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The output-oriented plant capacity notion has been around since more than two decades. It has mainly been

applied empirically in the fishery and the hospital sectors. A problem known since its introduction into the

literature is that it may not be attainable, in that it presupposes potentially unlimited amounts of variable

inputs to determine the maximum of outputs available. This issue of the lack of attainability has never been

explored. This paper fills this void both theoretically and empirically. It finds that the attainability may be

problematic, and that bounds on the amounts of variable inputs may well need to be imposed.
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1. Introduction

In the economic literature a variety of capacity notions have been developed (see e.g. Johansen

(1968) or Nelson (1989)). One useful taxonomy distinguishes between technical or engineering

notions on the one hand and economic capacity concepts on the other hand, whereby the latter are

mainly based or derived from some cost function. This paper focuses on the plant capacity notion

that is part of the family of technical or engineering notions.
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Johansen (1968, p. 362) defined the notion of plant capacity informally as “... the maximum

amount that can be produced per unit of time with existing plant and equipment, provided that the

availability of variable factors of production is not restricted.” Färe et al. (1989a) and Färe et al.

(1989b) translated this plant capacity notion into a single, respectively, multiple output nonpara-

metric frontier framework in which plant capacity as well as a measure of capacity utilization can

be determined from information on observed inputs and outputs using a pair of output-oriented

e�ciency measures.

For over two decades, empirical applications have occurred using this output-oriented plant

capacity in mainly fisheries (e.g., Felthoven (2002), Pascoe et al. (2013), Tingley and Pascoe (2005)

or Walden and Tomberlin (2010)) and hospital industries (e.g., Karagiannis (2015), Kerr et al.

(1999), Valdmanis et al. (2010) or Valdmanis et al. (2015)). One study focuses on banking (e.g.,

Sahoo and Tone (2009)), and we are aware of one article describing a macro-economic applica-

tion on trade barriers (e.g., Badau (2015)). But, no major methodological innovation has occurred

related to this plant capacity concept. However, recently Cesaroni et al. (2017a) use the same non-

parametric frontier framework to define a new input-oriented measure of plant capacity utilization

based on a couple of input-oriented e�ciency measures.

Already Johansen (1968, p. 362) pointed out that the plant capacity concept need not necessarily

be attainable, in that the amounts of variable inputs needed to determine the maximum potential

outputs may well be unavailable at either the firm level or the sector level. To the best of our

knowledge, the literature has completely ignored this issue of attainability. This paper sets as a

major goal to explore this attainability problem. At the theoretical level, we will argue that there

is indeed such an issue for the output-oriented plant capacity notion, but we will also show that

the new input-oriented plant capacity concept does not su↵er from this problem. At the empirical

level, we illustrate the extent to which the amounts of variable inputs needed to determine the

plant capacity output are plausible or not using a secondary data set.

It is becoming known that the axiom of convexity has a potentially large impact on the empirical

analysis based on technologies (for example, Tone and Sahoo (2003)). For instance, in the context
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of plant capacity utilization, Walden and Tomberlin (2010) empirically illustrate the e↵ect of

convexity on the output-oriented plant capacity notion. In a similar way, Cesaroni et al. (2017a)

reveal the influence of convexity on the input-oriented plant capacity concept. Therefore, we also

analyze the issue of attainability in terms of the potential e↵ect of the convexity axiom.

The structure of this contribution is as follows. Section 2 provides the basic definitions of tech-

nology and e�ciency measures representing these technologies. The next Section 3 starts out by

defining both the traditional output-oriented and the new input-oriented plant capacity notions.

Thereafter, we argue and illustrate that the output-oriented plant capacity notion may well fail

attainability, while there is no such an issue for the input-oriented plant capacity concept. We

end this section by defining an attainable output-oriented plant capacity notion that incorporates

either firm or industry constraints on the availability of variable inputs. Section 4 describes the

secondary data set selected for the empirical illustration and summarizes the empirical results in

great detail. A final Section 5 ends with some concluding remarks.

2. Technology: Basic Definitions

This section introduces some basic notation and defines the technology. Given an N -dimensional

input vector x 2 RN
+

and an M -dimensional output vector y 2 RM
+
, the production possibility set

or technology T is defined as follows: T = {(x, y)|x can produce y}. Associated with T , the input

set denotes all input vectors x capable of producing a given output vector y: L(y) = {x|(x, y)2 T}.

Analogously, the output set associated with T denotes all output vectors y that can be produced

from a given input vector x: P (x) = {y|(x, y)2 T}.

Throughout this contribution, technology T satisfies some combination of the following standard

assumptions:

(T.1) Possibility of inaction and no free lunch, i.e., (0,0)2 T and if (0, y)2 T , then y= 0.

(T.2) T is a closed subset of RN
+
⇥RM

+
.

(T.3) Strong input and output disposal, i.e., if (x, y) 2 T and (x0, y0) 2 RN
+
⇥RM

+
, then (x0,�y0) �

(x,�y)) (x0, y0)2 T .
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(T.4) T is convex.

Briefly discussing these traditional axioms on technology, it is useful to recall the following (see,

e.g., Hackman (2008) for details). Inaction is feasible, and there is no free lunch. Technology is

closed. We assume free disposal of inputs and outputs in that inputs can be wasted and outputs

can be discarded. Finally, technology is convex. In our empirical analysis not all these axioms are

simultaneously maintained.1. In particular, key assumption distinguishing some of the technologies

in the empirical analysis is convexity versus nonconvexity.

The radial input e�ciency measure characterizes the input set L(y) completely and can be

defined as follows:

DFi(x, y) =min{� | �� 0,�x2L(y)}. (1)

This radial input e�ciency measure has the main property that it is smaller than or equal to unity

(DFi(x, y) 1), with e�cient production on the boundary (isoquant) of L(y) represented by unity,

and that it has a cost interpretation (see, e.g., Hackman (2008)).

The radial output e�ciency measure o↵ers a complete characterization of the output set P (x)

and can be defined as:

DFo(x, y) =max{✓ | ✓� 0,✓y 2 P (x)}. (2)

Its main properties are that it is larger than or equal to unity (DFo(x, y) � 1), with e�cient

production on the boundary (isoquant) of the output set P (x) represented by unity, and that this

radial output e�ciency measure has a revenue interpretation (e.g., Hackman (2008)).

In the short run, we can partition the input vector into a fixed and variable part. In particular,

we denote (x= (xf , xv)) with xf 2RNf
+ and xv 2RNv

+ such that N =Nf +Nv.

Similarly, a short-run technology T f = {(xf , y) 2 RNf
+ ⇥RM

+
| xf can produce y} and the corre-

sponding input set Lf (y) = {xf 2RNf
+ | (xf , y)2 T f} and output set P f (xf ) = {y | (xf , y)2 T f} can

be defined. Note that technology T f is in fact obtained by a projection of technology T 2 RN+M
+

into the subspace RNf+M
+ (i.e., by setting all variable inputs equal to zero). By analogy, the same

applies to the input set Lf (y) and the output set P f (xf ).
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Denoting the radial output e�ciency measure of the output set P f (xf ) by DF f
o (x

f , y), this

output-oriented e�ciency measure can be defined as follows:

DF f
o (x

f , y) =max{✓ | ✓� 0,✓y 2 P f (xf )}. (3)

The sub-vector input e�ciency measure reducing only the variable inputs is defined as follows:

DF SR
i (xf , xv, y) =min{� | �� 0, (xf ,�xv)2L(y)}. (4)

Next, we need the following particular definition of technology: L(0) = {x | (x,0) 2 T} is the

input set with zero output level. The sub-vector input e�ciency measure reducing variable inputs

evaluated relative to this input set with a zero output level is as follows:

DF SR
i (xf , xv,0) =min{� | �� 0, (xf ,�xv)2L(0)}. (5)

Given data on K observations (k = 1, . . . ,K) consisting of a vector of inputs and outputs

(xk, yk) 2 RN
+
⇥ RM

+
, a unified algebraic representation of convex and nonconvex nonparametric

frontier technologies under the flexible or variable returns to scale assumption is possible as follows:

T⇤ =

(
(x, y) | x�

KX

k=1

zkxk, y
KX

k=1

zkyk, z 2⇤

)
, (6)

where

(i) ⇤⌘⇤C =

(
z |

KX

k=1

zk = 1 and zk � 0

)
; (ii) ⇤⌘⇤NC =

(
z |

KX

k=1

zk = 1 and zk 2 {0,1}
)
.

The activity vector z of real numbers summing to unity represents the convexity axiom. This same

sum constraint with each vector element being a binary integer is representing nonconvexity. The

convex technology satisfies axioms (T.1) (except inaction) to (T.4), while the nonconvex technology

adheres to axioms (T.1) to (T.3). It is now useful to condition the above notation of the e�ciency

measures relative to these nonparametric frontier technologies by distinguishing between convexity

(convention C) and nonconvexity (convention NC).

Commonly, it is assumed that the input and output data satisfy a series of conditions (Färe

et al. (1994, p. 44-45)): (i) each producer employs nonnegative amounts of each input to produce
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nonnegative amounts of each output; (ii) there is an aggregate production of positive amounts of

every output as well as an aggregate utilization of positive amounts of every input; and (iii) each

producer employs a positive amount of at least one input to produce a positive amount of at least

one output.

3. Plant Capacity Concepts

3.1. Plant Capacity: Basic Definitions

Recall the informal definition of plant capacity by Johansen (1968, p. 362) as “the maximum

amount that can be produced per unit of time with existing plant and equipment, provided that

the availability of variable factors of production is not restricted.” This clearly output-oriented

plant capacity notion has been admirably made operational by Färe et al. (1989a) and Färe et al.

(1989b) using a pair of output-oriented e�ciency measures. We now recall the definition of this

output-oriented plant capacity utilization (PCU).

Definition 1. The output-oriented plant capacity utilization (PCUo) is defined as:

PCUo(x,x
f , y) =

DFo(x, y)

DF f
o (xf , y)

,

where DFo(x, y) and DF f
o (x

f , y) are output e�ciency measures including, respectively excluding,

the variable inputs as defined before in (2) and (3). Since 1DFo(x, y)DF f
o (x

f , y), notice that

0<PCUo(x,xf , y) 1. Thus, output-oriented plant capacity utilization has an upper limit of unity.

Following the terminology introduced by Färe et al. (1989a), Färe et al. (1989b) and Färe et al.

(1994), one can distinguish between a so-called biased plant capacity measure DF f
o (x

f , y) and an

unbiased plant capacity measure PCUo(x,xf , y). Taking the ratio of e�ciency measures eliminates

any existing ine�ciency and yields in this sense a cleaned concept of output-oriented plant capacity.

To guarantee the existence of the e�ciency measures, Färe et al. (1989a, p. 659-660) sharpen the

conditions on the input and output data for nonparametric frontier technologies.2. In particular,

each fixed input is used by some producer and each producer uses some fixed input.
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In case of C, the e�ciency measure DF f
o (x

f , y) is computed for observation (xp, yp) as follows:

DF f
o (x

f
p , yp) = max

✓,zk
✓

s.t
KP

k=1

zkyk � ✓yp,

KP
k=1

zkx
f
k  xf

p ,

KP
k=1

zk = 1,

✓� 0, zk � 0, k= 1, . . . ,K.

(7)

In case ofNC, the variables zk in this model need to be binary variables. In all LP models mentioned

hereafter, a similar adaptation is required if NC is assumed. To save space, we will not mention

this again, nor formulate the corresponding models.

Observe that there are no input constraints on the variable inputs in the model (7). Note that

Färe et al. (1994) introduce an alternative linear program (LP) with a scalar for each variable

input dimension. Also note that LP (7) is equivalent to the following LP obtained by making each

variable input a decision variable:

DF f
o (x

f
p , yp) = max

✓,zk,x
v
✓

s.t
KP

k=1

zkyk � ✓yp,

KP
k=1

zkx
f
k  xf

p ,

KP
k=1

zkxv
k  xv,

KP
k=1

zk = 1,

✓� 0, zk � 0, xv � 0, k= 1, . . . ,K.

(8)

Cesaroni et al. (2017a) define a new input-oriented plant capacity measure using a pair of input-

oriented e�ciency measures.

Definition 2. The input-oriented plant capacity utilization (PCUi) is defined as:

PCUi(x,x
f , y) =

DF SR
i (xf , xv, y)

DF SR
i (xf , xv,0)

,
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where DF SR
i (xf , xv, y) and DF SR

i (xf , xv,0) are both sub-vector input e�ciency measures reducing

only the variable inputs relative to the technology, the latter e�ciency measure being evaluated at

a zero output level. Since 0 <DF SR
i (xf , xv,0) DF SR

i (xf , xv, y), notice that PCUi(x,xf , y) � 1.

Thus, input-oriented plant capacity utilization has a lower limit of unity. Similar to the previous

case, one can distinguish between a so-called biased plant capacity measure DF SR
i (xf , xv,0) and

an unbiased plant capacity measure PCUSR
i (x,xf , y), the latter being cleaned of any prevailing

ine�ciency.3.

To guarantee the existence of the e�ciency measures, we also need to sharpen the conditions on

the input and output data: each variable input is used by some producer and each producer uses

some variable input.

Both these Definitions 1 and 2 are graphically illustrated with the help of a Figure in the e-

companion in Subsection EC.1. We now turn to the issue of attainability of both these plant

capacity concepts.

3.2. Plant Capacity: The Question About Attainability

While these definitions in itself are su�ciently clear, it may be useful to underscore that these

concepts di↵er with respect to the property of attainability. As stressed by Johansen (1968, p.

362) the output-oriented plant capacity notion is not attainable in that the extra variable inputs

necessary to reach the maximal plant capacity output may not be available. While the axiom of

strong disposability in the inputs in principle allows for wasting infinitely many inputs to determine

the maximal plant capacity outputs, in practice there may well be restrictions of various kinds that

limit the availability of variable inputs.4.

First, at the firm level there may be quasi-fixed factors like labor where firms have to invest in

hiring and training activities that limit the amounts of labor that can be recruited at once. By

definition, quasi-fixed factors are characterized by the fact that their supply cannot be expanded

rapidly. Furthermore, depending on the nature of the labour market and the size of the firm (e.g.,

it may have some monopsony power), recruiting a large amount of people may well have an impact
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on their salaries. While this does not show up in the analytical framework of the output-oriented

plant capacity notion that ignores input prices, firms may well in fact take account of these general

equilibrium e↵ects and constrain their recruitment of the quasi-fixed factor. In brief, the quasi-

fixity of labor as well as other production factors may seriously impede the expansion of variable

inputs and may thus prevent reaching the maximal plant capacity outputs (e.g., Oi (1962) for the

seminal article in economics and Barney (2001) for the resource-based view of the firm).

Second, even if these extra variable inputs are available at the firm level, as stressed by Johansen

(1968) there may be restrictions on the available extra variable inputs at the sector level that

may prevent that all firms simultaneously can reach their maximal plant capacity output. For

instance, quasi-fixed factors may operate at the industry level and prevent the rapid expansion of

their supply in amounts needed to allow for the realization of the maximal plant capacity outputs

for all firms. At the sectoral level, it is obvious that general equilibrium e↵ects may play a role:

if all firms simultaneously increase their demand for a production factor, then the price of that

production factor may well increase. Again, while this does not show up in the framework of the

output-oriented plant capacity notion which ignores factor prices, firms may take these general

equilibrium e↵ects into account and constrain their expansion of the production factor.

By contrast, the input-oriented plant capacity notion is always attainable in that one can always

reduce the amount of existing variable inputs such that one reaches an input set with zero output

level. Reducing variable inputs to reach zero production levels is normally possible because of the

axiom of inaction. Inaction implies that one can stop producing at all: but, in modern production

facilities producing a zero output need not imply that no inputs are used.5. Examples of zero

production with positive amounts of variable inputs include critical maintenance activities at a

large industrial plant impeding production, making inventories in a retailer while temporarily

suspending sales, or temporarily closing a mine while keeping it exploitable with the option of

reopening it as part of a real options strategy. Closing down production is therefore possible at the

firm level, but it can be done as well at the sectoral level.
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Therefore, attainability is a potential issue for the output-oriented plant capacity notion, while

it is a priori not an issue for the new input-oriented plant capacity concept. We now turn to the

modeling of constraints on the availability of variable inputs in the output-oriented plant capacity

notion.

A somewhat related issue is the economic relevance of these plant capacity notions. Starting

again with the output-oriented plant capacity concept, even if the firm would have su�ciently

variable inputs at its disposal and the attainability issue would not exist, it is clear that it rarely

will be cost minimizing or profit maximizing to produce the output-oriented plant capacity out-

puts. This technical or engineering capacity concept just serves as a generalization of other popular

capacity concepts (e.g., in the hotel industry room occupancy rates are very popular) for multiple

output production processes. For the case of the input-oriented plant capacity concept, for which

the attainability issue does not exist, the question as to the pertinence of the optimal variable

inputs at the level of the initialization of production is also relevant. As earlier stated, maintenance

activities may lead to temporarily suspend production, as may be temporary mothballing oper-

ations. However, for most firms also these optimal variable inputs at zero output levels may not

follow from a cost minimizing or profit maximizing strategy. Again, this technical or engineering

capacity concept just serves as framework to summarize capacity measurement for multiple input

and multiple output production processes.

Cesaroni et al. (2017b) also recently defined new long-run output- and input-oriented plant

capacity concepts that allow for changes in all input dimensions simultaneously rather than changes

in the variable inputs only. The above plant capacity concepts focusing on changes in the vari-

able inputs alone can then be interpreted as short-run concepts. Obviously, the whole issue of

attainability also transposes to the output- and input-oriented long-run plant capacity concepts.

3.3. Attainable Output-Oriented Plant Capacity: Proposals

We now first turn to the specification of attainability constraints at the firm level. Thereafter, we

explore how to model attainability constraints at the industry level.
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3.3.1. Attainability Constraints at the Firm Level. The standard assumption (T.3)

of strong input and output disposability implies that variable inputs can be increased without

limitation in the absence of price information. However, from the nature of reality with limited

resources, we know that this possibility of allowing unlimited increase of inputs creates a potential

issue. This issue also a↵ects all notions built upon this possibility, especially the output-oriented

plant capacity notion. As a possible remedy, we first define an attainability level �̄ of an observation

(firm) as follows:

Definition 3. An attainability level �̄ of observation (xp, yp) (abbreviated to level �̄) is any value

�̄2R+ satisfying

9�2R+ with � �̄ and 9✓ 2R+ such that (xf ,�xv,✓y)2 T.

It follows from this definition that every value �̄� 1 can act as attainability level for all obser-

vations (e.g., set � = 1 and ✓ = 1). An attainability level �̄ < 1 might not be possible for some

observations (as can be observed in the empirical illustration in Section 4). However, this level

should be chosen to reflect a realistic achievable up-scaling of variable inputs for a particular obser-

vation. To give an example, a value �̄= 3 means that one considers tripling variable inputs as being

realistic (or achievable).

Note that Definition 3 di↵ers from the rather well-known axiom of attainability as developed by

Shephard in his work (see, e.g., Färe and Mitchell (1987) for a critical discussion).

With an attainability level set to some realistic value, the following attainable output-oriented

e�ciency measure can be defined:

Definition 4. The attainable output-oriented e�ciency measure (ADFo) at level �̄ 2 R+ is

defined as:

ADF f
o (x

f , y, �̄) =max{✓ | ✓� 0,0 � �̄,✓y 2 P (xf ,�xv)}.

The amount of variable inputs is now bounded to be at most a scalar-wise multiple smaller than

�̄. Obviously, ADF f
o (x

f , y, �̄) DF f
o (x

f , y). Note that Definition 4 is written in absolute terms.
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For instance, �̄= 3 corresponds with the impossibility of variable inputs to exceed three times the

current amount of variable inputs. Alternatively, one could focus on relative comparisons to the

sector aggregates (
PK

p=1
xv
p). Then, one could impose that variable inputs at the firm level cannot

exceed a certain share of the total amount of variable inputs available in the sector. We opt for

the first approach.

Using the attainable output-oriented e�ciency measure introduced in Definition 4, it is natural

to come up with a new attainable output-oriented plant capacity concept at the firm level.

Definition 5. An attainable output-oriented plant capacity utilization (APCUo) at level �̄2R+

is defined as:

APCUo(x,x
f , y, �̄) =

DFo(x, y)

ADF f
o (xf , y, �̄)

,

with DFo(x, y) and ADF f
o (x

f , y, �̄) as defined before.

By analogy with the plant capacity utilization measures introduced in Definitions 1 and 2,

one can distinguish between the biased attainable plant capacity measure ADF f
o (x

f , y, �̄) and

the unbiased attainable plant capacity measure APCUo(x,xf , y, �̄), where the ratio of e�ciency

measures ensures eliminating any existing ine�ciency.

Since ADF f
o (x

f , y, �̄)  DF f
o (x

f , y), clearly APCUo(x,xf , y, �̄) � PCUo(x,xf , y). Thus, the

attainable output-oriented measure of plant capacity utilization is always larger or equal to the

traditional measure of output-oriented plant capacity utilization.

Proposition 1. The attainable output-oriented plant capacity utilization APCUo(x,xf , y, �̄)

converges to the output-oriented plant capacity utilization PCUo(x,xf , y) as �̄ �! 1, i.e.,

lim
�̄!1

APCUo(x,xf , y, �̄) = PCUo(x,xf , y).

Note first that the proofs of all propositions are in the e-companion in Subsection EC.2.

Note furthermore that the output-oriented plant capacity utilization PCUo(x,xf , y, �̄) might be

unrealistic since the amounts of variable inputs needed to reach the maximum capacity outputs

may simply not be available. This can be observed in the empirical illustration in Section 4.
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Hence, APCUo(x,xf , y, �̄) should be a more realistic alternative plant capacity utilization measure

provided an achievable level �̄ is chosen.

Modeling attainability constraints at the firm level can now be done as follows:

ADF f
o (x

f
p , yp, �̄) = max

✓,zk,x
v
✓

s.t
KP

k=1

zkyk � ✓yp,

KP
k=1

zkx
f
k  xf

p ,

KP
k=1

zkxv
k  xv,

KP
k=1

zk = 1,

xv  �̄xv
p,

✓� 0, zk � 0, xv � 0, k= 1, . . . ,K.

(9)

The constraint xv  �̄xv
p establishes a link between the decision variable xv and the value

xv
p of the firm under observation. In the empirical analysis of Section 4, we choose �̄ 2

{0.5,1,1.5,2,2.5,3,3.5,4,4.5,5}. Thus, we consider an increase of the variable inputs with a factor

more than five or less than 0.5 (i.e., halving these variable inputs) as implausible.

In model (9), the scalar �̄ can be varied over some part of the interval (0,1). To determine the

complete feasible interval for �̄ and to classify ADF f
o (x

f , y,�) and APCUo(x,xf , y,�) further on,

we need the following definition of critical points.

Definition 6. For a given observation (xp, yp), we can define the following three critical points

Lp, Mp and Up as follows:

Lp =DF SR
i (xf

p , x
v
p,0), (10)

Mp =DF SR
i (xf

p , x
v
p, yp), (11)

and

Up =DF SR
i (xf

p , x
v
p,DF f

o (x
f
p , yp)yp). (12)

Note that the critical points Lp and Mp make up the components of the input-oriented plant

capacity measure PCUi(x,xf , y) in Definition 2. To our knowledge, Up has not been described
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earlier in the literature. It can be interpreted as the minimal expansion of variable inputs needed

to produce the maximum plant capacity outputs and can be computed as follows:

Up = min
✓,zk

✓

s.t
KP

k=1

zkyk �DF f
o (x

f
p , yp)yp,

KP
k=1

zkx
f
k  xf

p ,

KP
k=1

zkxv
k  ✓xv

p,

KP
k=1

zk = 1,

✓� 0, zk � 0, k= 1, . . . ,K.

(13)

These three critical points can be briefly illustrated with the help of Figure EC.1. First, the

point Lp relates to the distance from point a to point e00: it indicates the minimal amount of

variable inputs compatible with zero outputs. Second, the point Mp relates to the distance from

point e0000 to point e: it indicates the minimal amount of variable inputs compatible with current

levels of outputs. Third, the point Up relates to the distance from point e to point e0: it indicates

the minimal amount with which variable inputs need to be expanded to be compatible with the

maximal level of plant capacity outputs at point d.

We are now in a position to classify ADF f
o (x

f , y, �̄) and APCUo(x,xf , y, �̄) in terms of these

three critical points. In particular, we establish two propositions.

Proposition 2. For the biased and unbiased attainable output-oriented plant capacity utilization

in both C and NC technologies, for every observation (xp, yp) we have:

(i) If �̄<Lp, then model (9) is infeasible.

(ii) If Lp  �̄<Mp, then ADF f
o (x

f
p , yp, �̄)< 1 and APCUo(xp, xf

p , yp, �̄)> 1.

(iii) If Mp  �̄, then ADF f
o (x

f
p , yp, �̄)� 1 and APCUo(xp, xf

p , yp, �̄) 1.

Proposition 3. For the biased and unbiased attainable output-oriented plant capacity utilization

in both C and NC technologies, for every observation (xp, yp), we have:

(i) If Lp  �̄ < Up, then ADF f
o (x

f
p , yp, �̄) < DF f

o (x
f
p , yp) and APCUo(xp, xf

p , yp, �̄) >

PCUo(xp, xf
p , yp).
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(ii) If �̄�Up, then ADF f
o (x

f
p , yp, �̄) =DF f

o (x
f
p , yp) and APCUo(xp, xf

p , yp, �̄) = PCUo(xp, xf
p , yp).

3.3.2. Attainability Constraints at the Industry Level. Similar to the firm level version,

it is natural to come up with new industry attainable output-oriented plant capacity concepts.

First, we introduce the industry attainable output-oriented e�ciency measure as follows:

Definition 7. The industry attainable output-oriented e�ciency measure (IADFo) at level �̄ 2

R+ for observation (xp, yp) is defined as

IADF f
o (x

f
p , yp, �̄) = ✓⇤p,

with ✓⇤p the optimum value of ✓p in the following model:

max
✓p,z

p
k,x

v
p

KP
p=1

✓p

s.t
KP

k=1

zpkyk � ✓pyp, p= 1, . . . ,K,

KP
k=1

zpkx
f
k  xf

p , p= 1, . . . ,K,

KP
k=1

zpkx
v
k  xv

p, p= 1, . . . ,K,

KP
k=1

zpk = 1, p= 1, . . . ,K,

KP
p=1

xv
p  �̄

KP
p=1

x̄v
p,

✓p � 0, zpk � 0, xv
p � 0, k, p= 1, . . . ,K.

(14)

Note that model (14) is a kind of central resource allocation model with K LPs (one for each

observation) and a bogus objective function and with a common constraint on the total amount

of variable inputs available in the sector. In particular, its aim is to simultaneously determine

the maximum plant capacity outputs for all observations while reallocating variable inputs among

units such that a global constraint on the industry amount of variable inputs is respected. Central

resource reallocation models cover a heterogeneous variety of models reallocating some inputs

and/or outputs across space and/or time while eventually accounting for multiple objectives (e.g.,

e�ciency, e↵ectiveness, equality, etc.) simultaneously. Examples include Athanassopoulos (1998),

Färe et al. (1992), Golany and Tamir (1995), Korhonen and Syrjänen (2004), Lozano and Villa
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(2004), and Ylvinger (2000), among others. One type of central resource reallocation model which

also makes use of the notion of plant capacity is the so-called short-run Johansen industry model

(see, e.g., Färe et al. (1992) for a single output version and Kerstens et al. (2006) for a multiple

outputs version).

Second, using the industry attainable output-oriented e�ciency measure of Definition 7, the

industry attainable output-oriented plant capacity utilization is defined as follows:

Definition 8. The industry attainable output-oriented plant capacity utilization (IAPCUo) at

level �̄2R+ for observation (xp, yp) is defined as

IAPCUo(xp, x
f
p , yp, �̄) =

DFo(xp, yp)

IADF f
o (x

f
p , yp, �̄)

.

Since IADF f
o (x

f , y, �̄)  DF f
o (x

f , y), clearly IAPCUo(x,xf , y, �̄) � PCUo(x,xf , y). Thus, the

industry attainable output-oriented measure of plant capacity utilization is always larger or equal

to the traditional measure of output-oriented plant capacity utilization. By analogy, one can dis-

tinguish between the biased industry attainable plant capacity measure IADF f
o (x

f , y, �̄) and the

unbiased industry attainable plant capacity measure IAPCUo(x,xf , y, �̄), where the ratio of e�-

ciency measures ensures eliminating any existing ine�ciency.

Note that the industry attainable output-oriented measure of plant capacity utilization

may be smaller or larger than the attainable output-oriented measure of plant capacity uti-

lization. This holds true for both the biased and unbiased versions. Therefore, we have

IADF f
o (x

f , y, �̄)
>
=
<
ADF f

o (x
f
p , yp, �̄) and IAPCUo(x,xf , y, �̄)

>
=
<
APCUo(x,xf , y, �̄).

By analogy to the firm level modeling, the scalar �̄ in model (14) can be varied over some part of

the interval (0,1). To determine this feasible interval for �̄ we can define the following two critical

points LI and U I .
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Definition 9. LI can be determined from the following LP:

LI = min
✓,zpk,x

v
p

✓

s.t
KP

k=1

zpkx
f
k  xf

p , p= 1, . . . ,K,

KP
k=1

zpkx
v
k  xv

p, p= 1, . . . ,K,

KP
k=1

zpk = 1, p= 1, . . . ,K,

KP
p=1

xv
p  ✓

KP
p=1

x̄v
p,

✓� 0, zpk � 0, xv
p � 0, k, p= 1, . . . ,K.

(15)

U I is obtained solving the following LP:

U I = min
✓,zpk,x

v
p

✓

s.t
KP

k=1

zpkyk �DF f
o (x

f
p , yp)yp, p= 1, . . . ,K,

KP
k=1

zpkx
f
k  xf

p , p= 1, . . . ,K,

KP
k=1

zpkx
v
k  xv

p, p= 1, . . . ,K,

KP
k=1

zpk = 1, p= 1, . . . ,K,

KP
p=1

xv
p  ✓

KP
p=1

x̄v
p,

✓� 0, zpk � 0, xv
p � 0, k, p= 1, . . . ,K.

(16)

Note that U I can be interpreted as the minimal expansion of overall variable inputs needed to

produce the plant capacity outputs for all units for the industry model (14).

We are now in a position to classify IADF f
o (x

f , y, �̄) and IAPCUo(x,xf , y, �̄) in terms of these

two critical points in the following proposition:

Proposition 4. For the industry biased and unbiased attainable output-oriented plant capacity

utilization in both C and NC technologies, we have:

(i) If �̄<LI , then model (14) is infeasible.

(ii) If LI  �̄<U I , then at least for one observed observation (xp, yp) we have

IADF f
o (x

f
p , yp, �̄)<DF f

o (x
f
p , yp) and IAPCUo(xp, xf

p , yp, �̄)>PCUo(xp, xf
p , yp).
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(iii) If U I  �̄, then for every observation (xp, yp) we have IADF f
o (x

f
p , yp, �̄) =DF f

o (x
f
p , yp) and

IAPCUo(xp, xf
p , yp, �̄) = PCUo(xp, xf

p , yp).

4. Empirical Illustration

4.1. Description of the Sample

For the empirical illustration of the attainability notions introduced in previous section, we use

a secondary data set from Atkinson and Dorfman (2009). The sample is based on 16 Chilean

hydro-electric power generation plants observed on a monthly basis. We limit ourselves to the

observations for the year 1997 and, assuming that there is no technical change, we specify an

inter-temporal frontier across all twelve months resulting in a total of 192 units. It is well-known

that Chile was one of the first countries deregulating its electricity market and that hydro-power

was a dominant source of energy during the 90’s. These hydro-power plants generate one output

(electricity) using three inputs: labor, capital, and water. Except for the fixed input capital, the

remaining flow variables are expressed in physical units. Table 1 presents basic descriptive statistics

for the inputs and the single output. One can observe a large heterogeneity in terms of size among

the di↵erent inputs as well as the single output.

Table 1 Descriptive Statistics for Hydro-Power Plants (1997)

Variable Trimmed meana Minimum Maximum
Billions of m3 of water (variable input) 126.80 0.49 1347.47
# workers (variable input) 15.62 2.00 52.86
Billions of capital (fixed input) 0.47 0.04 5.98
Thousands of kWh (output) 46.79 0.40 353.70

Note: a10% trimming level.

4.2. Empirical Results for Firm Level

Tables 2 and 3 are structured in a similar way. While Table 2 reports on the biased plant capacity

utilization measures DF f
o (x

f , y) and ADF f
o (x

f , y, �̄), Table 3 focuses on the unbiased plant capac-

ity utilization measures PCUo(x,xf , y) and APCUo(x,xf , y, �̄). In each table, the second column

reports the standard plant capacity utilization measures, while the next ten columns describe the
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attainable plant capacity utilization measures for �̄ varying between 0.5 and 5 with step size 0.5

(thus, �̄ 2 {0.5,1,1.5,2,2.5,3,3.5,4,4.5,5}). Hence, we somewhat arbitrary assume that variable

inputs can be magnified at most fivefold. Obviously, we could have selected a wider range of val-

ues to experiment with �̄. Based on Proposition 2, note that for 37 observations under C and 41

observations under NC �̄= 0.5 is too small for model (9) to be feasible. Hence, these observations

are not included in the corresponding descriptive statistics computations.

Table 2 Descriptive Statistics of Biased Plant Capacity Utilization

ADF f
o (x

f , y, �̄)

Convex DF f
o (x

f , y) �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 13.655 1.017 1.663 2.191 2.594 2.912 3.153 3.358 3.547 3.721 3.877
Stand. Dev. 77.137 1.027 1.721 2.421 3.107 3.770 4.349 4.927 5.502 6.077 6.645
Minimum 1.000 0.252 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 884.250 7.732 15.465 21.695 27.937 34.322 38.807 43.290 47.775 52.259 56.743

ADF f
o (x

f , y, �̄)

Nonconvex DF f
o (x

f , y) �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 12.541 0.600 1.275 1.508 1.746 1.942 2.166 2.367 2.547 2.701 2.762
Stand. Dev. 77.226 0.907 1.511 1.818 2.157 2.830 2.856 3.501 4.303 4.725 5.079
Minimum 1.000 0.118 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 884.250 7.714 13.500 19.000 21.000 33.250 33.250 33.250 40.286 43.714 45.500

The fact of our data set containing a single output implies that DF f
o (x

f
p , yp) is homogeneous of

degree �1 in the output. From (12), it then follows that Up =DF SR
i (xf

p , x
v
p,DF f

o (x
f
p ,1)). Obviously,

Up now only depends on the variable and fixed inputs. However, in the multi-output case, this

observation no longer holds true. For an example with multiple outputs, we refer to Subsection

EC.3 in the e-companion.

Analyzing the results in Table 2, one can draw the following conclusions. First, on average the

biased plant capacity utilization measure DF f
o (x

f , y) indicates that outputs can be magnified by

at least 13.65 times under C and 12.54 times under NC. Second, there is a lot of variation in

DF f
o (x

f , y) as indicated by the standard deviation and the range is even huge: the maximum

increase in outputs amounts to 884.25 times under both C and NC. Third, the biased attainable

plant capacity utilization measure ADF f
o (x

f , y, �̄) increases monotonically in �̄ and on average the

output magnification under C is always higher than under NC. Fourth, for a fivefold increase in
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variable inputs (i.e., �̄= 5), we obtain on average a 3.87 output magnification under C and a 2.76

output magnification under NC. This is ways below the average output magnification computed

by the biased plant capacity utilization measure DF f
o (x

f , y).

Table 3 Descriptive Statistics of Unbiased Plant Capacity Utilization

APCUo(x,xf , y, �̄)

Convex PCUo(x,xf , y) �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 0.522 1.952 1.000 0.778 0.687 0.637 0.611 0.594 0.581 0.572 0.564
Stand. Dev. 0.269 0.705 0.000 0.113 0.156 0.179 0.193 0.203 0.211 0.218 0.223
Minimum 0.016 1.000 1.000 0.495 0.331 0.272 0.231 0.200 0.177 0.159 0.155
Maximum 1.000 4.916 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

APCUo(x,xf , y, �̄)

Nonconvex PCUo(x,xf , y) �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 0.553 2.964 1.000 0.868 0.782 0.733 0.677 0.658 0.647 0.634 0.631
Stand. Dev. 0.304 1.424 0.000 0.146 0.187 0.205 0.236 0.244 0.251 0.258 0.260
Minimum 0.015 1.000 1.000 0.459 0.392 0.387 0.259 0.099 0.099 0.099 0.099
Maximum 1.000 8.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Turning to the analysis of Table 3, we can infer the following conclusions. First, on average the

unbiased plant capacity utilization measure PCUo(xf , y) indicates that current outputs make up

52% from maximal plant capacity outputs under C and 55% under NC. Second, the heterogeneity

in PCUo(xf , y) is large as indicated by the standard deviation and the range is again huge: the

minimum of about 1.5% under both C and NC is simply extremely low. Third, the unbiased

attainable plant capacity utilization measure APCUo(x,xf , y, �̄) decreases monotonically in �̄ and

on average APCUo(x,xf , y, �̄) is always smaller under C than under NC. Fourth, for a fivefold

increase in variable inputs (i.e., �̄= 5), APCUo(x,xf , y, �̄) is getting close to PCUo(x,xf , y) in the

C case (a di↵erence of only about 4%), while this gap is larger in the NC case (a di↵erence of about

8%).

Table 4 reports descriptive statistics on the three critical points Lp, Mp and Up as defined in

Definition 6. The following conclusions can be inferred. First, the average values for Lp and Mp

are rather moderate, whereby the values are each time lower under C than under NC. This leads

to rather plausible results for the input-oriented plant capacity measure PCUi(x,xf , y). Under C

one needs on average 4.39 more variable inputs with current outputs than with zero outputs, while

under NC one employs 6.21 more variable inputs with current outputs than with zero outputs.
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Table 4 Descriptive Statistics for Three Critical Points

Convex Nonconvex
LC

p MC
p UC

p PCUi(.) LNC
p MNC

p UNC
p PCUi(.) UC

p �UNC
p

Average 0.338 0.715 31.585 4.397 0.352 0.944 28.753 6.214 2.832
Stand. Dev. 0.301 0.256 106.385 4.877 0.314 0.164 106.372 6.335 4.895
Minimum 0.038 0.132 1.000 1.000 0.038 0.267 0.904 1.000 0.000
1st Quartile 0.113 0.557 2.628 1.272 0.121 1.000 1.283 1.995 0.000
Median 0.200 0.754 4.031 2.485 0.245 1.000 2.627 3.566 0.571
3rd Quartile 0.451 0.952 12.295 5.732 0.451 1.000 5.444 7.359 2.692
Maximum 1.000 1.000 648.998 26.070 1.000 1.000 643.500 26.428 25.759

Second, on average the critical point Up is very high: one needs 31.58 times more variable inputs

than currently in use to reach maximum plant capacity outputs under C, while one can magnify

variable inputs by just a factor 28.75 under NC. These amounts are huge in comparison to our prior

value of allowing for only a fivefold increase in variable inputs. Third, the variation in this factor Up

is huge. For instance, at the third quartile we obtain a 12.29 magnification factor under C and only

a 5.44 magnification factor under NC. The maximal magnification factor of 648.99 and 643.50 under

C respectively NC are very similar in magnitude and both are clearly impossible in reality. These

extreme requirements on the availability of variable inputs clearly cast doubts on the plausibility

of the traditional output-oriented plant capacity measure. Fourth, the last column reporting the

di↵erence UC
p �UNC

p reveals that on average the variable inputs under C should be increasing at

least 2.83 times more than under NC. Furthermore, there is quite a bit of heterogeneity in this

di↵erence UC
p �UNC

p . Thus, in short, while these magnification factors for the variable inputs are

clearly implausible, it seems that the non-convex results are the least implausible.

We end this analysis with some results for certain individual observations. Each figure has two

parts: the left-hand side (LHS) displays the biased attainable plant capacity in function of the

value of �̄; the right-hand side (RHS) shows the unbiased attainable plant capacity in function of

the value of �̄. Both figures are drawn under both the C and NC assumption. Furthermore, the

same critical point Up is drawn for both C and NC in both figures.

Figure 1 shows results for plant number 9. One can make the following series of observations on

the LHS figure. First, the biased attainable plant capacity increases monotonically with �̄ under

C and in a stepwise fashion under NC: these steps reveal the pervasive problem of slacks that
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Figure 1 Biased and Unbiased Attainable Plant Capacity for Plant 9

is well-known under NC. Second, the maximum increase in outputs (i.e., the vertical distance

between both lines) for the biased attainable plant capacity is almost double under C compared

to NC. Third, the value of Up is almost four times bigger under C (15.48) compared to NC (3.11).

The following observations apply to the RHS figure. First, the unbiased attainable plant capacity

decreases again monotonically with �̄ under C and in a stepwise fashion under NC. Second, the

unbiased attainable plant capacity under C compared to NC cross one another: only for very high

values of �̄ both estimates are close to one another. Overall, this again confirms that the NC results

are less implausible.

Figure 2 Biased and Unbiased Attainable Plant Capacity for Plant 105

Finally, Figure 2 depicts the results for plant number 105. Now, the value of Up under C and NC

is identical (12.82). In this case, the di↵erences between C and NC biased attainable plant capacity
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are rather pronounced, while these di↵erences are mainly visible for the low range values of �̄ for

the unbiased attainable plant capacity.

4.3. Empirical Results for Industry Level

Tables 5 and 6 are structured in a way similar to the corresponding firm level tables. While Table 5

reports on the industry biased plant capacity utilization measure IADF f
o (x

f , y, �̄), Table 6 focuses

on the industry unbiased plant capacity utilization measures IAPCUo(x,xf , y, �̄). Again, we have

ten columns describing the industry attainable plant capacity utilization measures for �̄ varying

between 0.5 and 5 with step size 0.5. New is that the three last rows of Tables 5 and 6 show the

number of observed units that have the amounts ADF f
o (.)< IADF f

o (.), ADF f
o (.) = IADF f

o (.) and

ADF f
o (.)> IADF f

o (.), respectively. Thus, these lines focus on comparing firm level and industry

level results.

Table 5 Descriptive Statistics of Biased Industry Plant Capacity Utilization

IADF f
o (x

f , y, �̄)

Convex �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 12.092 12.973 13.366 13.576 13.644 13.655 13.655 13.655 13.655 13.655
Stand. Dev. 77.335 77.236 77.181 77.148 77.139 77.137 77.137 77.137 77.137 77.137
Minimum 0.010 0.010 0.318 0.318 0.918 1.000 1.000 1.000 1.000 1.000
Maximum 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250
ADF f

o (.)< IADF f
o (.) 73 112 128 145 130 119 110 99 89 82

ADF f
o (.) = IADF f

o (.) 0 2 7 20 38 73 82 93 103 110
ADF f

o (.)> IADF f
o (.) 82 78 57 27 24 0 0 0 0 0

IADF f
o (x

f , y, �̄)

Nonconvex �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 11.547 12.225 12.450 12.541 12.541 12.541 12.541 12.541 12.541 12.541
Stand. Dev. 77.357 77.270 77.240 77.226 77.226 77.226 77.226 77.226 77.226 77.226
Minimum 0.010 0.080 0.318 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250 884.250
ADF f

o (.)< IADF f
o (.) 60 125 103 107 99 85 77 72 62 59

ADF f
o (.) = IADF f

o (.) 5 29 60 85 93 107 115 120 130 133
ADF f

o (.)> IADF f
o (.) 86 38 29 0 0 0 0 0 0 0

Analyzing these results in Table 5, we infer the following conclusions. First, the biased industry

attainable plant capacity utilization measure IADF f
o (x

f , y, �̄) increases almost monotonically in

�̄ and on average the output magnification under C is always higher than under NC. Second,

IADF f
o (x

f , y, �̄) becomes stationary after �̄ reaches the value 3 under C, and the value 2 under
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NC. Third, though IADF f
o (x

f , y, �̄)
>
=
<
ADF f

o (x
f
p , yp, �̄), for the majority of observations we find

ADF f
o (x

f
p , yp, �̄) < IADF f

o (x
f , y, �̄) till �̄ reaches the value 4 under C and only 2.5 under NC,

and ADF f
o (x

f
p , yp, �̄) = IADF f

o (x
f , y, �̄) afterward for the majority of observations. Furthermore,

ADF f
o (x

f
p , yp, �̄)> IADF f

o (x
f , y, �̄) becomes 0 when IADF f

o (x
f , y, �̄) becomes stationary.

Table 6 Descriptive Statistics of Unbiased Industry Plant Capacity Utilization

IAPCUo(x,xf , y, �̄)

Convex �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 12.698 5.761 0.746 0.591 0.526 0.522 0.522 0.522 0.522 0.522
Stand. Dev. 23.797 19.196 0.624 0.473 0.273 0.269 0.269 0.269 0.269 0.269
Minimum 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
Maximum 98.250 98.250 3.150 3.150 1.090 1.000 1.000 1.000 1.000 1.000
APCU f

o (.)< IAPCU f
o (.) 82 78 57 27 24 0 0 0 0 0

APCU f
o (.) = IAPCU f

o (.) 0 2 7 20 38 73 82 93 103 110
APCU f

o (.)> IAPCU f
o (.) 73 112 128 145 130 119 110 99 89 82

IAPCUo(x,xf , y, �̄)

Nonconvex �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 10.792 0.811 0.673 0.553 0.553 0.553 0.553 0.553 0.553 0.553
Stand. Dev. 20.264 1.006 0.543 0.304 0.304 0.304 0.304 0.304 0.304 0.304
Minimum 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
Maximum 98.250 12.543 3.150 1.000 1.000 1.000 1.000 1.000 1.000 1.000
APCU f

o (.)< IAPCU f
o (.) 86 38 29 0 0 0 0 0 0 0

APCU f
o (.) = IAPCU f

o (.) 5 29 60 85 93 107 115 120 130 133
APCU f

o (.)> IAPCU f
o (.) 60 125 103 107 99 85 77 72 62 59

Turning to the results in Table 6, the following deductions emerge. First, the unbiased industry

attainable plant capacity utilization measure IAPCU f
o (x,x

f , y, �̄) decreases almost monotonically

in �̄ and on average IAPCUo(x,xf , y, �̄) is first smaller under NC than under C and then the

reverse. Second, IAPCU f
o (x,x

f , y, �̄) becomes stationary after �̄ reaches the value 3 under C,

and the value 2 under NC. Third, while IAPCUo(x,xf , y, �̄)
>
=
<
APCUo(x,xf , y, �̄), for the major-

ity of observations we find APCUo(x,xf , y, �̄) > IAPCUo(x,xf , y, �̄) till �̄ reaches the value 4

under C and only 2.5 under NC, and APCUo(x,xf , y, �̄) = IAPCUo(x,xf , y, �̄) afterward for the

majority of observations. Furthermore, APCUo(x,xf , y, �̄)< IAPCUo(x,xf , y, �̄) becomes 0 when

IAPCUo(x,xf , y, �̄) becomes stationary.

By solving the models in Definition 9 we obtain the two critical points: under C, LI,C = 0.1199

and U I,C = 2.7516, and under NC, LI,NC = 0.1199 and U I,NC = 1.9947. We make three comments.
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First, while the lower bound is identical under C and NC, the upper bound under NC is substantially

lower than under C. Second, based on Proposition 4, for �̄� 2.7516 in C case and �̄� 1.9947 in

NC case, we have IADF f
o (x

f
p , yp, �̄) =DF f

o (x
f
p , yp) and IAPCUo(xp, xf

p , yp, �̄) = PCUo(xp, xf
p , yp).

Thus, as can be seen in Tables 5 and 6, the five last columns in the C case and seven last columns

in the NC case contain identical results. Third, it makes no sense to compare these two critical

points LI and U I with, for instance, the averages of the corresponding points in the firm models

Lp and Up.

Instead, Table 7 reports the amount of increase of aggregate variable inputs such that all units

obtain the maximum of the standard plant capacity utilization measure DF f
o (x

f
p , yp) from both

the perspective of firm and industry levels in both the C and NC cases. The second column shows

the sum of observed variable inputs. The sum of needed variable inputs with the firm level model

(9) under C and NC is reported in the third and fifth columns, respectively. The columns four

and six present the sum of needed variable inputs with the industry level model (14) under C and

NC, respectively. The second part of the table shows the magnification factors computed by taking

the ratios of the sum of needed variable inputs to the sum of observed variable inputs under firm

and industry models and under C and NC. The rows denote the two variable inputs: water and

workers.

Table 7 Amounts of Variable Inputs Across Models

Convex Nonconvex
Variable inputs

PK

p=1 x
v
p

PK

p=1Upxv
p

PK

p=1U
Ixv

p

PK

p=1Upxv
p

PK

p=1U
Ixv

p

Billions of m3 of water 30718.888 103352.775 84526.092 74867.372 61274.966
# workers 3203.284 94183.888 8814.156 89220.392 6389.590

Convex Nonconvex

Variable inputs
PK

p=1 Upx
v
pPK

p=1 xv
p

PK
p=1 UIxv

pPK
p=1 xv

p

PK
p=1 Upx

v
pPK

p=1 xv
p

PK
p=1 UIxv

pPK
p=1 xv

p

Billions of m3 of water 3.364 2.752 2.437 1.995
# workers 29.402 2.752 27.853 1.995

Analyzing the results in Table 7, one can deduce the following conclusions. First, firm models

need substantially more amounts of variable inputs than industry models. Second, C models need

substantially more amounts of variable inputs than NC models. Third, while the industry models
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with an almost doubling of variable inputs under NC and an almost tripling of variable inputs

under C are not necessarily incredible, the firm models with a doubling by a factor of almost 2.5

at minimum and a thirty fold magnification at worst are clearly incredible. For the variable input

workers it is simply inconceivable that one could magnify the existing amounts by a factor of 27.85

under NC and a factor of 29.40 under C.

In conclusion, we deduce the following. First, firm models necessitate unlikely amounts of variable

inputs, while the results for industry models are not a priori strikingly unrealistic. Second, NC

models involve less unrealistic amounts of variable input magnifications than C models.

While some may put their hope in the industry models, it is crucial to remember their limitations.

First, these industry models presuppose that there is a central authority coordinating among all

firms. If firms are decentralized, this clearly is no option. Second, the industry models are clearly

very basic. Any more realistic industry model with additional constraints (e.g., constraints on the

amounts of ine�ciency that are allowed for (as in Kerstens et al. (2006)), putting lower and upper

bounds on changes in variable inputs per firm, etc.) will lead to less spectacular results.

To provide additional empirical evidence, we have also put the empirical results for both the firm

and industry level for a data set with multiple outputs in the e-companion in Subsection EC.3. In

turns out that the multiple output results are slightly less extreme than the single output results.

Clearly, one empirical illustration su�ces to make the basic point about the attainability issue of

the traditional output-oriented plant capacity measure.

5. Conclusions

The output-oriented plant capacity concept has been around for at least two decades and is quite

popular for empirical applications. While it was directly inspired by the informal definition provided

by Johansen (1968), the doubts of Johansen (1968) regarding the attainability of the concept have

seemingly never been investigated. This paper has tried to dig deeper into this issue of attainability.

In Section 3 we have formally defined both the traditional output-oriented and the rather new

input-oriented plant capacity notions. Thereafter, we have argued that the output-oriented plant
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capacity notion may well fail attainability in general, because the amounts of variable inputs needed

to reach the maximum capacity outputs may simply not be available. There does not seem to

be such an issue for the input-oriented plant capacity concept. Consequently, we have defined a

new attainable output-oriented plant capacity notion that incorporates either firm or industry

constraints on the availability of variable inputs. It is up to the researcher to determine plausible

values limiting the upward scaling of variable inputs.

Using secondary data, we have developed an empirical illustration in Section 4. We can draw

several conclusions. First, outputs need to be magnified an unreasonable amounts of times to reach

traditional plant capacity outputs. Second, this phenomenon is related to the fact that variable

inputs are supposed to be scalable at amounts that are unlikely to be available at either the firm

or the industry level. Anyway, the amounts of scaling that need to be applied are ways above the

fivefold increase with which we experimented when defining our attainable plant capacity notion.

Third, while this scaling of variable inputs is probably ways beyond the reasonable, it is a fact

that the computational results on a nonconvex technology are slightly less implausible than the

ones obtained on a traditional convex technology. Thus, nonconvexity seems to mitigate partly the

extreme results associated with the traditional output-oriented plant capacity notion. Fourth, the

industry model (if applicable) leads to less incredible results than the firm model.

In conclusion, it is clear that given the fact that the traditional output-oriented plant capacity

concept likely faces serious attainability problems, the new notion of an attainable output-oriented

plant capacity concept merits further attention. Furthermore, since the new input-oriented plant

capacity notion does not face any attainability issues, it may likely constitute an alternative frame-

work as well.

We suggest some avenues for future research. First, our empirical analysis related to the attain-

ability problem of the traditional output-oriented plant capacity concept needs further corrobora-

tion. In particular, it would be important to verify whether the attainability problem is equally

serious when employing alternative estimators (e.g., stochastic frontier analysis as in Felthoven
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(2002)). Furthermore, one major limitation is that we limited our analysis to radial e�ciency mea-

sures, while it is well-known that the traditional convex and especially the nonconvex technologies

su↵er from large amounts of unmeasured ine�ciency appearing as slacks (see, e.g., De Borger et al.

(1998)). There are some indications that slacks may also play a substantial role in the measurement

of plant capacity utilization (e.g., Dupont et al. (2002), or Vestergaard et al. (2003)). Therefore,

it could be useful to revisit the attainability problem using nonradial rather than radial e�ciency

measures.

Second, our attainable plant capacity notion could benefit from clarifying the amounts by which

variable inputs can reasonably be magnified (i.e., the value of �̄). Expert opinion may be one source

of inspiration worthwhile exploring. Economic considerations related to, e.g., cost minimization

or profit maximization may be another source of inspiration. Otherwise, it remains a conceptual

alternative for the traditional output-oriented plant capacity notion, but it has little empirical bite.

Third, in a recent study reported in Kerstens et al. (2017) it turns out that the input-oriented

plant capacity notion compares well with cost-based capacity notions, while the output-oriented

plant capacity notion performs less well in this respect. One may wonder to which extent the

attainability issue of the traditional output-oriented plant capacity plays a role in these results.

Perhaps the attainable output-oriented plant capacity would mitigate these di↵erences: this remains

an open question.

Endnotes

1. For instance, note that the convex variable returns to scale technology does not satisfy inaction.

2. In case of parametric production technologies with a single output, Färe (1984) formally defines

the notions of plant capacity limiting and weakly plant capacity limiting factor combinations and

provides necessary and su�cient conditions for a factor combination to be plant capacity limiting,

assuming additional restrictions on the class of production functions. However, not all production

functions satisfy these additional restrictions. E.g., for the popular production function like the

CES with certain parameter values, no factor combination is (weakly) plant capacity limiting.
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3. Sahoo and Tone (2009, p. 581) propose another input-oriented capacity notion based on the

short-run technology T f . Its eventual relation with PCUi(x,xf , y) remains to be explored.

4. The idea of a kind of limited strong disposability has been pursued in the context of congestion

measurement in Briec et al. (2016).

5. While inaction is often phrased mathematically as (0,0) 2 T , the occurrence of zero outputs

need not imply zero inputs. By the assumption of strong input disposability (x,0) 2 T for x > 0.

Thus, the use of positive inputs is compatible with zero outputs.
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Figure, Proofs, and Multiple Outputs Empirical Example

EC.1. Figure Illustrating Output- and Input-Oriented Plant Capacity

Now we try to clarify both these Definitions 1 and 2 with the help of Figure EC.1 which depicts a

single variable input and output space. In particular, Figure EC.1 shows a total product curve for

given fixed inputs as the polyline abcd and its horizontal extension at d. We focus on observation

e. Note that observations are represented by squares and projection points by circles.

Figure EC.1 Total product curve: Output- and input-oriented plant capacity.

The output-oriented plant capacity measure PCUo(x,xf , y) compares point e to its vertical

projection point e000 on the frontier on the one hand, and the translated point e0 that consumes

more variable inputs to its vertical projection point on the horizontal frontier segment emanating

from point d with maximal outputs on the other hand. Clearly, the maximal output d can be

labeled the plant capacity output. Thus, the unbiased plant capacity measure PCUo(x,xf , y) is

somehow linked to the distance e000d0, whereby point d0 is simply the translation of the maximal

output at point d to the output level comparable with point e.
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The input-oriented plant capacity measure PCUi(x,xf , y) focuses on a sub-vector of variable

inputs and compares point e to its horizontal projection point e0000 on the frontier on the one hand,

and the translated point e00 (consuming equal amounts of variable inputs but at a zero outputs

level) to its horizontal projection point on the vertical frontier segment ab with zero outputs on

the other hand. Clearly, the minimal variable input a yielding zero output can be labeled the plant

capacity input. Thus, the unbiased plant capacity measure PCUi(x,xf , y) is somehow linked to the

distance b0e0000, whereby point b0 is the translation of the variable input at point b to the variable

input level comparable with point e.

EC.2. Proofs of Propositions

Proposition 1. The attainable output-oriented plant capacity utilization APCUo(x,xf , y, �̄)

converges to the output-oriented plant capacity utilization PCUo(x,xf , y) as �̄ �! 1, i.e.,

lim
�̄!1

APCUo(x,xf , y, �̄) = PCUo(x,xf , y).

Proof The result follows directly by combining (3) with Definitions 1, 4 and 5 together with

taking the limit for �̄�!1. ⇤

Proposition 2. For the biased and unbiased attainable output-oriented plant capacity utilization

in both C and NC technologies, for every observation (xp, yp) we have:

(i) If �̄<Lp, then model (9) is infeasible.

(ii) If Lp  �̄<Mp, then ADF f
o (x

f
p , yp, �̄)< 1 and APCUo(xp, xf

p , yp, �̄)> 1.

(iii) If Mp  �̄, then ADF f
o (x

f
p , yp, �̄)� 1 and APCUo(xp, xf

p , yp, �̄) 1.

Proof (i) Suppose that �̄<Lp and model (9) is feasible with optimal solution (z⇤k, x
v⇤). Hence,

xv⇤  �̄xv
p <Lpxv

p. Therefore, (ẑk = z⇤k, ✓̂= �̄) is a feasible solution of model (10) with optimal value

✓̂= �̄. But, this is a contradiction since �̄<Lp.

(ii) Assume that Lp  �̄<Mp and (z⇤k, x
v⇤,✓⇤) is an optimal solution of model (9) such that ✓⇤ � 1.

Hence, we have xv⇤  �̄xv
p < Mpxv

p. So (ẑ⇤k = z⇤k, ✓̂ = �̄) is a feasible solution of model (11) with

optimal value ✓̂= �̄. This is contradiction since �̄<Mp.
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(iii) Assume that Mp  �̄ and (z⇤k,✓
⇤ =Mp) is an optimal solution of model (11). Since Mpxv

p  �̄xv
p,

hence (ẑk = z⇤k, x̂
v = Mpxv

p, ✓̂ = 1) is a feasible solution of model (9) with objective value ✓̂ = 1.

Therefore, ADF f
o (x

f
p , yp, �̄)� 1 because the kind of model is a maximising problem. ⇤

Proposition 3. For the biased and unbiased attainable output-oriented plant capacity utilization

in both C and NC technologies, for every observation (xp, yp), we have:

(i) If Lp  �̄ < Up, then ADF f
o (x

f
p , yp, �̄) < DF f

o (x
f
p , yp) and APCUo(xp, xf

p , yp, �̄) >

PCUo(xp, xf
p , yp).

(ii) If �̄�Up, then ADF f
o (x

f
p , yp, �̄) =DF f

o (x
f
p , yp) and APCUo(xp, xf

p , yp, �̄) = PCUo(xp, xf
p , yp).

Proof (i) Suppose that (z⇤k, x
v⇤,✓⇤) is an optimal solution of model (9). This solution is also a

feasible solution of model (8). Since ADF f
o (x

f
p , yp, �̄) DF f

o (x
f
p , yp), it is su�cient to show that

this solution is not an optimal solution of model (8). By contradiction, suppose that (z⇤k, x
v⇤,✓⇤) is

an optimal solution of model (8), since �̄<Up, thus xv⇤  �̄xv
p <Upxv

p. Therefore, (ẑk = z⇤k, ✓̂ = �̄)

is a feasible solution of model (13) with objective value �̄<Up, which is a contradiction.

(ii) Assume that (z⇤k,✓
⇤ = Up) is an optimal solution of model (13). Since �̄ � Up, hence �̄xv

p �

Upxv
p. Therefore, (ẑk = z⇤k, x̂

v = Upxv
p, ✓̂ = DF f

o (x
f
p , yp)) is a feasible solution of model (9). Thus,

ADF f
o (x

f
p , yp, �̄) � DF f

o (x
f
p , yp). But, we also know that ADF f

o (x
f
p , yp, �̄)  DF f

o (x
f
p , yp). Hence,

ADF f
o (x

f
p , yp, �̄) =DF f

o (x
f
p , yp). This completes the proof. ⇤

Proposition 4. For the industry biased and unbiased attainable output-oriented plant capacity

utilization in both C and NC technologies, we have:

(i) If �̄<LI , then model (14) is infeasible.

(ii) If LI  �̄<U I , then at least for one observed observation (xp, yp) we have

IADF f
o (x

f
p , yp, �̄)<DF f

o (x
f
p , yp) and IAPCUo(xp, xf

p , yp, �̄)>PCUo(xp, xf
p , yp).

(iii) If U I  �̄, then for every observation (xp, yp) we have IADF f
o (x

f
p , yp, �̄) =DF f

o (x
f
p , yp) and

IAPCUo(xp, xf
p , yp, �̄) = PCUo(xp, xf

p , yp).
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Proof (i) Assume that model (14) is feasible with optimal solution (✓⇤p, z
p⇤
k , xv⇤

p ). Since �̄<LI ,

thus
KX

p=1

xv⇤
p  �̄

KX

p=1

x̄v
p <LI

KX

p=1

x̄v
p.

Therefore, (✓̂ = �̄, ẑpk = zp⇤k , x̂v
p = xv⇤

p ) is a feasible solution of model (15) with objective value ✓̂ =

�̄<LI which is a contradiction.

(ii) Let

IADF f
o (x

f
p , yp, �̄) =DF f

o (x
f
p , yp), p= 1, ...,K.

Also, (✓⇤p, z
p⇤
k , xv⇤

p ) is an optimal solution of model (14) in which ✓⇤p = IADF f
o (x

f
p , yp, �̄) =

DF f
o (x

f
p , yp) and

KX

p=1

xv⇤
p  �̄

KX

p=1

x̄v
p <U I

KX

p=1

x̄v
p.

Therefore, (✓̂ = �̄, ẑpk = zp⇤k , x̂v
p = xv⇤

p ) is a feasible solution of model (16) with objective value ✓̂ =

�̄<U I which is a contradiction.

(iii) Assume that (zp⇤k , xv⇤
p ,✓⇤ =U I) is an optimal solution of model (16). We have

KX

p=1

xv⇤
p  ✓⇤

KX

p=1

x̄v
p  �̄

KX

p=1

x̄v
p.

Therefore, (ẑpk = zp⇤k , x̂v
p = xv⇤

p , ✓̂p = DF f
o (x

f
p , yp)) is a feasible solution of model (14) in which

DF f
o (x

f
p , yp)  IADF f

o (x
f
p , yp, �̄). But, we know that IADF f

o (x
f
p , yp, �̄)  DF f

o (x
f
p , yp). Hence,

DF f
o (x

f
p , yp) = IADF f

o (x
f
p , yp, �̄) and this completes the proof. ⇤

EC.3. Multiple Outputs Empirical Example

EC.3.1. Description of the Sample with Multiple Outputs

As a second sample we draw upon an unbalanced panel of three years of French fruit producers

based on annual accounting data collected in a survey (see Ivaldi et al. (1996) for details). Mainly

two criteria were adapted to select these farms: (i) the production of apples must be positive, and

(ii) the acreage of the orchard is at least five acres. The short panel covers the three successive years

from 1984 to 1986. As a technology, three aggregate inputs produce two aggregate outputs. The
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three inputs are: (i) capital (including land), (ii) labor, and (iii) materials. The two outputs are (i)

the production of apples, and (ii) an aggregate of alternative products. Summary statistics for the

405 observations in total and details on the definitions of all variables are available in Appendix 2

in Ivaldi et al. (1996). Note that the short length of the panel (only three years) justifies the use

of an intertemporal approach that ignores technical change. Table EC.1 presents basic descriptive

statistics for inputs and outputs. Again one striking feature is the large heterogeneity in terms of

size among the di↵erent inputs as well as the outputs.

Table EC.1 Descriptive Statistics for French Fruit Producers (1984-1986)

Variable Trimmed meana Minimum Maximum
Capital (fixed input) 85602.58 8891 500452
Labor (variable input) 229569 79569 1682201
Materials (variable input) 157610.9 19566 1523776
Volume of apple production (output) 2.146273 0.00061 37.98153
Volume of other products (output) 1.37793 0.000672 25.895

Note: a10% trimming level.

EC.3.2. Empirical Results for Firm Level

Tables EC.2 and EC.3 are structured in a similar way to Tables 2 and 3. While Table EC.2 reports

on the biased plant capacity utilization measures DF f
o (x

f , y) and ADF f
o (x

f , y, �̄), Table EC.3

focuses on the unbiased plant capacity utilization measures PCUo(x,xf , y) and APCUo(x,xf , y, �̄).

In each table, the second column reports the standard plant capacity utilization measures, while

the next ten columns describe the attainable plant capacity utilization measures for �̄ varying

between 0.5 and 5 with step size 0.5 (thus, �̄ 2 {0.5,1,1.5,2,2.5,3,3.5,4,4.5,5}). Hence, we some-

what arbitrary assume that variable inputs can be magnified at most fivefold. Obviously, we could

have selected a wider range of values to experiment with �̄. Based on Proposition 2, note that for

129 observations under C and 134 observations under NC �̄ = 0.5 is too small for model (9) to

be feasible. Hence, these observations are not included in the corresponding descriptive statistics

computations.

Analyzing the results in Table EC.2, one can draw the following conclusions. First, on average the

biased plant capacity utilization measure DF f
o (x

f , y) indicates that outputs can be magnified by at
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Table EC.2 Descriptive Statistics of Biased Plant Capacity Utilization

ADF f
o (x

f , y, �̄)

Convex DF f
o (x

f , y) �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 5.415 1.390 3.492 4.673 5.127 5.283 5.339 5.363 5.378 5.389 5.398
Stand. Dev. 4.678 1.005 2.631 3.756 4.369 4.588 4.645 4.652 4.657 4.661 4.664
Minimum 1.000 0.120 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 35.295 4.878 16.287 24.396 29.350 34.735 35.135 35.201 35.266 35.295 35.295

ADF f
o (x

f , y, �̄)

Nonconvex DF f
o (x

f , y) �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 2.891 0.566 1.648 2.172 2.452 2.573 2.727 2.779 2.828 2.851 2.872
Stand. Dev. 2.935 0.490 1.113 1.810 2.202 2.292 2.701 2.778 2.822 2.938 2.936
Minimum 1.000 0.020 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 32.457 2.316 7.936 18.129 19.538 19.538 32.457 32.457 32.457 32.457 32.457

least 5.41 times under C and 2.89 times under NC. Second, there is a lot of variation in DF f
o (x

f , y)

as indicated by the standard deviation and the range is even huge: the maximum increase in

outputs amounts to 35.29 times under C and 32.46 under NC. Third, the biased attainable plant

capacity utilization measure ADF f
o (x

f , y, �̄) increases monotonically in �̄ and on average the output

magnification under C is always higher than under NC. Fourth, for a fivefold increase in variable

inputs (i.e., �̄= 5), we obtain on average a 5.40 output magnification under C and a 2.87 output

magnification under NC. This is very close to the average output magnification computed by the

biased plant capacity utilization measure DF f
o (x

f , y).

Table EC.3 Descriptive Statistics of Unbiased Plant Capacity Utilization

APCUo(x,xf , y, �̄)

Convex PCUo(x,xf , y) �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 0.710 3.164 1.000 0.780 0.735 0.723 0.718 0.715 0.713 0.712 0.712
Stand. Dev. 0.221 2.887 0.000 0.161 0.200 0.212 0.215 0.217 0.218 0.219 0.220
Minimum 0.070 1.011 1.000 0.116 0.080 0.071 0.070 0.070 0.070 0.070 0.070
Maximum 1.000 36.057 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

APCUo(x,xf , y, �̄)

Nonconvex PCUo(x,xf , y) �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 0.691 6.870 1.000 0.836 0.772 0.740 0.715 0.707 0.702 0.701 0.695
Stand. Dev. 0.245 9.114 0.000 0.195 0.221 0.226 0.235 0.238 0.241 0.242 0.243
Minimum 0.097 1.000 1.000 0.172 0.116 0.116 0.116 0.116 0.116 0.097 0.097
Maximum 1.000 53.968 1.000 1.095 1.043 1.028 1.000 1.000 1.000 1.000 1.000

Turning to the analysis of Table EC.3, we can infer the following conclusions. First, on average the

unbiased plant capacity utilization measure PCUo(xf , y) indicates that current outputs make up

71% from maximal plant capacity outputs under C and 69% under NC. Second, the heterogeneity
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in PCUo(xf , y) is large as indicated by the standard deviation and the range is again huge: the

minimum of 7.0% under C and 9.7% under NC is simply very low. Third, the unbiased attainable

plant capacity utilization measure APCUo(x,xf , y, �̄) decreases monotonically in �̄ and on average

APCUo(x,xf , y, �̄) is smaller under C than under NC for �̄ 2 {1,1.5,2,2.5} and the reverse for

�̄2 {3,3.5,4,4.5,5}. Fourth, for a fivefold increase in variable inputs (i.e., �̄= 5), APCUo(x,xf , y, �̄)

is getting close to PCUo(x,xf , y) in the C case (a di↵erence of only about 0.2%), while this gap is

slightly larger in the NC case (a di↵erence of about 0.4%).

Table EC.4 reports descriptive statistics on the three critical points Lp, Mp and Up as defined

in Definition 6. The following conclusions can be inferred. First, the average values for Lp and Mp

are rather moderate, whereby the values are each time lower under C than under NC. This leads

to rather plausible results for the input-oriented plant capacity measure PCUi(x,xf , y). Under C

one needs on average 1.73 more variable inputs with current outputs than with zero outputs, while

under NC one employs 2.54 more variable inputs with current outputs than with zero outputs.

Second, on average the critical point Up is rather moderate: one only needs 2.60 times more

variable inputs than currently in use to reach maximum plant capacity outputs under C, while one

can magnify variable inputs by just a factor 2.02 under NC. These amounts are very reasonable

compared to our prior value of allowing for only a fivefold increase in variable inputs at most. Third,

the variation in this factor Up is rather substantial. For instance, at the third quartile we obtain

a 3.30 magnification factor under C and only a 2.60 magnification factor under NC. The maximal

magnification factor of 8.54 and 6.79 under C respectively NC are very similar in magnitude and

both are clearly implausible in reality. These very strong requirements on the availability of variable

inputs clearly cast doubts on the plausibility of the traditional output-oriented plant capacity

measure. Fourth, the last column reporting the di↵erence UC
p �UNC

p reveals that on average the

variable inputs under C should be increasing at least 0.57 times more than under NC. Furthermore,

there is quite a bit of heterogeneity in this di↵erence UC
p � UNC

p . Thus, in short, while these

magnification factors for the variable inputs are clearly implausible, it seems that the non-convex

results are the least implausible.
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Table EC.4 Descriptive Statistics for Three Critical Points

Convex Nonconvex
LC

p MC
p UC

p PCUi(.) LNC
p MNC

p UNC
p PCUi(.) UC

p �UNC
p

Average 0.423 0.588 2.597 1.734 0.431 0.830 2.022 2.540 0.575
Stand.Dev. 0.195 0.192 1.621 1.636 0.202 0.207 1.134 2.157 1.313
Minimum 0.047 0.187 0.513 1.000 0.047 0.270 0.386 1.000 -3.214
1st Quartile 0.281 0.441 1.458 1.093 0.285 0.680 1.058 1.380 -0.149
Median 0.406 0.573 2.093 1.260 0.415 0.955 1.704 1.799 0.332
3rd Quartile 0.542 0.717 3.305 1.659 0.556 1.000 2.598 2.628 1.158
Maximum 1.000 1.000 8.544 21.141 1.000 1.000 6.786 21.141 5.645

EC.3.3. Empirical Results for Industry Level

Tables EC.5 and EC.6 are structured in a way similar to the corresponding firm level

tables. While Table EC.5 reports on the industry biased plant capacity utilization measure

IADF f
o (x

f , y, �̄), Table EC.6 focuses on the industry unbiased plant capacity utilization measures

IAPCUo(x,xf , y, �̄). Again, we have ten columns describing the industry attainable plant capacity

utilization measures for �̄ varying between 0.5 and 5 with step size 0.5. New is that the three

last rows of Tables EC.5 and EC.6 show the number of observed units that have the amounts

ADF f
o (.)< IADF f

o (.), ADF f
o (.) = IADF f

o (.) and ADF f
o (.)> IADF f

o (.), respectively. Thus, these

lines focus on comparing firm level and industry level results.

Table EC.5 Descriptive Statistics of Biased Industry Plant Capacity Utilization

IADF f
o (x

f , y, �̄)

Convex �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 3.641 5.189 5.373 5.412 5.415 5.415 5.415 5.415 5.415 5.415
Stand.Dev. 5.130 4.815 4.697 4.680 4.678 4.678 4.678 4.678 4.678 4.678
Minimum 0.002 0.002 0.565 0.921 1.000 1.000 1.000 1.000 1.000 1.000
Maximum 35.073 35.295 35.295 35.295 35.295 35.295 35.295 35.295 35.295 35.295
APCU f

o (.)< IAPCU f
o (.) 115 300 220 204 161 113 91 68 55 39

APCU f
o (.) = IAPCU f

o (.) 0 15 48 157 244 292 314 337 350 366
APCU f

o (.)> IAPCU f
o (.) 161 90 137 44 0 0 0 0 0 0

IADF f
o (x

f , y, �̄)

Nonconvex �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 2.191 2.833 2.891 2.891 2.891 2.891 2.891 2.891 2.891 2.891
Stand.Dev. 3.173 2.967 2.935 2.935 2.935 2.935 2.935 2.935 2.935 2.935
Minimum 0.002 0.156 1 1 1 1 1 1 1 1
Maximum 32.457 32.457 32.457 32.457 32.457 32.457 32.457 32.457 32.457 32.457
APCU f

o (.)< IAPCU f
o (.) 142 275 238 170 114 61 43 25 21 9

APCU f
o (.) = IAPCU f

o (.) 13 101 167 235 291 344 362 380 384 396
APCU f

o (.)> IAPCU f
o (.) 116 29 0 0 0 0 0 0 0 0
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Analyzing these results in Table EC.5, we infer the following conclusions. First, the biased indus-

try attainable plant capacity utilization measure IADF f
o (x

f , y, �̄) increases almost monotonically

in �̄ and on average the output magnification under C is always higher than under NC. Second,

IADF f
o (x

f , y, �̄) becomes stationary after �̄ reaches the value 2.5 under C, and the value 1.5 under

NC. Third, though IADF f
o (x

f , y, �̄)
>
=
<
ADF f

o (x
f
p , yp, �̄), for the majority of observations we find

ADF f
o (x

f
p , yp, �̄) < IADF f

o (x
f , y, �̄) till �̄ reaches the value 2 under C and just 1.5 under NC,

and ADF f
o (x

f
p , yp, �̄) = IADF f

o (x
f , y, �̄) afterward for the majority of observations. Furthermore,

ADF f
o (x

f
p , yp, �̄)> IADF f

o (x
f , y, �̄) becomes 0 when IADF f

o (x
f , y, �̄) becomes stationary.

Table EC.6 Descriptive Statistics of Unbiased Industry Plant Capacity Utilization

IAPCUo(x,xf , y, �̄)

Convex �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 44.056 4.683 0.728 0.712 0.710 0.710 0.710 0.710 0.710 0.710
Stand.Dev. 99.170 40.687 0.239 0.222 0.221 0.221 0.221 0.221 0.221 0.221
Minimum 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070 0.070
Maximum 569.071 569.071 1.771 1.085 1 1 1 1 1 1
APCU f

o (.)< IAPCU f
o (.) 161 90 137 44 0 0 0 0 0 0

APCU f
o (.) = IAPCU f

o (.) 0 15 48 157 243 287 308 330 343 359
APCU f

o (.)> IAPCU f
o (.) 115 300 220 204 161 113 91 68 55 39

IAPCUo(x,xf , y, �̄)

Nonconvex �̄= 0.5 �̄= 1 �̄= 1.5 �̄= 2 �̄= 2.5 �̄= 3 �̄= 3.5 �̄= 4 �̄= 4.5 �̄= 5
Average 34.216 0.792 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691
Stand.Dev. 78.895 0.605 0.245 0.245 0.245 0.245 0.245 0.245 0.245 0.245
Minimum 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097 0.097
Maximum 569.071 6.418 1 1 1 1 1 1 1 1
APCU f

o (.)< IAPCU f
o (.) 116 29 0 0 0 0 0 0 0 0

APCU f
o (.) = IAPCU f

o (.) 12 101 167 235 291 344 362 380 384 396
APCU f

o (.)> IAPCU f
o (.) 143 275 238 170 114 61 43 25 21 9

Turning to the results in Table EC.6, the following deductions emerge. First, the unbiased

industry attainable plant capacity utilization measure IAPCU f
o (x,x

f , y, �̄) decreases almost mono-

tonically in �̄ and on average IAPCUo(x,xf , y, �̄) is smaller under NC than under C. Second,

IAPCU f
o (x,x

f , y, �̄) becomes stationary after �̄ reaches the value 2.5 under C, and the value 1.5

under NC. Third, while IAPCUo(x,xf , y, �̄)
>
=
<
APCUo(x,xf , y, �̄), for the majority of observations

we find APCUo(x,xf , y, �̄)> IAPCUo(x,xf , y, �̄) till �̄ reaches the value 2 under C and only 1.5
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under NC, and APCUo(x,xf , y, �̄) = IAPCUo(x,xf , y, �̄) afterward for the majority of observa-

tions. Furthermore, APCUo(x,xf , y, �̄)< IAPCUo(x,xf , y, �̄) becomes 0 when IAPCUo(x,xf , y, �̄)

becomes stationary.

By solving the models in Definition 9 we obtain the two critical points: under C, LI,C = 0.3190

and U I,C = 2.1179, and under NC, LI,NC = 0.320 and U I,NC = 1.4103. We make three comments.

First, while the lower bound is close to identical under C and NC, the upper bound under NC

is substantially lower than under C. Second, based on Proposition 4, for �̄ � 2.1179 in C case

and �̄� 1.4103 in NC case, we have IADF f
o (x

f
p , yp, �̄) =DF f

o (x
f
p , yp) and IAPCUo(xp, xf

p , yp, �̄) =

PCUo(xp, xf
p , yp). Thus, as can be seen in Tables EC.5 and EC.6, the six last columns in the C

case and eight last columns in the NC case contain identical results. Third, it makes no sense to

compare these two critical points LI and U I with, for instance, the averages of the corresponding

points in the firm models Lp and Up.

Instead, Table EC.7 reports the amount of increase of aggregate variable inputs such that all

units obtain the maximum of the standard plant capacity utilization measure DF f
o (x

f
p , yp) from

both the perspective of firm and industry levels in both the C and NC cases. The second column

shows the sum of observed variable inputs. The sum of needed variable inputs with the firm level

model (9) under C and NC is reported in the third and fifth columns, respectively. The columns

four and six present the sum of needed variable inputs with the industry level model (14) under

C and NC, respectively. The second part of the table shows the magnification factors computed

by taking the ratios of the sum of needed variable inputs to the sum of observed variable inputs

under firm and industry models and under C and NC. The rows denote the two variable inputs:

Labor and Materials.

Analyzing the results in Table EC.7, one can deduce the following conclusions. First, firm models

need substantially more amounts of variable inputs than industry models. Second, C models need

substantially more amounts of variable inputs than NC models. Third, while the industry models

with a less than doubling of variable inputs under NC and a doubling of variable inputs under
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Table EC.7 Amounts of Variable Inputs Across Models

Convex Nonconvex
Variable inputs

PK

p=1 x
v
p

PK

p=1Upxv
p

PK

p=1U
Ixv

p

PK

p=1Upxv
p

PK

p=1U
Ixv

p

Labor 101923208 249781392 215863162.2 182837273.8 143742300.2
Materials 74548523 169235569 157886316.9 123199828.2 105135782

Convex Nonconvex

Variable inputs
PK

p=1 Upx
v
pPK

p=1 xv
p

PK
p=1 UIxv

pPK
p=1 xv

p

PK
p=1 Upx

v
pPK

p=1 xv
p

PK
p=1 UIxv

pPK
p=1 xv

p

Labor 2.4506822 2.1179 1.793872832 1.4103
Materials 2.2701398 2.1179 1.652612596 1.4103

C are not necessarily incredible, the firm models with a doubling by a factor of almost 1.65 at

minimum and a 2.45 fold magnification at worst are clearly less credible.

In conclusion, we deduce the following conclusions. First, firm models necessitate unlikely

amounts of variable inputs, while the results for industry models are not a priori completely unre-

alistic. Second, NC models involve less unrealistic amounts of variable input magnifications than

C models. But, while some may put their hope in the industry models, it is crucial to remember

the limitations already spelled out at the end of Subsection 4.3.


