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Abstract

We investigate which factors matter to explain the returns of smart beta and
conventional ETFs using a Bayesian approach. Smart beta ETFs are well ex-
plained by the market, size and the betting-against-beta factor, whereas conven-
tional ETF's are well explained by the market, the quality-minus-junk factor, and
a value factor. Smart beta ETFs benefit from their exposure to the betting-
against-beta factor, however this is offset by their negative alphas, while the
factor exposure of conventional ETF's is purely detrimental. Our results suggest
investors should be skeptical about the ability of smart beta ETFs to capture
factor premiums.

Keywords: Smart Beta, strategic beta, factor investing, factor selection,
Bayesian variable selection

1. Introduction

The popularity of factor investing among institutional investors has spawned
a range of financial products, most notably Exchange Traded Funds (ETFs),
that aim to provide factor exposure in a cheap and transparent way'. “Smart”
or “strategic” beta ETFs, which either explicitly target one or more factors,
or make use of alternative weighting schemes using fundamental variables (i.e.
fundamental indexation), have become a significant portion of the ETF market.
A recent study published by MorningStar (Johnson, 2017) shows that, as of
June 2017, there were 1,320 “strategic beta” exchange traded products, with
global assets under management of over U$700 billion worldwide, the majority
of which in the form of U.S. equity ETFs.

The factor exposure of smart beta ETFs is an important issue for investors,
however it is not a straightforward one, due to the various ways in which these

Email addresses: a.rubesam@ieseg.fr (Alexandre Rubesam), shwang@skku.edu
(Soosung Hwang)
LA recent survey on factor investing among investment professionals (Amen et al. , 2017)
report that 73% make use of a multi-factor framework, with another 18% planning to imple-
ment one. See Ang (2014) for a review of the factor investing approach.
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products attempt to capture factor returns, potential time variation in factor
loadings (Ang et al. , 2017), differences with respect to factor definitions in the
asset pricing literature, and the inherent uncertainty regarding which factors are
priced or robust sources of return (see Beck et al. , 2016). For example, even
fundamental indexation strategies create unanticipated (typically value) factor
tilts (see Asness, 2006; Blitz & Swinkels, 2008). Therefore, it is important to
understand the factor exposures of these products not only to explicit factor
bets, but also to other factors?. Additionally, the long-only restriction of smart
beta ETFs suggests that smart beta ETFs may not be able to capture full factor
premiums, and may also create unintended factor exposures (see Blitz, 2016).

In this study, we apply a Bayesian factor selection method to investigate
which factors matter to explain the returns of smart beta as well as conventional
ETFs. We consider 14 popular asset pricing factors, and apply the Bayesian
variable selection method to search for the models with highest posterior proba-
bility for these two groups of ETFs. By comparing the best models obtained for
each group of ETFs, we can investigate if the factors that explain smart beta
ETFs are different from those for conventional ETFs, and how significant these
factors are in terms of the contribution to the returns of smart beta ETFs.

We investigate all U.S. equity ETFs which are active as of December 2017
and have return data over the period from January 2013 to December 2017,
comprising 200 smart beta ETFs and 168 conventional ETFs, totalling over
$1.5 trillion in assets under management. We create automatic rules to classify
ETFs as smart beta or conventional based on keyword searches in the ETFs
names and descriptions obtained from Thomson Reuters DataStream, and then
manually check the resulting classification to ensure it conforms to our definition
of smart beta.

Due to the uncertainties regarding the (intended or unintended) factor ex-
posures of smart beta ETFs, as well as to which factors are priced sources of
return, we consider a comprehensive set of candidate factors. This set includes
the factors popular in asset pricing such as those proposed by Fama & French
(2015), Chen & Zhang (2010) and Hou et al. (2015), which comprise the market
factor and factors related to the size, value, investment and profitability effects.
Additionally, we consider factors related to the momentum (Jegadeesh & Tit-
man, 1993), low volatility (Ang et al. , 2006), betting-against-beta (Frazzini &
Pedersen, 2014), quality (Asness et al. , 2017), illiquidity (Amihud, 2002), and
the alternative value factor of Asness & Frazzini (2013). Different versions of
related factors are used to understand the relationship between factor imple-
mentation in smart beta ETFs and in academic studies. Multicollinearity is not
an issue in our framework, as the variable selection methodology will focus on
the most parsimonious sets of factors, and thus models which include highly
correlated or redundant factors will naturally have low posterior probability?.

2See for example Amenc et al. (2018) and Shirbini (2018).
3Some of these factors are highly correlated. For example, the correlation of the profitability
factors based on ROE (return on equity) (Hou et al. , 2015) and ROA (return on assets) (Chen



We compare the performance of the best models selected using our methodol-
ogy with that of a benchmark model that includes the largest number of factors
possible by removing factors which cause extreme multicollinearity. The bench-
mark model includes nine factors such as the Fama & French (2015) factors, the
momentum, quality-minus-junk, betting-against-beta, and volatility factors.

Our main results from applying our factor selection procedure to smart beta
and conventional ETFs show that (i) parsimonious models with up to three
factors are selected with high posterior probability to explain the returns on
either group of ETFs; (ii) factors that are selected for smart beta ETFs are not
the same as those for conventional ETF's; (iii) the performance of the highest
posterior probability models to explain the returns on each group of ETF's is
very similar to the performance of the full benchmark model with nine factors.
Therefore, our Bayesian procedure finds parsimonious models that perform as
well as models with many additional factors.

For smart beta ETFs, a two-factor model with the market and the size
(small-minus-big, SMB) factors is selected with high posterior probability (0.67).
The second best model includes the Frazzini & Pedersen (2014) betting-against-
beta (BAB) factor, with a posterior probability of 0.29. The average R? of this
three-factor model identified by our procedure is 0.84, compared to 0.90 using
the benchmark model and 0.76 for the single-factor market model (i.e. the
CAPM). The average absolute alpha from the three-factor model is 0.16% per
month, whereas it is 0.14% for the full benchmark model and 0.24% for the
CAPM. Therefore, adding the 2 factors (size and BAB) to the CAPM produces
a parsimonious model that explains almost as much variability and average
return as the full benchmark model in smart beta ETFs. This result raises an
important question about the ability of smart beta ETFs to capture premiums
related to other factors such as value, momentum, profitability, and investment,
especially as the BAB factor is not significantly correlated to these factors.

For conventional ETF's, the highest probability model (with a posterior prob-
ability of 0.70) includes the market factor, the Asness & Frazzini (2013) HMLd
factor, and the Quality-Minus-Junk (QMJ) factor of Asness et al. (2017). The
average R? (average absolute alpha) from this model is 0.66 (0.31%), compared
to 0.73 (0.39%) for the benchmark model, and 0.57 (0.45%) for the CAPM.
These results reveal that conventional ETFs also have significant factor expo-
sures, although these factors are different from those of smart beta ETFs.

We find that, although smart beta ETFs, on average, benefit from their
exposure to the BAB factor, they still underperform the market due to their
negative alphas and a small negative contribution from the SMB factor. The
factor exposures of conventional ETFs to non-market factors such as QMJ, CMA
and HMLd, on the other hand, are purely detrimental, reducing the average

& Zhang, 2010) is close to 0.95, and the correlation between the Fama & French (2015) size
factor and the Amihud (2002) illiquidity factor is 0.92. Other related factors such as the
Fama & French (2015) HML (High Minus Low) value factor and the Asness & Frazzini (2013)
HMLd (High Minus Low “Devil”) factor have correlations close to 0.80.



ETF return by -0.17% per month. These results suggest that investors should
be skeptical about the possibility of obtaining factor exposure through smart
beta ETFs.

2. Methodology

Consider N assets and K predictor variables (factors) over T' periods. We
define a linear factor model, i.e. a multivariate linear regression with N equa-
tions:

rZ:X,B7+e1, Z:L,N (1)
where, for each asset i (in this work, an ETF), r; is the T x 1 vector of excess
returns, X is the matrix of factors with dimension T'x K, 8; = (8i1,-.-,Bi.x)

is a vector of unknown regression coefficients (factor sensitivities), and e; is a
T x 1 vector of disturbances®. If the error terms are contemporaneously cross-
correlated, the system of regressions above is a special case of the Seemingly
Unrelated Regressions (SUR) model, where the predictor variables are the same
for all equations®.

The system can be stacked in a single equation r = X,é + e in the following
way:

Ir X 0 0 ﬂl (S5
o 0 X .- 0 ,32 €9
0 R I P T (2)
ry 0 0 X ,BN en
whereé = (e] e ... €y),andE(ee)=Q=XxIr.

In order to carry out factor selection in model 2, we introduce a vector
v = (m,...,7x)" of dummy variables, where if v; = 1, the j — th predictor
is included in the model. We are interested in the posterior distribution of
~, which will indicate which sets of factors have high posterior probability to
explain the returns on the N assets. Let X, represent the matrix X where each
column has been multiplied by the corresponding ;. Then we can write the
model with variable selection as r; = X,8; +e;,7 = 1,..., N, or stacking the
N equations as before,

F=X,8+8,

where X’y is defined analogously as before.

Since the vector of K dummy variables indicates 2% possible models, com-
parison of all possible models becomes computationally infeasible for even mod-
erate numbers of regressors. In this case, Markov Chain Monte Carlo (MCMC)

4To avoid ambiguity, throughout this article we use the subscripts i and j for assets and
predictor variables, respectively.

5The SUR model, introduced by Zellner (1962), consists of N regression equations, each
with T" observations, which are linked solely through the covariance structure of error terms
at each observation, i.e. errors are contemporaneously correlated but not autocorrelated.
Bayesian inference in the SUR model can be carried out in a relatively straightforward manner,
see for example Giles (2003).



methods provide a fast way to obtain consistent estimates of model probabili-
tiesS.

We apply the variable selection methodology for the SUR model introduced
by Hwang & Rubesam (2018), which assumes independence between the factor
sensitivities and the dummy variables v;, providing an efficient way to carry out
factor selection with large panels of data. We review the main aspects in this
section, provide more details in Appendix A, and refer the reader to the original
paper for a detailed derivation of the conditional posterior distributions.

Suppose € ~ N(0,2 ® It). Let B_; denote the full vector B omitting 3;
and assume the following prior distributions for 8;, ¥ and ~:

ﬂi|B—i ~ N(bO,iaBO,i)v 1= 17"'aN
Y o~ IW(V(),@O) (3)
Yoo B(].,?Tj), J:]-avK

where IW (v, ®¢) denotes the inverted-Wishart distribution with vy degrees of
freedom and parameter matrix ®¢, and B(1, ;) denotes the Bernoulli distribu-
tion with probability of success 7;. In the above, each v, is independent of the re-
maining ones, therefore the prior dor «y is given by f(v) = H;il 77;-” (1—mj)t=.

With the priors above and given initial values for the variables, the estima-
tion procedure using the Gibbs sampler is as follows:

1. Generate ﬁi|é,i,7, 3,1t~ N(by;,By;), where

by = (B(;,z1 + UﬂXirX'y)il(BO,ibOJ + UiiXﬁyr;)
B, = (B(;,zl + UiiX;X'Y)_lv

where o is the (i, 1) element of X! and A_; is a T'x (N — 1)T partition
of Q7! with the terms corresponding to the i — th equation removed.

2. Generate E\B, r~ IW(vy, ®1), with vy =19+ T and @1 = ®¢+ S, where
S is the matrix of cross-products of the residuals, that is, if E = [e; ... ep],
then S = E'E.

3. Generate (in random order) «; conditional on the remaining vi, k # j,
from the following conditional distribution:

o -1

P(f}/j = 1|’7—ja/évz’f‘) = (1 + ! ,ﬂ—] eXp(*O'E) Tr(zil(s'lv‘ B Sg/))> ’
(4)

T
where S,ly and Sg represent the matrices of residuals when v; = 1 and
v; = 0, respectively.

SThere is a vast literature focusing on Bayesian variable selection in linear models with a
single response variable, see for example George & McCulloch (1993, 1997); Kuo & Mallick
(1998); O’Hara & Sillanpdd (2009). For the multivariate case, of which the SUR model is a
special case, see Brown et al. (1998), Smith & Kohn (2000), Hall et al. (2002), Wang (2010),
Ando (2011) and Puelz et al. (2017)



2.1. Prior Distributions

The most important prior distribution is the one for ,@ As discussed by
O’Hara & Sillanpaa (2009), the MCMC algorithm might not mix well in the ~
space if the prior for B is too vague. The reason for this is that, when v =0,
Bijs,i = 1,..., N are sampled from the full prior conditional distribution. In
this case, it may be difficult for the model to transition between ; = 0 and
v; = 1, since the generated B;; will be unlikely to be in the region where 0;; has
higher posterior probability.

We propose a few choices for the priors on 8. The first is B8 ~ N (0, cI).
This choice reflects a complete lack of knowledge about the predictors, both
in terms of which predictors should enter the model as well as regarding the
dependence structure of the regression coefficients. A second possibility is to
use an empirical Bayes prior, i.e. center each B; around their OLS or maximum
likelihood estimate: B; ~ N((X'X)™1X'r;, c;02(X'X)~1). Either choice can be
made less informative by increasing c. Note that the first component of each §;
is for the alpha of each regression. The intercept is included as a factor because
there is no guarantee that the factors we test in this study can fully explain
individual ETF returns.

The standard choice for the prior of 3 is to set vy = N and ®3 = I. For the
prior probability of 7; that predictor j is included in the model, we choose an
equal probability of % for all factors. This prior reflects the lack of knowledge
about the inclusion of the predictors, and implies that any model, regardless of
its possible number of combinations, has an equal prior probability of 2%(

3. Data

3.1. ETFs

We obtain all U.S. equity ETFs that are active as of the end of 2017 from
Thomson Reuters. These 799 ETFs have approximately $1.6 trillion of collec-
tive assets under management (AUM). Since we are interested in equity factor
exposure, we remove leveraged and inverse ETFs, as well as ETFs which make

use of derivatives. We further require 60 months of available returns, which
leads to a sample of 368 ETFs with aggregate AUM of $1.54 trillion”.

8.1.1. Classification of ETFs

There is no universally accepted definition of smart beta. In this study,
we employ an automatic procedure to search each ETF’s name and description
for certain keywords. We then manually review the list and the descriptions
of smart beta and conventional ETFs to ensure the classification is consistent,
consulting the fact sheet or other ETF documentation in case of doubt®.

"Most of ETFs that are excluded from our sample are due to their shorter history. If
we were to require a much longer history, the number of smart beta ETFs would decrease
significantly.

8The details from this procedure are available upon request.



Smart beta ETF's in this study are those that have at least one of the fol-
lowing characteristics:

e Attempt to increase returns relative to a market capitalization-weighted
index by providing exposure to one or more factors thought to be sources
of return (e.g. ETF's focused on value, size, quality, or momentum factors);

e Attempt to reduce risk or increase diversification (e.g. low volatility and
minimum variance ETFs);

e Alternative weighting schemes (e.g. ETFs weighted by fundamentals;
equally-weighted ETFs);

e Deviation from market capitalization-weighted schemes in a systematic,
rules-based way (e.g. ETFs based on dividend or shareholder yield screens).

The ETFs that do not have any of the above characteristics are grouped as
“conventional ETFs”. This includes all passive ETFs which track common
indices, as well as sector-specific ETFs, as long as they do not employ any of
the strategies above.

Using the procedure outlined above, we classify 200 ETFs in the smart beta
category, and 168 ETFs in the conventional category. Smart beta ETFs as a
group manage $515 billion in assets, while the combined AUM of conventional
ETFs is over $1 trillion.

3.2. Factors

We use a total of 14 factors in this study. These are the five Fama & French
(2015) factors, as well as the momentum (MOM) factor, from Professor Kenneth
French’s data library’. The five Fama & French (2015) factors are the mar-
ket (MKT), size or Small-Minus-Big (SMB), value or High-Minus-Low (HML),
profitability or Robust-Minus-Weak (RMW), and Investment or Conservative-
Minus-Aggressive (CMA). We also include the Quality-Minus-Junk (QMJ) fac-
tor of Asness et al. (2017), the Betting-Against-Beta (BAB) factor of Frazzini
& Pedersen (2014), and the alternative value factor HML “devil” (HMLd) of
Asness & Frazzini (2013), which we download from the AQR data library!°.
Finally, we add five self-constructed factors related to illiquidity (ILL, Amihud,
2002), volatility (VOL, Ang et al. , 2006), and investment (INV) and profitabil-
ity based on return on assets (ROA, Chen & Zhang, 2010) and return on equity
(ROE, Hou et al. , 2015).

The self-constructed factors are based on all available U.S. common stocks
from the CRSP and Compustat databases, excluding micro-cap stocks, defined
as those with market capitalization lower than the 20% percentile of all NYSE
stocks. The factors are constructed as hedge portfolio returns based on double

9http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
Ohttps://www.aqr.com/Insights/Datasets



sorts and using value-weighted returns. The illiquidity factor based on a two-
by-three sort on volatility and illiquidity as in Amihud et al. (2015) because
of the high correlationship between illiquidity and volatility. For each month,
we calculate the median return volatility using the NYSE breakpoint, and use
it to assign all stocks into low or high volatility groups. We then calculate the
Amibud (2002) illiquidity measure for all stocks, and use the NYSE low 30%,
middle 40% and high 30% breakpoints to assign stocks into three illiquidity
groups. The illiquidity factor is calculated as the difference between the average
return on the two high illiquidity portfolios and the average return on the two low
illiquidity portfolios. The volatility, investment, and profitability factors based
on ROE and ROA are constructed using double sorts on size (two portfolios)
and the variables in question (three portfolios). Stocks are first sorted into small
and large groups based on the median NYSE market capitalization, and then
three groups (low, medium and high) are created based on the second variable.
The volatility factor is the difference between the average return on the two low
volatility portfolios and the average return on the two high volatility portfolios.
The investment factor is constructed following Chen & Zhang (2010), i.e. it is
the difference between the average return on the two low investment portfolios
and the average return on the two high investment portfolios. Finally, the ROA
(ROE) profitability factors are the differences between the average return on the
two high ROA (ROE) portfolios and the average return on the two low ROA
(ROE) portfolios.

Table 1 reports descriptive statistics on the 14 factors for the period from
January 2013 to December 2017. The average returns on most long-short factors
are relatively small during this period, with the exception of the QMJ (0.95%
per month) and BAB (1.25% per month) factors. In fact, from the factors in the
Fama & French (2015) model, the size (SMB), value (HML), and investment
(CMA) factors all present negative returns. Interestingly, the average return
on the Chen & Zhang (2010) investment factor is positive at 0.30% per month,
which could reflect differences in the definition of investment, and highlights the
importance of considering alternative factors when studying the factor exposure
which may differ significantly in terms of implementation'’. The only factors
with t-statistics above 2 are MKT (t-stat=3.44) and BAB (t-stat=4.94).

Many of these factors are highly correlated. The most extreme correlations
are between ROE and ROA (0.95), SMB and ILL (0.92), VOL and ROA (0.86),
QMJ and ROA (0.84), and VOL and ROE (0.82). As mentioned, this is not
an issue for our variable selection methodology, but multicollinearity may be
problematic in the conventional regression when all these factors are included
as explanatory variables. Therefore, using all 14 factors as the benchmark, we
calculate variance inflation factors (VIFs) and remove the factors with the high-

HTFama & French (2015) define investment as “the change in total assets from the fiscal year
ending in year t-2 to the fiscal year ending in t-1, divided by t-2 total assets”, while Chen &
Zhang (2010) definition is “annual change in gross property, plant, and equipment plus annual
change in inventories divided by lagged book assets ”.



est VIFs one at a time, recalculating the VIFs each time. Using this approach,
we remove the following factors: ROA, ROE, ILL, INV and HMLd. The result-
ing model has 9 factors, the highest VIF (corresponding to VOL) is 7.01 and
the highest correlation is 0.81, between VOL and QMJ.

[Table 1 about here.]

4. Empirical Results

4.1. Exploratory Analysis of ETF Factor Exposure

We start by conducting an exploratory analysis of ETFs using OLS regres-
sion for individual ETFs. Table 2 reports statistics for three groups of ETFs:
all ETFs (Panel A), smart beta ETFs (Panel B) and conventional ETFs (Panel
C). We report the average sensitivity to each factor, as well as the corresponding
t-statistic, the 5% and 95% percentiles of factor sensitivities, the percentage of
ETFs for which the factor is significant, either with a positive or negative sign
at the 95% confidence level, the average R? when only the market factor is con-
sidered and with the benchmark model'?. Additionally, we report the number
of ETFs and total AUM for each group of ETFs.

Panel A of the table shows that the aggregate factor sensitivities are close to
zero for most factors and are not significant except for the excess market return
and QMJ, as evidenced by their t-statistics. This is not surprising, as there
are many ETFs with conflicting factor sensitivities (i.e., positive and negative
coefficients). For individual ETFs, however, many factors are still significant.
For example, the SMB factor is significantly positive (negative) for 30% (19%)
of the ETFs. It is also evident that factor exposure is skewed; the aggregate
exposure to most factors is not different from zero, although the 5% and 95%
percentiles do not appear equidistant from their means. The average R? using
the full model is 0.80, compared to 0.64 using only the market factor.

Panels B and C reveal similarities as well as differences in the factor sensitiv-
ities of smart beta and conventional ETF's. In aggregate, smart beta ETFs are
tilted towards smaller firms, as evidenced by the average significant exposure
to the SMB factor (average sensitivity=0.26, t-stat=11.07), while conventional
ETFs have an insignificant exposure to SMB on average. Another difference is
the exposure to the BAB and VOL factors, which shows positive (and signifi-
cant) aggregate sensitivity for smart beta ETFs but are insignificant for conven-
tional ETFs. Since the BAB and VOL factors take long positions in low (short
positions in high) beta an volatility stocks, respectively, this suggests that, in
aggregate, smart beta ETF's are tilted towards low volatility and low beta stocks.
Exposure to other factors is similar in aggregate (except for the HML factor,
which is positive for smart beta ETFs and negative for conventional ETFS),
although the percentage of significantly positive or negative factor sensitivities
seems to be higher for smart beta ETFs. Interestingly, a higher proportion of

12 A1l R? values used in this study are adjusted R2.



the variance of the returns on smart beta ETFs is explained by the market
factor (0.74 compared to 0.56 for conventional ETFs). Also, the increase in R?
from adding the additional eight factors is more pronounced for conventional
ETFs (from 0.56 to 0.73, increase of 30%) compared to smart beta ETFs (0.74
to 0.89, increase of 21%).

Summarizing, smart beta ETFs track the market portfolio more than con-
ventional ETFs, but appear to have larger percentages of significantly positive
or negative factor sensitivities, and are, in aggregate, tilted towards small, low
beta and low volatility stocks. Therefore, the trading strategies of smart beta
ETFs would satisfy investors who pursue the overall market performance but
at the same time seek for higher returns or lower risk by attempting to exploit
various trading strategies, in particular, the size and low volatility /beta effects.

[Table 2 about here.]

The range of factor sensitivities as well as the differences in factor sensitiv-
ities between the two groups of ETFs are visualized in Figure 1, which plots
nonparametric kernel density estimates of the factor sensitivities of ETFs in each
group. The estimated densities of smart beta ETFs are shown in blue, while
those of conventional ETFs are shown in red. In general, despite the fact that
both groups of ETFs have similar mean factor sensitivities for many factors,
conventional ETFs have a much wider range of factor sensitivities compared
to smart beta ETFs, which is apparent from the longer tails of the estimated
densities. The wider range of factor sensitivity in the conventional ETFs may
reflect other factors such as sector returns which we have not considered in this
study. These results suggest that we need other factors to explain the group of
conventional ETFs compared to smart beta ETFs. Interestingly, some of the
densities are multimodal. For example, the distribution of the sensitivity of
smart beta ETFs to the SMB factor has a prominent mode close to 0, and a
second mode close to 1, reflecting the fact that many smart beta ETFs focus on
small caps.

[Figure 1 about here.]

4.2. Bayesian Factor Selection

The main results of applying our Bayesian factor selection method to the
groups of conventional and smart beta ETFs are obtained using an empirical
Bayes prior for the factor sensitivities, i.e. we center each (3; around their
OLS estimate by setting 3; ~ N((X'X)™!X'r;, co?(X'X)71), with ¢ = 1. We
consider an equal prior probability for each factor: m; = 7 = 0.5. The results
are based on 50,000 iterations of the MCMC algorithm. In section 4.3 we test
the robustness of our results regarding the choice of the prior.

We focus on the posterior distribution of -+, which reveals which factors
matter for each group of ETFs. Table 3 reports the results for the two groups
of ETFs. The marginal posterior factor probabilities are reported in Panel A
of the table. For smart beta ETFs, there is strong evidence that the market

10



factor (MKT) and the size factor (SMB) are included in the model, as the
posterior probability of these factors is equal to 1. There is weaker evidence
for the inclusion of the betting-against-beta (BAB) factor, with a marginal
posterior probability of 0.30. All other factors have negligible marginal posterior
probabilities. For conventional ETF's, different factors appear to be significant.
The market (MKT), quality-minus-junk (QMJ) and the alternative value factor
HMLd have marginal posterior probabilities equal to 1, while the Fama & French
(2015) investment factor CMA has a lower marginal posterior of 0.30. Note that
in all cases, the intercept is not selected. This means that the few selected factors
from the set of 14 factors are enough to explain the returns of ETF's, and that
other factors are not required.

[Table 3 about here.]

Panel B reports the highest posterior probability models for each group
of ETFs. With 14 factors plus the intercept, there are 2! = 32768 possible
models. Nevertheless, the results reveal that only a handful of models have
high posterior probabilities. The highest posterior probability model for the
group smart beta ETFs includes the market (MKT) and size (SMB) factors
(posterior probability = 0.67). The second best model (posterior probability
= 0.29) also adds the BAB factor. The other models have very low posterior
probabilities. For conventional ETFs, there is even less model uncertainty, as
only two models have relevant posterior probabilities. The best model (posterior
probability = 0.70) includes the market factor (MKT), the quality-minus-junk
(QMJ) and the HMLd factors. The second best model (posterior probability
= 0.30) adds the CMA factor. Interestingly, the factors selected for the group
of conventional ETF's includes many of the factors typically targeted by smart
beta ETFs.

The results obtained with smart beta ETFs are somewhat surprising, con-
sidering many of these products explicitly attempt to capture premiums related
to other factors such as value, momentum and volatility. In order to better
understand these results, and assess to what degree smart beta ETFs capture
any factor premiums, we estimate (using OLS) the three-factor model suggested
by our Bayesian procedure for this group of ETFs, which includes the MKT,
SMB and BAB factors. The results are reported on Panel A of Table 4.

As expected, we find that the SMB and BAB factors tend to be significant for
many smart beta ETF's, as evidenced by the high t-statistics and the percentage
of significant factor sensitivities. On average, although smart beta ETFs benefit
from their positive exposure to the BAB factor, which in our sample generated
a monthly premium of 1.25%, this is completely offset by their negative average
alpha and their positive average exposure to SMB, which in our sample produced
a small negative return of -0.04% per month. The average excess return of smart
beta ETFs is 1.20% per month, of which 1.21% per month on average is due
to their market exposure, with their non-market factor exposure generating a
small average loss of -0.01% per month. Thus, although as a group smart beta
ETFs appear to benefit from the BAB factor, this is offset by their negative
alphas.
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The three-factor model for smart beta ETFs obtained using the Bayesian
approach performs very similarly to the benchmark nine-factor model in terms
of average absolute alpha and R2. The average absolute alpha from the three-
factor model for the group of smart beta ETFs is 0.16% per month, and the
average R? is 0.84. For the full nine-factor benchmark model, the numbers
are 0.14% and 0.90. Therefore, it is unlikely that these smart beta ETFs are
exploiting other factors; if they were, adding these factors to the model would
significantly reduce alphas. This result severely questions the ability of smart
beta ETFs to capture factor premiums, which may be related to their long-only
restriction, or to other differences related to how factors are constructed in the
asset pricing literature.

We repeat this exercise for conventional ETFs, estimating a four-factor
model with the MKT, CMA, QMJ, and HMLd factors identified by our Bayesian
procedure. The results are shown in Panel B of Table 4. We find that, on av-
erage, the only factor other than the market return which has a significant sen-
sitivity is the QMJ factor, although CMA and HMLd are significant for many
ETFs. Contrary to the group of smart beta ETFs, the non-market factor expo-
sure of conventional ETF's in this sample period is purely detrimental, reducing
the average ETF return by -0.17% per month. These ETFs had average positive
exposures to CMA and HMLd, both of which had negative returns during the
period, and average negative exposure to QMJ, which had a high positive return
of 0.95%.

The average absolute alpha and average R? for the model identified with the
Bayesian method for conventional ETFs are 0.31% and 0.66, respectively, while
for the benchmark model the numbers are 0.39% and 0.73, respectively. Again,
we find that the Bayesian method finds a parsimonious model which performs
quite well compared to the benchmark model.

[Table 4 about here.]

4.3. Robustness Analysis

Our main results were obtained using an empirical Bayes prior, centering
each 3; around their OLS estimate by setting 3; ~ N((X'X) " 1X'r;, co?(X'X) 1),
with ¢ = 1. In this subsection we analyze the robustness of our results relative
to these choices, by varying both the type of prior and the value of ¢. Con-
cerning the prior for the 3;, we obtain results with a different prior by setting
B~ N (0, cI). This choice reflects a complete lack of knowledge about the pre-
dictors. We also vary the value of ¢ and obtain results using ¢ = 1,2,5. A larger
c reflects a less informative prior regarding the range of possible values for the
regression coeflicients (i.e. factor sensitivities).

The results for B; ~ N((X'X)"'X'r;,co?(X'X)~!) using the empirical
Bayes prior with ¢ = 2 are reported on Table B.5, and are essentially simi-
lar to our main results with ¢ = 1. The best models remain the same for both
smart beta as well as conventional ETFs. This is also the case with ¢ = 5, and
we omit the results.
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Table B.6 reports results using the prior centered on a vector of zeros with
c=1 (,@ ~ N(0,cI)). The only difference compared to our previous results is
that the QMJ factor is not selected in the best model for conventional ETFs,
although both the QMJ and CMA factors are present in the second and third
best models, as before. The results with ¢ = 2 are not significantly different. The
results with ¢ = 5 (omitted) show that the best model for both smart beta ETFs
(posterior probability=0.90) as well as conventional ETFs (posterior probability
= 0.80) is the model with only the MKT factor. Thus, when coefficient priors are
centered on zero and the prior variance is large, the model selection procedure
can only find posterior evidence for the market beta. This did not occur when
used the empirical prior, as the point of departure is in the neighborhood where
factor sensitivities are different from zero.

Overall, we interpret that our results are robust to the prior specification for
the regression coefficients, except in cases when the prior variance is too large
and the prior is centered on zeros.

5. Conclusion

Smart beta ETFs have grown enormously over the last years. These prod-
ucts promise to increase returns or lower risk relative to market capitalization-
weighted indices by attempting to capture premiums on well-known factors such
as size, value, quality, momentum and volatility.

In this paper, we employ a Bayesian variable selection methodology to inves-
tigate the factor exposure of smart beta and conventional ETFs, using a large
group of factors covering all the most commonly used factors. Our methodology
allows us to select which factors matter to explain each category of ETF's, using
all individual ETFs in each category simultaneously. Our results reveal that
the market and the Fama & French (2015) size (SMB) factors are relevant to
explain the returns of smart beta ETF's, with weaker evidence for the inclusion
of the Frazzini & Pedersen (2014) betting-against-beta (BAB) factor. For con-
ventional ETFs, the best model includes the quality-minus-junk (QMJ) factor
of Asness et al. (2017) and the alternative value factor (HML “devil”) of Asness
& Frazzini (2013), with weaker evidence for the inclusion of the Fama & French
(2015) investment (CMA) factor.

Although on average smart beta ETFs benefit from their exposure to the
BAB factor, they still underperform the market due to their negative alphas
and a small negative contribution from the SMB factor. The factor exposures
of conventional ETFs to non-market factors such as QMJ, CMA and HMLd,
on the other hand, are purely detrimental, reducing the average ETF return by
-0.17% per month.

The best models selected by the Bayesian method perform very similarly to
a benchmark model including nine factors in terms of their ability to explain the
average returns and the return variation on each set of ETFs, as measured by the
average absolute alpha and the average R2. Therefore, it is unlikely that smart
beta ETFs are exploiting other factors. Overall, our results suggest investors
should be skeptical about the ability of smart beta ETFs to capture factor
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premiums. This may be related to their long-only restriction, as mentioned by
Blitz (2016), or to differences in how ETFs implement factor exposure compared
to asset pricing studies.
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Figure 1: Kernel density estimation of ETF factor sensitivities

The figure plots the sensitivities of smart beta and conventional ETFs to a set of seven factors.
Our sample includes all U.S. equity ETFs which were active as of December 2017, and which
had return data for the period from January 2013 to December 2017. We classify ETFs into
the smart beta or conventional category according to their characteristics. We regress ETF
returns on the returns of seven tradable factors and an intercept term. The factors include the
five Fama & French (2015) factors: the market (MKT), size or Small-Minus-Big (SMB), value
or High-Minus-Low (HML), profitability or Robust-Minus-Weak (RMW), and Investment or
Conservative-Minus-Aggressive (CMA); the momentum (MOM) factor and a low volatility
(VOL) factor. The first six factors are obtained from Professor Kenneth French’s data
library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html),
while the volatility factor is self-constructed using a two-by-three sort on size and volatil-
ity using all CRSP stocks.

‘SmartBeta ETFs
——— Conventions ETFs
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Table 2: Ordinary Least Square Analysis of ETFs, Jan/2013-Dec/2017

The table reports results from regressing ETF returns on the returns of nine tradable factors
and an intercept term. Our sample includes all U.S. equity ETFs which were active as of
December 2017 and which had return data for the period from January 2013 to December
2017. We classify ETFs into the smart beta or conventional category according to their
characteristics. The set of factors include the five Fama & French (2015) factors 7.e. the market
(MKT), size (SMB), value (HML), profitability (RMW), and investment (CMA) factors, the
momentum (MOM) factor, the Quality-Minus-Junk (QM.J) factor of Asness et al. (2017), the
Betting-Against-Beta (BAB) factor of Frazzini & Pedersen (2014), and the volatility (VOL)
factor. The Fama & French (2015) factors and the momentum factors are obtained from
Professor Kenneth French’s data library (http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/data_library.html). The QMJ and BAB factors are obtained from the AQR
data library (https://www.aqr.com/Insights/Datasets). The VOL factor is self-constructed
using a two-by-three sort on size and volatility, using all available CRSP non-micro cap stocks,
i.e. stocks with a market capitalization larger than the 20-th percentile of NYSE stocks. The
VOL factor is calculated as the difference between the average value-weighted return on the
two low volatility portfolios, and the average value-weighted return on the two high volatility
portfolios.

Panel A: All ETFs Intercept MKT SMB HML RMW CMA MOM QMJ BAB VOL
Average sensitivity -0.03% 1.00 0.13  -0.02 0.07 0.07 -0.03 -0.11 0.04 0.03
t-statistic -0.52 27.33 456 -0.88 1.76 1.49 -1.36 -5.19 0.84 0.83
Percentile 5% -0.53% 0.01 -0.55 -0.59 -0.56 -0.62 -0.35 -0.58 -1.30 -0.55
Percentile 95% 0.59% 1.94 090 0.75 0.65 0.73 025 0.18 1.28 0.39
% significantly positive 2% 8%  30%  21% 12% 17% 8% 5%  24% 5%
% significantly negative 6% 0% 19%  23% 8% 13% % 20%  15% 5%
Average R? (MKT) 0.64
Average R? (Benchmark) 0.80
# ETFs 368
AUM (USS$ Billions) 1542

Panel B: Smart Beta ETFs Intercept  MKT SMB HML RMW CMA MOM QMJ BAB VOL

Average sensitivity -0.06% 0.96 0.26  0.03 0.06 0.07 0.00 -0.06 0.09 0.06
t-statistic -1.34 32.86 11.07 1.42 1.78 1.83 -0.22  -3.64 2.05 2.09
Percentile 5% -0.36% 042 -0.27 -0.32 -0.26 -0.32 -0.22 -0.28 -0.69 -0.13
Percentile 95% 0.23% 1.55 1.01 0.49 0.35 0.50 0.27 0.13  0.72  0.25
% significantly positive 0% 9%  42%  30% 14% 28% 15% 4%  23%  10%
% significantly negative % 0% 21%  21% % 12% 1% 22%  10% 1%
Average R? (MKT) 0.74
Average R? (Benchmark) 0.90
4 ETFs 168
AUM (USS$ Billions) 515

Panel C: Conventional ETFs Intercept MKT SMB HML RMW CMA MOM QMJ BAB VOL

Average sensitivity 0.00% 1.03 0.03  -0.07 0.08 0.07 -0.06 -0.15 0.01 0.00
t-statistic -0.04 2134 0.72  -1.94 1.55 1.14 -1.78 -538 0.12  0.09
Percentile 5% -0.60% -0.10 -0.60 -0.70 -0.70 -0.77 -0.44 -0.71 -1.64 -0.92
Percentile 95% 0.90% 213 070 1.01 0.79 0.96 022 022 143 049
% significantly positive 3% % 20%  14% 11% 9% 2% 6%  26% 2%
% significantly negative 6% 0% 18%  18% 6% 10% 10%  19% 8% 1%
Average R? (MKT) 0.56
Average R? (Benchmark) 0.73
# ETFs 200
AUM (USS$ Billions) 1027
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Table 4: Ordinary Least Square Analysis of High Posterior Probability Models, Jan/2013-
Dec/2017

The table reports results from regressing the returns of ETFs on the best models selected
using a Bayesian variable selection methodology. Our sample includes all U.S. equity ETF's
which were active as of December 2017 and which had return data for the period from Jan-
uary 2013 to December 2017. We classify ETFs into the smart beta or conventional cate-
gory according to their characteristics. For the set of smart beta ETFSs, the factors include
the market excess return (MKT), the Fama & French (2015) size factor (SMB), and the
Betting-Against-Beta (BAB) factor of Frazzini & Pedersen (2014). For conventional ETFs,
the factors used are MKT, the Fama & French (2015) investment (CMA) factor, the Quality-
Minus-Junk (QMJ) factor of Asness et al. (2017), and the HML “devil” (HMLd) factor of
Asness & Frazzini (2013). The Fama & French (2015) factors factors are obtained from Pro-
fessor Kenneth French’s data library (http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html). The QMJ, BAB and HMLd factors are obtained from the AQR
data library (https://www.aqr.com/Insights/Datasets).

Panel A: Smart Beta ETFs Intercept MKT SMB BAB
Average sensitivity -0.08% 0.95 0.29  0.07
t-statistic -1.48 42.28 14.33 2.11
Percentile 5% -0.43% 044 -0.28 -0.40
Percentile 95% 0.21% 1.33 1.08 0.76

% significantly positive 0% 98%  53%  30%

% significantly negative 4% 0% 20% 9%

Average excess return 1.20%

Average return due to market factor 1.21%

Average return not due to market factor -0.01%

Average absolute alpha (Bayesian model) 0.16%

Average absolute alpha (Benchmark model) 0.14%

Average R? (Bayesian model) 0.84

Average R? (Benchmark model) 0.90

Panel B: Conventional ETFs Intercept MKT CMA QMJ HMLd
Average sensitivity -0.03% 1.04 0.02 -0.13 0.04
t-statistic -0.39 4741 042 -8.55 1.41
Percentile 5% -0.77% 0.46 -0.99 -0.58 -0.70
Percentile 95% 0.73% 2.06 0.74 0.22 1.47
% significantly positive 2% 9%6% 11%  16% 19%
% significantly negative 3% 0% 9% 36%  23%
Average excess return 1.15%

Average return due to market factor 1.32%

Average return not due to market factor -0.17%

Average absolute alpha (Bayesian model) 0.31%

Average absolute alpha (Benchmark model) 0.39%

Average R? (Bayesian model) 0.66

Average R? (Benchmark model) 0.73
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Appendix A. Bayesian Variable Selection in the SUR Model

We start by reviewing the estimation of the SUR model (without variable
selection) using the Gibbs sampler. Suppose &€ ~ N (0, X®It) and the following
prior distributions for 8 and X:

B ~ N(bg,By) (A1)
X o~ IW(V(), @0)7
where ITW (v, ®¢) denotes the inverted-Wishart distribution with 1y degrees of

freedom and parameter matrix ®,. With these choices, it can be shown that
B2, r ~ N(by,B1) and 3|83, r ~ IW (v1, ®1), where

by = (Byl+X'Q 'X){(Boby + X'Q'§) (A.2)
B, = (Bj'+XQ'X)"!
vy = V()—f—T'7 @1:¢0+S

In the above, S is the matrix of cross-products of the residuals, that is, if
E = [e;...ey|, then S = E'E. We also note that 271 = X! @ Ix. The
approach above may be computationally prohibitive if the number of assets (V)
is large, since it requires multiplication and inversion of large matrices. For
example, X has dimension NT x NK and Q! has dimension NT x NT. A
more efficient approach in this case is to sample each 3; conditionally on the
remaining B;,j # ¢ and X. Let B_i denote the full vector B omitting 3; and
assume that 8;|8_;, % ~ N(bgi, Bo,). Then, B;|B_;, =, r ~ N(by;, B ), with

bii = (By,+0"X'X)"(Bobg,; + 0" X'r}) (A.3)
B; = (By;+0"X'X)"",

where % denotes the (i, 1) element of ¥~! and r} is suitably defined based on a
partition of the systems of equations (see Hwang & Rubesam (2018), Appendix
A.2). Note that the expressions above depend only on the smaller matrices X
and 3. In the Gibbs sampler, each 3; can be generated in random order.

The SUR model with variable selection can be written in the following way.
Let X represent the matrix X where each column has been multiplied by
the corresponding 7;. Then we can write the model with variable selection as
ri =X,8; +e;,i=1,..., N, or stacking the N equations as before,

F=X,8+8,

where X.y is defined analogously as before.

To derive the conditional distributions required for the Gibbs sampler, we
need to specify the prior distribution for v. We set independent priors as y; ~
B(1,7;),j =1,..., K, where B represents the Bernoulli distribution. Therefore,

the prior distribution of ~ is f(y) = [T 7r;-” (1—mj)t=.

j=1
Conditional on a known value of -, the model reduces to a SUR with
the corresponding predictors for which v; = 1. Therefore, using the same
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prior distributions for 3 and ¥ as before, the conditional distributions for 3
and X are those given in equation (A.2), with X replaced by X.y. We can
also use the sequential approach, sampling each 3;,i = 1,..., N in turn from
ﬁi|/6—i773 2, I~ N(bl,i; B17i)’ where

bii = (Bg; +0"X,X,) " (Bobo; + 0" X, r})
B, = (By,;+0"X/X,)""

To generate =y, we sample each v; conditional on the remaining v, k # j.
Let «v_; denote the vector «, with the j — th entry removed. The relevant
conditional posterior probability of v; = 1 for the SUR model is given by

-1
P(wzl'rj,ﬁ,&f):(H il exp<—0.5Tr<21<S$—S%>)) , (A4)

Ty

where Sly and S,Oy represent the matrices of residuals when v; = 1 and ; = 0,
respectively. Each v; can be generated, preferably in random order, using the
expression above.

Appendix B. Results from Robustness Tests
[Table 5 about here.]

[Table 6 about here.]
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