk ≥ yo,

K∑
k=1

αzkxk ≤ x,

K∑
k=1

zk = 1,

α ≥ 0, x ≥ 0, zk ∈ {0, 1}, k = 1, ..., K.

(31)
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