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Abstract

The output-oriented plant capacity notion has been around since more than two decades.

It has mainly been applied empirically in the fishery and the hospital sectors. A prob-

lem known since its introduction into the literature is that it may not be attainable, in

that it presupposes potentially unlimited amounts of variable inputs to determine the

maximum of outputs available. This issue of the lack of attainability has never been

explored. This paper fills this void both theoretically and empirically. It finds that the

attainability may be problematic, and that bounds on the amounts of variable inputs

may well need to be imposed.
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1 Introduction

In the economic literature a variety of capacity notions have been developed (see e.g. Jo-

hansen (1968) or Nelson (1989)). One useful taxonomy distinguishes between on the one

hand technical or engineering notions and on the other hand economic capacity concepts,

whereby the latter are mainly based or derived from some cost function. This paper focuses

on the plant capacity notion that is part of the family of technical or engineering notions.

Johansen (1968, p. 362) defined the notion of plant capacity informally as “... the maxi-

mum amount that can be produced per unit of time with existing plant and equipment, pro-

vided that the availability of variable factors of production is not restricted.” Färe, Grosskopf,

and Kokkelenberg (1989) and Färe, Grosskopf, and Valdmanis (1989) translated this plant

capacity notion into a single respectively multiple output nonparametric frontier framework

in which plant capacity as well as a measure of capacity utilisation can be determined from

information on observed inputs and outputs using a pair of output-oriented efficiency mea-

sures.

For over two decades empirical applications have occurred using this output-oriented

plant capacity in mainly fisheries (e.g., Felthoven (2002), Pascoe, Hutton, van Putten, Den-

nis, Skewes, Plagányi, and Deng (2013), Tingley and Pascoe (2005) or Walden and Tomber-

lin (2010)) and hospital industries (e.g., Karagiannis (2015), Kerr, Glass, McCallion, and

McKillop (1999), Valdmanis, Bernet, and Moises (2010) or Valdmanis, DeNicola, and Ber-

net (2015)). One study focuses on banking (e.g., Sahoo and Tone (2009)), and we are aware

of one article describing a macro-economic application on trade barriers (e.g., Badau (2015)).

But, no major methodological innovation has occurred related to this plant capacity concept.

However, recently Cesaroni, Kerstens, and Van de Woestyne (2017) use the same nonpara-

metric frontier framework to define a new input-oriented measure of plant capacity utilisation

based on a couple of input-oriented efficiency measures.

Already Johansen (1968, p. 362) pointed out that the plant capacity concept need not

necessarily be attainable, in that the amounts of variable inputs needed to determine the

maximum potential outputs may well be unavailable at either the firm level or the sector level.

To the best of our knowledge, the literature has completely ignored this issue of attainability.

This paper sets as a major goal to explore this attainability problem. At the theoretical level,

we will argue that there is indeed such an issue for the output-oriented plant capacity notion,

but we will also show that the new input-oriented plant capacity concept does not suffer from

this problem. At the empirical level, we illustrate the extent to which the amounts of variable
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inputs needed to determine the plant capacity output are plausible or not using a secondary

data set.

It is becoming known that the axiom of convexity has a potentially large impact on

the empirical analysis based on technologies (for example, Tone and Sahoo (2003)). In the

context of plant capacity utilisation, for instance, Walden and Tomberlin (2010) empirically

illustrate the effect of convexity on the output-oriented plant capacity notion. In a similar

way, Cesaroni, Kerstens, and Van de Woestyne (2017) reveal the influence of convexity on the

input-oriented plant capacity concept. Therefore, we also analyse the issue of attainability

in terms of the potential effect of the convexity axiom.

The structure of this contribution is as follows. Section 2 provides the basic definitions

of technology and efficiency measures representing these technologies. The next Section 3

starts out by defining both the traditional output-oriented and the new input-oriented plant

capacity notions. Thereafter, we argue and illustrate that the output-oriented plant capacity

notion may well fail attainability, while there is no such an issue for the input-oriented plant

capacity concept. We end this section by defining an attainable output-oriented plant capac-

ity notion that incorporates either firm or industry constraints on the availability of variable

inputs. Section 4 describes the secondary data set selected for the empirical illustration and

summarizes the empirical results in great detail. A final Section 5 ends with some concluding

remarks.

2 Technology: Basic Definitions

This section introduces some basic notation and defines the technology. Given an N -

dimensional input vector x ∈ RN
+ and an M -dimensional output vector y ∈ RM

+ , the pro-

duction possibility set or technology T is defined as follows: T = {(x, y)|x can produce y}.
Associated with T , the input set denotes all input vectors x capable of producing a given out-

put vector y: L(y) = {x|(x, y) ∈ T}. Analogously, the output set associated with T denotes

all output vectors y that can be produced from a given input vector x: P (x) = {y|(x, y) ∈ T}.

Throughout this contribution, technology T satisfies some combination of the following

standard assumptions:

(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ T and if (0, y) ∈ T , then y = 0.

(T.2) T is a closed subset of RN
+ × RM

+ .
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(T.3) Strong input and output disposal, i.e., if (x, y) ∈ T and (x′, y′) ∈ RN
+ × RM

+ , then

(x′,−y′) ≥ (x,−y)⇒ (x′, y′) ∈ T .

(T.4) T is convex.

Briefly discussing these traditional axioms on technology, it is useful to recall the following

(see, e.g., Hackman (2008) for details). Inaction is feasible, and there is no free lunch. Tech-

nology is closed. We assume free disposal of inputs and outputs in that inputs can be wasted

and outputs can be discarded. Finally, technology is convex. In our empirical analysis not all

these axioms are simultaneously maintained.1 In particular, key assumption distinguishing

some of the technologies in the empirical analysis is convexity versus nonconvexity.

The radial input efficiency measure characterizes the input set L(y) completely and can

be defined as follows:

DFi(x, y) = min{λ | λ ≥ 0, λx ∈ L(y)}. (1)

This radial input efficiency measure has the main property that it is smaller or equal to unity

(DFi(x, y) ≤ 1), with efficient production on the boundary (isoquant) of L(y) represented

by unity, and that it has a cost interpretation (see, e.g., Hackman (2008)).

The radial output efficiency measure offers a complete characterization of the output set

P (x) and can be defined as:

DFo(x, y) = max{θ | θ ≥ 0, θy ∈ P (x)}. (2)

Its main properties are that it is larger than or equal to unity (DFo(x, y) ≥ 1), with efficient

production on the boundary (isoquant) of the output set P (x) represented by unity, and that

this radial output efficiency measure has a revenue interpretation (e.g., Hackman (2008)).

In the short run, we can partition the input vector into a fixed and variable part. In

particular, we denote (x = (xf , xv)) with xf ∈ RNf

+ and xv ∈ RNv
+ such that N = Nf +Nv.

Similarly, a short-run technology T f = {(xf , y) ∈ RNf

+ ×RM
+ | xf can produce y} and the

corresponding input set Lf (y) = {xf ∈ RNf

+ | (xf , y) ∈ T f} and output set P f (xf ) = {y |
(xf , y) ∈ T f} can be defined. Note that technology T f is in fact obtained by a projection of

technology T ∈ RN+M
+ into the subspace RNf+M

+ (i.e., by setting all variable inputs equal to

zero). By analogy, the same applies to the input set Lf (y) and the output set P f (xf ).

Denoting the radial output efficiency measure of the output set P f (xf ) by DF f
o (xf , y),

1For instance, note that the convex variable returns to scale technology does not satisfy inaction.
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this output-oriented efficiency measure can be defined as follows:

DF f
o (xf , y) = max{θ | θ ≥ 0, θy ∈ P f (xf )}. (3)

The sub-vector input efficiency measure reducing only the variable inputs is defined as

follows:

DF SR
i (xf , xv, y) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(y)}. (4)

Next, we need the following particular definition of technology: L(0) = {x | (x, 0) ∈ T}
is the input set with zero output level. The sub-vector input efficiency measure reducing

variable inputs evaluated relative to this input set with a zero output level is as follows:

DF SR
i (xf , xv, 0) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(0)}. (5)

Given data on K observations (k = 1, . . . , K) consisting of a vector of inputs and outputs

(xk, yk) ∈ RN
+×RM

+ , a unified algebraic representation of convex and nonconvex nonparamet-

ric frontier technologies under the flexible or variable returns to scale assumption is possible

as follows:

TΛ =

{
(x, y) | x ≥

K∑
k=1

zkxk, y ≤
K∑
k=1

zkyk, z ∈ Λ,

}
, (6)

where

(i) Λ ≡ ΛC =

{
z |

K∑
k=1

zk = 1 and zk ≥ 0

}
;

(ii) Λ ≡ ΛNC =

{
z |

K∑
k=1

zk = 1 and zk ∈ {0, 1}

}
.

The activity vector z of real numbers summing to unity represents the convexity axiom.

This same sum constraint with each vector element being a binary integer is representing

nonconvexity. The convex technology satisfies axioms (T.1) (except inaction) to (T.4), while

the nonconvex technology adheres to axioms (T.1) to (T.3). It is now useful to condition the

above notation of the efficiency measures relative to these nonparametric frontier technologies

by distinguishing between convexity (convention C) and nonconvexity (convention NC).
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3 Plant Capacity Concepts

3.1 Plant Capacity: Basic Definitions

Recall the informal definition of plant capacity by Johansen (1968, p. 362) as “the maximum

amount that can be produced per unit of time with existing plant and equipment, provided

that the availability of variable factors of production is not restricted.” This clearly output-

oriented plant capacity notion has been admirably made operational by Färe, Grosskopf,

and Kokkelenberg (1989) and Färe, Grosskopf, and Valdmanis (1989) using a pair of output-

oriented efficiency measures. We now recall the definition of this output-oriented plant ca-

pacity utilization (PCU).

Definition 3.1. The output-oriented plant capacity utilization (PCUo) is defined as:

PCUo(x, x
f , y) =

DFo(x, y)

DF f
o (xf , y)

, (7)

where DFo(x, y) and DF f
o (xf , y) are output efficiency measures including, respectively ex-

cluding, the variable inputs as defined before in (2) and (3). Since 1 ≤ DFo(x, y) ≤ DF f
o (xf , y),

notice that 0 < PCUo(x, x
f , y) ≤ 1. Thus, output-oriented plant capacity utilization has an

upper limit of unity. Following the terminology introduced by Färe, Grosskopf, and Kokkelen-

berg (1989), Färe, Grosskopf, and Valdmanis (1989) and Färe, Grosskopf, and Lovell (1994),

one can distinguish between a so-called biased plant capacity measure DF f
o (xf , y) and an

unbiased plant capacity measure PCUo(x, x
f , y). Taking the ratio of efficiency measures elim-

inates any existing inefficiency and yields in this sense a cleaned concept of output-oriented

plant capacity.

In case of C, the efficiency measure DF f
o (xf , y) is computed for observation (xp, yp) as

follows:
DF f

o (xfp , yp) = max θ

s.t
K∑
k=1

zkyk ≥ θyp,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(8)

In case of NC, the variables zk in this model need to be binary variables. In all LP models
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mentioned hereafter, a similar adaptation is required if NC is assumed. To save space, we

will not mention this again, nor formulate the corresponding models.

Observe that there are no input constraints on the variable inputs in the model (8). Note

that Färe, Grosskopf, and Lovell (1994) introduce an alternative linear program (LP) with a

scalar for each variable input dimension. Also note that LP (8) is equivalent to the following

LP obtained by making each variable input a decision variable:

DF f
o (xfp , yp) = max θ

s.t
K∑
k=1

zkyk ≥ θyp,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zkx
v
k ≤ xv,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, xv ≥ 0, k = 1, . . . , K.

(9)

Cesaroni, Kerstens, and Van de Woestyne (2017) define a new input-oriented plant ca-

pacity measure using a pair of input-oriented efficiency measures.

Definition 3.2. The input-oriented plant capacity utilization (PCUi) is defined as:

PCUi(x, x
f , y) =

DF SR
i (xf , xv, y)

DF SR
i (xf , xv, 0)

, (10)

where DF SR
i (xf , xv, y) and DF SR

i (xf , xv, 0) are both sub-vector input efficiency measures

reducing only the variable inputs relative to the technology, the latter efficiency measure

being evaluated at a zero output level. Since 0 < DF SR
i (xf , xv, 0) ≤ DF SR

i (xf , xv, y), notice

that PCUi(x, x
f , y) ≥ 1. Thus, input-oriented plant capacity utilization has a lower limit

of unity. Similar to the previous case, one can distinguish between a so-called biased plant

capacity measure DF SR
i (xf , xv, 0) and an unbiased plant capacity measure PCUSR

i (x, xf , y),

the latter being cleaned of any prevailing inefficiency.

Now we try to clarify both these definitions with the help of Figure 1 which depicts a

single variable input and output space. In particular, Figure 1 shows a total product curve

for given fixed inputs as the polyline abcd and its horizontal extension at d. We focus on

observation e. Note that observations are represented by squares and projection points by

circles.
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The output-oriented plant capacity measure PCUo(x, x
f , y) compares point e to its ver-

tical projection point e′′′ on the frontier on the one hand, and the translated point e′ that

consumes more variable inputs to its vertical projection point on the horizontal frontier seg-

ment emanating from point d with maximal outputs on the other hand. Clearly, the maximal

output d can be labelled the plant capacity output. Thus, the unbiased plant capacity mea-

sure PCUo(x, x
f , y) is somehow linked to the distance e′′′d′, whereby point d′ is simply the

translation of the maximal output at point d to the output level comparable with point e.

The input-oriented plant capacity measure PCUi(x, x
f , y) focuses on a sub-vector of

variable inputs and compares point e to its horizontal projection point e′′′′ on the frontier on

the one hand, and the translated point e′′ (consuming equal amounts of variable inputs but

at a zero outputs level) to its horizontal projection point on the vertical frontier segment

ab with zero outputs on the other hand. Clearly, the minimal variable input a yielding zero

output can be labelled the plant capacity input. Thus, the unbiased plant capacity measure

PCUi(x, x
f , y) is somehow linked to the distance b′e′′′′, whereby point b′ is the translation of

the variable input at point b to the variable input level comparable with point e.

Figure 1: Total product curve: Output- and input-oriented plant capacity.

We now turn to the issue of attainability of both these plant capacity concepts.
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3.2 Plant Capacity: The Question About Attainability

While these definitions in itself are sufficiently clear, it may be useful to underscore that

these concepts differ with respect to the property of attainability. As stressed by Johansen

(1968, p. 362) the output-oriented plant capacity notion is not attainable in that the extra

variable inputs necessary to reach the maximal plant capacity output may not be available.

While the axiom of strong disposability in the inputs in principle allows for wasting infinitely

many inputs to determine the maximal plant capacity outputs, in practice there may well

be restrictions of various kinds that limit the availability of variable inputs.2

First, at the firm level there may be quasi-fixed factors like labour where firms have

to invest in hiring and training activities that limit the amounts of labour that can be

recruited at once. By definition, quasi-fixed factors are characterised by the fact that their

supply cannot be expanded rapidly. Furthermore, depending on the nature of the labour

market and the size of the firm (e.g., it may have some monopsony power), recruiting a large

amount of people may well have an impact on their salaries. While this does not show up

in the analytical framework of the output-oriented plant capacity notion that ignores input

prices, firms may well in fact take account of these general equilibrium effects and constrain

their recruitment of the quasi-fixed factor. In brief, the quasi-fixity of labour as well as other

production factors may seriously impede the expansion of variable inputs and may thus

prevent reaching the maximal plant capacity outputs (e.g., Oi (1962) for the seminal article

in economics and Barney (2001) for the resource-based view of the firm).

Second, even if these extra variable inputs are available at the firm level, as stressed

by Johansen (1968) there may be restrictions on the available extra variable inputs at the

sector level that may prevent that all firms simultaneously can reach their maximal plant

capacity output. For instance, quasi-fixed factors may operate at the industry level and

prevent the rapid expansion of their supply in amounts needed to allow for the realization

of the maximal plant capacity outputs for all firms. At the sectoral level, it is obvious that

general equilibrium effects may play a role: if all firms simultaneously increase their demand

for a production factor, then the price of that production factor may well increase. Again,

while this does not show up in the framework of the output-oriented plant capacity notion

which ignores factor prices, firms may take these general equilibrium effects into account and

constrain their expansion of the production factor.

By contrast, the input-oriented plant capacity notion is always attainable in that one

2The idea of a kind of limited strong disposability has been pursued in the context of congestion mea-
surement in Briec, Kerstens, and Van de Woestyne (2016).
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can always reduce the amount of existing variable inputs such that one reaches an input set

with zero output level. Reducing variable inputs to reach zero production levels is normally

possible because of the axiom of inaction. Inaction implies that one can stop producing at

all: but, in modern production facilities producing a zero output need not imply that no

inputs are used.3 Examples of zero production with positive amounts of variable inputs in-

clude critical maintenance activities at a large industrial plant impeding production, making

inventories in a retailer while temporarily suspending sales, or temporarily closing a mine

while keeping it exploitable with the option of reopening it as part of a real options strategy.

Closing down production is therefore possible at the firm level, but it can be done as well at

the sectoral level.

Therefore, attainability is a potential issue for the output-oriented plant capacity notion,

while it is a priori not an issue for the new input-oriented plant capacity concept. We now turn

to the modeling of constraints on the availability of variable inputs in the output-oriented

plant capacity notion.

3.3 Attainable Output-Oriented Plant Capacity: Proposals

We now first turn to the specification of attainability constraints at the firm level. Thereafter,

we explore how to model attainability constraints at the industry level.

3.3.1 Attainability Constraints at the Firm Level

Granting that attainability is a potential issue for the output-oriented plant capacity notion,

it is important to model constraints on the availability of variable inputs in a general way.

This leads us to define an attainable output-oriented efficiency measure that incorporates

realistic limits on the availability of variable inputs.

Definition 3.3. The attainable output-oriented efficiency measure (ADFo) at level λ̄ ∈ R+

is defined as:

ADF f
o (xf , y, λ̄) = max{θ | θ ≥ 0, 0 ≤ λ ≤ λ̄, θy ∈ P (xf , λxv)}. (11)

The amount of variable inputs is now bounded to be at most a scalar-wise multiple smaller

3While inaction is often phrased mathematically as (0, 0) ∈ T , the occurrence of zero outputs need not
imply zero inputs. By the assumption of strong input disposability (x, 0) ∈ T for x > 0. Thus, the use of
positive inputs is compatible with zero outputs.
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than λ̄. Obviously, ADF f
o (xf , y, λ̄) ≤ DF f

o (xf , y). Note that Definition 3.3 is written in

absolute terms. For instance, λ̄ = 3 corresponds with the impossibility of variable inputs

to exceed three times the current amount of variable inputs. Alternatively, one could focus

on relative comparisons to the sector aggregates (
∑K

p=1 x
v
p). Then, one could impose that

variable inputs at the firm level cannot exceed a certain share of the total amount of variable

inputs available in the sector. We opt for the first approach.

Using the attainable output-oriented efficiency measure introduced in Definition 3.3, it

is natural to come up with a new attainable output-oriented plant capacity concept at the

firm level.

Definition 3.4. An attainable output-oriented plant capacity utilization (APCUo) at level

λ̄ ∈ R+ is defined as:

APCUo(x, x
f , y, λ̄) =

DFo(x, y)

ADF f
o (xf , y, λ̄)

, (12)

with DFo(x, y) and ADF f
o (xf , y, λ̄) as defined before.

By analogy with the plant capacity utilization measures introduced in Definitions 3.1 and

3.2, one can distinguish between the biased attainable plant capacity measure ADF f
o (xf , y, λ̄)

and the unbiased attainable plant capacity measure APCUo(x, x
f , y, λ̄), where the ratio of

efficiency measures ensures eliminating any existing inefficiency.

Since ADF f
o (xf , y, λ̄) ≤ DF f

o (xf , y), clearly APCUo(x, x
f , y, λ̄) ≥ PCUo(x, x

f , y). Thus,

the attainable output-oriented measure of plant capacity utilization is always larger or equal

to the traditional measure of output-oriented plant capacity utilization.

Modeling attainability constraints at the firm level can now be done as follows:

ADF f
o (xfp , yp, λ̄) = max θ

s.t
K∑
k=1

zkyk ≥ θyp,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zkx
v
k ≤ xv,

K∑
k=1

zk = 1,

xv ≤ λ̄xvp,

θ ≥ 0, zk ≥ 0, xv ≥ 0, k = 1, . . . , K.

(13)

The constraint xv ≤ λ̄xvp establishes a link between the decision variable xv and the value
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xvp of the firm under observation. In the empirical analysis of Section 4, we choose λ̄ ∈
{0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. Thus, we consider an increase of the variable inputs with

a factor more than five or less than 0.5 (i.e., halving these variable inputs) as implausible.

In model (13), the scalar λ̄ can be varied over some part of the interval (0,∞). To deter-

mine the complete feasible interval for λ̄ and to classifyADF f
o (xf , y, λ) andAPCUo(x, x

f , y, λ)

further on, we can define the following three critical points Lp, Mp and Up for some obser-

vation (xp, yp) as follows:

Lp = DF SR
i (xfp , x

v
p, 0), (14)

Mp = DF SR
i (xfp , x

v
p, y), (15)

and

Up = DF SR
i (xfp , x

v
p, DF

f
o (xf , y)y). (16)

Note that the critical points Lp and Mp make up the components of the input-oriented

plant capacity measure PCUi(x, x
f , y) in Definition 3.2. To our knowledge, Up has not been

described earlier in the literature. It can be interpreted as the minimal expansion of variable

inputs needed to produce the maximum plant capacity outputs and can be computed as

follows:
Up = min θ

s.t
K∑
k=1

zkyk ≥ DF f
o (xfp , yp)yp,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zkx
v
k ≤ θxvp,

K∑
k=1

zk = 1,

θ ≥ 0, zk ≥ 0, k = 1, . . . , K.

(17)

These three critical points can be briefly illustrated with the help of Figure 1. First, the

point Lp relates to the distance from point a to point e′′: it indicates the minimal amount of

variable inputs compatible with zero outputs. Second, the point Mp relates to the distance

from point e′′′′ to point e: it indicates the minimal amount of variable inputs compatible with

current levels of outputs. Third, the point Up relates to the distance from point e to point

e′: it indicates the minimal amount with which variable inputs need to be expanded to be

compatible with the maximal level of plant capacity outputs at point d.

We are now in a position to classify ADF f
o (xf , y, λ̄) and APCUo(x, x

f , y, λ̄) in terms of
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these three critical points. In particular, we establish two propositions.

Proposition 3.1. For the biased and unbiased attainable output-oriented plant capacity

utilization in both C and NC technologies, for every observation (xp, yp) we have:

(i) If λ̄ < Lp, then model (13) is infeasible.

(ii) If Lp ≤ λ̄ < Mp, then ADF f
o (xfp , yp, λ̄) < 1 and APCUo(xp, x

f
p , yp, λ̄) > 1.

(iii) If Mp ≤ λ̄, then ADF f
o (xfp , yp, λ̄) ≥ 1 and APCUo(xp, x

f
p , yp, λ̄) ≤ 1.

Proof. (i) Suppose that λ̄ < Lp and model (13) is feasible with optimal solution (z∗k, x
v∗).

Hence, xv∗ ≤ λ̄xvp < Lpx
v
p. Therefore, (ẑk = z∗k, θ̂ = λ̄) is a feasible solution of model (14)

with optimal value θ̂ = λ̄. But, this is contradiction since λ̄ < Lp.

(ii) Assume that Lp ≤ λ̄ < Mp and (z∗k, x
v∗, θ∗) is an optimal solution of model (13) such

that θ∗ ≥ 1. Hence, we have xv∗ ≤ λ̄xvp < Mpx
v
p. So (ẑ∗k = z∗k, θ̂ = λ̄) is a feasible solution of

model (15) with optimal value θ̂ = λ̄. This is contradiction since λ̄ < Mp.

(iii) Assume that Mp ≤ λ̄ and (z∗k, θ
∗ = Mp) is an optimal solution of model (15). Since

Mpx
v
p ≤ λ̄xvp, hence (ẑk = z∗k, x̂

v = Mpx
v
p, θ̂ = 1) is a feasible solution of model (13) with

objective value θ̂ = 1. Therefore, ADF f
o (xfp , yp, λ̄) ≥ 1 because the kind of model is a

maximising problem.

Proposition 3.2. For the biased and unbiased attainable output-oriented plant capacity

utilization in both C and NC technologies, for every observation (xp, yp), we have:

(i) If Lp ≤ λ̄ < Up, then ADF f
o (xfp , yp, λ̄) < DF f

o (xfp , yp) and APCUo(xp, x
f
p , yp, λ̄) >

PCUo(xp, x
f
p , yp).

(ii) If λ̄ ≥ Up, then ADF f
o (xfp , yp, λ̄) = DF f

o (xfp , yp) and APCUo(xp, x
f
p , yp, λ̄) =

PCUo(xp, x
f
p , yp).

Proof. (i) Suppose that (z∗k, x
v∗, θ∗) is an optimal solution of model (13). This solution is

also a feasible solution of model (9). Since ADF f
o (xfp , yp, λ̄) ≤ DF f

o (xfp , yp), it is sufficient to

show that this solution is not an optimal solution of model (9). By contradiction, suppose

that (z∗k, x
v∗, θ∗) is an optimal solution of model (9), since λ̄ < Up, thus xv∗ ≤ λ̄xvp < Upx

v
p.

Therefore, (ẑk = z∗k, θ̂ = λ̄) is a feasible solution of model (17) with objective value λ̄ < Up,

which is a contradiction.

(ii) Assume that (z∗k, θ
∗ = Up) is an optimal solution of model (17). Since λ̄ ≥ Up, hence

λ̄xvp ≥ Upx
v
p. Therefore, (ẑk = z∗k, x̂

v = Upx
v
p, θ̂ = DF f

o (xfp , yp)) is a feasible solution of model
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(13). Thus, ADF f
o (xfp , yp, λ̄) ≥ DF f

o (xfp , yp). But, we also know that ADF f
o (xfp , yp, λ̄) ≤

DF f
o (xfp , yp). Hence, ADF f

o (xfp , yp, λ̄) = DF f
o (xfp , yp). This completes the proof.

3.3.2 Attainability Constraints at the Industry Level

Similar to the firm level version, it is natural to come up with new industry attainable output-

oriented plant capacity concepts. First, we introduce the industry attainable output-oriented

efficiency measure as follows:

Definition 3.5. The industry attainable output-oriented efficiency measure (IADFo) at

level λ̄ ∈ R+ for observation (xp, yp) is defined as

IADF f
o (xfp , yp, λ̄) = θ∗p, (18)

with θ∗p the optimum value of θp in the following model:

max
K∑
p=1

θp

s.t
K∑
k=1

zpkyk ≥ θpyp, p = 1, . . . , K,

K∑
k=1

zpkx
f
k ≤ xfp , p = 1, . . . , K,

K∑
k=1

zpkx
v
k ≤ xvp, p = 1, . . . , K,

K∑
k=1

zpk = 1, p = 1, . . . , K,

K∑
p=1

xvp ≤ λ̄
K∑
p=1

x̄vp,

θp ≥ 0, zpk ≥ 0, xvp ≥ 0, k, p = 1, . . . , K.

(19)

Note that model (19) is a kind of central resource allocation model with K LPs (one for

each observation) and a bogus objective function and with a common constraint on the total

amount of variable inputs available in the sector. In particular, its aim is to simultaneously

determine the maximum plant capacity outputs for all observations while reallocating vari-

able inputs among units such that a global constraint on the industry amount of variable

inputs is respected. Central resource reallocation models cover a heterogeneous variety of

models reallocating some inputs and/or outputs across space and/or time while eventually

accounting for multiple objectives (e.g., efficiency, effectiveness, equality, etc.) simultane-

ously. Examples include Athanassopoulos (1998), Golany and Tamir (1995), Korhonen and
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Syrjänen (2004), Lozano and Villa (2004), and Ylvinger (2000), among others. One type of

central resource reallocation model which also makes use of the notion of plant capacity is

the so-called short-run Johansen industry model (e.g., Kerstens, Vestergaard, and Squires

(2006)).

Second, using the industry attainable output-oriented efficiency measure of Definition

3.5, the industry attainable output-oriented plant capacity utilization is defined as follows:

Definition 3.6. The industry attainable output-oriented plant capacity utilization (IAPCUo)

at level λ̄ ∈ R+ for observation (xp, yp) is defined as

IAPCUo(xp, x
f
p , yp, λ̄) =

DFo(xp, yp)

IADF f
o (xfp , yp, λ̄)

. (20)

Since IADF f
o (xf , y, λ̄) ≤ DF f

o (xf , y), clearly IAPCUo(x, x
f , y, λ̄) ≥ PCUo(x, x

f , y).

Thus, the industry attainable output-oriented measure of plant capacity utilization is al-

ways larger or equal to the traditional measure of output-oriented plant capacity utiliza-

tion. By analogy, one can distinguish between the biased industry attainable plant capac-

ity measure IADF f
o (xf , y, λ̄) and the unbiased industry attainable plant capacity measure

IAPCUo(x, x
f , y, λ̄), where the ratio of efficiency measures ensures eliminating any existing

inefficiency.

Note that the industry attainable output-oriented measure of plant capacity utilization

may be smaller or larger than the attainable output-oriented measure of plant capacity

utilization. This holds true for both the biased and unbiased versions. Therefore, we have

IADF f
o (xf , y, λ̄)

>
=
<
ADF f

o (xfp , yp, λ̄) and IAPCUo(x, x
f , y, λ̄)

>
=
<
APCUo(x, x

f , y, λ̄).

By analogy to the firm level modelling, the scalar λ̄ in model (19) can be varied over

some part of the interval (0,∞). To determine this feasible interval for λ̄ we can define the

following two critical points LI and U I . On the one hand, LI can be determined from the
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following LP:

LI = min θ

s.t
K∑
k=1

zpkx
f
k ≤ xfp , p = 1, . . . , K,

K∑
k=1

zpkx
v
k ≤ xvp, p = 1, . . . , K,

K∑
k=1

zpk = 1, p = 1, . . . , K,

K∑
p=1

xvp ≤ θ
K∑
p=1

x̄vp,

θ ≥ 0, zpk ≥ 0, xvp ≥ 0, k, p = 1, . . . , K.

(21)

On the other hand, U I is obtained solving the following LP:

U I = min θ

s.t
K∑
k=1

zpkyk ≥ DF f
o (xfp , yp)yp, p = 1, . . . , K,

K∑
k=1

zpkx
f
k ≤ xfp , p = 1, . . . , K,

K∑
k=1

zpkx
v
k ≤ xvp, p = 1, . . . , K,

K∑
k=1

zpk = 1, p = 1, . . . , K,

K∑
p=1

xvp ≤ θ
K∑
p=1

x̄vp,

θ ≥ 0, zpk ≥ 0, xvp ≥ 0, k, p = 1, . . . , K.

(22)

Note that U I can be interpreted as the minimal expansion of overall variable inputs needed

to produce the plant capacity outputs for all units for the industry model (19).

We are now in a position to classify IADF f
o (xf , y, λ̄) and IAPCUo(x, x

f , y, λ̄) in terms

of these two critical points in the following proposition:

Proposition 3.3. For the industry biased and unbiased attainable output-oriented plant

capacity utilization in both C and NC technologies, we have:

(i) If λ̄ < LI , then model (19) is infeasible.

(ii) If LI ≤ λ̄ < U I , then at least for one observed observation (xp, yp) we have

IADF f
o (xfp , yp, λ̄) < DF f

o (xfp , yp) and IAPCUo(xp, x
f
p , yp, λ̄) > PCUo(xp, x

f
p , yp).

(iii) If U I ≤ λ̄, then for every observation (xp, yp) we have IADF f
o (xfp , yp, λ̄) = DF f

o (xfp , yp)
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and IAPCUo(xp, x
f
p , yp, λ̄) = PCUo(xp, x

f
p , yp).

Proof. (i) Assume that model (19) is feasible with optimal solution (θ∗p, z
p∗
k , x

v∗
p ). Since λ̄ <

LI , thus
K∑
p=1

xv∗p ≤ λ̄
K∑
p=1

x̄vp < LI

K∑
p=1

x̄vp.

Therefore, (θ̂ = λ̄, ẑpk = zp∗k , x̂
v
p = xv∗p ) is a feasible solution of model (21) with objective value

θ̂ = λ̄ < LI which is a contradiction.

(ii) Let

IADF f
o (xfp , yp, λ̄) = DF f

o (xfp , yp), p = 1, ..., K.

Also, (θ∗p, z
p∗
k , x

v∗
p ) is an optimal solution of model (19) in which θ∗p = IADF f

o (xfp , yp, λ̄) =

DF f
o (xfp , yp) and

K∑
p=1

xv∗p ≤ λ̄
K∑
p=1

x̄vp < U I

K∑
p=1

x̄vp.

Therefore, (θ̂ = λ̄, ẑpk = zp∗k , x̂
v
p = xv∗p ) is a feasible solution of model (22) with objective value

θ̂ = λ̄ < U I which is a contradiction.

(iii) Assume that (zp∗k , x
v∗
p , θ

∗ = U I) is an optimal solution of model (22). We have

K∑
p=1

xv∗p ≤ θ∗
K∑
p=1

x̄vp ≤ λ̄
K∑
p=1

x̄vp.

Therefore, (ẑpk = zp∗k , x̂
v
p = xv∗p , θ̂p = DF f

o (xfp , yp)) is a feasible solution of model (19) in

whichDF f
o (xfp , yp) ≤ IADF f

o (xfp , yp, λ̄). But, we know that IADF f
o (xfp , yp, λ̄) ≤ DF f

o (xfp , yp).

Hence, DF f
o (xfp , yp) = IADF f

o (xfp , yp, λ̄) and this completes the proof.

4 Empirical Illustration

4.1 Description of the Sample

For the empirical illustration of the attainability notions introduced in previous section,

we use a secondary data set from Atkinson and Dorfman (2009). The sample is based on

16 Chilean hydro-electric power generation plants observed on a monthly basis. We limit

ourselves to the observations for the year 1997 and, assuming that there is no technical

change, we specify an inter-temporal frontier resulting in a total of 192 units. It is well-

17

IÉSEG Working Paper Series 2017-EQM-11



known that Chile was one of the first countries deregulating its electricity market and that

hydro-power was a dominant source of energy during the 90’s. These hydro-power plants

generate one output (electricity) using three inputs: labor, capital, and water. Except for

the fixed input capital, the remaining flow variables are expressed in physical units. Table 1

presents basic descriptive statistics for the inputs and the single output. One can observe a

large heterogeneity in terms of size among the different inputs as well as the single output.

Table 1: Descriptive Statistics for Hydro-Power Plants (1997)
Variable Trimmed meana Minimum Maximum

Billions of m3 of water (variable input) 126.80 0.49 1347.47

# workers (variable input) 15.62 2.00 52.86

Billions of capital (fixed input) 0.47 0.04 5.98

Thousands of kWh (output) 46.79 0.40 353.70

Note: a10% trimming level.

4.2 Empirical Results for Firm Level

Tables 2 and 3 are structured in a similar way. While Table 2 reports on the biased plant ca-

pacity utilisation measures DF f
o (xf , y) and ADF f

o (xf , y, λ̄), Table 3 focuses on the unbiased

plant capacity utilisation measures PCUo(x, x
f , y) and APCUo(x, x

f , y, λ̄). In each table, the

second column reports the standard plant capacity utilisation measures, while the next ten

columns describe the attainable plant capacity utilisation measures for λ̄ varying between 0.5

and 5 with step size 0.5 (thus, λ̄ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}). Hence, we somewhat

arbitrary assume that variable inputs can be magnified at most fivefold. Obviously, we could

have selected a wider range of values to experiment with λ̄. Based on Proposition 3.1, note

that for 37 observations under C and 41 observations under NC λ̄ = 0.5 is too small for

model (13) to be feasible. Hence, these observations are not included in the corresponding

descriptive statistics computations.
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Table 2: Descriptive Statistics of Biased Plant Capacity Utilisation
DF f

o (xf , y) ADF f
o (xf , y, λ̄)

Convex λ̄ = 0.5 λ̄ = 1 λ̄ = 1.5 λ̄ = 2 λ̄ = 2.5 λ̄ = 3 λ̄ = 3.5 λ̄ = 4 λ̄ = 4.5 λ̄ = 5

Average 13.65457 1.016839 1.663225 2.19119 2.594005 2.911513 3.153133 3.357557 3.546914 3.721204 3.876843

Stand.Dev. 77.13735 1.026834 1.721058 2.421282 3.106651 3.769749 4.349027 4.926613 5.501961 6.077219 6.644515

Minimum 1 0.251997 1 1 1 1 1 1 1 1 1

Maximum 884.25 7.732426 15.46485 21.69478 27.93651 34.3226 38.80662 43.29064 47.77466 52.25868 56.7427

DF f
o (xf , y) ADF f

o (xf , y, λ̄)

Nonconvex λ̄ = 0.5 λ̄ = 1 λ̄ = 1.5 λ̄ = 2 λ̄ = 2.5 λ̄ = 3 λ̄ = 3.5 λ̄ = 4 λ̄ = 4.5 λ̄ = 5

Average 12.54116 0.600155 1.274542 1.507743 1.745801 1.94163 2.16599 2.367088 2.54667 2.700961 2.762264

Stand.Dev. 77.22638 0.906712 1.511214 1.818299 2.156781 2.830002 2.856101 3.501181 4.303416 4.724691 5.079253

Minimum 1 0.117647 1 1 1 1 1 1 1 1 1

Maximum 884.25 7.714286 13.5 19 21 33.25 33.25 33.25 40.28571 43.71429 45.5

Analysing the results in Table 2, one can draw the following conclusions. First, on aver-

age the biased plant capacity utilisation measure DF f
o (xf , y) indicates that outputs can be

magnified by at least 13.65 times under C and 12.54 times under NC. Second, there is a lot

of variation in DF f
o (xf , y) as indicated by the standard deviation and the range is even huge:

the maximum increase in outputs amounts to 884.25 times under both C and NC. Third, the

biased attainable plant capacity utilisation measure ADF f
o (xf , y, λ̄) increases monotonously

in λ̄ and on average the output magnification under C is always higher than under NC.

Fourth, for a fivefold increase in variable inputs (i.e., λ̄ = 5), we obtain on average a 3.87

output magnification under C and a 2.76 output magnification under NC. This is ways below

the average output magnification computed by the biased plant capacity utilisation measure

DF f
o (xf , y).

Table 3: Descriptive Statistics of Unbiased Plant Capacity Utilisation
PCUo(x, x

f , y) APCUo(x, x
f , y, λ̄)

Convex λ̄ = 0.5 λ̄ = 1 λ̄ = 1.5 λ̄ = 2 λ̄ = 2.5 λ̄ = 3 λ̄ = 3.5 λ̄ = 4 λ̄ = 4.5 λ̄ = 5

Average 0.521886 1.952362 1 0.778096 0.686657 0.637375 0.610698 0.593961 0.581193 0.571622 0.564426

Stand.Dev. 0.268942 0.705465 0 0.113308 0.155652 0.17852 0.192901 0.20318 0.211476 0.21802 0.223191

Minimum 0.015797 1 1 0.495493 0.331236 0.272089 0.230864 0.200488 0.177176 0.158721 0.155053

Maximum 1 4.915901 1 1 1 1 1 1 1 1 1

PCUo(x, x
f , y) APCUo(x, x

f , y, λ̄)

Nonconvex λ̄ = 0.5 λ̄ = 1 λ̄ = 1.5 λ̄ = 2 λ̄ = 2.5 λ̄ = 3 λ̄ = 3.5 λ̄ = 4 λ̄ = 4.5 λ̄ = 5

Average 0.552863 2.963899 1 0.868114 0.781615 0.732702 0.676566 0.657501 0.646659 0.633939 0.630842

Stand.Dev. 0.304061 1.424327 0 0.146017 0.186995 0.204796 0.235747 0.244002 0.251481 0.258491 0.260398

Minimum 0.015267 1 1 0.458927 0.391808 0.387355 0.259312 0.098842 0.098842 0.098842 0.098842

Maximum 1 8.5 1 1 1 1 1 1 1 1 1

Turning to the analysis of Table 3, we can infer the following conclusions. First, on av-

erage the unbiased plant capacity utilisation measure PCUo(x
f , y) indicates that current
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outputs make up 52% from maximal plant capacity outputs under C and 55% under NC.

Second, the heterogeneity in PCUo(x
f , y) is large as indicated by the standard deviation and

the range is again huge: the minimum of 1.5% under both C and NC is simply extremely

low. Third, the unbiased attainable plant capacity utilisation measure APCUo(x, x
f , y, λ̄) de-

creases monotonously in λ̄ and on average APCUo(x, x
f , y, λ̄) is always smaller under C than

under NC. Fourth, for a fivefold increase in variable inputs (i.e., λ̄ = 5), APCUo(x, x
f , y, λ̄)

is getting close to PCUo(x, x
f , y) in the C case (a difference of only about 4%), while this

gap is larger in the NC case (a difference of about 8%).

Table 4: Descriptive Statistics for Three Critical Points
Convex Nonconvex

LC
p MC

p UC
p PCUi(.) LNC

p MNC
p UNC

p PCUi(.) UC
p − UNC

p

Average 0.338172 0.714722 31.58504 4.396554 0.352329 0.944414 28.75338 6.214177 2.831656

Stand.Dev. 0.301264 0.256362 106.3847 4.876813 0.313688 0.163897 106.3716 6.335151 4.894527

Minimum 0.037839 0.132486 1 1 0.037839 0.266667 0.904087 1 0

1st Quartile 0.112802 0.557439 2.627791 1.271783 0.120576 1 1.282811 1.994785 0

Median 0.2 0.753519 4.030647 2.484958 0.245241 1 2.627116 3.566389 0.571301

3rd Quartile 0.450583 0.952263 12.29502 5.732428 0.450583 1 5.444112 7.358733 2.6922392

Maximum 1 1 648.9984 26.07046 1 1 643.5001 26.42759 25.75867

Table 4 reports descriptive statistics on the three critical points Lp, Mp and Up as defined

in (14) to (16). The following conclusions can be inferred. First, the average values for Lp and

Mp are rather moderate, whereby the values are each time lower under C than under NC. This

leads to rather plausible results for the input-oriented plant capacity measure PCUi(x, x
f , y).

Under C one needs on average 4.39 more variable inputs with current outputs than with zero

outputs, while under NC one employs 6.21 more variable inputs with current outputs than

with zero outputs.

Second, on average the critical point Up is very high: one needs 31.58 times more variable

inputs than currently in use to reach maximum plant capacity outputs under C, while one

can magnify variable inputs by just a factor 28.75 under NC. These amounts are huge in

comparison to our prior value of allowing for only a fivefold increase in variable inputs.

Third, the variation in this factor Up is huge. For instance, at the third quartile we obtain

a 12.29 magnification factor under C and only a 5.44 magnification factor under NC. The

maximal magnification factor of 648.99 and 643.50 under C respectively NC are very similar

in magnitude and both are clearly impossible in reality. These extreme requirements on the

availability of variable inputs clearly cast doubts on the plausibility of the traditional output-

oriented plant capacity measure. Fourth, the last column reporting the difference UC
p −UNC

p

reveals that on average the variable inputs under C should be increasing at least 2.83 times
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more than under NC. Furthermore, there is quite a bit of heterogeneity in this difference

UC
p −UNC

p . Thus, in short, while these magnification factors for the variable inputs are clearly

implausible, it seems that the non-convex results are the least implausible.

We end this analysis with some results for certain individual observations. Each figure

has two parts: the left hand side displays the biased attainable plant capacity in function of

the value of λ̄; the right hand side shows the unbiased attainable plant capacity in function

of the value of λ̄. Both figures are drawn under both the C and NC assumption. Furthermore,

the same critical point Up is drawn for both C and NC in both figures.

Figure 2: Biased and Unbiased Attainable Plant Capacity for Plant 9

Figure 2 shows results for plant number 9. One can make the following series of observa-

tions on the LHS figure. First, the biased attainable plant capacity increases monotonously

with λ̄ under C and in a stepwise fashion under NC: these steps reveal the pervasive prob-

lem of slacks that is well-known under NC. Second, the maximum increase in outputs (i.e.,

the vertical distance between both lines) for the biased attainable plant capacity is almost

double under C compared to NC. Third, the value of Up is almost four times bigger under C

(15.48) compared to NC (3.11). The following observations apply to the RHS figure. First,

the unbiased attainable plant capacity decreases again monotonously with λ̄ under C and

in a stepwise fashion under NC. Second, the unbiased attainable plant capacity under C

compared to NC cross one another: only for very high values of λ̄ both estimates are close

to one another. Overall, this again confirms that the NC results are less implausible.
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Figure 3: Biased and Unbiased Attainable plant Capacity Function in the Single Output for
Hydro-power Plant 105

Finally, Figure 3 depicts the results for plant number 105. Now the value of Up under C

and NC is identical (12.82). In this case, the differences between C and NC biased attainable

plant capacity are rather pronounced, while these differences are mainly visible for the low

range values of λ̄ for the unbiased attainable plant capacity.

4.3 Empirical Results for Industry Level

Tables 5 and 6 are structured in a way similar to the corresponding firm level ta-

bles. While Table 5 reports on the industry biased plant capacity utilisation measure

IADF f
o (xf , y, λ̄), Table 6 focuses on the industry unbiased plant capacity utilisation mea-

sures IAPCUo(x, x
f , y, λ̄). Again, we have ten columns describing the industry attainable

plant capacity utilisation measures for λ̄ varying between 0.5 and 5 with step size 0.5. New

is that the three last rows of Tables 5 and 6 show the number of observed units that have

the amounts ADF f
o (.) < IADF f

o (.), ADF f
o (.) = IADF f

o (.) and ADF f
o (.) > IADF f

o (.),

respectively. Thus, these lines focus on comparing firm level and industry level results.
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Table 5: Descriptive Statistics of Biased Industry Plant Capacity Utilisation
IADF f

o (xf , y, λ̄)

Convex λ̄ = 0.5 λ̄ = 1 λ̄ = 1.5 λ̄ = 2 λ̄ = 2.5 λ̄ = 3 λ̄ = 3.5 λ̄ = 4 λ̄ = 4.5 λ̄ = 5

Average 12.09168 12.97306 13.36607 13.57577 13.64422 13.65457 13.65457 13.65457 13.65457 13.65457

Stand.Dev. 77.33517 77.23591 77.18058 77.14818 77.13888 77.13735 77.13735 77.13735 77.13735 77.13735

Minimum 0.010178 0.010178 0.317501 0.317501 0.917641 1 1 1 1 1

Maximum 884.25 884.25 884.25 884.25 884.25 884.25 884.25 884.25 884.25 884.25

ADF f
o (.) < IADF f

o (.) 109 112 128 145 130 119 110 99 89 82

ADF f
o (.) = IADF f

o (.) 1 2 7 20 38 73 82 93 103 110

ADF f
o (.) > IADF f

o (.) 82 78 57 27 24 0 0 0 0 0

IADF f
o (xf , y, λ̄)

Nonconvex λ̄ = 0.5 λ̄ = 1 λ̄ = 1.5 λ̄ = 2 λ̄ = 2.5 λ̄ = 3 λ̄ = 3.5 λ̄ = 4 λ̄ = 4.5 λ̄ = 5

Average 11.54666 12.22508 12.44996 12.54116 12.54116 12.54116 12.54116 12.54116 12.54116 12.54116

Stand.Dev. 77.35706 77.26992 77.23991 77.22638 77.22638 77.22638 77.22638 77.22638 77.22638 77.22638

Minimum 0.010178 0.079729 0.317501 1 1 1 1 1 1 1

Maximum 884.25 884.25 884.25 884.25 884.25 884.25 884.25 884.25 884.25 884.25

ADF f
o (.) < IADF f

o (.) 96 125 103 107 99 85 77 72 62 59

ADF f
o (.) = IADF f

o (.) 8 29 60 85 93 107 115 120 130 133

ADF f
o (.) > IADF f

o (.) 88 38 29 0 0 0 0 0 0 0

Analysing these results in Table 5, we infer the following conclusions. First, the bi-

ased industry attainable plant capacity utilisation measure IADF f
o (xf , y, λ̄) increases al-

most monotonously in λ̄ and on average the output magnification under C is always higher

than under NC. Second, IADF f
o (xf , y, λ̄) becomes stationary after λ̄ reaches the value 3

under C, and the value 2 under NC. Third, though IADF f
o (xf , y, λ̄)

>
=
<
ADF f

o (xfp , yp, λ̄),

for the majority of observations we find ADF f
o (xfp , yp, λ̄) < IADF f

o (xf , y, λ̄). Furthermore,

ADF f
o (xfp , yp, λ̄) > IADF f

o (xf , y, λ̄) becomes 0 when IADF f
o (xf , y, λ̄) becomes stationary.
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Table 6: Descriptive Statistics of Unbiased Industry Plant Capacity Utilisation
IAPCUo(x, x

f , y, λ̄)

Convex λ̄ = 0.5 λ̄ = 1 λ̄ = 1.5 λ̄ = 2 λ̄ = 2.5 λ̄ = 3 λ̄ = 3.5 λ̄ = 4 λ̄ = 4.5 λ̄ = 5

Average 12.69771 5.760532 0.745656 0.591282 0.525741 0.521886 0.521886 0.521886 0.521886 0.521886

Stand.Dev. 23.79737 19.19646 0.624234 0.472982 0.27266 0.268942 0.268942 0.268942 0.268942 0.268942

Minimum 0.015797 0.015797 0.015797 0.015797 0.015797 0.015797 0.015797 0.015797 0.015797 0.015797

Maximum 98.25 98.25 3.149599 3.149599 1.08975 1 1 1 1 1

APCU f
o (.) < IAPCU f

o (.) 82 78 57 27 24 0 0 0 0 0

APCU f
o (.) = IAPCU f

o (.) 1 2 7 20 38 73 82 93 103 110

APCU f
o (.) > IAPCU f

o (.) 109 112 128 145 130 119 110 99 89 82

IAPCUo(x, x
f , y, λ̄)

Nonconvex λ̄ = 0.5 λ̄ = 1 λ̄ = 1.5 λ̄ = 2 λ̄ = 2.5 λ̄ = 3 λ̄ = 3.5 λ̄ = 4 λ̄ = 4.5 λ̄ = 5

Average 10.79243 0.811113 0.672827 0.552863 0.552863 0.552863 0.552863 0.552863 0.552863 0.552863

Stand.Dev. 20.2639 1.006274 0.543461 0.304061 0.304061 0.304061 0.304061 0.304061 0.304061 0.304061

Minimum 0.015267 0.015267 0.015267 0.015267 0.015267 0.015267 0.015267 0.015267 0.015267 0.015267

Maximum 98.25 12.54255 3.149599 1 1 1 1 1 1 1

APCU f
o (.) < IAPCU f

o (.) 88 38 29 0 0 0 0 0 0 0

APCU f
o (.) = IAPCU f

o (.) 8 29 60 85 93 107 115 120 130 133

APCU f
o (.) > IAPCU f

o (.) 96 125 103 107 99 85 77 72 62 59

Turning to the results in Table 6, the following deductions emerge. First, the un-

biased industry attainable plant capacity utilisation measure IAPCU f
o (x, xf , y, λ̄) de-

creases almost monotonously in λ̄ and on average IAPCUo(x, x
f , y, λ̄) is first smaller

under NC than under C and then the reverse. Second, IAPCU f
o (x, xf , y, λ̄) be-

comes stationary after λ̄ reaches the value 3 under C, and the value 2 under NC.

Third, while IAPCUo(x, x
f , y, λ̄)

>
=
<
APCUo(x, x

f , y, λ̄), for the majority of observations

we find APCUo(x, x
f , y, λ̄) > IAPCUo(x, x

f , y, λ̄). Furthermore, APCUo(x, x
f , y, λ̄) <

IAPCUo(x, x
f , y, λ̄) becomes 0 when IAPCUo(x, x

f , y, λ̄) becomes stationary.

By solving models (21) and (22) we obtain the two critical points: under C, LI,C = 0.1199

and U I,C = 2.7516, and under NC, LI,NC = 0.1199 and U I,NC = 1.9947. We make three

comments. First, while the lower bound is identical under C and NC, the upper bound

under NC is substantially lower than under C. Second, based on Proposition 3.3, for λ̄ ≥
2.7516 in C case and λ̄ ≥ 1.9947 in NC case, we have IADF f

o (xfp , yp, λ̄) = DF f
o (xfp , yp) and

IAPCUo(xp, x
f
p , yp, λ̄) = PCUo(xp, x

f
p , yp). Thus, as can be seen in Tables 5 and 6, the five

last columns in the C case and seven last columns in the NC case contain identical results.

Third, it makes no sense to compare these two critical points LI and U I with, for instance,

the averages of the corresponding points in the firm models Lp and Up.

Instead, Table 7 reports the amount of increase of aggregate variable inputs such that all

units obtain the maximum of the standard plant capacity utilisation measure DF f
o (xfp , yp)

from both the perspective of firm and industry levels in both the C and NC cases. The
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second column shows the sum of observed variable inputs. The sum of needed variable inputs

with the firm level model (13) under C and NC is reported in the third and fifth columns,

respectively. The columns four and six present the sum of needed variable inputs with the

industry level model (19) under C and NC, respectively. The second part of the table shows

the magnification factors computed by taking the ratios of the sum of needed variable inputs

to the sum of observed variable inputs under firm and industry models and under C and

NC. The rows denote the two variable inputs: water and workers.

Table 7: Amounts of Variable Inputs Across Models
Convex Nonconvex

Variable inputs
∑K

p=1 x
v
p

∑K
p=1 Upx

v
p

∑K
p=1 U

Ixvp
∑K

p=1 Upx
v
p

∑K
p=1 U

Ixvp

Billions of m3 of water 30718.8879 103352.7750 84526.0919 74867.3723 61274.966

# workers 3203.2840 94183.8871 8814.1561 89220.3921 6389.590

Convex Nonconvex

Variable inputs
∑K

p=1 Upxv
p∑K

p=1 x
v
p

∑K
p=1 U

Ixv
p∑K

p=1 x
v
p

∑K
p=1 Upxv

p∑K
p=1 x

v
p

∑K
p=1 U

Ixv
p∑K

p=1 x
v
p

Billions of m3 of water 3.364 2.752 2.437 1.995

# workers 29.402 2.752 27.853 1.995

Analysing the results in Table 7, one can deduce the following conclusions. First, firm

models need substantially more amounts of variable inputs than industry models. Second,

C models need substantially more amounts of variable inputs than NC models. Third, while

the industry models with an almost doubling of variable inputs under NC and an almost

tripling of variable inputs under C are not necessarily incredible, the firm models with a

doubling by a factor of almost 2.5 at minimum and a thirty fold magnification at worst are

clearly incredible. For the variable input workers it is simply inconceivable that one could

magnify the existing amounts by a factor of 27.85 under NC and a factor of 29.40 under C.

In conclusion, we deduce the following. First, firm models necessitate unlikely amounts of

variable inputs, while the results for industry models are not a priori strikingly unrealistic.

Second, NC models involve less unrealistic amounts of variable input magnifications than C

models.

While some may put their hope in the industry models, it is crucial to remember their

limitations. First, these industry models presuppose that there is a central authority coor-

dinating among all firms. If firms are decentralised, this clearly is no option. Second, the

industry models are clearly very basic. Any more realistic industry model with additional

constraints (e.g., constraints on the amounts of inefficiency that are allowed for (as in Ker-

stens, Vestergaard, and Squires (2006)), putting lower and upper bounds on changes in
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variable inputs per firm, etc.) will lead to less spectacular results.

5 Conclusions

The output-oriented plant capacity concept has been around for at least two decades and

is quite popular for empirical applications. While it was directly inspired by the informal

definition provided by Johansen (1968), the doubts of Johansen (1968) regarding the attain-

ability of the concept have seemingly never been investigated. This paper has tried to dig

deeper into this issue of attainability.

In Section 3 we have formally defined both the traditional output-oriented and the rather

new input-oriented plant capacity notions. Thereafter, we have argued that the output-

oriented plant capacity notion may well fail attainability in general, because the amounts of

variable inputs needed to reach the maximum capacity outputs may simply not be available.

There does not seem to be such an issue for the input-oriented plant capacity concept.

Consequently, we have defined a new attainable output-oriented plant capacity notion that

incorporates either firm or industry constraints on the availability of variable inputs. It is

up to the researcher to determine plausible values limiting the upward scaling of variable

inputs.

Using secondary data, we have developed an empirical illustration in Section 4. We can

draw several conclusions. First, outputs need to be magnified an unreasonable amounts of

times to reach traditional plant capacity outputs. Second, this phenomenon is related to

the fact that variable inputs are supposed to be scalable at amounts that are unlikely to be

available at either the firm or the industry level. Anyway, the amounts of scaling that need to

be applied are ways above the fivefold increase with which we experimented when defining our

attainable plant capacity notion. Third, while this scaling of variable inputs is probably ways

beyond the reasonable, it is a fact that the computational results on a nonconvex technology

are slightly less implausible than the ones obtained on a traditional convex technology. Thus,

nonconvexity seems to mitigate partly the extreme results associated with the traditional

output-oriented plant capacity notion. Fourth, the industry model (if applicable) leads to

less incredible results than the firm model.

In conclusion, it is clear that given the fact that the traditional output-oriented plant

capacity concept likely faces serious attainability problems, the new notion of an attainable

output-oriented plant capacity concept merits further attention. Furthermore, since the new
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input-oriented plant capacity notion does not face any attainability issues, it may likely

constitute an alternative framework as well.

We suggest some avenues for future research. First, our empirical analysis related to the

attainability problem of the traditional output-oriented plant capacity concept needs further

corroboration. In particular, it would be important to verify whether the attainability prob-

lem is equally serious when employing alternative estimators (e.g., stochastic frontier analysis

as in Felthoven (2002)). Furthermore, one major limitation is that we limited our analysis to

radial efficiency measures, while it is well-known that the traditional convex and especially

the nonconvex technologies suffer from large amounts of unmeasured inefficiency appearing

as slacks (see, e.g., De Borger, Ferrier, and Kerstens (1998)). There are some indications that

slacks may also play a substantial role in the measurement of plant capacity utilisation (e.g.,

Dupont, Grafton, Kirkley, and Squires (2002), or Vestergaard, Squires, and Kirkley (2003)).

Therefore, it could be useful to revisit the attainability problem using nonradial rather than

radial efficiency measures.

Second, our attainable plant capacity notion could benefit from clarifying the amounts

by which variable inputs can reasonably be magnified (i.e., the value of λ̄). Expert opinion

may be one source of inspiration worthwhile exploring. Otherwise, it remains a conceptual

alternative for the traditional output-oriented plant capacity notion, but it has little empirical

bite.
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Färe, R., S. Grosskopf, and E. Kokkelenberg (1989): “Measuring Plant Capacity,

Utilization and Technical Change: A Nonparametric Approach,” International Economic

Review, 30(3), 655–666.
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