

19th International

Configuration Workshop

Proceedings of

the 19th International Configuration Workshop

Edited by

Linda L. ZHANG and Albert HAAG

September 14 – 15, 2017

La Defense, France

Organized by

ISBN: 978-2-9516606-2-5

IESEG School of Management

Socle de la Grande Arche

1 Parvis de La Défense

92044 Paris La Défense cedex

France

Linda L. ZHANG and Albert HAAG, Editors

Proceedings of the 19th International Configuration Workshop

September 14 – 15, 2017, La Défense, France

Chairs

Linda L ZHANG, IESEG School of Management, Lille-Paris, France

Albert HAAG, Albert Haag – Product Management R&D, Germany

Program Committee

Michel ALDANONDO, Mines Albi, France

Tomas AXLING, Tacton Systems AB, Sweden

Andres BARCO, Universidad de San Buenaventura-Cali, Colombia

Andreas FALKNER, Siemens AG, Austria

Alexander FELFERNIG, Graz University of Technology, Austria

Cipriano FORZA, Universita di Padova, Italy

Gerhard FRIEDRICH, Alpen-Adria-Universitaet Klagenfurt, Austria

Albert HAAG, Albert Haag – Product Management R&D, Germany

Alois HASELBOECK, Siemens AG, Austria

Petri HELO, University of Vassa, Finland

Lothar HOTZ, HITeC e.V. / University of Hamburg, Germany

Lars HVAM, Technical University of Denmark, Denmark

Dietmar JANNACH, TU Dortmund, Germany

Thorsten KREBS, Encoway GmbH, Germany

Katrin KRISTJANSDOTTIR, Technical University of Denmark, Denmark

Yiliu LIU, Norwegian University of Science and Technology, Norway

Anna MYRODIA, Technical University of Denmark, Denmark

Brian RODRIGUES, Singapore Management University, Singapore

Sara SAFIE, Technical University of Denmark, Denmark

Alfred TAUDES, Vienna University of Economics & Business, Austria

Élise VAREILLES, Mines Albi, France

Yue WANG, Hang Seng Management College, Hong Kong

Linda ZHANG, IÉSEG School of Management, France

Organizational Support

Céline LE SUÜN, IÉSEG School of Management, France

Julie MEILOX, IÉSEG School of Management, France

Preface

As a special design activity, product configuration greatly helps the specification of

customized products. It has been a fruitful domain for applying and developing advanced

artificial intelligence (AI) techniques. Configuration tasks demand powerful knowledge-

representation formalisms and acquisition methods to capture the great variety and

complexity of configurable product models. In addition, efficient reasoning is required to

provide intelligent interactive behavior in contexts such as solution search, satisfaction of

user preferences, personalization, optimization, and diagnosis.

The main goal of the workshop is to promote high-quality research in all technical areas

related to configuration. The workshop is of interest both for researchers working in the

various fields of AI and product design as well as for industry representatives interested in

the relationship between configuration technology and the business problem behind

configuration and mass customization. It provides a forum for presentation of original

methods and the exchange of ideas, evaluations, and experiences.

As such, this year's Configuration Workshop again aims at providing a stimulating

environment for knowledge-exchange among academia and industry and thus building a solid

basis for further developments in the field.

Furthermore, to encourage the continuous efforts, same as the past several workshops, the

workshop this year sets a Best Student Paper Award (applicable to PhD candidates and

bachelor and MSc students) and a Best Paper Award (applicable to all other participants than

PhD candidates and bachelor and MSc students). The two papers are selected in a two-phase

audience vote at the end of the workshop.

Linda L ZHANG AND Albert HAAG

Contents

Configuration solving

Learning constraint satisfaction heuristics for configuration problems

Giacomo Da Col and Erich Teppan
8

Techniques for solving large-scale product configuration problems with ASP

Gottfried Schenner and Richard Taupe
12

Assessing the complexity expressed in a variant table

Albert Haag
20

ICONIC: INteractive CONstraInt-based configuration

Elise Vareilles, Helene Fargier, Michel Aldanondo and Paul Gaborit
28

Tools and applications

Features of 3D graphics in sales configuration

Petri Helo, Sami Kyllönen and Samuli Pylkkönen
33

Increased accuracy of cost-estimation using product configuration systems

Jeppe Bredahl Rasmussen, Lars Hvam and Niels Henrik Mortensen
39

Configuration and response to calls for tenders: an open bid configuration model

Delphine Guillon, Abdourahim Sylla, Elise Vareilles, Michel Aldanondo, Eric Villeneuve,

Christophe Merlo, Thierry Coudert and Laurent Geneste

46

Configuration knowledge representation and diagnosis

Automated question generation from configuration knowledge Bases

Amal Shehadeh, Alexander Felfernig and Müslüm Atas
54

ASP-based knowledge representations for IoT configuration scenarios

Müslüm Atas, Paolo Azzoni, Andreas Falkner, Alexander Felfernig, Seda Polat

Erdeniz and Christoph Uran

62

Cluster-based constraint ordering for direct diagnosis

Muesluem Atas, Alexander Felfernig, Seda Polat Erdeniz, Stefan Reiterer, Amal Shehadeh

and Trang Tran

68

Review and comparisons

Modeling and configuration for Product-Service Systems: State of the art and future

research

Daniel Schreiber, Paul Christoph Gembarski and Roland Lachmayer

72

Complexity of configurators relative to integrations and field of application

Katrin Kristjansdottir, Sara Shafiee, Lars Hvam, Loris Battistello and Cipriano Forza
80

Copyright © 2017 for the individual papers by the papers' authors. Copying permitted for

private and academic purposes. This volume is published and copyrighted by its editors.

http://perso.enstimac.fr/~vareille
http://www.wapice.com/
http://perso.mines-albi.fr/~dguillon/index_english.html
http://www.siemens.com/
http://www.tugraz.at/
http://www.tugraz.at/
http://www.fh-kaernten.at/
http://www.dtu.dk/

Learning Constraint Satisfaction Heuristics
for Configuration Problems

Giacomo Da Col and Erich C. Teppan 1

Abstract. In this paper, we propose an approach for learning heuris-
tics for constraint satisfaction problems in general and for configu-
ration problems in particular. The genetic algorithm based learning
approach automatically derives variable ordering, value ordering and
pruning strategies for the exploitation by constraint solvers. We eval-
uate our approach with respect to the combined configuration prob-
lem, which is a generic configuration problem including sub prob-
lems such as graph coloring or bin packing. The results show that one
of the best performing heuristics identified by our approach performs
equally well compared to the expert heuristic defined in cooperation
with our project partners from Siemens.

1 Introduction
Configuration problems [14, 18] are classical planning problems
where elements have to be connected such that all user requirements
are fulfilled and no technical constraints are violated. The configu-
ration of products and services, or more generally the configuration
of systems, is an important task and one of the major challenges in
many production regimes such as mass customization, configure-to-
order, or assembly-to-order [2, 19]. On the one hand, the basic goal
is to provide customers with products and services that fulfill all their
requirements. On the other hand, these products and services shall be
offered at mass production efficiency. In order to fulfill these goals,
systems are assembled by pre-designed and pre-fabricated compo-
nents where such components themselves may be assembled by com-
ponents.

A solution for a configuration problem is a system description
(i.e. a configuration) that satisfies all requirements and contains all
the information needed for manufacturing or service provision in
an explicit, succinct, and simple to process format. To accomplish
this, knowledge-based approaches are highly suitable and, among
those, constraint-based approaches have a long and successful his-
tory [4, 12, 11].

Configuration problems are most commonly represented as finite
discrete constraint satisfaction problems. A constraint satisfaction
problem (CSP) is defined as a triple 〈V,D = {dom(v) : v ∈ V }, C〉
whereby V is a set of variables, D is the set of domains of the vari-
ables in V and C is a set of constraints over variables in V . A solu-
tion to a CSP is an assignment v := d ∈ dom(v) for all v ∈ V such
that all constraints c ∈ C are fulfilled. A CSP comprising only fi-
nite domains is called finite. If all domains consist of discrete values
(commonly integers), the CSP is called discrete.

The size of the search space of finite discrete CSPs is O(n|V |),
where n is the maximum domain size. Without the usage of effec-

1 Alpen-Adria Universität Klagenfurt, Austria, email: giacomo.da@aau.at,
erich.teppan@aau.at

tive heuristics, solutions are out of reach for real-world sized prob-
lem instances. In order to effectively traverse the large search space,
state-of-the-art constraint solvers offer a set of built-in problem-
independent heuristics with which the solvers can be parametrized.
Though, for hard real-world problems problem-dependent heuristics
engineered by domain experts are typically needed (see for example
[22]).

A particularity of configuration problems rooting in the dynamics
and flexibility of nowadays production environments is that they of-
ten mutate over time. Thus, although not completely changing their
nature, configuration problem variants come up from time to time
and replace old problem variants. Reasons for that can be chang-
ing product portfolios, availability of newer technical components
with different technical requirements and/or extended possibilities,
change of the machinery in operation or legislation amendments.

A big defiance arising out of this is that already well-established
heuristics are not applicable any more and heuristic (re-)engineering
for adapting to a new problem variant is costly. Also, it is not sure
if the already existing heuristics can be adapted or if a new heuris-
tic must be designed from scratch. In order to cope with this is-
sue, a learning approach for automatically creating effective problem
heuristics for configuration problems is highly desirable.

In this paper, we propose a heuristic learning framework for cre-
ating problem-dependent heuristics for configuration problems ex-
pressed as CSPs. In particular, we describe how to represent the
learning problem as a genetic algorithm. Evaluations are made with
respect to the combined configuration problem (CCP), which consti-
tutes a hard problem in the Answer Set Competition2. The CCP is
a generic configuration problem including bin packing, vertex color-
ing, assignment and path sub problems.

2 Learning Approach

Our approach for learning CSP heuristics, with a special focus on
configuration problems, operates on the notion of variable groups.
A variable group is a set of variables that play the same role in the
problem. This can be a single variable, in the simplest case, or an
array of variables. Variable groups can be syntactically identified in
the formal problem representation.

Example: Given is a set of processes and a set of hosts in a single-
hop network. As the type of network is single-hop and the number
of built-in network interfaces is predetermined, each host can only
be connected to a limited number of other hosts. Furthermore, hosts
can run only a limited number of processes in parallel. In order to
fulfill their tasks, processes have to communicate with a predefined

2 http://aspcomp2015.dibris.unige.it/

8

set of other processes running on the same or connected hosts. Hav-
ing the information about which processes have to communicate to
each other, the configuration problem consists in deciding for each
processes on which host it runs and how hosts are connected to each
other in order to ensure all inter-process communications.

Hence, besides some constraints, a CSP model (e.g. in minizinc3)
would incorporate two variable groups. One for capturing which pro-
cess runs on which host (onHost) and a second group of Boolean
variables for expressing which hosts are connected to each other, i.e.:

array[1..p] of var 1..h: onHost;
array[1..h,1..h] of var 0..1: conn;

Clearly, the number of variables in a variable group (i.e. the num-
ber of processes p and the number of hosts h in the above exam-
ple) is varying in different problem instances. However, the set of
variable groups remains the same for every instance. Hence, heuris-
tics operating on variable groups rather than on individual variables
are instance-independent, i.e. they can be applied on any instance of
a particular problem. This leads us to the notion of variable group
heuristics:

Definition 1 Given a CSP = 〈V,D,C〉 and its set of variable
groups GP = {g : g ⊆ V } with

⋃
GP = V and for all

gi, gj ∈ GP : (i 6= j)→ (gi ∩ gj = ∅), a variable group heuristic
specifies:

• a basic search algorithm,
• a total order of GP ,
• for each g ∈ GP a value ordering strategy, and
• for each g ∈ GP a search limit.

The basic search algorithm specifies the search regime used by
the underlying constraint solver. State-of-the-art constraint solvers
support a set of different search algorithms such as chronological
or non-chronological backtracking search [15], local search methods
[7] or clause-learning approaches [16].

The total order of GP defines a partial ordering of constraint vari-
ables, which is the order in which constraint variables should be pro-
cessed by the constraint solver.

The value ordering strategy for a group g ∈ GP specifies for each
v ∈ g in which order domain values are tried. Classic value ordering
strategies are ascending, descending or random order.

The search limit for a group g ∈ GP specifies for each v ∈ g
when the branch of the search tree below v is cut off instead of being
searched.

2.1 Prototype
For learning configuration problem heuristics we have built a genetic
algorithm [13] on top of the Jacop4 constraint solving framework.
Conforming to Definition 1, in our prototype a heuristic is repre-
sented by four chromosomes (see Figure 1): a single gene chromo-
some for the basic search algorithm, and three chromosomes with
|GP | many genes each for defining the order number, value ordering
strategy and search limit of each group.

As a search algorithm our prototype allows beam search or limited
discrepancy search, which already showed to be effective for large

3 http://www.minizinc.org/
4 http://jacop.osolpro.com/

Figure 1. Chromosomes and genes in the genetic algorithm

and/or complex problems [5, 8, 9, 10]. Whereas beam search lim-
its the number of guesses for a variable (beam width), limited dis-
crepancy search limits the number of faulty variable guesses along
the search path. Depending on the search algorithm, beam width
or maximum discrepancies are defined for each variable group by
means of the search limit. A search limit is expressed as 2x with
x being a number between 0 and 10. Hence, possible search limits
are 1, 2, 4, . . . , 512, 1024. This is to avoid using too many possible
values in the genetic algorithm whilst still offering a broad choice
of parameters. Note that by using high search limits search becomes
complete because of search limits are not reached anymore.

For the value selection strategies of the variable groups we allow
all four strategies already built-in the Jacop constraint solver. This is:
minimum value first, maximum value first, the value in the middle of
a domain first, and random.

In our prototype, we use the basic genetic algorithm provided by
the Jenes library5. The fitness function calculates the fitness value
f(h) of a heuristic h as the sum of performances measured on a set
of test instances, i.e.

∑numInstances
i=1 performance(h, i). Hereby,

performance(h, i) = 0 if i could be solved before a timeout oc-
curred. If a timeout occurred, the performance is calculated as the
number of wrong decisions measured divided by the number of total
decisions made on i, i.e. performance(h, i) = wrong(h,i)

total(h,i)
. Hence,

the best achievable fitness value f(h) is 0, which means that all test
instances could solved by applying heuristic h within time restric-
tions. The worst possible fitness value is equal to the number of in-
stances in the test set, which is produced when every single decision
for every instance was wrong.

The learning procedure operating on top of the fitness function is
as follows:

1. A first population of heuristics is randomly generated, the fitness
value f(h) of every heuristic h ∈ population is calculated, and
the heuristics are ordered with respect to that value.

2. Then, steps (a)-(c) are repeated until a complete new population
has been generated:

(a) Select a pair of parent heuristics from the population. The prob-
ability of a heuristic h being selected is f(h)∑|population|

i=1 f(i)
.

(b) Two children heuristics are created by performing a single-
point crossover on the selected parent heuristics with a prede-
fined probability pc. If the crossover does not take place, the
children are exact copies of the respective parents.

5 http://jenes.intelligentia.it/

9

(c) Perform a random mutation on the new children with probabil-
ity pm. If a mutation is performed, either only a single gene is
changed (probability = 0.5) or one gene in each chromosome is
changed randomly.

3. The old population is replaced by the new one.
4. If the predefined maximum number of generations is reached the

learning procedure terminates, if not, it starts over again with step
(2).

By treating the order number chromosome as a permutation chro-
mosome, the Jenes framework ensures that each group has a unique
order number. This is accomplished by using a special permutation-
crossover operator that restores uniqueness of the order numbers af-
ter crossover and a special permutation-mutation operator that swaps
the values of two genes instead of changing a single gene [17].

3 Evaluation

The problem we address in our evaluation is the combined config-
uration problem (CCP)6. This problem is a good candidate for the
evaluation because it is composed of various sub problems often oc-
curring in different configuration problems. It was presented for the
first time in the ASP competition 20151 and originates in real-world
domains like railway safety [6]. The CCP can be defined as follows:

Definition 2 A CCP instance is an eight-tuple
〈G,H,P1, P2, w, x, y, z〉 that consists of:

• the bipartite graph G = (A,B,E),
• the directed acyclic graph H = (V ∪B,F) whereby each vertex

in V ∪B has a positive size ∈ N,
• two disjoint paths P1 and P2 in H , and
• four constants w, x, y, z ∈ N.

A solution for a CCP instance is a triple 〈α, β, γ〉 with:

1. A coloring function α : V ∪B → {1, . . . , w} that assigns to each
vertex in V ∪B one color from {1, . . . , w}, such that:

• vertices from different paths must have different colors, and

• for all vertices v1 and v2 with the same color there must exist a
path from v1 to v2 (or vice-versa) such that each vertex on the
path has the same color.

2. A packing function β : V ∪ B → {1, . . . , w ∗ y} that assigns to
every vertex in V ∪B a bin in {1, . . . , w ∗ y}, whereby:

• there are exactly y bins for each of w possible colors,

• a bin can only contain vertices of the same color, and

• for each bin the total sum of vertex sizes does not exceed the
bin size z.

3. An assignment function γ : B → A that assigns to every border
element b ∈ B an area a ∈ A, such that:

• (a, b) ∈ E,

• no area has assigned more than z border elements, and

• all border elements of an area must have the same color.

6 The benchmark and the source-code can be found at https://goo.gl/F5ZGpK

To represent the CCP as a CSP, we have two variables for each
vertex in V ∪ B, for capturing its color and its bin respectively. For
each vertex in B there is an additional variable for area assignment.
These variables naturally form three variable groups.

In cooperation with domain experts from Siemens, an effective
heuristic for the CCP was developed by hand. In the following we
refer to this solving strategy as the hand-crafted heuristic. In the style
of Definition 1, the hand-crafted heuristic can be outlined as:

• Limited discrepancy search as search algorithm.
• Variable groups are ordered as follows: First, the area assignment

variables are to be processed, followed by the coloring variables,
and in the end the bin packing variables are to be processed.

• The value choice is random for coloring and assignment variables.
For bin packing variables the minimum value is chosen first.

• The search limit for all the variable groups is 6.

The benchmark for the evaluation consists of 23 smallest in-
stances taken from the ASP competition 2015. The instances are
ordered by number of vertices. Typically, an increased number of
vertices, which typically reflects the hardness of the instance [6].

The benchmark contains two types of instances. The first type is
referred to as real, since the directed acyclic graph is based on real-
world railway track layouts. The second type is referred to as grid,
since the directed acyclic graph follows a grid pattern.

We divided the benchmark instances into one learning set and two
test sets. The learning set consists of the 11 smallest real instances
(roughly 50% of all instances).

Our prototype discussed in the last section was run with an initial
population of 10 individuals and a generation limit of 15. The prob-
abilities for crossover and mutation were pc = 0.8 and pm = 0.4
respectively.The maximum allowed solving time for the fitness eval-
uation was 10 seconds.

In the end of the learning phase, 8 out of 10 heuristics were able
to solve all the learning instances. With respect to solving time, we
tested the best learned heuristics on two test sets against the hand-
crafted heuristic and the famous most-constrained-variable heuristic.
The maximum allowed solving time before a timeout (t/o) occurred
was set to 100 seconds. The first test set consists of the 5 remaining
real instances. The second test set consists of 7 grid instances.

The results are summarized by Tables 1 and Table 2. Table 1
shows the results on the real instances. With the most-constrained-
variable heuristic it is not possible to solve any of the instances. The
hand-crafted heuristic shows good performance, being able to solve
all the instances with a maximum runtime of 28 seconds. Half of the
learned heuristics, namely learned 0, 3, 6 and 7 also lead to a so-
lution for all instances. Furthermore, the solving time is comparable
with the hand-crafted approach. The other learned heuristics did not
perform well as they produced at least one timeout.

Table 2 shows the results on the second test set. In this case the
most-constrained-variable heuristic leads to a solution for some of
the instances, but loses effectiveness as the number of vertices grows.
On the contrary, the hand-crafted heuristic again performs very well
such that also all grid instances can be solved within time limits.
Among the learned heuristics, learned 1, 2, 3 and 4 perform well in
that all instances can be solved. Moreover, the needed solving time
is lower compared to the hand-crafted heuristic.

Taking the performance of both test sets into account, learned 3
heuristic performed best. Hence, our approach produced an heuristic
that performs similarly well as the hand-crafted heuristic and is even
slightly better the second test set. The problem-independent most-
constrained-variable heuristic performed overall worst.

10

r80 r81 r82 r98 r102
most-constr t/o t/o t/o t/o t/o

hand-crafted 12 15 13 24 28
learned 0 13 13 11 21 27
learned 1 13 12 t/o 23 26
learned 2 12 13 t/o 22 26

learned 3 12 13 13 22 29
learned 4 13 13 t/o 21 27
learned 5 t/o 13 49 58 29

learned 6 13 12 14 25 36
learned 7 14 12 12 27 31

Table 1. Solving time (secs) on the real instances

g16 g25 g36 g49 g64 g81 g100
most-constr 0 8 2 t/o t/o t/o t/o

hand-crafted 0 0 31 32 36 40 50
learned 0 0 0 1 t/o t/o t/o 28

learned 1 0 0 2 3 7 15 29
learned 2 0 0 1 3 7 14 29
learned 3 0 1 2 4 7 14 27
learned 4 0 0 2 3 7 14 31
learned 5 t/o 0 1 3 6 t/o t/o
learned 6 0 1 t/o t/o 7 t/o 56
learned 7 0 0 1 3 t/o 14 30

Table 2. Solving time (secs) on the grid instances

Analysis of the learned 3 heuristic revealed some interesting in-
sights. Technically, beam search was used but as the search limit
was set to 29 actually a complete search was performed. The vari-
able groups were differently ordered compared to the hand-crafted
heuristic: First, the bin packing variables are processed with a ran-
dom value selection strategy, then the area assignment variables are
processed with a random value selection strategy, and coloring vari-
ables are processed only as the last ones using the value in the mid-
dle of a variable domain as the first. Please note that both heuristics,
learned 3 and hand-crafted, use a random value strategy for the first
two variable groups.

4 Conclusions

In this paper we presented a genetic algorithm for learning constraint
satisfaction heuristics for configuration problems. First evaluations
performed on benchmark instances of the generic combined configu-
ration problem are highly promising. Our learning approach was able
to come up with heuristics that are capable to outperform the famous
most-constrained-variable heuristic and can at least keep up with a
hand-crafted expert heuristic created in cooperation with project part-
ners from Siemens.

Imposed future works include a more fine-grained grouping of
variables (that does not base just on the formal problem represen-
tation of the CSP), and the application of the approach to different
types of problems like job-shop scheduling (e.g.: [1]). Furthermore,
instead of learning heuristics for combinatorial problems, the pre-
sented approach might be adapted for the automatic calculation of
utilities in knowledge-based recommender systems (e.g.: [3, 21, 20]).

REFERENCES
[1] Giacomo Da Col and Erich C. Teppan, Declarative Decomposition and

Dispatching for Large-Scale Job-Shop Scheduling, 134–140, Springer
International Publishing, Cham, 2016.

[2] A. Felfernig, G. Friedrich, and D. Jannach, ‘Conceptual modeling for
configuration of mass-customizable products’, Artificial Intelligence in
Engineering, 15(2), 165–176, (2001).

[3] A. Felfernig, M. Mairitsch, M. Mandl, M. Schubert, and E. Tep-
pan, ‘Utility-based repair of inconsistent requirements’, in Proceed-
ings of the 22nd Int. Conf. on Industrial, Engineering and Other
Applications of Applied Intelligent Systems: Next-Generation Applied
Intelligence, IEA/AIE ’09, pp. 162–171, Berlin, Heidelberg, (2009).
Springer-Verlag.

[4] G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and
M. Stumptner, ‘Configuring large systems using generative constraint
satisfaction’, IEEE Intelligent Systems, 13(4), 59–68, (July 1998).

[5] David Furcy and Sven Koenig, ‘Limited discrepancy beam search’, in
IJCAI, pp. 125–131, (2005).

[6] Martin Gebser, Anna Ryabokon, and Gottfried Schenner, Combining
Heuristics for Configuration Problems Using Answer Set Program-
ming, 384–397, Springer International Publishing, Cham, 2015.

[7] Michel Gendreau and Jean-Yves Potvin, Handbook of Metaheuristics,
Springer US, 2010.

[8] M. L. Ginsberg, W. D. Harvey, J. M. Crawford, A. K. Jonsson, and
J. C. Pemberton. System and process for job scheduling using limited
discrepancy search, May 30 2000. US Patent 6,070,144.

[9] William D. Harvey and Matthew L. Ginsberg, ‘Limited discrepancy
search’, in Proceedings of the 14th International Joint Conference on
Artificial Intelligence - Volume 1, IJCAI’95, pp. 607–613, San Fran-
cisco, CA, USA, (1995). Morgan Kaufmann Publishers Inc.

[10] Abir Ben Hmida, Mohamed Haouari, Marie-José Huguet, and Pierre
Lopez, ‘Discrepancy search for the flexible job shop scheduling prob-
lem’, Computers & Operations Research, 37(12), 2192–2201, (2010).

[11] Dietmar Jannach and Markus Zanker, ‘Modeling and solving dis-
tributed configuration problems: A csp-based approach’, IEEE Trans.
on Knowl. and Data Eng., 25(3), 603–618, (March 2013).

[12] Daniel Mailharro, ‘A classification and constraint-based framework for
configuration’, Artif. Intell. Eng. Des. Anal. Manuf., 12(4), 383–397,
(September 1998).

[13] Melanie Mitchell, An introduction to genetic algorithms, MIT Press,
1996.

[14] Sanjay Mittal and Felix Frayman, ‘Towards a generic model of con-
figuraton tasks’, in 11th International Joint Conference on AI - Vol. 2,
IJCAI’89, pp. 1395–1401, San Francisco, CA, USA, (1989). Morgan
Kaufmann Publishers Inc.

[15] Francesca Rossi, Peter van Beek, and Toby Walsh, Handbook of Con-
straint Programming, 1st Edition, Elsevier Science, 2006.

[16] J. P. Marques Silva and K. A. Sakallah, ‘Conflict analysis in search al-
gorithms for satisfiability’, in Proceedings Eighth IEEE International
Conference on Tools with Artificial Intelligence, pp. 467–469, (Nov
1996).

[17] G. Singh, N. Gupta, and M. Khosravy, ‘New crossover operators for real
coded genetic algorithm (rcga)’, in 2015 International Conference on
Intelligent Informatics and Biomedical Sciences (ICIIBMS), pp. 135–
140, (Nov 2015).

[18] Carsten Sinz, Albert Haag, Nina Narodytska, Toby Walsh, Esther Gelle,
Mihaela Sabin, Ulrich Junker, Barry O’Sullivan, Rick Rabiser, Deepak
Dhungana, Paul Grunbacher, Klaus Lehner, Christian Federspiel, and
Daniel Naus, ‘Configuration’, IEEE Intelligent Systems, 22(1), 78–90,
(January 2007).

[19] Markus Stumptner, ‘An overview of knowledgebased configuration’, AI
Commun., 10, 111–125, (April 1997).

[20] Erich C. Teppan and Alexander Felfernig, ‘Calculating decoy items in
utility-based recommendation’, in Proceedings of the 22nd Int. Conf. on
Industrial, Engineering and Other Applications of Applied Intelligent
Systems: Next-Generation Applied Intelligence, IEA/AIE ’09, pp. 183–
192, Berlin, Heidelberg, (2009). Springer-Verlag.

[21] Erich Christian Teppan and Alexander Felfernig, ‘Impacts of decoy el-
ements on result set evaluations in knowledge-based recommen-
dation’, Int. J. Adv. Intell. Paradigms, 1(3), 358–373, (June 2009).

[22] Erich Christian Teppan, Gerhard Friedrich, and Andreas A. Falkner,
‘Quickpup: A heuristic backtracking algorithm for the partner units
configuration problem’, in IAAI, (2012).

11

Techniques for Solving Large-Scale Product
Configuration Problems with ASP

Gottfried Schenner1 and Richard Taupe1,2

Abstract. Answer Set Programming (ASP) is a well-
established paradigm for encoding and solving product config-
uration problems. Unfortunately, generic problem encodings
not tuned to specific problem instances do not scale well, i.e.
they cannot be used for large-scale problem instances. One
reason for this is that classical ASP solvers suffer from the so-
called grounding bottleneck, i.e. they cannot solve problems
whose propositional grounding exceeds given memory limits.
In this paper we discuss some pragmatic techniques like lazy
grounding, custom encodings, incremental solving, and prob-
lem decomposition for making ASP applicable to large-scale
product configuration.

1 Introduction

Large-scale product configuration problems frequently arise
in industrial settings. These problems typically have a lot of
component types (> 100) and instances (> 1,000), where the
exact number of components contained in a solution typi-
cally is not known beforehand [6]. Even if constraints in these
domains may be simple, size and dynamic nature of such
problems make them hard to handle in propositional solving
paradigms like answer set programming. In this paper we de-
scribe various pragmatic techniques to make answer set pro-
gramming applicable for large-scale configuration problems.
By starting with a generic encoding of a typical industrial
hardware configuration example we illustrate the grounding
problem and show how to rewrite the encoding based on dif-
ferent configuration scenarios in order to increase the applica-
bility of classical ASP solvers. We then investigate if using a
lazy-grounding ASP solver can eliminate the grounding bot-
tleneck for such problems.

2 ASP in a Nutshell

Answer Set Programming (ASP) [1, 11] is a declarative pro-
gramming paradigm. Instead of stating how to solve a prob-
lem, an ASP program is a specification of the problem. An
ASP solver then finds a solution to the problem based on the
problem specification. Unfortunately writing a correct ASP
encoding for a problem is not enough. The grounder must be
able to ground the problem and the solver must be able to
efficiently find a solution. Performance of both tasks greatly

1 Siemens AG Österreich, Corporate Technology, Vienna, Austria
firstname.lastname@siemens.com

2 Alpen-Adria-Universität, Klagenfurt, Austria

depends on the encoding of the problem. An expert ASP pro-
grammer can often find a superior encoding for a problem
although the problem definition stays the same.

2.1 Syntax

An answer-set program P is a finite set of rules of the form

h1; . . . ;hd ← b1, . . . , bm, not bm+1, . . . , not bn.

where h1, . . . , hd and b1, . . . , bm are positive literals (i.e.
atoms) and not bm+1, . . . , not bn are negative literals. An
atom is either a classical atom or a cardinality atom. A clas-
sical atom is an expression p(t1, . . . , tn) where p is an n-ary
predicate and t1, . . . , tn are terms. A literal is either an atom
α or its default negation not α. Default negation refers to the
absence of information, i.e. an atom is assumed to be false as
long as it is not proven to be true. A cardinality atom is of
the form

l {a1 : l11 , . . . , l1m ; . . . ; an : ln1 , . . . , lno} u

where

• ai : li1 , . . . , lim represent conditional literals in which ai
(the head of the conditional literal) and all lij are classical
literals, and

• l and u are terms representing non-negative integers indi-
cating lower and upper bound. If one or both of the bounds
are not given, their defaults are used, which are 0 for l and
∞ for u.

H (r) = {h1, . . . , hd} is called the head of the rule, and
B(r) = {b1, . . . , bm, not bm+1, . . . , not bn} is called the body
of the rule. A rule r with H (r) consisting of a cardinality
atom is called choice rule. A rule r with a head consisting
of more than one classical atom (i.e. |H (r)| > 1) is called
disjunctive rule. A rule r with H (r) consisting of at most one
classical atom is called a normal rule. A normal rule r where
H (r) = {}, e.g. ← b., is called integrity constraint, or simply
constraint. A normal rule r where B(r) = {}, e.g. h ← ., is
called fact.

We allow the typically built-in arithmetic functions (+, −,
∗, /), comparison predicates (=,6=,<,>,≤,≥), and syntactic
sugar like m..n which stands for the set of integers {m, . . . , n}.
Answer set programs in this paper will also contain comments
starting with %.

12

2.2 Semantics

There are several ways to define the semantics of an answer-
set program, i.e. to define the set of answer sets AS(P) of
an answer-set program P . An overview is provided by [12].
Probably the most popular semantics is based on the Gelfond-
Lifschitz reduct [10]. A variant that applies to choice rules also
is presented in [2].

Informally, an answer set A of a program P is a subset-
minimal model of P (i.e. a set of atoms interpreted as true)
which satisfies the following conditions: All rules in P are
satisfied by A; and all atoms in A are “derivable” by rules
in P . A rule is satisfied if its head is satisfied or its body is
not. The disjunctive head of a rule is satisfied if at least one
of its atoms is. A cardinality atom is satisfied if l ≤ |C| ≤ u
holds, where C is the set of head atoms in the cardinality
literal whose conditions (e.g. li1 , . . . , lim for ai) are satisfied
and which are satisfied themselves. In the presence of choice
rules, the semantics is adjusted to allow non-minimal subsets
satisfying the cardinality atom to appear in answer sets.

2.3 Grounding and solving

Most ASP systems split the solving process into grounding
and solving. The former part produces the grounding of a pro-
gram, i.e. its variable-free equivalent. Thereby, the variables
in each rule of the program are substituted by constants. The
latter part then solves this propositional encoding. This leads
to the so-called grounding bottleneck which is tackled by lazy
grounding [18].

2.4 ASP examples

For better understanding, this section gives some ASP exam-
ples. The following program contains a fact and a rule:

type(e1,elementA).

element(E) :- type(E,elementA).

The one and only answer set to this program is
{type(e1 , elementA), element(e1)}. If you extend the program
by type(e1 , elementB) and a constraint that forbids multiple
types for a single element, the program becomes unsatisfiable:

type(e1,elementB).

:- type(ID,T1), type(ID,T2), T1 != T2.

To illustrate the use of cardinality atoms, let us view an ex-
ample of a choice rule:

0 { type(ID,T):t(T) } 1 :- n(ID).

This rule means that for every true atom of the unary pred-
icate n the cardinality atom in the head of the rule must
hold, which in turn forces the number of types assigned to
the object represented by the former atom to be between 0
and 1. Types are defined by the t predicate and assigned to
objects by the type predicate. Let P be a program consisting
of the choice rule above and the following two facts encoding
a problem instance:

n(1).

t(elementA).

Then P has two answer sets, namely {n(1), t(elementA)} and
{n(1), t(elementA), type(1, elementA)}, one representing the
solution that object 1 has no type and one representing the
solution that object 1 is of type elementA.

3 Running Example

As running example, we use a typical hardware configuration
problem. Such problems are often very easy to solve for small
instances sizes, but unfortunately most generic encodings will
not scale.

We consider an encoding generic for a domain if it is valid
for all problem instances of the domain. A non-generic en-
coding is specific to a subset of all problem instances and
only works for specific input data or parameters. Therefore a
generic encoding for a domain like our running example will
solve all configuration tasks of that domain regardless of the
input (e.g. a partial configuration).

3.1 Example domain: racks configuration

In our example domain there may be different types of ele-
ments, which are controlled by hardware modules. Each hard-
ware module must be in a frame and a frame must be mounted
on a rack. More specifically, the constraints of the domain are:

• There are 4 different types of elements (A-D).
• There are 5 different types of modules (I-V).
• There are 2 different types of racks (Single, Double).
• An ElementA requires one ModuleI, an ElementB requires

two ModuleIIs, an ElementC requires three ModuleIIIs and
an ElementD requires four ModuleIVs.

• A ModuleV cannot have an element, all other modules must
have an element assigned.

• A RackSingle must have exactly 4 Frames, a RackDouble
must have exactly 8 Frames.

• A Frame must be mounted on one Rack.

3.2 Example encoding

To encode this example in ASP we represent the objects/com-
ponents of a configuration with the predicate type(ID,TYPE),
e.g. type(7,rackSingle) represents a rack with ID 7. Objects
with different IDs represent different real-world objects, i.e.
we use the unique name assumption.

The relations between the different component types
are represented by binary predicates of the form
TYPE1 to TYPE2 . For example, the relation be-
tween racks and frames is represented by the predicate
rack to frame(RACKID ,FRAMEID).

The complete schema of the domain looks like this:

type(ID,TYPE)

% ID = 1..MAXNROFOBJECTS

% TYPE = elementA, elementB...

element_to_module(ELEMENTID,MODULEID)

rack_to_frame(RACKID,FRAMEID)

frame_to_module(FRAMEID,MODULEID)

These predicates suffice to represent a configuration of our
simple domain. MAXNROFOBJECTS defines the maximum
number of components in a configuration. This constant must

13

be defined at the beginning of the grounding process. The
following represents a possible configuration with MAXNR-
OFOBJECTS=10. Note that the used object IDs are totally
arbitrary and some object IDs are unused.

type(1,elementA).

type(2,moduleI).

type(3,rackSingle).

type(4..7,frame).

element_to_module(1,2).

rack_to_frame(3,4).

rack_to_frame(3,5).

rack_to_frame(3,6).

rack_to_frame(3,7).

frame_to_module(4,2).

4 Reasoning Tasks

ASP programs often have a guess-and-check (generate-and-
test) structure. There is a program part to guess all possible
solutions and another part to check if a candidate solution is
valid [4].

4.1 Checking a configuration

The checking part of the ASP program defines the conditions
a valid configuration must satisfy and is expressed mostly with
ASP constraints, i.e. rules that filter out invalid answer sets.
The following shows some examples:

% only one type

:- type(ID,T1), type(ID,T2), T1 != T2.

% elementA can only have modules of type moduleI

:- element_to_module(E1,M1),

type(E1,elementA), not type(M1,moduleI).

If the body of a constraint is satisfied, it will make the entire
program unsatisfiable. Therefore, the body of no constraint
can be satisfied by an answer set. In the program above, there
are two constraints, the first of which forbids assigning two
different types (denoted by T1 and T2) to an object (denoted
by ID) and the second of which forbids assigning modules that
are not of type ModuleI to an ElementA.

The checking part does not generate any new components.
For checking a configuration the input for the ASP solver
consists of the encoding of the configuration (as facts) and
the checking program. If the configuration is valid, an answer
set is found; otherwise unsatisfiable is returned. The size of
the grounding of this reasoning task depends on the size of
the given configuration, i.e. the number of atoms describing
the input configuration.

4.2 Solving a configuration

The checking part of our program alone allows us to check
existing configurations. In order to find new configurations
or to extend partial configurations the guessing part of the
program is needed.

One approach for the guessing part is to write a generic
program that can generate all possible configurations. Typi-
cally such a program consists of a part that instantiates all

objects up to the maximal number of objects and a part that
generates all possible associations between these objects.

The following code fragment shows an example3:

n(1..MAXNROFOBJECTS). % defines objects

t(elementA). t(elementB). ... % defines types

% instantiate components

0 { type(ID,T):t(T) } 1 :- n(ID).

% element_to_module

% guess an element for every module (except moduleV).

1 { element_to_module(E,M):element(E) } 1 :-

module(M), not type(M, moduleV).

%...

From a purely declarative standpoint this is all that is
needed. The checking part together with the guessing part will
specify all valid configurations, which can then be enumerated
by a solver. If one wants to find a configuration with certain
properties, these properties can be given as additional con-
straints. A special case are partial configurations. In this case
one can give the atoms describing the partial configuration as
facts, e.g. type(1,elementA) will find all configurations that
contain at least one ElementA.

Unfortunately such generic encodings can not be used for
large-scale problems due to an explosion of grounding sizes.
Additional constraints make the situation worse. If for exam-
ple we add a constraint that all modules of an element must
be in the same frame the grounding needs already more than
10 GB of memory just for 50 components.

Therefore in the following chapter we will discuss some
pragmatic techniques to tackle this problem.

5 Strategies to Reduce Grounding

Typically in hardware configuration problems we want to find
a configuration that uses a minimal number of components for
a given input, i.e. a partial configuration. It does not make
any sense to set the maximum number of objects to 1,000 if we
want to find a configuration for 9 ElementBs. Therefore if we
can find a lower bound for the size of a complete configuration
for a given partial configuration the grounding size can be
reduced significantly.

Finding the lower bound involves reasoning about compo-
nent cardinalities. For a domain expert it is relatively easy
to see that a minimal configuration for 9 ElementBs contains
18 ModuleIIs, 5 ModuleVs, 1 RackDouble and 8 Frames. The
cardinality reasoning required is far from trivial. For instance,
due to the constraint that there must be a ModuleV for every
ModuleII in a frame one can no longer mount 6 ModuleIIs on
a frame. Consequently one needs at least 5 Frames to support
all Modules and therefore the solution must contain a Rack-
Double. This example shows that every additional constraint
might affect the number of required components. To automat-
ically derive these bounds, approaches like the one described
in [14] can be used, although so far none of these approaches

3 Note that this encoding uses choice rules to encode the nondeter-
ministic guessing part. Other language constructs could be used
instead, e.g. disjunction (cf. [15]). It also uses the unary element
predicate as a shortcut to all objects whose type is any of the
element types. This is achieved by projection rules element(E)
:- type(E,elementA). etc.

14

are powerful enough to calculate the effects of arbitrary con-
straints or can directly be applied to ASP programs.

Another technique for reducing the grounding is to generate
the guessing part of the program specifically to the current
input. For instance, if all the components of a component type
are given, there is no need to generate components of that
type in the guessing part. An extreme example is an already
completed configuration, where no guessing is required at all.

Unfortunately, depending on the encoding some ASP
grounders are not able to detect that situation and still main-
tain the guessing rules in the program. In these cases it might
be necessary to write a domain-specific preprocessing step
that removes all guessing rules for components already used.

The following two encodings demonstrate such effects.
From the encoding with default negation, rules with default
negation are removed by the grounder4 and only the fact
type(1,rackSingle) remains.

type(1,rackSingle) :- not type(1,rackDouble).

type(1,rackDouble) :- not type(1,rackSingle).

type(1,rackSingle).

From the encoding with a choice rule, however, the choice
rule is kept by the grounder and therefore all rules depending
on type(1,rackDouble) are instantiated, which results in a
much bigger grounding.

1 { type(1,rackSingle);type(1,rackDouble) } 1.

type(1,rackSingle).

To automatically generate the guessing part, one can simply
filter out the guessing rule for component IDs that are already
given as facts in the input program.

5.1 Decompositon

Decomposition of the problem into sub-problems is another
way to reduce grounding. One way to decompose a configu-
ration problem is to consider only a subset of the component
types and relations in one step. This will create a partial con-
figuration that serves as input for the next subproblem. At the
end of the process a complete configuration will be created.
The only condition for this approach is that the partial con-
figurations created in each step can be extended to complete
configurations. Otherwise backtracking, i.e., recomputing a
subproblem is required. This is illustrated in Fig. 1. In our
example, instead of solving the configuration problem at once,
it can be decomposed into the following sub-problems: First
assign elements to modules, then assign modules to frames,
then assign frames to racks.

Instead of calling the ASP solver once, now in the best case
it is called once for every subproblem. The first subproblem
consists of assigning elements to modules. The found answer
set (i.e. partial configuration) then serves as input for assign-
ing modules to frames. The resulting partial configuration is
then used for assigning frames to racks, which leads to a com-
plete configuration. Problem decomposition can reduce the
grounding size significantly.

4 The first rule can be removed because its head is already satisfied
by a fact and the rule thus cannot contribute to a solution, while
the second rule can be removed because its body is not satisfied.

ASP

Extend partial

configuration by

Modules

ASP

Extend partial

configuration by

Frames

Encode Elements

as partial configuration

Exists (next)

answer set

Exists (next)

answer set?

no

Unsatisfiable

no

yes

ASP

Extend partial

configuration by

Racks

Configuration

found

Exists

answer set?

yes

no

yes

Figure 1. The decomposition approach

15

The downside of the decomposition approach is that it re-
quires a rewrite of the program. One cannot even reuse the
checking part, as the partial configuration considered in the
subproblem will violate some constraints of the domain (oth-
erwise it would already be a complete configuration). For ex-
ample in step one the modules will have no frames assigned
yet.

5.2 Incremental solving

It is a desirable property of a product configuration domain
that adding an element/functionality to an existing configu-
ration changes the existing configuration only minimally. In
the best case the configuration does not have to be modified
at all but only extended by components required by the new
elements.

If a product configuration domain has this property,
grounding size can be reduced by building the configuration
incrementally, e.g., instead of adding all elements at once they
are added one after the other. At each solver step the re-
quired components for one additional component are created
and a complete configuration is computed. This is illustrated
in Fig. 2. If a configuration is found in a substep this config-
uration is a valid configuration. Therefore in the incremental
approach the checking part of the original program can be
reused without modification.

As in each substep only one additional component is added
to the configuration, the guessing program must only be able
to generate all new components required by the additional
component. Therefore the grounding is reduced significantly.
At every step the new component either reuses an existing
part of the configuration or uses a new component generated
by the guessing program.

Again like in Section 5 there is the need for some method
to compute the number of required components to support
an additional component, e.g. an additional ElementD will
require at least 4 ModuleIV instances, 4 Frames and 1 Rack.

5.3 Deriving substructures

Configuration problems often consist of hierarchically orga-
nized objects with a predetermined substructure. If the sub-
objects of a given type are fixed, it is possible to derive the
sub-objects directly instead of generating them with a guess-
and-check approach.

In our example the relation between elements and mod-
ules only depends on the type of the element, therefore it is
possible to replace the generative generate-and-test approach
with the following implementation, which uses arithmetics to
directly derive the necessary modules for elements.

% derive modules for elements of type B

type(E+1,moduleII) :- type(E, elementB).

type(E+2,moduleII) :- type(E, elementB).

element_to_module(E,E+1) :- type(E, elementB).

element_to_module(E,E+2) :- type(E, elementB).

The disadvantage of this approach is that certain object
IDs now have a special semantics and cannot be treated in-
terchangeably anymore, which makes defining partial configu-
rations more complicated. But this is typically the case when
symmetry-breaking constructs are defined in a program.

Add next element

to current

configuration

ASP

Extend current

configuration

Start with empty

configuration

Exists

answer set

Exists

another

element

Configuration

found

no

Unsatisfiable

noyes

Figure 2. The incremental approach

16

5.4 Using a lazy-grounding solver

Lazy grounding is an attempt to solve the grounding bottle-
neck in general, i.e. without the need to adapt input pro-
grams. In contrast to traditional ASP systems, which first
produce the full grounding for the input program and then
solve this propositional program, lazy-grounding systems in-
terleave grounding and search to avoid storing the entire
ground program in memory. Current lazy-grounding systems
cannot compete with pre-grounding ones in terms of runtime
performance, however. We experiment with Alpha, the first
lazy-grounding ASP solver to employ conflict-driven nogood
learning, one of the major success factors of traditional ASP
solvers [18]. However, Alpha (like other lazy-grounding sys-
tems) has not yet reached the maturity of traditional ASP
systems. One consequence of this is that input programs still
have to be adapted because language constructs like disjunc-
tion, choice rules, or aggregates are not supported by Alpha
yet.

To represent the relations between different compo-
nent types we use a slot-based representation for ev-
ery possible relation. For example the relation be-
tween racks and frames is represented by the predicate
rack to frame(RACKID ,SLOT (1..8),FRAMEID), i.e. a rack
has 8 slots to assign a frame to. The slot representation makes
it easier to check the cardinality constraints in ASP solvers
that do not support aggregates, but makes it necessary to
introduce symmetry-breaking constraints if symmetric solu-
tions shall be avoided.

type(1,elementA).

type(2,moduleI).

type(3,rackSingle).

type(4..7,frame).

type(8..10,none).

element_to_module(1,1,2).

rack_to_frame(3,1,4).

rack_to_frame(3,2,5).

rack_to_frame(3,3,6).

rack_to_frame(3,4,7).

frame_to_module(4,1,1).

One way to improve the performance of a lazy-grounding
solver is to employ domain-specific or domain-independent
heuristics. Initial research in this area is described in [16].

6 Evaluation

For our experiments, we used the tradtional ASP system
clingo5 5.2.0 [8] and the lazy-grounding system Alpha6 [18].

The baseline for our benchmarks is provided by the tradi-
tional ground-and-solve approach. Grounding size was mea-
sured by producing the grounding in clingo’s intermediate
format and measuring the size of the resulting text file. For
the incremental and the decomposition approaches, grounding
size was measured similarly: For the incremental approach, we
started with an empty configuration and increased the num-
ber of elements step by step, measuring the size of the ground-
ing after each step. For the decomposition approach, we had

5 https://potassco.org/clingo/
6 https://github.com/alpha-asp

instances with 1-30 elements, where the maximum number of
objects was always set to 15 times the number of elements.
The size of the grounding was calculated by adding up the
grounding sizes of the three sub-problems per instance.

For the lazy-grounding approach, a different way to esti-
mate the size of the grounding had to be chosen. In this case,
the peak total memory usage of the system was measured.
From this total memory usage, 64 kB were subtracted to ac-
count for the system’s basic memory usage. Where no data
point for lazy grounding is shown in Figs. 3 to 5, the instance
could not be solved by Alpha within 300 seconds. This was
the case for all problem instances where a configuration not
just has to be checked but also created, which can be seen in
Fig. 5.

Results are shown in Figs. 3 to 5. In Fig. 3, we compare the
pre-grounding approach with the lazy-grounding approach to
check a complete configuration just using the checking part
of the program (not the guessing part). In Fig. 4, the guess-
ing part of the program is also included, which makes the
grounding larger. In both cases, incremental and decompo-
sition approaches do not make sense because they are only
used to find a configuration, not to check an existing one. In
Fig. 5 we show numbers for finding a configuration. Here, no
results for the lazy-grounding approach can be seen because
in our experiments this approach did not yield positive results
within a time-out of 300 seconds.

0 200 400 600 800 1,000

0

20

40

60

80

100

120

maximum number of components

g
ro

u
n
d
in

g
si

ze
es

ti
m

a
ti

o
n

(k
B

)

pre-grounding

lazy grounding

Figure 3. Grounding size for checking a complete configuration

It can be observed that very little grounding is necessary
if only the checking part of the program is used to check
a configuration. This holds for both the pre-grounding and
the lazy-grounding approach (cf. Fig. 3). If the guessing part
is included as well, the grounding size of pre-grounding sys-
tems rises significantly, while space consumption by the lazy-
grounding system Alpha stays very low. Some instances are
already too hard computationally for the latter, however (cf.
Fig. 4). For creating configurations, both the incremental and
the decomposition approach yield smaller groundings than
the traditional pre-grounding approach (cf. Fig. 5). The incre-

17

100 200 300 400

0

0.5

1

1.5

·105

maximum number of components

g
ro

u
n
d
in

g
si

ze
es

ti
m

a
ti

o
n

(k
B

)

pre-grounding

lazy grounding

Figure 4. Grounding size for checking a complete configuration
(incl. guessing part)

0 100 200 300 400

0

0.5

1

1.5

2

·105

maximum number of components

g
ro

u
n
d
in

g
si

ze
es

ti
m

a
ti

o
n

(k
B

)

pre-grounding

incremental

decomposition

Figure 5. Grounding size for creating a complete and correct
configuration

mental approach fares best in this sense, however its runtime
performance (which is out of scope of this paper) is not very
good.

A qualitative assessment of advantages and disadvantages
of each approach is reported in Table 1.

7 Related Work

In this paper we focused on configurations with a large num-
ber of components. Another feature of product configura-
tor knowledge bases that frequently leads to an explosion
of grounding sizes are integer variables with large domains.
Constraint answer set programming (CASP) solvers like cling-
con [9] or ASCASS [17] can be used to handle these knowledge
bases in ASP efficiently.

In this paper we used a domain-specific problem decompo-
sition to solve the grounding problem. Domain-independent
program decomposition approaches have a long history in an-
swer set programming [13] and various applications [5].

Our technique for incrementally building a configuration
can be seen as a domain-specific handling of the existential
quantifier. A general approach for the problem of model gen-
eration can be found in [3]. The technique is also related to
incremental solving [7].

8 Conclusion

In this paper we discuss some pragmatic techniques for han-
dling large-scale product configuration problems with ASP.
On the upside, we show that using our specialized approaches
an off-the-shelf ASP solver like clingo can handle large in-
stances of simple product configuration domains. On the
downside, this requires encodings and reasoning tasks specific
to the technique used for reducing grounding size.

With further progress of dedicated lazy-grounding solvers
it is expected that these specific encodings become obsolete.
Unfortunately current lazy-grounding solvers cannot compete
with state-of-the-art ASP solvers when it comes to solving
performance.

Although the techniques discussed in this paper have been
developed primarily to reduce the grounding size, they are
also interesting in their own right. Decomposing a large knowl-
edge base frequently occurs in practice. For instance in the
case of product configuration it might be desirable to first con-
figure the hardware aspects and then the software aspects of
a large system, because otherwise the user of the configurator
would be overwhelmed by the complexity of the configuration
task.

9 Future Work

In the future we want to investigate how to further automate
the techniques discussed in this paper. One key problem that
needs to be solved is automatic reasoning about component
cardinalities as this is essential for efficient grounding and
solving.

Open issues in the area of lazy grounding in general are for-
getting of nogoods, learning on the non-ground level, and bet-
ter search heuristics (cf. [16,18]). Furthermore, we plan to de-
velop domain-specific heuristics to improve the solving perfor-
mance of lazy-grounding systems. A typical domain-specific

18

Approach Pros Cons

Decomposition often natural decomposition exists
(e.g. hardware/software);
user interaction between subprob-
lems possible

rewriting of program necessary;
no nogood learning between sub-
problems

Incremental solving reuse of checking part;
simulates manual configuration

cardinality reasoning necessary;
if incremental steps are not inde-
pendent, solving will deteriorate

Deriving substructures solving and grounding improved special semantics of IDs make han-
dling of partial configurations and
exchange with other configurators
more complicated

Lazy grounding no rewriting necessary performance of current solvers;
domain-specific heuristics may be
required

Table 1. Pros and cons

heuristics in the context of product configuration would be to
reuse components that are already part of the configuration.

To make the techniques described in this paper applicable
to other ASP solvers as well we did not take advantage of
the advanced (python/lua) scripting capabilities of the latest
clingo version. As this would give us better control over the
solving process, we expect to come up with even better results.

REFERENCES

[1] Gerhard Brewka, Thomas Eiter, and Miros law Truszczyński,
‘Answer set programming at a glance’, Communications of
the ACM, 54(12), 92–103, (2011).

[2] Francesco Calimeri, Martin Gebser, Marco Maratea, and
Francesco Ricca, ‘Design and results of the Fifth Answer Set
Programming Competition’, Artificial Intelligence, 231, 151–
181, (2016).

[3] Broes de Cat, Marc Denecker, Peter J. Stuckey, and Maurice
Bruynooghe, ‘Lazy Model Expansion: Interleaving Grounding
with Search’, in Journal of Artificial Intelligence Research,
pp. 235–286, (2015).

[4] Thomas Eiter, Wolfgang Faber, Nicola Leone, and Gerald
Pfeifer, ‘Declarative Problem-Solving Using the DLV System’,
in Logic-based Artificial Intelligence, ed., Jack Minker, The
Springer International Series in Engineering and Computer
Science, Springer US, (2000).

[5] Thomas Eiter, Michael Fink, and Thomas Krennwallner, ‘De-
composition of declarative knowledge bases with external
functions.’, in IJCAI, volume 9, pp. 752–758, (2009).

[6] Andreas A. Falkner and Herwig Schreiner, ‘Siemens: Configu-
ration and Reconfiguration in Industry’, in Knowledge-based
Configuration, eds., Alexander Felfernig, Lothar Hotz, Claire
Bagley, and Juha Tiihonen, 199–210, Morgan Kaufmann, Am-
sterdam, (2014).

[7] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max
Ostrowski, Torsten Schaub, and Sven Thiele, ‘Engineering
an incremental ASP solver’, in International Conference on
Logic Programming, pp. 190–205. Springer, (2008).

[8] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and
Torsten Schaub, ‘Clingo = ASP + Control: Preliminary Re-
port’, in Technical Communications of the Thirtieth Inter-
national Conference on Logic Programming (ICLP’14), eds.,
M. Leuschel and T. Schrijvers, volume arXiv:1405.3694v1,
(2014).

[9] Martin Gebser, Max Ostrowski, and Torsten Schaub, ‘Con-
straint answer set solving’, in Proceedings of the Twenty-fifth
International Conference on Logic Programming (ICLP’09),
eds., P. Hill and D. Warren, volume 5649 of Lecture Notes in
Computer Science, pp. 235–249. Springer-Verlag, (2009).

[10] Michael Gelfond and Vladimir Lifschitz, ‘The Stable Model
Semantics For Logic Programming’, in Proceedings of the
Fifth International Conference and Symposium of Logic Pro-
gramming, eds., R. Kowalski and K. Bowen, pp. 1070–1080.
MIT Press, (1988).

[11] Vladimir Lifschitz, ‘What Is Answer Set Programming?’, in
Twenty-Third AAAI Conference on Artificial Intelligence,
(2008).

[12] Vladimir Lifschitz, ‘Thirteen Definitions of a Stable Model’,
in Fields of Logic and Computation, eds., Andreas Blass,
Nachum Dershowitz, and Wolfgang Reisig, volume 6300
of Lecture Notes in Computer Science, 488–503, Springer,
Berlin, Heidelberg, (2010).

[13] Vladimir Lifschitz and Hudson Turner, ‘Splitting a logic pro-
gram.’, in ICLP, volume 94, pp. 23–37, (1994).

[14] Richard Taupe, Andreas A. Falkner, and Gottfried Schenner,
‘Deriving Tighter Component Cardinality Bounds for Prod-
uct Configuration’, in Proceedings of the 18th International
Configuration Workshop within CP 2016 conference, eds.,
Elise Vareilles, Lars Hvam, and Cipriano Forza, pp. 47–54,

Albi, (2016). École des Mines d’Albi-Carmaux.
[15] Richard Taupe and Erich Teppan, ‘Influence of ASP Lan-

guage Constructs on the Performance of State-of-the-Art
Solvers’, in Joint German/Austrian Conference on Artificial
Intelligence (Künstliche Intelligenz), pp. 88–101. Springer In-
ternational Publishing, (2016).

[16] Richard Taupe, Antonius Weinzierl, and Gottfried Schenner,
‘Introducing Heuristics for Lazy-Grounding ASP Solving’, in
1st International Workshop on Practical Aspects of Answer
Set Programming, (2017).

[17] Erich Teppan, ‘Solving the Partner Units Configuration Prob-
lem with Heuristic Constraint Answer Set Programming’, in
Proceedings of the 18th International Configuration Work-
shop within CP 2016 conference, eds., Elise Vareilles, Lars

Hvam, and Cipriano Forza, Albi, (2016). École des Mines
d’Albi-Carmaux.

[18] Antonius Weinzierl, ‘Blending lazy-grounding and CDNL
search for answer-set solving’, in Logic Programming and
Nonmonotonic Reasoning - 14th International Conference,
LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings,
eds., Marcello Balduccini and Tomi Janhunen, volume 10377
of Lecture Notes in Computer Science, pp. 191–204. Springer,
(2017).

19

Assessing the complexity expressed in a variant table
Albert Haag1

Abstract. One statistic commonly associated with a product con-
figuration model is the number of possible solutions it entails. I argue
in this paper that this is not a good indicator of complexity, neither
for the interactive configuration task, nor for the associated business
processes. I focus on the common scenario where the solutions form
a set of variants that share the same product properties, but differ
in the features that are assigned to the properties. The list of distinct
variants then forms a so-called variant table.

In the completely unconstrained case, the number of valid variants
is the entire solution space: the Cartesian product of the domains of
the product properties. This set grows exponentially with increasing
number of features. However, we may argue that the complexity both
in product logistics and configurator interaction then scales only lin-
early with the the number of features: When a feature is added to the
model for some product property, this feature must be handled, and
this incurs some “cost” for both interactive configuration and busi-
ness logistics. But there is no effect on the other product properties
(nor, ideally, on the handling of the other features of the property).

Representing the solution space as a Cartesian tuple can be seen
as a compressed form of the explicit list of all variants. Based on
this observation, I propose that complexity should be linked to the
compressibility of the variant table. To this end I argue that the com-
pression of a table to a variant decomposition diagram (VDD) [8]
and/or Multi-valued Decision Diagram (MDD) [3] is a better basis
for a measure of complexity, both for a configurator and for the busi-
ness. I also identify subspaces in a variant table that are “constraint
free”, i.e., pose no decision problem.

The arguments also apply to cases where the overall model has
been compiled to some form of decision diagram, i.e., to a VDD,
MDD, or BDD (Binary Decision Diagram [9, 10]). The compiled
form can be seen as a conceptual table.

As tables are predominant elements of a product model, and com-
pression techniques further empower them, I discuss additional re-
quirements for making their use universally more appealing in prac-
tical settings. I suggest to formally relax the usual finiteness require-
ment to allow table cells with both unbounded numeric intervals (in-
cluding real-valued (floating point) bounds) and wild cards matching
any Boolean predicate. I call a domain that includes such non-finite
elements quasi-finite.

1 Introduction
The number of variants of a configurable product a business can offer
today may be astronomically large. For example, some car manufac-
tures now offer their product in almost any conceivable color. They
can do this because their production technology is such that adding
more hues does not add much to production complexity. Similarly,

1 Product Management Haag - R&D, Germany, email: albert@product-
management-haag.de

current textile printing technology would allow a vast number of im-
ages to be imprinted on a configurable T-shirt. Because the number
of variants grows exponentially with the number of offered choices,
it is easy to extend models for configurable products so that any given
limit on the number of variants is exceeded.

While adding freedom in specifying an image for the T-shirt adds
enormously to the number of possible T-shirt variants, it does not
necessarily add complexity. Production of imprintable T-shirts would
be unaffected, given a suitable textile printer. The complexity of the
configuration task is not increased either, regardless if we see this as
a decision support or a constraint solving problem2.

The focus of this paper is on a mass customization business that
aims to provide individualized products3. In this setting, the business
offers variants of a generic product that is described in the prod-
uct model. All variants share the same product properties, but differ
in the features that are assigned to the properties. As pointed out,
the business complexity of providing such individualization can be
somewhat mitigated by appropriate technology and organization.

The list of distinct offered variants can be captured in a variant
table. Assuming that k product properties v1 . . . vk are given, this
table T can be represented in explicit relational form as a (possibly
huge) matrix:

T =
(
aij
)

(1)

where aij is the feature assigned to vj for the i-th variant.
We may observe that tables are the way businesses capture and

represent data in general. Thus, the single variant table T would seem
to be the preferred and natural way to model variants. Some practical
limitations on size and expressibility currently impede this4. What-
ever way the product is modeled, its complexity must be known in
order to determine its effect on the cost of:

• continually maintaining the model,
• providing a quote and sales process for selecting variants, and
• the associated product logistics (procurement, production, ship-

ping, invoicing, etc.)

One aspect of complexity in a product model is related to the un-
derlying decision problem. To this end, I introduce the notions of

2 Additional freedom does necessitate that a sales configurator for the T-shirt
is able to accept an almost arbitrary image as input, and this may make
the decision problem of an end customer more difficult in that they need to
decide on an image.

3 We take the term product configuration to refer to any kind of configuration
tasks for products, including engineering and product design tasks. Mass
customization refers to the common but more special setting that a product
variant can be defined by assigning values to a fixed given set of product
properties.

4 The limitations on size can be addressed by compression as long as the un-
derlying product complexity is managed. This is the main topic of this pa-
per. Practical extensions of expressibility (quasi-finite domains) are briefly
discussed at the end of this paper.

20

a free property and a free feature. Let us assume that choosing an
imprint for a T-shirt has no effect whatsoever on any of the other
features of the T-shirt5. I call such a property a free property. Any
feature of a free property is a free feature, i.e., it does not interact
with any features of any of the other properties. More precisely, a
feature is free in a given configuration state, if it will remain validly
choosable regardless of the further choices for other properties. And
if all remaining valid features for a property are free then the property
is free in that state.

I postulate that free features contribute only a fixed increment to
both configuration and business complexity. I argue this in Section
6.2 for the examples in Section 2, but it requires further validation in
the field, which has not yet been performed.

The examples in Section 2 assume a model of a T-shirt as a single
variant table T. This is the setting I focus on here.

The setting of a single overall variant table T also conceptually ap-
plies, when a complex model can be compiled to a decision diagram,
notably a VDD (Variant Decomposition Diagram [8, 7]), an MDD
(Multi-valued Decision Diagram [3, 1]), or a BDD (Binary Decision
Diagram [10, 9]). The compilate can conceptually be seen as equiva-
lent to an overall variant table T. It is beyond the scope of this paper
to provide a detailed treatment of these approaches. But I give a brief
characterization:

• A BDD is a generic approach at finding a very compact repre-
sentation for a given set of logical propositional formulae (only
Boolean variables) as a decision diagram [10].

• An MDD is a decision diagram more directly tuned to the setting
here. A node in the diagram maps to a product property, the edges
of the diagram emanating from it correspond to the valid domain
of features at that point. MDDs can be mapped to BDDs and vice
versa [2].

• A VDD is based on a “column oriented” decomposition of a table.
In certain circumstances, which we may take as given here, a VDD
can be mapped to an MDD and vice versa [8].

The above observation does point to one conclusion: Complexity
in a product model can be split into “complexity of compilation”
and “complexity of execution”. The “complexity of compilation”
can be prohibitive, which then may be an immediate impediment
to the approach followed here. However, in practice, compilation
often succeeds. In particular, the heuristics for constructing VDDs
discussed in [8] have so far been practically viable as far as they were
tested on practical examples. I am only interested in “complexity of
execution” in the sequel, and assume that the overall list of variants
T is either explicitly given or obtained through a compilation
approach. When T is given explicitly as in (1) then compiling T to a
VDD (or an MDD) is referred to as compression of T.

The strong focus here on the table paradigm is motivated by the
following: We observe that tables are a preferred way for businesses
to model constraints on the variants they offer6, as long as they re-
main manageable. When they become unmanageable, spreadsheets
using various informal work-arounds are often employed to extend
the table paradigm. These can include:

• wild card expressions,
• compression using c-tuples (allowing multiple values in one cell)7,

5 Section 2 contains more detailed examples.
6 Simple numeric formulas (perhaps linked to a table) would be another pre-

ferred form. However, they are less prevalent than tables.
7 A c-tuple is a tuple of spreadsheet cells, where each cell can contain multi-

• real-valued (floating point) intervals8,
• alternatively listing the exclusions (invalid variants), and
• normalization: splitting up a big table into several smaller ones

The first two are briefly discussed in Section 10.2. The last two are
of practical importance, but out-of-scope here.

2 Examples: Configureable T-shirts
In [6, 7] a very simple T-shirt model is used as an example. This
is based on three product properties: Size, Color, Imprint, and two
constraints that can be easily expressed verbally:

1. One of the Imprints, ’MIB’ (“Men In Black”) is only available in
black

2. The other Imprint, ’STW’ (“Save The Whales”) is not available in
a small size.

In [8] the running example used is a T-shirt with 120120 valid
variants, based on eight properties: Style, Fabric, Size, Color, Im-
print, ImprintColor, Price, and Dye.

For the discussion here, it is opportune to have a series of T-shirt
models expressed as variant tables of increasing complexity. These
merge the ideas of the examples in [6, 7, 8]. We want the uncon-
strained case to make business sense. To this end the eight properties
of the example in [8] are modified as follows: The product property
Price is replaced by Donation (representing a voluntary donation
to a charity associated with the chosen imprint) and the property Dye
is replaced by CO2Offset (a voluntary surcharge to offset the envi-
ronmental impact of the CO2 emitted in producing the T-shirt).9 We
add the two imprints ’MIB’ and ’STW’ from the simple T-shirt in
[6, 7]10. A further property ImprintSize is added for potentially rea-
soning about a relation between ImprintSize and Size.

All in all, we take an order for a T-shirt to be fully described by
the nine product characteristics: Style, Fabric, Size, Color, Imprint,
ImprintColor, ImprintSize, Donation, and CO2Offset with the finite
domains for each of the properties as depicted in Tables 1 and 2.11

The examples are numbered, so that we may refer to them later.

Example 1. Unconstrained T-shirt
The T-shirt model as described above with the nine properties with

their domains as specified in Tables 1 and 2, but without any addi-
tional constraints. There are 120324096 (120 million) possible vari-
ants12.

Example 2. T-shirt with the constraint that ’MIB’ implies ’Black’
The T-shirt model as in Example 1, but with the constraint that an

imprint ’MIB’ implies the imprint color ’Black’. Any ’MIB’ variant
coupled with any non-black ImprintColor is then invalid. There are
884736 such invalid variants. 119439360 valid variants remain.

ple values. A cell represents the disjunction of these values. The entire tuple
represents the Cartesian product of these sets of values.

8 A numeric interval represents (a possibly infinite) disjunction.
9 We may assume that both of these features in some way affect the final

product: as part of the T-shirt label or as a certificate added to the delivery.
10 These properties and their two constraints were omitted from the T-shirt

model given in [8] in order not to clutter up the discussion there.
11 We may imagine a web-shop that takes an order for a personalized T-shirt

as input and then delivers based on this specification. Pricing would here
be a separate issue that might be handled during the checkout process.

12 120324096 (120 million) variants is a large number − a list of this size
is probably not feasible without compression. There is no apparent model
complexity, except that the configurator has to be able to either provide
fast interactive filtering over all 120324096 variants or be clever about an
alternate presentation.

21

Example 3. Adding the constraint that ’STW’ needs large shirts
The constraint that any ’STW’ variant with a small size (’3T’,

’4T’, ’S’, or ’XS’) is considered to be invalid is additionally added
to Example 2. There are 589824 such invalid variants. Because this
set does not overlap that of the invalid ’MIB’ variants, we can sim-
ply subtract both 884736 and 294912 from the total number of all
variants. This still yields a large number (close to 120 million):
118849536 valid variants.

What is the complexity of a variant table T representing the valid
variants in Example 3? This is discussed in more detail in subsequent
sections. But, even without a detailed analysis we can see that there
are three disjoint states (three subproblems from the business point
of view − each of them large, but unconstrained):

1. Both ’MIB’ and ’STW’ are excluded externally (by user choice).
The problem is again simple, because the other 100 imprints are
completely unconstrained.

2. ’MIB’ is selected. Then ImprintColor is forced to ’Black’. All
other properties are completely unconstrained

3. ’STW’ is selected. Then the sizes ’3T’, ’4T’, ’S’, and ’XS’ are ex-
cluded. All other properties are completely unconstrained.

By adding further constraints in the further examples one by one,
we obtain an increasing problem complexity coupled with a decreas-
ing size in the number of valid variants. For these examples, the num-
ber of valid variants is best determined by actually constructing the
variant table and counting the variants. These results are summarily
given in Section 9.

Table 1: Domains for four T-shirt product properties

Style Fabric Imprint ImprintColor
FullSleeve Cotton MIB Black
HalfSleeve Mixed STW Blue
NoSleeve Synthetic 100 other imprints Red

Green

Table 2: Domains for remaining five T-shirt product properties

Size Color ImprintSize Donation (EUR) CO2Offset (EUR)
3T Black Baby 0.00 0.00
4T Blue Big 0.99 0.99
L Green Cute 1.99 1.99
M Pink ExtraBig 5.00 2.99
S Purple Full 9.99 3.99

XL Red Medium 15.00 4.99
XS White Small 20.00 5.99

XXL Yellow Tiny 25.00 10.00

Example 4. Constraining ’Style’, ’Fabric’, and ’Size
The T-shirt model as in Example 3, but with the additional con-

straint expressed in Table 3 taken from [8]13. This states that the fab-
ric ’Cotton’ does not come in all styles, and that non-cotton fabrics
are not available in all sizes. ”*” is a wild card symbol that matches
any value in the domain.

13 Tables 3 and 4 use c-tuples as a pragmatic form of compression and might
be maintained in exactly this way by a product manager using a spread-
sheet.

Table 3: Compressed relation of Style, Fabric, and Size

Style Fabric Size
{HalfSleeve, FullSleeve} Cotton *

* {mixed, synthetic} {XS, S, M, L, XL, XXL}

Example 5. Constraining ’Color’ and ’ImprintColor’
The T-shirt model as in Example 4, but with the additional con-

straint that only certain combinations of the properties ’Color’ and
’ImprintColor’ are valid. This relation is given in Table 4. ”*” is a
wild card symbol that matches any value in the domain.14

Table 4: Relation of Color and ImprintColor

Color ImprintColor
Black {’Blue’, ’Red’, ’Green’}
Blue {’Black, ’Red’, ’Green’}
Red {’Black’, ’Blue’, ’Green’}

White *
Green {’Black’, ’Blue’, ’Red}
Pink *

Purple *
Yellow *

3 Filtering of variant tables
Given a product model in the form of a single variant table T and an
external restriction R on the desired features (e.g., by the “user”), the
basic operation a configurator will have to perform is determining the
valid variants in R via the intersection in (2). This will be the case
regardless of whether T is unconstrained or not.

We may take R to be a c-tuple15: R = R1 × . . .×Rk.

R := T ∩R (2)

R can be calculated by a filtering query, which is the most central
operation on the table that must be efficient. In [7, 8] it is pointed out
that (2) can be realized as an SQL query when T is in a relational
database:

SELECT * FROM T WHERE v1 IN R1 AND . . . vk IN Rk;
(3)

If T is compressed to a VDD16 V, then the intersection can be
equivalently calculated from V and R, which I denote by:

R := V uR (4)

Following the database paradigm and its terminology, I shall call
the intersection R in (2), (4) (or the result of the equivalent query
(3)) a variant result set (VRS). The performance of determining the

14 It is tempting to formulate the content of this constraint as an inequality
Color 6= ImprintColor. But using a table is often preferred in practice,
because:
• It is more precise. The inequality would compare “apples with oranges”,

• It is not dependent on a perhaps proprietary modeling language, and

• It is the natural paradigm used for the other constraints

15 Whereas it is conceivable that more general restrictions might be formu-
lated, this is currently not supported in most configurators, and we do not
consider it here.

16 VDDs are detailed in [8]. I review them in brief in Section 4.

22

VRS R in (4) is linearly dependent on the number of nodes in V [8],
not the number of rows in T.

A VRS can be used as the basis for further filtering. Thus, (3) can
be generalized to further filter any VRS:

SELECT * FROM R WHERE v1 IN R1 AND . . . vk IN Rk;
(5)

This is needed when the external restriction is successively nar-
rowed by the user. In reality, (5) is the central operation that a con-
figurator must support efficiently.

4 Brief review: Variant Decomposition Diagram

A Variant Decomposition Diagram (VDD) is the table compression
method referred to in the sections on compression. I give a brief char-
acterization using the example of the very simple T-shirt model in
[6, 7], which is listed in table 5 here. The resulting VDD is depicted
in Figure 1.17

In Table 5 choose the first value in the first column (’MIB’). Table
5 is then decomposed into three parts:

1. the boxed cells (Imprint = ’MIB’),
2. the slanted cells (rows with Imprint = ’MIB’, but without boxed

cells), and
3. the boldface cells (rows with Imprint 6= ’MIB’)

Table 5: Variant table TS for the simple T-shirt

Imprint Size ImprintColor

MIB Large Black
MIB Medium Black
MIB Small Black

STW Medium Black
STW Large Black
STW Medium White
STW Large White
STW Medium Red
STW Large Red
STW Medium Blue
STW Large Blue

A root node representing the entire table is created and labeled
with the selected feature and column (’MIB’ in column 1). The root
node has two outgoing arcs (links). One, the HI-link, points to a node
representing the subtable of slanted cells (right subtable with one
less column). The other, the LO-link, is drawn with a dotted line and
points to the subtable of the subtable of boldface cells (left subtable).
The subtables formed by the slanted and boldface cells, respectively,
can be recursively decomposed in like manner by always choosing
the first value in the first column. For the right subtable (slanted cells)
this is the feature ’Large’ in column 2. For the left subtable (boldface
cells) this is the feature ’STW’ in column 1. A HI-link to an empty
table points to the sink > (T). A LO-link to an empty table points to
the sink ⊥ (F).

17 Each node in Figure 1 is labeled in the form 〈m : (j, val)|n〉. The labels
are artifacts of the current VDD implementation. (j, val) designates the
assignment of val to product property vj (a product feature). m is the vari-
able number assigned to this feature (i.e., it encodes (j, val)), and n is the
node number assigned during construction of the VDD (a unique identifier
for the VDD-node).

FT

1:(3, MIB)|13

2:(3, STW)|12

3:(2, Large)|5

3:(2, Large)|11

4:(2, Medium)|4

6:(1, Black)|2

4:(2, Medium)|10

6:(1, Black)|9

7:(1, Blue)|8

8:(1, Red)|7

9:(1, White)|6

5:(2, Small)|3

Figure 1: VDD of simple T-shirt

Each path in a VDD from the root node to a sink > represents a
variant. If a feature is part of a solution, then the HI-link is followed
from all nodes that refer to that feature. Otherwise the LO-link is
followed. For example, ’STW’, ’Medium’, and ’Black’ are the chosen
features on the path

’MIB’ ’STW’→ ’Large’ ’Medium’→ ’Black’→ > (6)

where “ ” denotes a LO-link and “→” denotes a HI-link.

4.1 L-chains
Let V denote a VDD and ν ∈ V one of its nodes. Then a set of
nodes whose HI-links all point to the same child node and are linked
together through LO-links is called an l-chain. In Figure 1 there are
three l-chains:

• the nodes for ’Large’ and ’Medium’ on the left
• the nodes for ’Black’, ’Blue’, ’Red’, and ’White’ on the left
• the nodes for ’Large’, ’Medium’, and ’Small’ on the right

Some individual nodes that are not part of a larger l-chain are con-
sidered as a singleton l-chain. In Figure 1 these are

• the root node for ’MIB’,
• the node for ’STW’ on the left, and
• the node for ’Black’ on the right

An l-chain can be labeled by the set of the collected values it refers
to. The l-chains, above would thus be labeled as

{’Large’, ’Medium’}, {’Black’, ’Blue’, ’Red’, ’White’} . . . {’Black’}

4.2 Solutions of a VDD as c-tuples
The solution (6) is comprised of the nodes for ’STW, ’Medium’, and
’Black’. Let us refer to these nodes by node number n as ν2, ν10, and

23

ν9.18 Each of these nodes is part of an l-chain. Let C2, C10, and C9

denote the labels of these l-chains:

• C2 = {’STW’} for ν2,
• C10 = {’Large’, ’Medium’} for ν10, and
• C9 = {’Black’, ’Blue’, ’Red’, ’White’} for ν9.

This means that the Cartesian set C2 := C2×C10×C9 is a subset
of Table 5. A Cartesian product that is a subset of the overall variant
solution space will be called a c-tuple. A c-tuple that contains only
valid variants (i.e., is a subset of the variant table T) identifies an area
of some regularity (when it is not trivially a single variant).

The compression of a variant table T to a VDD V can be seen as
one way of determining c-tuples (via l-chains) in T. Figure 1 shows
that Table 5 is the disjoint union of two c-tuples19:

C1 := {’MIB’} × {’Large’, ’Medium’, ’Small’} × {’Black’}

C2 := {’STW’}×{’Large’, ’Medium’}×{’Black’, ’Blue’, ’Red’, ’White’}

The added benefit of a VDD over a mere list of c-tuples is that
if several c-tuples have common tails (ends) then these tails can be
represented by a single common node. Thus a VDD offers more com-
pression potential than finding a disjoint decomposition of a table as
c-tuples. (There is no example of this in Figure 1.)

The compression to a VDD (and also any compression directly
to c-tuples) is subject to heuristics, i.e. it is usually not possible to
guarantee a “best” compression.

5 Free product properties
In Example 1 the T-shirt model is completely unconstrained, i.e., the
entire solution space of over 120 million variants is valid. In this sit-
uation no choice of any feature for a product property will ever con-
strain any other product property. In other words, an external agent
(the user) can “freely” choose any feature of any property, without
affecting any other choices20.

If the T-shirt example in Section 2 allowed an arbitrary text (per-
haps of a certain limited length) to be imprinted on the T-shirt, this
text could be modeled as a free property with an infinite domain.
Each ordered or produced variant would have a value assigned to this
property, but the configurator would only need to solicit the arbitrary
input, quite separate from the rest of the configuration problem.

In Example 1 all properties are free properties. This is not neces-
sarily a typical setting. However, it is more typical after an external
restriction. If the external restriction is a subset of T, i.e. R ⊂ T, then
R = T ∩ R, and all choices in R are free properties under T and
R. In Example 2 of a T-shirt with only the constraint between the
imprint ’MIB’ and the imprint color ’Black’, all product properties
become free properties, once it is clear that either ’MIB’ has been ex-
cluded, or equivalently, some other imprint has been chosen. Thus,
product properties that are not globally free properties can become
free, given a certain external restriction R.

6 Complexity given only free properties
We could arbitrarily consider a completely unconstrained problem to
be of zero complexity. However, a configurator must still be able to

18 See footnote 17.
19 This would be seen more directly by constructing the merged form, V∗,

of V (see [8]).
20 Of course, only one feature can be assigned to a given property at a time

respond to filtering queries (2), (4) against this (large) set of vari-
ants. The complexity for the configurator may be seen as related to
the complexity of these queries. This is discussed in Subsection 6.1.
The more speculative, related issue of how business complexity is
affected, is the topic of Subsection 6.2.

The general form of a VDD representing a c-tuple is given in Fig-
ure 2 for the example of the unconstrained simple T-shirt.

F T

1:(1, MIB)|10

2:(1, STW)|9

3:(3, Large)|8

4:(3, Medium)|7

6:(2, Black)|5

5:(3, Small)|6

7:(2, Blue)|4

8:(2, Red)|3

9:(2, White)|2

Figure 2: VDD of unconstrained simple T-shirt

6.1 Configurator complexity given only free
properties

Somewhat arbitrarily, in (7) the complexity cplx(R) of a c-tuple
R = R1 × . . . × Rk is defined to be the number of distinct fea-
tures in R. We will subsequently see why this makes sense.

cplx(R) := sR =

k∑
j=1

|Rj | (7)

sR is also the minimal number of nodes in a VDD for R.21 22

The response-time for a filtering query to a VDD can be guaranteed
based on the number of its nodes. Therefore, cplx directly relates to
the guaranteed performance for any filtering query and thus makes
sense as a complexity measure for the interactive configuration.
cplx increases with the size of the c-tuple R, but only linearly with

the number of its features, not exponentially, as does the number of
tuples in R.

6.2 Business complexity given only free properties
Let us make the following assumption: For a free property vj , tech-
nology can be utilized so that production/delivery is affected only by
21 This section uses some results about VDD compression detailed in [7, 8].

We assume these to be true without the reasoning being reproduced here.
22 This is illustrated in Figure 2. Each component Cj of a c-tuple C is rep-

resented by an l-chain consisting of a node for each element of Cj

24

a coefficient ωj for the property and an additional weight wx for the
feature x ∈ Dj . The plausibility of this is established by a thought
experiment: Adding a dyeing capability for additional colors of T-
shirts increases the complexity of that work center, and it may be
more difficult to provide some colors over others, but the rest of the
T-shirt production/delivery is not affected (if there are no technical
constraints). There would be a basic cost associated with the dyeing
process (ω4 for the property ’Color’), and difficult colors would have
higher weights, e.g., it could be that

0 = w’White’ < w’Black’ < w’Blue’ = w’Red’ < w’Green’ < . . .

Somewhat arbitrarily, but based on this observation, (8) proposes
a measure for the business complexity cplxb(R) of a c-tuple:

cplxb(R) :=

k∑
j=1

∑
x∈Rj

ωjwx (8)

Whether (8) is indeed a meaningful measures of the business com-
plexity incurred by offering a given c-tuple of variants needs evalua-
tion and verification in the field.

7 Complexity of a variant table T

A variant table T can be disjointly decomposed into q c-tuples, and
this can be seen as a decomposition into q disjoint subproblems, each
of them consisting only of free properties. The compression of T
to a VDD implies such a decomposition as a side effect [7, 8]. As
already pointed out, a main conceptual difference between the VDD
representation and the representation as a disjoint list of c-tuples, is
that the VDD has a more compact representation, because common
tails to the c-tuples are represented only once in a VDD.

A query (3) based on a VDD (or a query based on a subsequent
resulting VRS (5)) can exploit this gain. As could a business set-up.
The complexity of the query depends only on the number of VDD
nodes. Hence, I propose to define this node number as the overall
configurator complexity for T, given as a VDD V.

cplx(V) := |V| (9)

By analogy to (8), the associated business complexity would be:

cplxb(V) :=
∑
ν∈V

ωcol(ν)wfeature(ν) (10)

where col(ν) designates the product property that the node ν refers
to and feature(ν) the associated assigned product feature.

While it would have seemed natural to define the complexity of T
to be the minimal complexity that can be achieved, the decomposi-
tion of a variant table T to a VDD (and to the c-tuples it implies) is
governed by heuristics, and a best compression is not readily found23.
The same would be true for a measure based on a direct decomposi-
tion to c-tuples.

A point of speculation: A business set-up for processing variants
would also be based on heuristics, and insights of how to compress
the configuration model may lead insights into how to organize this
business set-up.

23 A VDD produced with a column heuristic [7] can be mapped to and from a
Multi-Valued Decision Diagram (MDD) [8]. In this sense, the complexity
observations here carry over to product models compiled into MDDs as
well.

8 Free features and negation

A feature is defined to be free in a given configuration state, if it will
remain validly choosable regardless of the further choices for other
properties. And if all remaining valid features for a property are free
then the property is free in that state. This is detailed in Subsection
8.1. Negation of a table allows identifying free features. Negation is
reviewed in Subsection 8.2.

8.1 Free product features

Even for a property that is not a free property, it can happen that cer-
tain of its features are unaffected by constraints. In Example 2 the
product property ’ImprintColor’ is no-longer a free property. How-
ever, the choice of ’Black’ as an ImprintColor is free, as it will al-
ways be choosable. A product feature that can never be a cause of
inconsistency is called a free feature.

8.2 Brief excursion on negation

Table negation is discussed in some detail in [6]. I review it here only
briefly, as far as needed to motivate the notion of a free feature.

Let T be a variant table and let D = D1× . . .×Dk (where Dj is
the domain of product property vj) be the c-tuple denoting the overall
solution space. We assume that D contains only features referenced
in T, i.e., that it is the smallest c-tuple that contains all features in T.

Let T := D \ T be the complement of variant table T. T lists
all invalid variants that can be formed using the features in D. Let
πj(T) be the set of values occurring in the j-th column of T. π(T) :=
π1(T)× . . .×πk(T) is the smallest c-tuple that contains all features
in T.

Let Dj := Dj \ πj(T). π(T), and Dj are well-defined, i.e., they
do not depend on heuristics. Define Q as the set of valid variants
that are outside of π(T). Let us consider only cases where π(T) is
smaller than D, i.e., Q is non-empty:

Q := D \ π(T) 6= ∅ (11)

It is shown in [6] Proposition 3 that Q in (11) can be decomposed
into k c-tuples and the following c-tuple (12) lies in Q, i.e., will
always contain only valid variants:

D1 ×D2 ×D3 × . . .×Dk (12)

This means that all features in D1 are free features. However, as
any product property can be chosen as v1, the features in Dj :=
Dj \ πj(T) are free for any product property. Thus, negation is one
way of determining free features.

9 Complexity results for the T-shirt examples

Table 6 lists the number of variants, the associated number of c-
tuples, and the complexity cplx (number of VDD nodes24) for the
examples in Section 2. As stated, the compression to VDDs and/or
c-tuples depends on heuristics. The variant tables for the examples
are too large to apply the usual preferred decomposition heuristic
explicitly in my current implementation. They were constructed di-
rectly from a compressed c-tuple representation and should be taken

24 We could also give the complexity in guaranteed run-time. For sake of
argument, we might suppose one microsecond per node. Then all listed
complexities would translate to less than one millisecond.

25

as “hand crafted”25. Nevertheless, they give an indication of what can
be expected. Further optimization can only produce smaller VDDs
for the examples.

Table 6: Complexity results for examples

Table #Variants #C-tuples cplx
Example 1 120324096 1 152
Example 2 119439360 2 172
Example 3 118849536 3 262
Example 4 85934080 6 312
Example 5 83228672 18 936

10 Business considerations
How product individualization may affect a business is discussed be-
low. Also, we observe a tendency of businesses to express product
data, including constraints, in tabular form. This requires being able
to deal with properties with non-finite domains. I propose to extend
variant table domains to be quasi-finite (10.2).

10.1 Business complexity in mass customization
We assume that the business is producing, delivering, and invoicing
the individualized product variant ~p, based on the procurement of
suitable components. If a procured item ~i is itself individualized, a
corresponding individualized specification must be attached to the
procurement order for ~p, and ~i must be linked to ~p throughout the
production process.26

If the overall variants can be subdivided into only a few c-tuples,
each of which is unconstrained, then this may be an indication to also
structure production that way. In other cases, production faces a con-
figuration problem of its own. In the case of the T-shirt this problem
might be identical to the original sales configuration problem. How-
ever, production often involves additional features (e.g., FabricDye
and PrintDye) with constraints of their own. We call such an addi-
tional configuration a (manufacturing) completion. The complexity
analysis would apply to these completions in a like manner.

10.2 Quasi-finite solution spaces
Several extensions to the tabular paradigm are already in common in-
formal use and/or are already supported by proprietary environments
like the SAP Variant Configurator [5]:

• compression of Cartesian sets of valid variants to c-tuples,
• numeric intervals in table cells with and without an underlying

finite domain, and
• wildcard symbols27 in table cells with and without an underlying

finite domain

Standardizing the definition of a variant table to include the above
capabilities is desirable to allow transparent and non-proprietary
product modeling, which is important to businesses. (A configurator
would then be expected to deal with such tables.) I propose to call

25 VDD construction directly from c-tuples taking free properties into ac-
count is current work in progress.

26 The problem of inter-business communication about product models is a
challenging topic, out of scope here. The complexity of managing the link
between~i and ~p is not considered here, either.

27 This generalizes to Boolean predicates.

the resulting domains quasi-finite, as they are a controlled relaxation
of the usual finiteness requirement.28

11 Summary and Outlook
The main observation in this work is that the compressibility of a
variant table is also a reasonable measure of the product complexity,
both from the configuration and from the business viewpoint. Further
insights are the notions of free properties and free features. A feature
that can no-longer lead to a conflict in a given configuration state is
a free feature in that state. If a property domain consists only of free
features, this is a free property. When all variants in the remaining
configuration state are valid, then all properties are free: the remain-
ing problem is unconstrained. Dividing a variant table into q disjoint
c-tuples is diving the problem into q unconstrained sub problems.

A current focus of work is to investigate how free properties and
free features might be used to improve the configurator experience. It
also seems promising to investigate, whether free properties and free
features can be used to influence the compression heuristics them-
selves. This is ongoing work. As are alternate ways of determining
the free features (beyond negation).

The actual complexity faced by a business is not yet well-
understood. I proposed linking business complexity to the variant ta-
ble complexity via some additional property coefficients and weights
for the individual features. But, this requires verification in the field.
As would any kind of guidance on reasonable limits on complexity
that should be observed, both from the point of view of maintainabil-
ity by a product manager and from useful deployment in the business.

Finally, in order to match practical expectations, I suggested re-
laxing finite table domains to quasi-finite domains, allowing both nu-
meric intervals and wild cards. Mass customization businesses would
also benefit by more standardization of modeling capabilities, partic-
ularly concerning variant tables, their expressiveness, and exchange
formats in compressed form.

ACKNOWLEDGEMENTS
I would like to thank my daughter Laura and the reviewers for their
comments, which helped improve this paper considerably

REFERENCES
[1] Henrik Reif Andersen, Tarik Hadzic, John N. Hooker, and Peter Tiede-

mann, ‘A constraint store based on multivalued decision diagrams’, in
Principles and Practice of Constraint Programming - CP 2007, 13th
International Conference, CP 2007, Providence, RI, USA, September
23-27, 2007, Proceedings, ed., Christian Bessiere, volume 4741 of Lec-
ture Notes in Computer Science, pp. 118–132. Springer, (2007).

[2] H.R. Andersen, T. Hadzic, and D. Pisinger, ‘Interactive cost configura-
tion over decision diagrams’, J. Artif. Intell. Res. (JAIR), 37, 99–139,
(2010).

[3] Rüdiger Berndt, Decision diagrams for the verification of consis-
tency in automotive product data, Hochschulschrift, dissertation, the-
sis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2016.
Zusammenfassung in deutscher Sprache.

[4] Rüdiger Berndt, Peter Bazan, Kai-Steffen Jens Hielscher, Reinhard
German, and Martin Lukasiewycz, ‘Multi-valued decision diagrams for
the verification of consistency in automotive product data’, in 2012 12th
International Conference on Quality Software, Xi’an, Shaanxi, China,
August 27-29, 2012, eds., Antony Tang and Henry Muccini, pp. 189–
192. IEEE, (2012).

[5] U. Blumöhr, M. Münch, and M. Ukalovic, Variant Configuration with
SAP, second edition, SAP Press, Galileo Press, 2012.

28 Support for quasi-finite domains in VDDs is described in [6, 8], although
the term quasi-finite is not itself used there yet.

26

[6] Albert Haag, ‘Arc consistency with negative variant tables’, In Tiihonen
et al. [11], pp. 81–87.

[7] Albert Haag, ‘Column oriented compilation of variant tables’, In Tiiho-
nen et al. [11], pp. 89–96.

[8] Albert Haag, ‘Managing variants of a personalized product’, Journal of
Intelligent Information Systems, 1–28, (2016).

[9] Tarik Hadzic, ‘A bdd-based approach to interactive configuration’, in
Principles and Practice of Constraint Programming - CP 2004, 10th
International Conference, CP 2004, Toronto, Canada, September 27
- October 1, 2004, Proceedings, ed., Mark Wallace, volume 3258 of
Lecture Notes in Computer Science, p. 797. Springer, (2004).

[10] D.E. Knuth, The Art of Computer Programming, volume 4A Combina-
torial Algorithms Part 1, chapter Binary Decision Diagrams, 202–280,
Pearson Education, Boston, 2011.

[11] Juha Tiihonen, Andreas A. Falkner, and Tomas Axling, eds. Proceed-
ings of the 17th International Configuration Workshop, Vienna, Austria,
September 10-11, 2015, volume 1453 of CEUR Workshop Proceedings.
CEUR-WS.org, 2015.

27

ICONIC
Interactive CONstraint-based Configuration
Élise Vareilles1 and Hélène Fargier2 and Michel Aldanondo1 and Paul Gaborit1

Abstract. Constraint satisfaction problems or CSP are very often
used to formalize product configuration problems in both research
and industry. CSP formalize relevant knowledge through variables,
each one associated to a definition domain, linked by constraints, lim-
iting the combinations of their permissible values. Thus, CSP makes
it possible to describe exhaustively the solution space, corresponding
to a set of all possible products. Two different methods of processing
CSP allow to exploit the generic models in an interactive way: prob-
lem filtering methods (reasoning directly on the CSP network and
removing inconsistent values) and solution filtering methods (reason-
ing on a representation of the solution space in the form of a com-
piled graph). Both of the methods have advantages and drawbacks
in online product configuration. This paper aims at putting the first
ideas on the joint use of these two methods in the same interactive
configuration problem.

1 Introduction

Who has never wanted to own a particular product, such as shoes,
smart-phone, cosmetic, car, etc., specially designed for him/her, per-
fectly suited to his/her desires, and affordable ? For several decades
now, customers want to bring a personal touch to their products to
make them special and unique. To meet this demand of personal-
ization, companies nowadays no longer only offer standard products,
but more and more personalizable ones. Thanks to the Web technolo-
gies, this personalization is done directly and interactively online.
Customers can play with the range of choices and options offered by
companies: they can assemble, cut, color, choose, ... visualize the re-
sult of their desires and ultimately order it, in a few minutes with a
few clicks.

Enabling consumers or customers to personalize their products
(glasses, shoes, computers, cars, etc.) is one of the current concerns
of companies, whatever their size or activity sector. From the con-
sumers’ point of view, this customization has to be simple and fast (a
few clicks on a web-page) while allowing them to obtain the prod-
uct corresponding to their desires and their budget. From a business
perspective, this customization is based on the definition of config-
urable products, represented by catalogs of predefined components
and their relationships, as well as the implementation of interactive
configuration systems or configurators.

Consequently, configuration systems have to cope with high com-
binatorial problems. To do so, they exploit a generic model [37] [34]
[35] gathering knowledge about:

1 Université de Toulouse, Mines d’Albi, Route de Teillet Campus Jarlard,
81013 Albi Cedex 09, France, email: firstname.lastname@mines-albi.fr

2 Université de Toulouse, IRIT, avenue de l’étudiant, 31400 Toulouse, France,
email: fargier@irit.fr

• customers requirements and desires on product definition,
• product components including their compatibility and / or incom-

patibilities (defining the generic bill-of-material for a product fam-
ily),

• product production or manufacturing process.

Constraint satisfaction problems or CSP are very often used to for-
malize product configuration problems in both research and industry
[7] [19]. CSP formalize relevant knowledge through variables, each
one associated to a definition domain, linked by constraints, limiting
the combinations of their permissible values [29]. Thus, CSP makes
it possible to describe exhaustively the configuration problem and its
solution space, corresponding to a set of all possible products. The
users interact with the configuration system by progressively giving
a value to or limiting the domain of the variables of their choice until
all the variables have a unique value and the product is completely
configured. The job of the configuration system is to guarantee that:

1. all choices are consistent with each other, at each step of the con-
figuration process,

2. they can lead to the configuration of the desirable product and
3. the relevant indicators, such as price, delivery time and so on, are

maintained up-to-date.

Two different methods of processing CSP allow to exploit the
generic models in an interactive way:

• problem filtering methods which reason directly on the CSP net-
work and remove inconsistent values. These methods use the con-
straints to make deductions on the problem by detecting locally
inconsistent values. They guarantee interaction with the users but
not the withdrawal of all values leading to non-solutions (they are
therefore ”incomplete”).

• solution filtering methods which reason on a representation of the
solution space in a form of a compiled graph. This compilation
takes place off-line before the query phase, which relaxes the con-
straints on their temporal complexity but repels the difficulty in
space: the compiled form can have an exponential theoretical spa-
tial complexity.

Knowing this context, the aim of this article is therefore to give the
first idea on a joint use of filtering and compilation methods in the
same configuration problem to exploit the best of both approaches
and mitigate their identified limits in the interactive product configu-
ration problems.

The paper is divided as follows. In section 2, the motivation of our
proposal, the constraint background and a simple illustrative example
are presented. In sections 3 and 4, a focus is made respectively on
problem filtering methods and solution filtering methods as well as

28

their their advantages and disadvantages in product configuration. In
section 5, the main idea of the proposed hybrid method is exposed as
well as some discussions.

2 Motivation, Background and Example
In interactive configuration problems, it is the user and not the ma-
chine that solves a combinatorial problem of optimizing preferences.
Product configuration problems are ones of the typical examples (in-
teractive configuration of a car, of a computer, etc.). By allowing the
customers to explore the solution space, the online configuration sys-
tem allows them to maximize their satisfaction.

Constraint satisfaction problems or CSP are very often used in
product configuration problems, both in research and in industry [7]
[19]. Many authors such as [40], [34], [27] have shown that config-
uration could be efficiently modeled and aided when considered as a
CSP (Constraints Satisfaction Problem). A CSP is a triplet {X ,D, C}
where X is a set of variables, D is a set of finite domains (one for
each variable) and C a set of constraints linking the variables [29].
The variables can be either discrete or continuous. The constraints
can either be of compatibility, when defining the possible or forbid-
den combinations of values for a set of variables (lists of compatible
values, mathematical expressions), or of activity, when allowing the
activation of a subset of variables and constraints [27] [20] [37].

The constraint-based modeling makes it possible to easily formal-
ize the generic product family by a set of variables, each one associ-
ated to its definition domain and linked to the others by constraints
that limit the combinations of allowed values. Constraints make it
possible to describe exhaustively the solution space, i.e. the set of
possible products. CSP have several advantages:

• a great freedom of knowledge modeling: compatibility between
components, mathematical formulas for product evaluation, acti-
vation of optional components, etc.,

• non-orientation of reasoning: any variable present in the problem
is both an input variable (which may be restricted by the user) or
an output variable (resulting from a calculation, for example). It is
therefore quite possible to constrain the price and then identify all
the corresponding products,

• a clear separation between knowledge models and their exploita-
tion (algorithmic processing),

• the possibility of combinations with other knowledge based ap-
proaches, and more particularly with case-based reasoning or
CBR [26] [22] [1] [41], data-mining [18] [21] [2] and ontologies
[38] [30] [39].

Constraint-based configuration systems allow to the users to
browse the CSP solution space (the set of all possible products) by
offering them the ability to:

• visualize the current solution being configured in a relevant way
by presenting only the components, variants and options which
are actually part of the solution,

• express preferences on components, variants, and options, such as
selecting a single value, choosing a set of values, excluding a set
of values, or expressing explicitly preferences explicitly between
values,

• estimate the current solution being configured according to several
criteria, sometimes antagonistic, such as its cost, performance or
delivery time,

• express constraints on evaluation criteria, such as limiting the cost
/ performance / delivery time of the current solution, which limit

the choice of options and variants, or optimize solutions on one of
these criteria [32] [33].

Technically, product configuration is an iterative process of remov-
ing solutions (products or components) from the solution space that
are no longer consistent with the choices made by a user (typically,
the potential customer) and the generic model. Through an iterative
process, the user gradually specifies his/her needs and gradually con-
verges towards a solution or a set of solutions satisfying his/her needs
and desires.

Two concurrent methods of CSP processing allow us to reason on
the generic model interactively: the methods reasoning on the prob-
lem described by a network of constrained variables (object of sec-
tion 3), and those reasoning on a solution space represented as a com-
piled graph (object of section 4).

We illustrate our proposal on a very simple example of car config-
uration, coming from [4] and presented in Fig. 1.

Figure 1. Car configuration problem [4]

This very simple example is composed of:

• six components: X = {bumpers, top, wheels, wheels, body, hood,
doors} with all the variable sharing the same initial domain: D =
{ white, pink, red, black }

• six constraints of C:

– V (C1) = {body, doors} with {(white, white),
(pink, pink), (red, red), (black, black)} as allowed
combinations,

– V (C2) = {hood, doors} with {(white, white),
(pink, pink), (red, red), (black, black)} as allowed
combinations,

– V (C3) = {body, hood} with{(white, white), (pink, pink),
(red, red), (black, black)} as allowed combinations,

– V (C4) = {bumpers, body} with {(white, pink),
(white, red), (white, black), (pink, red), (pink, black),
(red, black)} as allowed combinations,

– V (C5) = {top, body} with {(white, pink), (white, red),
(white, black), (pink, red), (pink, black), (red, black)} as
allowed combinations,

– V (C6) = {wheels, body} with {(white, pink),
(white, red), (white, black), (pink, red), (pink, black),
(red, black)} as allowed combinations.

3 Problem Filtering Methods
The problem filtering methods use the constraints locally to detect
the values which are no more consistent with the current problem.

29

One of the most widely used methods is the one of arc consistency
[29]. Arc consistency verifies that any value d of a domain D of
a variable v of V is compatible with each constraint taken one by
one. Dedicated filtering methods based on the arc consistency exist
for each type of CSP: k consistency techniques (arc consistency and
path consistency) used mainly for discrete or mixed CSP [24] [11]
[13], arc continuous consistency [16], 2B-consistency [23] or Box-
consistency [10] [9] for continuous CSP.

All the difficulty of the problem filtering methods lies in the fact
that a perfect filtering is generally an NP-complete problem. There-
fore, CSP filtering algorithms are limited to local, approximate, but
polynomial reasoning. In interactive configuration, the use of prob-
lem filtering methods ensures the interactivity with users but does not
guarantee the pruning of all values leading to non-solutions.

• Advantages of problem filtering methods:
Reasoning on any type of configuration problem (discrete,
continuous or mixed with or optional variables, etc.).

• Limitations of problem filtering methods:
Probable conservation of not realizable solutions and use of
the backtrack mechanism to restore coherence.

Let’s have a look at the use of problem filtering methods on our
simple example. The corresponding constraints network is presented
in Fig. 2.

Figure 2. Car configuration problem Network

On such an example, there is no problem of filtering: all the in-
consistent values are easily removed as the CSP is discrete and quite
simple. But on much more complex configuration problem with dis-
crete and continuous variables, the pruning of all values leading to
non-solutions cannot be guaranty [12].

4 Solution Filtering Methods
The solution filtering methods are based on the transformation, by
compilation, of a formalized configuration problem such as a CSP
into a finite state automaton which therefore exhaustively represents
the space of solutions [42]. This type of method has the advantage of
avoiding subsequent backtracks after the compilation of the automa-
ton and solves the filtering quality problem [5].

The compilation of a discrete problem into a finite state automaton
is NP-complete, but it is done off-line, not online as it is for problem
filtering methods. It has already proved its relevance and efficiency
on actual industrial applications [5]. The online use of the compiled

automaton guarantees that the users’ choices lead to a solution in
linear time which is completely consistent with interactivity in con-
figuration.

• Advantages of solution filtering methods:
Guarantee of achieving a solution without backtracks.

• Limitations of solution filtering methods:
Inability to efficiently compile certain types of problems (es-
pecially with continuous variables) and spatial explosion on
problems with optional variables.

Let’s have a look at the use of solution filtering methods on our
simple example. The corresponding automaton is presented in Fig.
3.

Figure 3. Car configuration problem Network

On such an example, there is no problem of compilation: the au-
tomaton is very quickly generated. But on much more complex con-
figuration problem with discrete and continuous variables, it can be
very difficult, and sometimes impossible, to build the finite state au-
tomaton.

5 Hybrid Proposed Method & Discussions
Product configuration is a topic that emerged some twenty years ago
and which is developing significantly at the present time, driven by
industrial applications and scientific results [7] [19].

With respect to constraint-based configuration problems, problem
filtering methods [29] [12] have already proved their worth for dis-
crete problems (core of many configuration systems, including those
of ILOG, Pros); The problem filtering methods have been recently
enriched (global inverse consistency [12], filtering and alternative
values [8]). Nowadays, the main difficulty is to efficiently integrate
continuous variables without discretizing their domain (essentially
filtering by bound-consistency [23] [9] [16]) and secondly, to effec-
tively take into account optional components without adding a spe-
cific value in domains [3] [43] [25].

The solution filtering methods [5] have also been extended by
taking into account price information, which the problem filtering
methods have difficulty to handle [6], by developing particularly ef-
ficient data structures [15], and finally by the definition of methods
of learning user’s preferences on compiled structures [14]). Some
works have extended the solution filtering methods to continuous or
mixed CSP [28] [31] [17], but rather on scheduling problems than on
product configuration ones.

The objective of the article is to discuss on the design, develop-
ment and testing of an interactive configuration algorithm that com-
bines the problem filtering and solution filtering methods. The devel-
opment and testing of this new hybrid filtering method would allow
the best of both approaches to be exploited by mitigating their limits
identified in interactive product configuration problems.

30

Scientifically, the first idea is to compile the sub-components of
the product family and to use problem filtering algorithms to propa-
gate users’ choices from one automaton to another. This first joint use
could avoid the pitfall of the spatial explosion due to optional com-
ponents. The second working line deals with a proposed data struc-
tures more suited to continuous variables than the conventional au-
tomatons and exceeding the bound consistency filtering approaches.
Rather than adapting the structures designed for discrete variables to
continuous ones (which is possible but ineffective by discretizating
the continuous domains), the approaches resulting from the work on
continuous domains could be used, such as Q-trees and R-trees [36].

Compared to existing work, the proposed hybrid method is
therefore both logical and innovative: how to combine problem
filtering and solution filtering methods together in the same con-
figuration problem. The future results seem very promising for
interactive configuration problems.

A PhD subject is actually waiting for a good candidate and future
PhD student. The PhD thesis is conducted between two teams: the
ORKID research team of the Industrial Engineering Lab of Mines
Albi France and the ADRIA research team of IRIT Toulouse France.
All the proposals will be validated on several industrial cases mainly
from the automotive sector.

REFERENCES
[1] A. Aamodt and E. Plaza, ‘Case-based reasoning: Foundational issues,

methodological variations, and system approaches’, AI Commun., 7(1),
39–59, (March 1994).

[2] R. Agrawal, T. Imieliński, and A. Swami, ‘Mining association rules
between sets of items in large databases’, SIGMOD Rec., 22(2), 207–
216, (June 1993).

[3] J. Amilhastre, Reprsentation par automate d’ensemble de solutions de
problmes de satisfaction de contraintes, Ph.D. dissertation, Universit de
Montpellier, 1999.

[4] J. Amilhastre, H. Fargier, and P. Marquis, ‘Consistency restoration and
explanations in dynamic CSPs-Application to configuration’, Artificial
Intelligence, 135(1-2), 199–234, (février 2002). bb modif 28/02/02.

[5] J. Amilhastre, H. Fargier, and P. Marquis, ‘Consistency restoration and
explanations in dynamic csps application to configuration’, Artificial
Intelligence, 135(1 2), 199 – 234, (2002).

[6] H.R. Andersen, T. Hadzic, and D. Pisinger, ‘Interactive cost configura-
tion over decision diagrams’, CoRR, abs/1401.3830, (2014).

[7] J.M. Astesana, L. Cosserat, and H. Fargier, ‘Constraint-based vehicle
configuration : a case study (regular paper)’, in International Confer-
ence on Tools with Artificial Intelligence (ICTAI), Arras, 27/10/2010-
29/10/2010, pp. 0–1, http://www.computer.org, (octobre 2010). IEEE
Computer Society.

[8] C. Becker and H. Fargier, ‘Maintaining alternative values in constraint-
based configuration’, in IJCAI 2013, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, Beijing, China, Au-
gust 3-9, 2013, pp. 454–460, (2013).

[9] F. Benhamou, ‘Heterogeneous constraint programming’, in 5th inter-
national conference on algebraic and logic programming, ed., Springer
Verlag, pp. 62–76, Aachen, Allemagne, (Mars 1996).

[10] F. Benhamou, D. Mc Allester, and P. Van Hentenryck, ‘Clp(intervals)
revisited’, in ILPS’94, pp. 1–21, (1994).

[11] C. Bessière and M. Cordier, ‘Arc-consistency and arc-consistency
again’, in AAAI, pp. 108–113, Cambridge MA, (1993).

[12] C. Bessière, H. Fargier, and C. Lecoutre, ‘Computing and restoring
global inverse consistency in interactive constraint satisfaction’, Arti-
ficial Intelligence, vol. 241, pp. 153–169, (September).

[13] C. Bessière and J. Régin, ‘An arc-consistency algorithm optimal in the
number of constraint checks’, in ECAI Workshop on Constraint Pro-
cessing, (1994).

[14] A. Choi, G. Van den Broeck, and A. Darwiche, ‘Tractable learning for
structured probability spaces: A case study in learning preference dis-
tributions.’, in IJCAI, volume 15, pp. 2861–2868, (2015).

[15] A. Darwiche, ‘Sdd: A new canonical representation of propositional
knowledge bases.’, in IJCAI, ed., Toby Walsh, pp. 819–826. IJ-
CAI/AAAI, (2011).

[16] B. Faltings, ‘Arc consistency for continuous variables’, in Artificial In-
telligence, volume 65, pp. 363–376, (1994).

[17] H. Fargier, F. Maris, and V. Roger, ‘Temporal Constraint Satisfaction
Problems and Difference Decision Diagrams: A Compilation Map.
(regular paper)’, in IEEE International Conference on Tools with Ar-
tificial Intelligence, Vietry sul mare, Italie, 09/11/2015-11/11/2015, pp.
429–436, http://www.ieee.org/, (novembre 2015). IEEE.

[18] U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, Ad-
vances in Knowledge Discovery and Data Mining, American Associa-
tion for Artificial Intelligence, Menlo Park, CA, USA, 1996.

[19] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration: From Research to Business Cases, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1 edn., 2014.

[20] E. Gelle and R. Weigel, ‘Interactive configuration based on incremental
constraint satisfaction’, in IFIP, pp. 117–126, (1995).

[21] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edn.,
2011.

[22] J. Kolodner, Case-based Reasoning, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[23] O. Lhomme, ‘Consistency techniques for numeric CSP’, in Inter-
national Joint Conference on Artificial Intelligence, pp. 232–238,
Chambéry, France, (8 1993).

[24] A.K. Mackworth, ‘Consistency in networks of relations’, in Artificial
Intelligence, volume 8(1), pp. 99–118, (1977).

[25] K. McDonald and P. Prosser, ‘A case study of constraint programming
for configuration problems’, Technical report, APES Research Group,
(2002). APES-45-2002.

[26] M. Minsky, ‘A framework for representing knowledge’, Technical re-
port, Cambridge, MA, USA, (1974).

[27] S. Mittal and B. Falkenhainer, ‘Dynamic constraint satisfaction prob-
lems’, in AAAI, pp. 25–32, Boston, US, (1990).

[28] J.B. Møller, Jakob Lichtenberg, H.R. Andersen, and H. Hulgaard, ‘Dif-
ference decision diagrams’, in Computer Science Logic, 13th Inter-
national Workshop, CSL ’99, 8th Annual Conference of the EACSL,
Madrid, Spain, September 20-25, 1999, Proceedings, pp. 111–125,
(1999).

[29] U. Montanari, ‘Networks of constraints: fundamental properties and ap-
plication to picture processing’, in Information sciences, volume 7, pp.
95–132, (1974).

[30] B. Neumann, ‘Configuration expert systems: a case study and tutorial’,
in SGAICO Conference on Artificial Intelligence in Manufacturing, As-
semblu=y and Robotics, pp. 27–68, Munich, Germany, (1988).

[31] A. Niveau, H. Fargier, C. Pralet, and G. Verfaillie, ‘Knowledge Com-
pilation Using Interval Automata and Applications to Planning (regu-
lar paper)’, in European Conference on Artificial Intelligence (ECAI),
Lisboa, 16/08/2010-20/08/2010, pp. 459–464, http://www.iospress.nl/,
(aot 2010). IOS Press.

[32] P. Pitiot, M. Aldanondo, and E. Vareilles, ‘Concurrent product configu-
ration and process planning: Some optimization experimental results’,
Computers in Industry, 65(4), 610–621, (2014). WoS?.

[33] P. Pitiot, M. Aldanondo, E. Vareilles, P. Gaborit, M. Djefel, and S. Car-
boneel, ‘Concurrent product configuration and process planning, to-
wards an approach combining interactivity and optimality’, Interna-
tional Journal of Production Research, 51(2), 524–541, (2013). WoS?.

[34] D. Sabin and E.C. Freuder, ‘Configuration as composite constraint sat-
isfaction’, in Artificial Intelligence and Manufacturing Research Plan-
ning Workshop, pp. 153–161, (1996).

[35] D. Sabin and R. Weigel, ‘Product configuration frameworks - a survey’,
IEEE Intelligent System and their Applications, (1998).

[36] J. Sam-Haroud, Constraint consistency techniques for continuous do-
mains, Ph.D. dissertation, Ecole Polytechnique Fdrale de Lausanne,
1995.

[37] T. Soininen and E. Gelle, ‘Dynamic constraint satisfaction in configura-
tion’, in American Association for Artificial Intelligence, Workshop on
Configuration, Orlando, US, (1999).

[38] T. Soininen, J. Tiihonen, T. Mannisto, and R. Sulonene, ‘Towards a
general ontology of configuration’, AI EDAM-ARTIFICIAL INTELLI-
GENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFAC-
TURING, 12(4), 357–372, (1998).

[39] S. Staab and R. Studer, Handbook on Ontologies, Springer Publishing

31

http://gind.mines-albi.fr/en/axe/orkid
https://www.irit.fr/-ADRIA-team-?lang=en

Company, Incorporated, 2nd edn., 2009.
[40] E. Tsang, ‘Foundations of constraints satisfaction’, in Academic Press,

London, (1993).
[41] E. Vareilles, M. Aldanondo, A. Codet De Boisse, T. Coudert, P. Ga-

borit, and L. Geneste, ‘How to take into account general and contextual
knowledge for interactive aiding design: Towards the coupling of CSP
and CBR approaches’, Engineering Applications of Artificial Intelli-
gence, vol. 25, pp. 31 – 47, (2012).

[42] N.R. Vempaty, ‘Solving constraint satisfaction problems using finite
state automata’, in Swartout, pp. 453–458, (1992).

[43] M. Veron, Modlisation et rsolution du problme de configuration indus-
trielle : utilisation des techniques de satisfaction de contraintes, Thse
de doctorat, Institut National Polytechnique de Toulouse, France, 2001.

32

Features of 3D graphics in sales configuration
Petri Helo1 and Sami Kyllönen2 and Samuli Pylkkönen2

Abstract.1 Advanced 3D graphics is becoming increasingly
important part of sales configuration systems. Availability of high
performance graphics processing enables distribution of product
models in web browsers and AR/VR platforms. The challenge is
that in addition to traditional sales, product, manufacturing, and
documentation related rules, handling 3D graphical objects present
some new requirements for the configuration task. This paper
discusses the modelling of 3D sales configuration. Finally, a
framework for 3D graphics based configuration is presented.

1 INTRODUCTION

Product configuration systems [1] are generic purpose
software packages aiming to solve the configuration task by using
a combination of rule processing, CSP and object-oriented
modelling. The new challenges include web based 3D graphics of
product visualization [2], seamless integration to supply chain [3],
support for collaborative configuration [4], and use of cloud based
technologies [5].

Today, three-dimensional graphics is becoming an
essential part of sales configuration systems or CPQ (Configure
Price Quote) systems. The ability to visualize complex product
systems is an important aspect in sales communication.
Engineering related processes of complex products require
consideration of visualization and use of 3D graphics [6].
 For configuration modelling task the demand to apply
extensive visualisations in the process gives additional work and
considerations. Based on user selections, a product configuration
system should produce multiple outcomes for example, a valid
product variant, bill-of-variants, pricing, visualizations or even
immersive 3D models. Very often the development of
configuration models and graphical models are conducted by
different individuals and departments. Integration of the models
require careful planning.

The purpose of this paper is to identify and discuss
specific features, such as position and constellation related rules,
viewpoints, collision detection and kinematics in the context of
sales configuration modelling. From methodological perspective, a
proposed framework was developed based on an interview and
discussion with five persons experienced on building and
maintaining product configuration models which include 3D
graphics in a central role. Two case examples of actual
configuration system implementations are presented to show a
comparison how 3D can be handled. The result is by no means

1 Networked Value Systems, University of Vaasa, Finland email:

petri.helo@uva.fi
2 Wapice Oy, Finland, email: sami.kyllonen@wapice.com
2 Wapice Oy, Finland, email: samuli.pylkkonen@wapice.com

complete, but aims to open discussion what type of challenges 3D
graphics based product configuration models are presenting.

Three main elements were identified to be specific
characteristics and demanding in use of 3D graphics by the
modellers: (1) systems level configuration modelling, (2) graphics
related rules and constraints, (3) requirements coming from
immersive technologies. The following part discusses these
aspects.

2 SYSTEMS LEVEL CONFIGURATION

Many 3D configurators aim to capture modelling of
larger and more complex systems. Instead of modelling an instance
of a product family, the focus of modelling is on the system level
which comprises of several product variant instances sharing the
same environment and interacting with each other [6].

Examples of system level configurations could include
modelling of buildings, power plants, ships. Number and type of
product instances are defined by higher level configuration
parameters and rules. For example, produced power parameter may
define the number and types of generators needed. On a product
configurator level, separate configuration rules may be applied.

This type of modelling requires object-oriented approach.
Product variant instances are encapsulated objects, which can be
added (constructor) or removed (destructor) from the common
space, objects may be communicate by using methods; some
methods may be public for others to interact or restricted to be used
only within the product model (private).

Figure 1. Configuration system consisting of configurable product families
P1, P2, and P3 in a 3D world.

Another typical systems level configuration feature is the

engineer-to-order process (ETO). ETO refers to configuration
where product structures are not completely defined initially and
final configuration is completed in phases as further information is

33

gained [6]. There are several possibilities for reasons for phased
configuration:
 Incomplete or changing product parameters [6]
 Transition from customer requirements to design parameters

or physical building blocks require engineering work [6]
 Interdependency caused in later phase conflicting with initial

parameter values [7]
 Co-creation presents an additional challenge [8]. This could

mean that there is a distributed team maintaining the system
level configuration rules, but also the possibility that end users
are working in a team and sharing the configuration model.

Standardization of ETO process and adaptation of mass
customization principles has been reported to be an interesting
topic for many project based industries including construction and
machine building [9] [10] [11].

In order to support some ETO requirements, product structure
modelling for reusing the elements between projects, has been
presented by Brière-Côté et al [12]. Another aspect is that on
system level, product lines develop and evolve during the life-
cycle. Pleuss et al [13] have presented a model-driven approach to
describe feature models and analyse the development paths.

Systematic processes have been introduced to support modular
product family development [14] and product family architecture
[15] to support mass customization and CPQ. However, systematic
system level processes for managing ETO offering has not been
presented.

3 GRAPHICS RELATED FEATURES

Use of graphics in configuration system is becoming quite
standard. However, very often the full potential of visualization is
not taken, as graphical representation is just one configuration
outcome among the others. For example, Forza and Salvador [16]
have presented very well the role of geometrics and graphic models
in product configuration. They demonstrate how many products
can be modelled by using a library of objects and graphic
configuration result is produced as an output together with code,
cost, BOM and other traditional outcomes. Shafiee at el [17]
analysed visual representation techniques in product configuration.

Pleuss and Botterweck [18] have presented an S2T2
configurator tool to visualize the configuration possibilities and
variability space. Visualization of elements and rules in modelling
has been presented too. For example, Tiihonen et al [19] have used
this kind of approach in WeCoTin system.

Seeing the actual visualization of the product may have
interesting results for users. Deng et al [20] studied empirically
how users combine colours in product configuration. They
concluded that users are likely to combine colours according to
visual coherence and total number of actually used colours was
smaller than expected based on combinatorics.

Configuration system can be integrated from two
perspectives with 3D graphics: (1) user interface may be built in
3D world and selections are done in this space; (2) the result of
configuration input from traditional form type of user interface is
visualized as 3D graphics. Both configuration approaches require
special attention in terms of positioning, kinematics, animation and
rules.

3.1 Positioning of objects

 Position of objects is depending on several object properties,
rules and constraints, including:
 Dimensions and shape of each product variant
 Positioning in the world coordinates (absolute position,

position relatively to other objects, - left, right, top, bottom).
 Rotation directions of each product
 Objects should be aligned in correct direction with each other
 Objects should be positioned in the same edge line with each

other. In case of different lengths, also possibility to align on
centreline.

 Kinematic direction, for example latches and doors should
open towards out from the object group centre.

 Stacking rules of objects, maximum number of stacked
objects or dynamic stacking constraints

Navigation in 3D world - zooming, viewing, panning may be
controlled by the following parameters:
 Product configuration may be observed from various

positions, angles and distances
 Maximum distances and angles may be set for each axis
 Navigating inside of objects may be restricted
 Objects may be dragged, dropped and moved within the

allowed space
 Objects may be grouped together for rules
 Taking screenshots from camera points

Auto-snap of objects – users can move objects in common space
and auto-snap rules may be used:
 Objects should attach to each other if the distance is short

enough.
 Objects should not be locked to each other if the distance is

short enough.

Figure 2 shows an example of electrical cabinet configuration,
where among traditional configuration parameters, product layout
and space allocations are visualized as an output of configuration.
Dynamic rules may be used to calculate resource consumption as
well as discrete additions of cabinet space.

Figure 2. Electrical cabinet space allocation in sales configuration system.

3.2 Kinematics

User selections trigger processing of rules and changes in 3D
graphics presentation of the product. Product variant parameter

34

value changes can interact with other models’ interfaces. Interfaces
can be physical objects or “virtual planes” within the 3D space.

Objects may be moved in relation with each other. Objects
which are attached to each other may have kinematic rules. For
example, one object may rotate around another object by using
kinematic rule type axis, constrained by 25 degree allowed space.
This kind of rules are used for example in door opening directions
or lifting arms.

3.3 Animation

Animation is a method used to describe functionality,
connections or location of elements of a product configuration. For
presentation purposes, user may select product and objects within
the configuration space and get further information about each
clicked object.

Animations may be generated by using camera flights between
predefined camera positions. Completed configurations may yield
an animation, which visualizes the use of product configuration in
a real operating environment. This outcome may be distributed part
of the offer documentation as an appendix.

3.4 Rules and constraints

Features, functions and physical building blocks in sales
configuration system needs to relate to 3D graphical models. In
addition to interfaces between these, special rules and constraints
may be introduced:
 Position and constellation related rules
 Animation – dynamic rules in terms of changing parameter

values at certain times and events
 Collision detection related rules
 Dynamic rules for space, weight and pressure related

resources

These rules may be related to correct visualisation only and
handled in 3D model. In many cases the rules are related to product
configuration side as well and should restrict users to choose
impossible variants for further processing.

4 VR/AR and gamification

Virtual Reality and Augmented reality (VR/AR) technologies
are used to visualize product configuration in a realistic operations
environment. Virtual reality technology creates an immersive user
interface for navigation and use the actual system. For
configuration purposes this approach gives benefits:

(1) Augmented reality embeds 3D visualization of the product
model into the real-world. Well known examples are sofa
configurators where furniture layout may be embedded into
a photo of a real room and house configurators where
builds are visualized in real 3D space.

(2) Seeing product system in real environment is expected to
improve hit rate of offers and this approach is used in
applications where product configuration connects with
ambient environment visually.

(3) Gamification refers to game like use of product
configuration. Simulating the use of product system from
operator perspective could be an example of gamification.

Computer simulation could validate the behaviour of the
configuration model and the performance of the system in
close to actual environment.

Figure 3 presents an example of virtual reality model of a power

plant, where a maintenance task may be completed in realistic
environment.

Figure 3. Virtual reality model of a power plant configuration.

5 CASE EXAMPLES

Two illustrative examples of real CPQ implementations
are presented: (1) a waste processing plant configuration, and (2)
piping system configuration for industrial applications. Both cases
have been implemented by using Summium CPQ configurator
system.

5.1 Case: Plant level configuration

First example presents a model of waste processing plant, which
is a system level configurable model. The geometry of products has
been processed from PDM to produce “light models” for
operations. The number of polygons have been reduced to increase
the graphical performance. Geometry models have been linked
with configurator models.

The first task is to create a production line by adding machinery
and connecting these with each other. Each machine (product
variant) has kinematics and connecting interfaces, which define
compatibility with other products. A system level optimal solution
is presented and the entire system is presented in a world view. The

35

next step in the process is to modify the proposed layout to support
building shapes and dimensions.

Detailed configuration for each machinery can be processed at
this point and finally a request is generated for CAD server API,
which will process the actual visualisation. The system generates
both sales related documents as well as actual CAD model of the
plant. The result can be used for production and sourcing.

Figure 4. Layout planning and 3D visualization of building blocks.

The process steps in this structured approach are as follows:

(1) System level modelling in 3D
(2) Layout modifications in 3D
(3) Product level configuration of variants
(4) Final visualisations in CAD system

5.2 Case: Piping system configuration

The second case example is a configuration system for
generating a piping system in 3D space and validation of the
solution. The system is used to design a piping routing for a
building or machinery. The configuration system proposes a
solution. When geometry is checked and collision testing are
completed, a list of bill-of-materials may be generated for
processing pricing calculation and required information for the
production.

The user input is the coordinate points for piping system entry
and exit points, diameters of pipes and flanges. A 3D model is
generated to satisfy the constraints and minimize the pipe length.
The outcome is a 3D model, which may be rotated and studied
visually. For each piping part, manufacturing phases may be
simulated to visualize the bending process and requirements for the
machinery.

The process steps in case 2 were as follows:

(1) Definition of piping connection points and pipe types
(2) System level optimized solution
(3) Visual evaluation, e.g. collision test
(4) BOM and part generation
(5) Production simulation for parts

Figure 5. Generating 3D piping system based on input points.

5.3 Comparison

Two described configurator examples use 3D models as a
central part of the CPQ functionality. Both product systems have
system level engineering perspective, but have differences from
each other (Table 1).

Table 1. Comparison of plant and piping cases.

 Case 1 Case 2

 Plant

Piping

World Construction area
available

Common
parameters for each
product variant:
materials, rating

Layout Building a line by adding
machinery connected to
each other, mostly 2D
layout

3D space of
interfaces where
product variants
should connect

Building
blocks

Configurable machinery
with connecting
interfaces; independent
configuration models

Parametric CAD
models are the main
output, each variant
produces a separate
file

User
interactions

Visualisation of the plant,
free navigation and pre-
set camera points

Visual inspection,
collision detection

System level
constraints

Construction area,
performance metrics of
the plant

Spatial connections,
minimizing pipe
length

36

6 CONCLUSIONS

 Use of 3D graphics can add value for many product
configuration tasks especially in CPQ. As product configuration
model and 3D visualization models are separate, the interfaces and
process structures should be well design to support the
configuration task. 3D visualisation may have three main purposes
(Table 2): (1) to support input data entry in visual form, (2) to
provide a playground for testing or inspection of configuration
result, or (3) generate documentation for offers, orders or
production.
 As increasing number of users are familiar with basic 3D
navigation, the use of 3D models for data entry is becoming a
feasible option. Functional testing of the product variant is an
application related task. It enables connecting sales phase
modelling with computer aided engineering and other complex
tasks. Using the 3D models or VR models to support
documentation is an entry level solution.

Recent studies have shown that immersive technologies have
potential. Górski et [21] developed a product configurator of a bus
for product training purposes by using VR. There is also recent
empirical evidence to show that gamification has impact on certain
types of tasks [22], which could be relevant for CPQ systems as
well.

Table 2. Functionality framework of 3D configuration systems.

User
interaction

Input Output

Adding
products

Adding and
moving products
in 3D space

 Layout and
space allocation

 System level
performance

Functional
testing

Operational use of
product or system
within 3D space

 Collision
detection

 Checking
dimensions

 VR/AR
 Training

Documentation
generation

Configuration
selections

 3D visualisation
 Offer

supplements
 Installation

support

Table 3 summarizes the specific features of 3D

configuration, which were anticipated based on discussions within
the expert teams. The list probably very limited but highlights
some challenges what 3D graphics set as requirements for future
product configurators and CPQ systems. System level analysis of
product, graphics modelling integration and immersive
technologies present interesting possibilities to expand the scope of
use of configurators and present challenges for product modelling
task.

Table 3. Features specific for 3D configuration systems.

Perspective Modelling considerations

System level analysis Interaction between
components

 World environment
 Engineer-to-order design

process

Graphics model related
issues

 Positioning of
objects

 Kinematics
 Animation
 Rules and

constraints

Immersive presentation and
gamification

 VR/AR specific
rules

 Dynamic event
based game rules

We believe that use of 3D models become a standard in CPQ
systems. Improving the connections between the domains of sales,
pricing, BOM, parts and graphical models, further work is needed
especially from configuration modelling side. As each of the
domains are somewhat separated from each other and experts are
typically at different parts of organisations, proper models for
distributed modelling and version control is needed.

REFERENCES

[1] Zhang, L. L. (2014). Product configuration: a review of the state-of-
the-art and future research. International Journal of Production
Research, 52(21), 6381-6398.

[2] Rolland, R., Yvain, E., Christmann, O., Loup-Escande, E., & Richir,
S. (2012, March). E-commerce and Web 3D for involving the
customer in the design process: the case of a gates 3D configurator.

In Proceedings of the 2012 Virtual Reality International Conference
(p. 25). ACM.

[3] Helo, P. T., Xu, Q. L., Kyllönen, S. J., & Jiao, R. J. (2010).

Integrated Vehicle Configuration System—Connecting the domains
of mass customization. Computers in Industry, 61(1), 44-52.

[4] Shamsuzzoha, A., Kyllönen, S., & Helo, P. (2009). Collaborative

customized product development framework. Industrial Management
& Data Systems, 109(5), 718-735.

[5] Yip, A. L., Corney, J. R., Jagadeesan, A. P., & Qin, Y. (2013, June).

A product configurator for cloud manufacturing. In ASME 2013
International Manufacturing Science and Engineering Conference
collocated with the 41st North American Manufacturing Research

Conference (pp. V002T02A010-V002T02A010). American Society
of Mechanical Engineers.

[6] Kristianto, Y., Helo, P., & Jiao, R. J. (2015). A system level product

configurator for engineer-to-order supply chains. Computers in
Industry, 72, 82-91.

[7] Helo, P. T. (2006). Product configuration analysis with design

structure matrix. Industrial Management & Data Systems, 106(7),
997-1011.

37

[8] Prahalad, C. K., & Ramaswamy, V. (2004). Co-creation experiences:

The next practice in value creation. Journal of interactive
marketing, 18(3), 5-14.

[9] Haug, A., Ladeby, K., & Edwards, K. (2009). From engineer-to-order

to mass customization. Management Research News, 32(7), 633-644.
[10] Jensen, P., Lidelöw, H., & Olofsson, T. (2015). Product configuration

in construction. International Journal of Mass Customisation, 5(1),

73-92.
[11] Kristjansdottir, K., Hvam, L., Shafiee, S., & Bonev, M. (2017).

Identification of Profitable Areas to Apply Product Configuration

Systems in Engineer-To-Order Companies. In Managing
Complexity (pp. 335-350). Springer International Publishing.

[12] Brière-Côté, A., Rivest, L., & Desrochers, A. (2010). Adaptive

generic product structure modelling for design reuse in engineer-to-
order products. Computers in industry, 61(1), 53-65.

[13] Pleuss, A., Botterweck, G., Dhungana, D., Polzer, A., &

Kowalewski, S. (2012). Model-driven support for product line
evolution on feature level. Journal of Systems and Software, 85(10),
2261-2274.

[14] Bonev, M., Hvam, L., Clarkson, J., & Maier, A. (2015). Formal
computer-aided product family architecture design for mass
customization. Computers in Industry, 74, 58-70.

[15] Pakkanen, J., Juuti, T., & Lehtonen, T. (2016). Brownfield Process:
A method for modular product family development aiming for
product configuration. Design Studies, 45, 210-241.

[16] Forza, C., & Salvador, F. (2006). Product information management
for mass customization: connecting customer, front-office and back-
office for fast and efficient customization. Springer.

[17] Shafiee, S., Kristjansdottir, K., Hvam, L., Felfernig, A., & Myrodia,
A. (2016, December). Analysis of visual representation techniques
for product configuration systems in industrial companies. In

Industrial Engineering and Engineering Management (IEEM), 2016
IEEE International Conference on(pp. 793-797). IEEE.

[18] Pleuss, A., & Botterweck, G. (2012). Visualization of variability and

configuration options. International Journal on Software Tools for
Technology Transfer, 14(5), 497-510.

[19] Tiihonen, J., Heiskala, M., Anderson, A., & Soininen, T. (2013).

WeCoTin–A practical logic-based sales configurator. AI
Communications, 26(1), 99-131.

[20] Deng, X., Hui, S. K., & Hutchinson, J. W. (2010). Consumer

preferences for color combinations: An empirical analysis of
similarity-based color relationships. Journal of Consumer
Psychology, 20(4), 476-484.

[21] Górski, F., Buń, P., Wichniarek, R., Zawadzki, P., & Hamrol, A.
(2015). Immersive city bus configuration system for marketing and
sales education. Procedia Computer Science, 75, 137-146.

[22] Hamari, J., Koivisto, J., & Sarsa, H. (2014, January). Does
gamification work?--a literature review of empirical studies on
gamification. In System Sciences (HICSS), 2014 47th Hawaii

International Conference on (pp. 3025-3034). IEEE.

38

Increased accuracy of cost-estimation using product
configuration systems

Jeppe Bredahl Rasmussen and Lars Hvam and Niels Henrik Mortensen 1

Abstract.1 This article describes an approach for utilizing Product

Configuration Systems (PCS) for quantifying project costs in

project-based companies. It presents a case study demonstrating a

method of quantifying costs in a way that makes it possible to

configure cost- and time estimates. Piecework costs, material costs

and sub-supplier costs are used as principle cost elements and

linked to structural and process elements to facilitate configuration.

The cost data are used by the PCS to generate fast and accurate

cost-estimates, quotations, time estimates and cost summaries. The

described cost quantification principles have been used in a

Scandinavian SME (Small and Medium-sized Enterprise) since the

90’s, but have since 2011 been adopted to be used in a

configuration system. A longitudinal case study was conducted to

compare cost and time-estimation accuracy before and after

implementation. We conclude that the proposed method for

grouping costs, combined with a PCS, can be used in project-based

construction industries to make more accurate estimates of project

costs. Reasons for improved accuracy are, according to company

experts, the increased documentation and visibility of cost-

estimates, dynamic allocation of variable costs, version control of

cost-agreements and the ability to handle an increased level of cost

details.

1 Introduction

Cost-estimation accuracy in project-based companies can be a

challenge that often results in cost overruns of construction

projects[1]. To respond to these challenges, a wide range of cost-

estimation techniques have been developed to increase accuracy,

ranging from simple estimation techniques to applied artificial

intelligence. However, the most recently developed methods have

not been adopted to the extent that would be expected, partly due to

lack of understanding of new methods, but also by lack of trust in

the benefits of such methods [2]. Product configuration systems

have proven useful to improve time performance, error rates and

profitability in a wide range of companies. [3–7] Some use has

been made of the generation of cost-estimates by means of rule-

based expert systems within the field of product configuration.

Examples of cost-estimates generated by PCS are catamaran-type

leisure boats in Korea [8], and optimization of the cost and

scheduling of heavy earthmoving operations [9]. A PCS was

developed by Chan [10] to predict the price and manufacturability

of six commonly used component designs. The component designs

generated by the PCS were afterwards validated by sourcing prices

1 Section of Engineering Design and Product Development, Technical

Univsersity of Denmark.email: jbrras@mek.dtu.dk

from real manufacturers and confirmed the reliability of

predictions from the expert system[10]. Cost-estimation of metal

casts has been developed by use of fuzzy reasoning systems[11].

Cost-accuracy has been reported as an observed benefit in industry

by use of PCS[12]. This article is a case study investigating an

implementation of a PCS to improve cost-estimation accuracy in a

project-based construction company. In order to investigate the

effects of a PCS, we followed a case company using a PCS to

generate cost-estimates and quotations. Based on the believe that

PCS can improve cost-estimation accuracy in the construction

industry, the following proposition was tested:

Proposition

Implementation of PCS can improve cost-estimation accuracy in

project-based construction companies

To test the propositions a collaboration with a case company that

had changed from a traditional cost-estimation approach to a PCS

was followed in a longitudinal case study. Access to the content of

the PCS calculation principles and domain experts for clarifying

questions was during the period in order to provide us with an

understanding of the most important reasons behind any changes in

cost-estimation accuracy. We sought to increase understanding of

how a PCS adds value to a company and what reasons might be

behind increases in cost-estimate accuracy. The paper is structured

as follows: (1) Literature review of current cost-estimation

practices in project-based industries; (2) Research methods; (3)

Description of how to model cost-elements in a PCS; (4) Case

describing the use of a PCS for cost-estimation, its impact on cost-

accuracy and possible explanations; (5) Discussion of the results;

and finally (6) Conclusions.

2 Literature review of cost-estimation
techniques

Cost estimation is important to project management as it provides

information for resource management, decision-making and cost

scheduling [13]. Cost over-runs are a common problem in project-

based companies when cost-estimates lack accuracy [1]. Numerous

methods have been proposed for cost-estimation and numerous

textbooks are readily available on the topic. Often the focus is on

the principles and processes involved in cost estimation. The

general suggestion is to break costs down into such elements as

labour, materials and plant costs and add some percentage for

contingency [14,15]. The process of estimation is to produce a

statement of the approximate quantity of material, time and cost to

perform construction work. In 1989 Carr [13] identified a need to

39

establish cost-estimating principles and stipulated that a proposal in

the construction industry must include an estimate that is close to

reality, a suitable level of detail, and all relevant items, without

adding extra and use quality documentation as a basis for business

decisions. Furthermore, the cost-estimate should distinguish

between direct and indirect costs and variable and fixed costs.

Additionally some way of handling contingency should be in place

to mitigate unforeseen circumstances [13]. Multiple methods for

cost-estimation exist; they can be divided into Bottom-up and Top-

down approaches. Bottom-up estimating (or resource-driven

estimating) includes breaking down a project to its distinct parts in

a ‘work breakdown structure’. The aim is to reach a level of detail

where costs are relatively stable and most costs are included. It is

generally agreed that the bottom-up approach is quite accurate, but

it is also time consuming [16]. Top-down (or parametric

estimating) relies on past projects and reviews and modifies earlier

projects by scaling and estimating expected costs [17]. Advanced

methods have been developed and classified in four types of cost

estimation modelling: Experience based (algorithms, heuristics,

expert system programming), simulation (heuristics, experts

models, decision rules), parametric (regression, Bayesian,

statistical models, decision rules) and discrete state (Linear

programming, classical optimization, network, PERT, CPM) [18].

Much research has been conducted within Case Based Reasoning

(CBR) as it allows recall and reuse of knowledge from prior

projects [19]. Rule-based experts systems have failed to meet the

need that construction managers have to handle complexity and

CBR has emerged as an alternative[20]. A system that integrates

CBR and rule based expert systems was developed for cost-

estimation of refurbishing of houses and it was concluded that the

combinatorial approach is beneficial but not commercially viable

due to the complexity of such an approach [21]. In practice, cost-

estimation methods depend on the nature and type of organization

and are not very standardized [22]. A survey of 84 very small to

large firms in the UK [2] were asked about current cost estimating

practices and the study concluded that the most used methods were

of a relatively simple nature, such as estimation of standard

procedure, comparison with past projects and comparison with

finished parts projects. Intuition and simple arithmetic formulas are

also widely used. Most of the advanced cost-estimation methods

have not been adopted by industry. Reasons listed for lack of

adaptation are that the companies are not familiar with recent

methods, companies lack time and knowledge and they doubt

whether the new techniques can be of benefit to the construction

industry. The study also concluded that companies mainly use cost-

estimation for construction planning and not for construction

evaluation [2]. This article seeks to add a case to the evidence that

a PCS can offer benefits to the construction industry both by

offering opportunities for increased cost-accuracy, but also by

making it easier to use cost-estimate data for construction

evaluation.

3 Research Method

This research was based on a case study of a project based

construction company that generates cost-estimates and quotation

letters. It was a longitudinal case study that observed changes in

cost-estimate accuracy occurring in a company that have changed

from a standard cost-estimate approach to a PCS. The longitudinal

case study was chosen due to the ability for the researcher to watch

a changes unfold in real time [23]. Data on cost-estimations and

actual costs were provided by the company. The data were

analysed by researchers by comparing pre-project cost-estimations

with realized costs in order to test the proposition. The cost-

estimates from 2009 were generated by standard methods and those

from 2014, which were generated with PCS, were compared to the

actual costs of the given projects. The possible reasons for the

results were investigated qualitatively in interviews with two

different company experts who had both used the system and taken

part in the development. The interviews were performed

individually to prevent interviewees from offering the same

explanation or affecting each other. Published studies of cost-

estimation in construction industry were reviewed in order to

identify best practices, to document that the principles used in the

case company resemble current practice and to identify similar use

of computer aided cost-estimation, in order to provide context.

3.1 Cost-estimation model based on
configuration

The proposed principles for cost-estimation by means of PCS

resemble standard cost estimation processes as described in text

books on cost-estimations by breaking down cost elements into

smaller cost elements such as labour, materials and plant costs

[15]. This approach resembles the bottom-up approach to cost-

estimation, which is believed to be accurate and complete but also

time consuming [16]. The time taken for a detailed bottom-up

approach is acceptable for mass-produced products and the effort

invested in making detailed estimations is justified, since they can

be reused. Multiple cases of knowledge based configurations of

bills of materials and processing times exists in make-to-order

companies [11,24,25] However, few accounts have been published

of knowledge based product configuration systems designed to

configure entire projects, including detailed costing information.

No relevant reports were found on configuration of cost summaries

in the research databases SCOPUS and Web of Science. The key

words searched were “expert system” ,“configuration” ,“decision

support”, “reasoning system” in combination with "cost summary",

"cost overview", "Cost accounting". Cost-accounting, among other

activities, is used to take decisions on pricing and on the

introduction of new products and discontinuing of products [26].

The detailed level of cost-information influences product cost

decisions. The more complex the product the more difficult it is to

include product costing feedback, so more accurate costing

information provides benefits in forecasting [27]. The currently

proposed cost-estimation model for projects divides cost elements

into three different categories; piecework cost (salary), materials

costs and subcontractor costs. The piecework costs represent the

agreed cost for a worker to perform a given piece of work. The cost

of having the worker perform the work corresponds to the time

expenditure for a construction process. The material cost represents

the costs of materials for a given project. The subcontractor costs

are fixed price agreements with subcontractors to solve a given

task. These costs are believed to be enough to give a complete

picture of a cost-estimate and are in line with current practice

[14,15]. In PCS the costs are assigned to parts or process

descriptions that can be selected in the configuration system in

order to configure a project. Additionally, parts and processes

contain account descriptions designated according to cost-type and

supplier information. The account descriptions can be used to

40

generate a cost summary of all expenditure in a project with a

description of supplier and the expected total sum. The cost

summary enables companies to compare cost-estimates with actual

costs at a detailed level, with little effort. The cost-summary

enables the company to use the cost-estimations for evaluation,

which is currently not standard practice [2]. Evaluations of cost

data and accurate cost databases are believed to be a key factor for

success in the improvement of cost-estimations in building projects

and firms will have to find some means of retaining the knowledge

and experience from past projects [28].

4 Background of the case company

The case company in this study was a Scandinavian company that

sourced construction components and provided system deliveries

as service installations. The company was classed as a SME and in

2015 it had a turnover of 34 million € and approximately 130

employees. In 2015 the company bid on 1319 projects and won

229 projects which in total represents production, sourcing and

assembly of 3001 individual products. The customers are typically

a group of people buying installations in a community where the

customers buy the product individually but share the costs of

installation. The average project cost was 148.471 € and the

average cost per product was 11.329 €. An average of project costs

in 2013 were distributed between assembly workers (25%),

materials (52%), subcontractors (11%) and additional costs for

setup and removal of each construction site (12%). The ratio of

expenses had not changed much since then. Since 2015 the

company had used a configuration system to generate cost-

estimates and quotations for projects. The projects were all

deliveries of similar products, but in many customer specific

variants from a few different product families. The configuration

system was based on component selection with assigned salary

costs, materials costs and subcontractor costs. (Section 3.2) The

cost-estimation techniques used by the case company were roughly

the same before and after implementation of a PCS. The main

difference was in the visibility and documentation of cost-

estimates, automation of changes in quotations and a slightly

improved detail level in cost contributions.

4.1 Configuration of cost-elements

A schematic representation of the proposed PCS shows a system

overview including user inputs, PCS knowledge and generated

outputs. (Figure 1). The user inputs was an interface with a drop-

down menu on which the salesman could select elements to specify

product design and work process. The knowledge of the

configuration system was represented by parts or processes to be

selected connected with a group of cost-elements; piecework cost,

material cost and subcontractor costs. Every part or process

element in the configuration system could hold one or more of the

cost-elements dependent on the characteristics of the chosen

element, i.e. a chosen component could include information on

both piecework-costs and materials costs. This was because some

parts of the construction project included both a work process to be

performed and a material to be used for the process. The

knowledge about the processes, materials and subcontractor costs

was handled in the PCS and a finite solution space could be

defined and handled by an inference engine.

The PCS could handle changing project costs by adding or

removing project elements according to changes in the required

product and thereby easily create revisions and changes in cost-

estimates and output documents. In order to handle the complexity

of construction projects special open entry fields were used in the

configurator with the possibility to describe non-standard elements.

Non-standard elements might consist of any of the three types of

costs and was a flexible way of adding non-standard process and

costing knowledge. The total sum of piecework-, material- and

subcontractor costs was used to generate the output of the PCS. For

internal use, the case company generated time-estimates (total

salary cost estimate divided by hourly fee gives an approximate

assembly time) and cost summaries according to expected

expenses from specific suppliers and subcontractor agreements.

The cost summary helped to evaluate accuracy and identify billing

mistakes. For external use, quotation letters were generated for

customer, each containing a fixed price based on a configured cost-

estimate. The time-estimate and the time-schedule were based on

the estimated salary cost, so the accuracy of the configuration was

of great importance for overall project cost accuracy. An under-

estimate in salary and thus time-estimates could result in increased

expenses due to overtime rent of machinery and other very variable

costs.

Figure 1 Overview of PCS and outputs delivered

4.2 Analysis of cost-estimate accuracy before
and after implementation of a PCS

The case company performed an analysis of the cost accuracy of

the major cost elements of 55 cases in 2009, corresponding to 12

months of operations, in order to review and improve the current

cost-estimation process. The deviations were calculated per major

cost element, as defined in (1).

Cost deviation = Actual cost – Estimated cost

(1)

If the actual cost of a project is higher than the estimated cost, the

cost deviation will be negative. If the actual cost is lower than the

estimated the result is a positive deviation. If a project exceeds the

cost estimate it shows a negative deviation on the graph and in case

of a lower price than estimated a positive deviation. In 2009

fluctuations in the deviations in cost-estimates could be observed

and only few projects where completed at a cost close to the

41

estimation (Figure 2). It can be seen that the fluctuations move in

both positive and negative directions but when deviating the

different cost elements generally move in the same direction. This

indicates a tendency to over-estimate or under-estimate a complete

project and not just parts of it. Furthermore, the tendency is that

most deviations are negative meaning that the cost-estimators most

likely to have underestimated project costs when there are

deviations. The conclusion from the investigation was that

increased cost accuracy was identified as an area that must be

improved. Based on the analysis it was decided by the case

company to invest in a PCS to generate quotations, in order to

improve accuracy. (Section 4.1)

Figure 2 Deviations in cost elements 2009

In 2014 another analysis of 42 cases corresponding to 4 months of

operations were performed to evaluate the effect of the PCS. Less

fluctuation in the deviations of cost estimates were observed in

2014, resulting in better accuracy (Figure 3). The line had

straightened around zero indicating that the deviations had been

reduced. There were still three major outliers in salary and

subcontractor categories. In order to understand them, expert

interviews were conducted to clarify the cause. In those particular

cases the company was experiencing a shortage of workers to

complete the projects and was forced to complete the projects by

using subcontractors. The deviations in salary and sub-contractor

costs equalized each other and the consequence was therefore not

negative to the company’s profit.

Figure 3 Deviations in cost elements 2014

An overview of the sum of the actual costs and estimated costs can

be seen in Table 1. Note that the total sum of salary and

subcontractor costs does not hit the target very precisely, which is

related to the prior explanation of the outliers. In the rest of the

article the data set has been corrected to exclude the three cases to

make a better representation of the actual distribution of the

deviations. From this point in the article only 39 cases are included

in the 2014 analysis.

 estimated costs actual costs

 2009 2014 2009 2014

projects 55 42 55 42

Sum of salary 1963 714 2224 501

Sum of materials 5004 1749 5173 1726

Sum of subcontractor 410 199 592 331

Total Sum 7377 2662 7989 2558

Table 1 Sum of total cost elements in 1000 € (2009 & 2014)

Reason for deviations in 2009 were according to the company a

lack of standardized solutions, too little detail on cost elements and

lack of control of expenses in relation to external use of consultants

for gaining approval for products. Reasons for deviations in 2014

were according to the company late changes in the order resulting

in a change in price. Positive deviations in the materials category

were explained by a change in product design resulting in a

positive deviation due to a lower final price.

4.4.1 Comparison of individual cost elements accuracy

All of the cost-element deviations were plotted in a column

diagram and rank-ordered from the greatest negative deviation to

the greatest positive deviation on identical scales per cost-element.

A reduction in under-estimated cases was observed across all cost

elements in 2014. Most notable are the salary and materials

estimates, which showed substantial reductions in under-estimates.

The subcontractor category still suffered from a tendency to

underestimate costs.

4.4.2 Comparison of salary costs

In 2009 the deviations were significantly more likely to be negative

(39 negative projects) than the estimates made supported by a PCS

in 2014 with 3 negative projects (Figure 4). In 2014 deviations

continued to occur but with positive deviations and with a

significantly smaller magnitude. The greatest negative deviation in

2009 was approximately 75.000 €, while the greatest negative

deviation in 2014 was approximately 1.000 €. This is a significant

difference in miscalculations and of great importance to the

profitability of the case company, as it will help to avoid losing

money, but also to calculate correct time-schedules and

subcontractor costs that are dependent on the number of days

needed to complete the work.

42

Figure 4 Comparison of salary cost-estimates 2009 and 2014

4.4.3 Comparison of material costs

In 2009 significantly more negative cost-estimates were made than

in 2014 when they were supported by the PCS. In 2014 negative

deviations continued to occur, but the magnitude of the

misestimates was much smaller than in 2009. In 2014 the

distribution was evenly distributed around zero deviation,

indicating that the estimates were closer to the target than before.

The deviation graphs reveal greater accuracy and process control.

Figure 5 Comparison of material cost-estimates 2009 and 2014

4.4.4 Comparison of subcontractor costs

In 2009 some negative deviations occurred and the tendency was to

underestimate subcontractor costs. In 2014 fewer deviations

occurred but there was still a tendency to underestimate

subcontractor costs. Experts at the company suggested that one

reasonable explanation was that the PCS cannot handle all

subcontractor costs as they are not as standardized as the salary and

materials category. Another reasonable explanation offered was

that the subcontractor costs are often variable costs that depend on

the time-schedule, so an incorrect salary estimate would lead to an

incorrect time schedule, resulting in increased sub-contractor costs.

This means that the improved sub-contractor costs might be a

“knock-on” effect from improved salary-cost estimation.

Figure 6 Comparison of subcontractor cost-estimates 2009 and 2014

4.4.5 Summary of cost deviations

Sections 4.4.2, 4.4.3 and 4.4.4. summarize evidence that the cost-

estimate accuracy improved significantly within all cost-elements.

Table 2 gives an overview of the percentage of under-estimates of

projects from before and after implementation of the PCS. Most

notable is the increased accuracy in the salary-cost and materials-

cost categories. As the salary costs and materials costs together

constitute 72% of average total expenses in a typical project, the

gains in cost-estimate accuracy contribute to the case company’s

profitability.
 Salary cost Material

Costs

Subcontractor

Cost

 2009 2014 2009 2014 2009 2014

Under-

estimate
71% 8% 76% 38% 89% 67%

Table 2 Percentage of project-costs under-estimated 2009 & 2014

43

The total amount of money in the two categories of under-

estimates and over-estimates can be seen in Table 3. In 2009, the

financial loss due to under-estimates were significant, with a total

loss of €693.000. In 2014 the financial gain on improved accuracy

and compensation by over-estimations was €122.000. It is

important to note that the absolute sums are not based on the same

number of projects of comparable sizes, so they are not directly

comparable. A comparison of the positive and negative deviations

from Table 3 was compared to the actual cost of projects from

Table 1 and can be seen in Table 4. The data show an improvement

moving from a tendency to lose money on under-estimates to

earning money on over-estimates. This had a significant impact on

profitability, assuming that the company was still competitive at

the new cost-estimates. The number of ingoing orders in the case

company had in fact increased during the time period investigated.

 Salary cost Material Costs Subcontractor

Cost

 2009 2014 2009 2014 2009 2014

Under-

estimate

-

351.5 -1.9 -249.7 -53.4 -156.5 -53.9

Over-

Estimate 42.6 137.1 18.4 78.9 3.6 15.2

Total Sum -308.9 135.2 -231.3 25.4 -152.8 -38.7

Table 3 Sum of total deviations in 1000 € (2009 & 2014)

 Salary cost Material Costs Subcontractor Cost

 2009 2014 2009 2014 2009 2014

 Under-

estimate
-15,8% -0,4% -4,8% -3,1% -26,4% -16,3%

 Over-

Estimate
1,9% 27,4% 0,4% 4,6% 0,6% 4,6%

Table 4 Percentage of over- and under-estimated deviations in relation to

sum of actual cost-elements in all projects

4.3 Reasons for improved accuracy according
to case company

In order to understand the reasons behind the improved accuracy in

the different cost elements, semi-structured interviews were

conducted and the graphs from Section 4.4 were presented with an

open question asking “what are your explanation for the difference

in accuracy between 2009 and 2014?” Two different interviews

were conducted with the head of sales and the head of R&D. The

head of sales stated that there was no doubt the PCS had helped to

increase the accuracy of cost-estimations by standardizing product

solutions. He added that before the PCS was implemented the head

of economy had routinely reduced the expected actual cost by 4%

on any quotation for certain products due to a clear tendency to

deviate in a negative direction. The increased visibility of cost

elements created by a cost summary page were identified as a tool

that enabled evaluation of costs and updates of prices and had

helped to reduce deviations and make sure correct prices were

used. It was also pointed out that the level of detail of the prices in

the different cost elements had been improved due to the ability to

handle prices automatically. The interview with the head of sales

credited the following three critical features of the PCS with its

success:

 Increased visibility and documentation of cost elements

in cost-estimates, by means of cost summaries

 Version control of cost agreements maintained in a single

system

 Increased level of detail in cost elements

The head of R&D stated that the old calculation system was

tedious and it was difficult to handle cost updates from suppliers

and version control. The result was that cost-estimates were often

calculated on the basis of different price agreements and resulted in

incorrect cost-estimates. He also pointed out that when a project

changed in the old system, it was a major task to change all

variable aspects of the project, and that this often resulted in

mistakes being made. He stated that another reason for the

improved accuracy was the visual and easy overview of possible

standard solutions, which helped the sales representative to sell

products that were already registered as a standard product with

known and agreed costs. Yet another reason was the possibility to

handle and maintain a higher level of detail in the cost-elements.

The interview with the head of R&D credited the following three

critical features of the PCS for its success:

 Dynamic allocation of variable costs

 Version control of cost agreements maintained in a single

system

 Increased level of detail in cost elements

 Afterwards, when the head of sales and head of R&D were

brought together to discuss the data on accuracy they agreed that

all aspects mentioned were important reasons for the increased

accuracy and refinement of cost-estimations.

5 Discussion

The focus of this work was to investigate how a PCS can be used

to quantify project costs in project based construction companies.

A method for grouping of costs has been presented that respects

best practice as documented in the literature but adds a way to

calculate time-estimates and cost summaries. The method used by

the company made it possible to configure cost-estimates and

generate quotations, time-estimates and cost summaries in a single

PCS. The automatic generation of documents proved to be a useful

way to improve cost accuracy. These findings complement the

existing literature on automation in the construction industry by

adding a case of successful implementation of rule-based expert

system with tangible benefits. The possible reasons mentioned by

company experts indicate that a PCS might be a new and viable

way to improve cost-estimation evaluation. Another finding was

that the PCS can help increase the level of detail and thereby obtain

a suitable level of detail as described by Carr [13] without

obscuring the user’s over-view. The cost-estimation principles used

by the case company resembled standard procedures for the

construction industry and so the results are believed to be

replicable in similar project based companies. However, the

presented case study was of a single case company, which clearly

limits the generalizability of the study. The case company operated

within a defined product solution space which made the use of a

rule based expert system feasible. The analysis was based on a

limited number of projects and the sample size from 2009 was

larger than from 2014. It might be that some outliers occurred

44

among the cases in 2014 that were not considered, and that this

might alter the conclusions. However, the data in combination with

expert interviews strongly indicates that there is a connection

between the implementation of a PCS and cost-estimation

accuracy. Future studies should seek to implement similar solutions

in other companies in the construction industry to validate the

present results.

6 Conclusion

The purpose of this case study was to investigate cost-estimation

accuracy in a longitudinal study and assess the impact of the

implementation of a PCS on cost accuracy. It was concluded that

the cost estimations did improve quantitatively, showing fewer and

smaller deviations and fewer negative under-estimations among all

cost-elements. The reasons for these improvements were

investigated qualitatively in open interviews with company experts

who considered their implementation of a PCS was the main

reason for improved cost-accuracy. The reasons behind the

improved accuracy could according to these company experts be

explained by the increased documentation and visibility of cost-

estimates, dynamic allocation of variable costs, version control of

cost-agreements and the ability to handle an increased level of

costing details.

REFERENCES

[1] H.K. Doloi, Understanding stakeholders’ perspective of cost

estimation in project management, Int. J. Proj. Manag. 29 (2011)

622–636.

[2] A. Akintoye, E. Fitzgerald, A survey of current cost estimating

practices in the UK, Constr. Manag. Econ. 18 (2000) 161–172.

[3] A. Trentin, E. Perin, C. Forza, Overcoming the customization-

responsiveness squeeze by using product configurators: Beyond

anecdotal evidence, Comput. Ind. 62 (2011) 260–268.

[4] L. Hvam, S. Pape, M.K. Nielsen, Improving the quotation process

with product configuration, Comput. Ind. 57 (2006) 607–621.

[5] N.H. Mortensen, MAKING PRODUCT CUSTOMIZATION

PROFITABLE, Int. J. Ind. Eng. Appl. Pract. 17 (2010).

[6] T. Männistö, H. Peltonen, T. Soininen, R. Sulonen, Multiple

abstraction levels in modelling product structures, Data Knowl.

Eng. 36 (2001) 55–78.

[7] C. Forza, F. Salvador, Product information management for mass

customization, 2007.

[8] D.K. Oh, W.J. Oh, D.K. Lee, Study of Shipbuilding Cost

Estimation for Catamaran-type Leisure Boats Using Product

Configuration Model, Trans. Korean Soc. Mech. Eng. A. 38

(2014) 911–916.

[9] N. Markiz, A. Jrade, An expert system to optimize cost and

schedule of heavy earthmoving operations for earth- and rock-

filled dam projects, J. Civ. Eng. Manag. 23 (2017) 222–231.

[10] D.S.K. Chan, Expert System for Product Manufacturability and

Cost Evaluation, Mater. Manuf. Process. 17 (2002) 855–865.

[11] A. Maciol, Knowledge-based methods for cost estimation of

metal casts, Int. J. Adv. Manuf. Technol. (2016) 1–16.

[12] L. Hvam, Observed benefits from product configuration systems,

Int. J. Ind. Eng. 20 (2013).

[13] R.I. Carr, Cost-estimating principles, J. Constr. Eng. Manag. 115

(1989) 545–551. doi:10.1061/(ASCE)0733-9364(1989)115.

[14] M. Brook, Estimating and Tendering for Construction Work,

Routledge, 2008.

[15] J.I.W. Bentley, Construction Tendering and estimating, E. & F.

N. Spoon, 1987.

[16] M. Jahangir, Costing R & D Projects : A Bottom-Up Framework,

45 (2003) 12–17.

[17] P.G. Pugh, Working top‐down: cost estimating before

development begins, Arch. Proc. Inst. Mech. Eng. Part G J.

Aerosp. Eng. 1989-1996 (Vols 203-210). 206 (1992) 143–151.

[18] C.A. Ntuen, A.K. Mallik, APPLYING ARTIFICIAL

INTELLIGENCE TO PROJECT COST ESTIMATING, Vol. 29

(1987) 8–13.

[19] T.W. Liao, P.J. Egbelu, B.R. Sarker, S.S. Leu, Metaheuristics for

project and construction management - A state-of-the-art review,

Autom. Constr. 20 (2011) 491–505.

[20] J.H.M. TAH, V. CARR, R. HOWES, An application of

case‐based reasoning to the planning of highway bridge

construction, Eng. Constr. Archit. Manag. 5 (1998) 327–338.

[21] F. Marir, I. Watson, CBRefurb : Case-Based Cost Estimation,

IEE Colloq. Case Based Reason. Prospect. Appl. 5 (1995) 1–3.

[22] T.T. Choon, K.N. Ali, A Review Of Potential Areas of

Construction Cost Estimating and Identification of Research

Gaps, J. Alam Bina. 11 (2008) 61–72.

[23] C. Karlsson, Research methods for operations management,

Routledge, 2016.

[24] A. Gayretli, H.S. Abdalla, An object-oriented constraints-based

system for concurrent product development, 15 (1999).

[25] E.M. Shehab, H.S. Abdalla, Manufacturing cost modelling for

concurrent product development, 17 (2001) 341–353.

[26] L.H. Boyd, J.F. Cox, Optimal decision making using cost

accounting information, Int. J. Prod. Res. 40 (2002) 1879–1898.

[27] M. Gupta, R.R. King, An experimental investigation of the effect

of cost information and feedback of cost decisions, Contemp.

Account. Res. 14 (1997) 99–127.

[28] A.A. Aibinu, T. Pasco, The accuracy of pre‐tender building cost

estimates in Australia, Constr. Manag. Econ. 26 (2008) 1257–

1269.

45

Configuration and Response to calls for tenders:
an open bid configuration model

Delphine Guillon1,2 and Abdourahim Sylla1,3 and Élise Vareilles1 and Michel Aldanondo1
and Éric Villeneuve2 and Christophe Merlo2 and Thierry Coudert3 and Laurent Geneste3

Abstract. During bidding process, bidders have to submit offers
which will suit the customers’ requirements. The OPERA project
aims at building a decision support tool to help bidders to design
offers using CSP and compare them on orignial indicators. The ob-
jective is (1) to help bidder to have the same routine for bid answer-
ings (2) to help them to design more accurate responses and more
efficiently. One of the major tasks during bidding process is offer
elaboration, which is in our case, 90% a configuration problem and
10% an innovative design one. Four industrial partners are part of
the OPERA project: two in the secondary sector and the two others
in tertiary one. This paper presents the first results of this project for
open bidding configuration. Therefore, we have built a first version
of an open generic bidding model which gathers three types of offers
data: (1) context characterization data, (2) data defining the product
or service and (3) data defining its delivery process, in case of suc-
cess. Context data allow to characterize the customer profile, the call
for tender characteristics, the bidder profile and the environmental
factors. The product is decomposed on subsystems and components
using a bill of materials and we propose some tracks to extend our
model to services. The process is composed of activities, character-
ized by a couple (resources, workload). This model has been tested
on one use case for each industrial partner. This paper is illustrated
by a generic instance of a bike open bidding configuration.

1 INTRODUCTION
The response time to calls for tenders has been greatly reduced in
the last decades. In a more and more global and competitive environ-
ment, companies have now to bid very quickly and very efficiently to
calls for tenders. Their bids must be competitive both in quality and
selling price if they want to have a chance to win. In such a context
and with the increasing number of calls for tenders, companies can-
not afford to spend time and resources to study in details their bids.
They have now to rationalize, systematize and make more reliable
bids definition.

Our aim is to design a tool dedicated to the bidding process in or-
der to help bidders to respond quickly and efficiently to call for ten-
ders. The tool will help a team of consultants to have the same routine
for responding to bids. Therefore we propose to build a knowledge-
based system or KBS, to help companies to define their bids in such
a way they suit the best customers’ requirements. We consider that
defining a bid corresponds to partially configure at the same time a
product or a service and its delivery process [25]. In this paper, we

1 IMT Mines Albi-Carmaux, France, email: lastname@mines-albi.fr
2 ESTIA, Bidart, France, email: f.lastname@estia.fr
3 ENI Tarbes, France, email: f.lastname@enit.fr

propose a generic bid decomposition and an open generic model for
both products and services to support the bidding process. The KBS
will be based on this model.

This work is part of a French project, named OPERA, which aims
at tackling this problem of response to calls for tenders. OPERA is a
French acronym for ”Outils logiciels et ProcEssus Pour la Réponse
à Appel d’offres”, which means ”Software tools and Processes for
Bids”. The OPERA project has started in November 2016 and in-
volves four industrial partners which are daily confronted to this
problem of response to call for tenders. In this panel, two of the com-
panies are from the secondary sector while the two others are from
tertiary one.

After an initial phase of 6-month interviews, we have found out
that the definition of a bid corresponds for 90% to a configuration
problem and 10% to a design one: this means that we are mostly in
a configuration problem (Assemble-to-order situation), with a small
part of new items to be designed (Engineer-to-order situation) [21].
Therefore, we call this particular problem an open bid configuration
problem. In addition, a general bid structure as well as a generic bid-
ding process have started to emerge from these interviews. These
initial findings lead us to propose the first version of a generic model
for open bid configuration.

The rest of the paper is structured as follows: first in section 2, we
sketch the OPERA project scope : the four companies involved in
the OPERA project are introduced as well as the interview process.
We conclude this section by presenting the OPERA tender response
process in the light of the literature review. Second, in section 3, the
general bid structure is drawn and leads us, in section 4, to the def-
inition of the generic model for open bid configuration dedicated to
products. In section 5, a focus is specifically made on the extension
of this open product model to services. A discussion and some per-
spectives conclude our article in section 6. An example of an open
bike configuration illustrates our proposals throughout the article.

2 OPERA PROJECT SCOPE
In the past six months, the four companies involved in the OPERA
project were interviewed about their tendering process. Two main
findings have led us to consider the tendering problem as an open bid
configuration one. Let us start by describing the four companies and
the interview process we have followed.

2.1 OPERA Companies
The four companies involved in the OPERA project are daily con-
fronted to the response to call for tenders problem. They answer more

46

than 100 calls for tenders per year without any guarantee to win.
Two of the companies are from the secondary sector: one of them

designs and produces computer numerical control (CNC) machines,
and the other one designs and assembles control systems for harbor
cranes. The two other companies are from the tertiary sector: one
is a professional consulting and training firm, specialized in Supply
Chain, Lean Management and industrial methods and the other one
is the global leader in innovation and high-tech engineering. Three
out of the four companies are SMEs and all of them are present on
the world market.

Regarding the tender response process, it mainly relies on some
human expertise and know-how. But there are very few experts in
that field within the companies and they all have their own way to
answer to calls for tenders. None of the companies has a dedicated
knowledge-based system able to support this process. Only one com-
pany has an Excel file dedicated to the financial part of the tender
response: this Excel file helps them quoting the bid by estimating
the financial risks incurred. The four companies really want to im-
prove their tender response process in order to be more confident in
the proposed bid by capitalizing on good practices, by standardizing
their ways of doing things and by assessing risks.

2.2 OPERA Interview Process
In order to capitalize on the companies’ know-how on tender re-
sponse process, we conducted interviews during the last 6 months.
We had a monthly one-day meeting with each of them.

Our questionnaire included the following sections:

1. Definition of a bid: which data are needed ? Which documents are
produced ? Which decisions are made ?

2. Description of the tender response process: which steps are fol-
lowed ? Which activities are carried out ? Which people are in-
volved ? etc.

3. Description of the product or service: which items are necessary ?
How is the technical part designed ? etc.

4. Description of the risk management: does a risk management pro-
cess exist in the company ? How are risks taken into account ?
What is their impact on the bid solicitation ?

5. Description of the bid knowledge management: is the knowledge
capitalized ? How is it shared between bid experts ?

This first round of answers have allowed us to identify a first
generic structure of response to tender and to consider this problem
as an open configuration problem. Indeed, 90% of the response corre-
spond to a configuration problem, i.e. the selection of relevant items
in the item catalog, whereas 10% correspond to a design problem, i.e.
the design of some specific items to fulfill some specific customer’s
requirements. Answering to a call for tenders is therefore a mix of
configuration and design.

2.3 OPERA Tender Response Process Definition
[4], [5] and [7] have studied the bidding process. According to [7],
it includes four activities: analysis of opportunity, design of techni-
cal offer, calculation of selling price and proposal to the client. [13]
describes this very competitive environment.

Two types of call for tenders can be distinguished: public ones
and private ones [5]. Public tenders are clearly specified. The final
customer has to put companies in direct competition on very strict
conditions. Private calls for tenders are less formal. Three out of our
companies are used to submit only to private tenders. Only one is

used to public one. Thus our model aims at being as more generic as
possible to be used for the both types of call for tenders.

Figure 1. Bidding process, adapted from [7]

The OPERA bidding process, as described in Fig. 1, is a combina-
tion of the literature review and the results of the 6-month interviews.
The bidding process starts when a company detects a customer’s
need. It can be a formal invitation to tender or the knowledge that
a particular customer needs something new. The company has then
to analyze the opportunity to bid. It is the first step of the bidding
process. We have identified two major decision steps:

Go/No go decision: A decision is made to answer or not to the call
for tenders. In the literature [7], this decision is called ”Bid/No
Bid”.

Bid/No bid decision: A decision is made to submit or not a bid to
the customer. For instance, if the bid is not ready on time or if
finally, it seems complicated to propose a solution in the bidder’s
scope or if the offer does not generate enough margin, the bidder
can decide at the end ”No bid”.

For the four companies involved in the OPERA project, the Go/No
Go decision is made after a macroscopic financial analysis. If the call
for tenders is financially promising or strategic, the bidding process
is launched. It appears that only less than 5% of responses are not
submitted in the Bid/No Bid decision step. The first Go/No Go de-
cision point is therefore critical for the companies but is out of the
scope of the OPERA project.

Our work focuses on the activities between the Go/No Go and
Bid/No bid decision points, as detailed in Fig. 2.

First, the product or service as well as the delivery process have to
be defined. Second, a partial risks analysis is carried out to provide
more realistic costs and due date. We have to point out that the def-
inition of the bid is an iterative process. There can be several round
trips in order to clearly define the offer. These loops can have sev-
eral reasons: either the cost or due date do not fit the customer’s re-
quirements (too expensive or too long), or the project is too risky for
the company (there is a big risk to loose money), or the specifica-
tions have changed due to the fact that the customer has changed his
mind. The KBS should help the companies to build different bids on
the same specifications, to compare them following relevant criteria
(selling price, due date, risk, confidence) [25] and to select the one
which suits the best both customer’s requirements and companies’
skills.

3 GENERIC BID STRUCTURE FOR
PRODUCTS

In this section, we firstly clarify the concept of bid (see subsection
3.1). Then, the identified data and knowledge needed to define a bid
have been structured in four different sets. The first one characterizes
mainly the context of the call for tenders (see subsection 3.2), the
second one, the bill of material (see sub-section 3.3) and the third
one, the delivery process and the potential risks incurred (see sub-
section 3.4).

47

Figure 2. Part of the OPERA Bidding Process

3.1 Bidder and Customer Bids
From the interviews, two kinds of bids have emerged and have to be
distinguished:

• The bidder bid gathers all the information, documents, data,
work, that have been done or used during the bidding process.
All the data, information and knowledge used to define the bidder
bid are collected and stored in the knowledge bases in order to be
reused for future bids.

• The customer bid corresponds to an extract from the bidder bid
and is submitted to the customer after the Bid/No Bid decision
point. Indeed, a large part of the work carried out by the company
during the bidding process is simply not provided to the customer.
Most of the time, the customer bid always contains a description of
the bill of material (or BOM) and the selling price, with sometimes
the provisional schedule of the project.

In this paper, we only focus on the definition of the bidder bid.
The bidder bid is divided into two parts: the first one corresponds to
the bill of material and the second one to its delivery process, taking
into account the key resources and the major risks. A partial analysis
of the risks is mandatory first, to better evaluate the delivery time,
second to post the associated cost on the project cost and third, to be
aware of the potential hard points during the project.

3.2 Bid Context
The context of the response to call for tender has a strong impact
on the bid, for both the BOM and the delivery process [2]. We have
started to identify the key elements of the context of the invitation to
tender which have an influence on the bid.

Four types of key elements seem to stand out and characterize
(1) the customer’s profile, (2) the call for tender characteristics, (3)
the bidder’s characteristics and (4) the environmental factors. These
elements will allow the bidder to propose an offer which will fit the
customer’s requirements observing the whole call for tender context.

Customer’s profile. First, the customer’s profile can have a very
strong impact on the definition of the bidder bid. For instance, a reg-
ular or a strategic customer can involve some specific resources or
item high quality or Technical Readiness Level (TRL). Therefore the
company has to identify a list of features characterizing potential cus-
tomers. For each invitation to tender, the potential customer has to be
described thanks to all the selected features.

Call for tender characteristics. Second, the characteristics of the
call for tenders can also have an important impact on the offer. For
instance, the bidder can choose to submit different offers for a public
market or for a private one.

Bidder’s characteristics. Third, the bidder characteristics, i.e.
context within the company responding to the call for tenders, can
have an impact on the bid. For instance, the workshop load or the
backlog state (at the time of the bid) might have to be considered
while defining the bid. A bad estimate can be catastrophic and may
result in non-compliance with the commitments made in the bid,
which is especially true for the delivery time.

Environmental factors. Then, the environmental factors, i.e. con-
text which is external to the company, can also play an important role
on the choice of some items of the bid. For instance, identified com-
petitors or detecting the emergence of a new market can have an im-
pact on the company’s financial margin. In some cases, the season or
the weather can affect the delivery process. It is therefore important
to take these kinds of information into account from the beginning.

3.3 Product decomposition
3.3.1 Bill of materials

The second part of a bid corresponds to the bill of material or BOM.
This BOM relies on a generic model of the product catalog. The def-
inition of the bid is based on this generic model but not only. As
previously mentioned, the interviews have revealed that 90% of the
bid BOM correspond to a configuration problem [19], [26] whereas
the remaining 10% to a design one. The generic model has therefore
to cope with the 10% of design.

In the OPERA project, we have restricted the number of levels for
the BOM to three: at the top, the final product, in the middle, the
sub-items composing it and at the bottom, the components. In Fig. 3,
an instance of BOM for a bike is presented.

Figure 3. Instance of Bill of material for a bike

The BOM is gradually building up by decomposing the final prod-
uct into sub-items and components. This decomposition is based
on concepts that are linked to each BOM item [8]. In the OPERA
project, we link to each concept of the ontology [24], a constraint
satisfaction problem. Two types of concepts of the ontology have
been identified:

• those corresponding to already known items and for which a
generic model exists, i.e. representing the set of all possible com-
binations. These concepts are mainly used for the configuration
problem (90% of the bidder bid BOM).

• and those which are new and have to be designed. These concepts
are mainly used for the design problem (10% of the bidder bid
BOM).

An existing concept gathers some knowledge about itself: features,
definition domain and relations between features. For instance, in our

48

bike example, one item associated to the Wheel concept, is character-
ized by a diameter, a spoke number and a price, one item associated
to the Bike concept is characterized by a size and a price, one item
associated to the Tire concept has a diameter and a price, as shown on
table 1, whereas an item associated to a New concept brings together
no features other than price.

Table 1. Item Knowledge Concepts Example
Concept Features Definition domain
Wheel Wheel Diameter [12, 29] inch

Spoke Number [16, 20, 28, 32, 36] spokes
Wheel Price [100, 1600]e

Bike Size [16, 25] inch
Bike Price ≥ 0e

Tire Tire Diameter [12, 29] inch
Tire Price [100, 600]e

New Price ≥ 0e

Knowledge embedded in concepts (existing or new) can be en-
hanced during the bidding process: some features with their defini-
tion domain can be added as well as their relations within a concept.

3.3.2 Key Performance Indicators

Usually the bidder design more than just one offer to respond to a
call for tender. We propose to use some key performance indicators
(KPI) to characterize each offer and to help the bidder to compare
them and choose the one which will suit both customer and bidder
requirements in the best way. Each item of the BOM is characterized
by relevant KPI. Those are at least the cost and the confidence.

Cost. First, we obviously have to compare the different designed
offers on the cost. The aggregation of the cost of bottom item of
the BOM (mainly components) and each integration will allow to
calculate the cost of the product. Depending on the company and on
what is key for it, we can also use price or margin.

Confidence. We also propose to use confidence as defined by [25]
to evaluate the confidence of the bidder on the ability of the company
to design and deliver a product, aggregating the confidence for each
components

Depending on the product and the company, one can take into ac-
count weight, speed or energy consumption of the product in the
KPIs. These KPIs are aggregated bottom-up and help the decision-
maker to compare different offers and make the best decision about
the one to choose and submit to the client.

3.4 Delivery Process for Products
The third part of the bid is dedicated to the delivery process. This
delivery process is composed of the key activities that have to be
carried out inside company [16], [23].

3.4.1 Why configuring the delivery process during the
bidding process ?

In order to be able to correctly respond to a call for tender, companies
cannot just stop after the definition of the product or service. They
also have to think about the delivery process in order to evaluate more
accurately:

• the delivery time proposed to the customer,
• the cost of the delivery process,

• the risks which might occur during the delivery process.

Delivery time. The delivery time is most of the time the major
criteria to respect as it is part of the agreement. In case of delay,
some late fees can have to be paid by the company. It is therefore
critical for companies to evaluate it as accurately as possible.

Cost. Sometimes, the cost of the delivery process has to be in-
cluded in the whole bid selling price, for instance the cost of a de-
livery in a foreign country. Don’t include this cost could induce an
important gap between the evaluated cost and the real cost, meaning
that the company’s margin can dramatically drop.

Risk analysis. A partial risk analysis should also be carried out to
identify as early as possible the major problems which can occur dur-
ing the project (in case of a success). The analysis of the major risks’
impact (on cost and time) is critical to better evaluate the delivery
time, the bid’s cost (and therefore the company’s financial margin)
in both an optimistic and pessimist situations. Indeed, an answer to a
call for tenders is the first commitment between a customer and a po-
tential supplier. It seems quite difficult to radically change the price
or delivery time after a first bid on the same specifications.

3.4.2 Proposition of a generic delivery process for products

In the OPERA project, for the secondary sector companies, the
generic delivery process is a sequence of activities. The activities
are the most important ones regarding the bidding process, and have
been identified by the bid experts. From the interviews, a generic de-
livery process has been proposed, as presented in Fig. 4. This generic
delivery process is composed of five activities:

Design and Scheduling studies. In this activity, all the new items
have to be designed and integrated to the bill of material. We also
plan the Gantt chart of the project.

Procurement. All the components and raw material have to be sup-
plied.

Manufacturing. The components have to be manufactured to build
the final product,

Assembling and Testing. The components have to be assembled
and the final product has to be tested and must comply with the
specifications.

Delivery and Commissioning. The final product is delivered to the
customer.

Figure 4. Instance of Product Delivery Process

3.4.3 Key features identification

For each activity, the bid experts have to identify the key features.
Those are the ones which have emerged from our interviews:

• duration: each activity may be shorter or longer, depending on
several facts, such as allocated resources, risks, complexity, etc.,

• key resources and workload: each resource is characterized by a
type (human or machine), a level (slow, fast, junior, senior, etc.)
and a workload (under-loaded, loaded, overloaded),

49

• key risks and impacts: each major risk which could occur on the
delivery process has to be described and its impacts on the project
(cost and time) have to be defined. It will help the bidder to antic-
ipate possible inconvenient events and propose a bid with a cost
and a due date including these possible events.

We will also use for the delivery process the same key performance
indicators (KPI) as for the product part (see section 3.3.2): we eval-
uate the cost of each activity and resource as well as its duration. We
can also use the confidence define by [25].

For each bid, this delivery process is configured with respects to
the bid context and the BOM.

4 OPEN BID CONFIGURATION MODEL FOR
PRODUCTS

In this section, we first present how an open bid configuration model
can be formalized as a constraint satisfaction problem. This problem
is built in parallel with the BOM: at each decomposition, a new CSP
is added and integrated to the current problem thanks to concepts and
their relationships. Then, we illustrate our proposals on the open bike
example and make a synthesis of our proposals.

4.1 Open Bid Configuration for Products & CSP
We have chosen to model the open bid configuration problem as a
Constraint Satisfaction Problem (CSP) as the open bid configura-
tion problem is for 90% a configuration problem [12]. CSP allows
to model knowledge and to reason on it to find all the solutions con-
sistent with the current problem.

CSP has been defined by [20] as a triplet (V,D,C) where :

• V = {v1, v2, ..., vk} is a finished set of variables,
• D = {d1, d2, ..., dk} is a finished set of definition domains of

variables,
• C = {c1, c2, ..., cm} is a finished set of constraints on variables

where a constraint describes allowed or forbidden combinations
of variables’ values.

Constraints allow:

1. to prune the solution space by limiting the value combinations that
the variables can simultaneously take (compatibility constraints)

2. to modify the structure of the solution space by adding or remov-
ing elements (variables or constraints) to the current problem (ac-
tivation constraint) [18].

The open bid configuration model relies on the construction of
the final constraint bid model by the combination of several CSPs.
At the end of the bidding process, the final bid model gathers in the
same model, the CSP describing the BOM and the one describing the
delivery process.

As previously said in sub-section 3.3, the BOM is building up by
decomposing the final product into sub-items and components, each
one associated to a specific concept. Each concept is described as
an unattached CSP, allowing to configure it. Even if the concept is
new, it has an impact on the final product. Constraints between the
concepts can also be defined by bid expert in order to propagate the
valuation of a variable in a specific concept to the variables of the
other ones.

Concerning the delivery process, each activity is formalized as a
CSP and linked to the activity network thanks to end-to-end rela-
tionships. The association of a concept to the final product creates

the links between the bill of material and the generic delivery pro-
cess [28] [22]. This association activates the constraints between the
product and the process in order to propagate the choices made on
one side to the other one, and vice-versa.

At the end of the bidding process, the internal bid is completely
defined, meaning that all the variables are valuated in such a way
that all the constraints are consistent.

4.2 OPERA Application

In OPERA, the bid is building up following the open bid configura-
tion model.

First, the bid context has to be described. For instance, the work-
shop load (inside context) can have a big impact on the ability of the
plant to produce the product on time. If the workshop is over-loaded,
the risk of being late has a high probability to occur whatever the
product. This impacts, for instance, the duration of the manufactur-
ing and assembly activity which will see its lower bound increase.
Therefore, the delivery date will be impacted.

Concerning the bill of material, let’s consider that the final prod-
uct is a well-known bike, composed of two wheels and two tires, also
known, as presented in Fig. 3. In that case, we are in a pure configura-
tion problem. First, when building-up the bill of material, the higher
item is associated to the concept Bike. This association has two main
impacts:

• the first brick of the bid model is laid: the associated CSP is in-
stantiated,

• the generic delivery process is linked to the bill of material.

Second, the bike is decomposed into two sub-items with the same
concept, that of Wheel. This association has two main impacts:

• the second brick of the bid model is laid: the associated CSP is in-
stantiated twice and linked to the previous one by the constraints
between concepts. In our case, we assume that there exists a con-
straint between the Bike concept and the Wheel one. This con-
straint specifies the allowed combinations of values for the size of
a bike and the diameter of a wheel, as illustrated in table 2.

• the generic delivery process is updated regarding these new vari-
ables (not explained here).

Third, the wheels are decomposed into components, one of which
is associated to the Tire concept. This association has two main im-
pacts:

• the third brick of the bid model is laid: the associated CSP is in-
stantiated and linked to the previous one by the constraints be-
tween concepts. In our case, we assume that there exists a con-
straint between the Wheel concept and the Tire one. This con-
straint specifies the diameter of the wheel equals the one of the
tire, as presented by the eq. 1.

• the generic delivery process is updated regarding these new vari-
ables (not explained here).

Wheel :: Diameter = T ire :: Diameter (1)

Now, let’s consider that product is a unknown bike, meaning that
at least, one of its item is associated to the New concept. For instance,
let us consider that the rim is the new component. This association
(rim, New) has two main impacts:

50

Table 2. Bike inter-Concepts Constraint Example
Variable 1 Variable 2
Bike::Size Wheel::Diameter

16 [13, 14]
[17, 19] [14, 17]
[20, 22] [18, 22]
≥ 22 ≥ 23

• a new brick of the bid model is laid: the associated CSP is instan-
tiated but not linked to the previous one by a constraint between
concepts, as no relation can be established in advance.

• the generic delivery process is updated regarding these new vari-
ables. As one of the items is associated to a New concept, the
finalization of the design activity lasts longer than for a pure con-
figuration problem and there can be a risk of integration of the new
component in the existing bill of material.

4.3 Open Bid Configuration Model for Products:
Synthesis

The open bid configuration relies on four sets of information, allow-
ing to characterize the context of the call for tenders, the bill of mate-
rial, the delivery process and the potential risks incurred, as presented
in Fig. 5.

The context of the call for tenders is useful to characterize the
customer, the call for tender itself, the bidder and the environment, as
they have a potential impact on the product and its delivery process.

The bill of material is top-down building up by the decomposi-
tion of the product into sub-items and components. For each item,
we associate a concept gathering its knowledge formalized as an
unattached CSP, if any. Each time a concept is added, the open bid
configuration model is upgraded with the new CSP.

These concepts have a strong impact too on the delivery process
features, such as duration, key resources and major risks. The de-
livery process is directly associated to the final product and is com-
pletely configured during the bidding process.

Figure 5. Offer modeling for bidding process in the secondary sector

5 MOVING TO AN OPEN GENERIC BIDDING
MODEL FOR SERVICE PROVISION

In this section, we first highlight the main differences between prod-
uct and service configuration in bidding process. Then, we discuss
how our open bidding model can be extended to services and con-
clude with further works.

5.1 From Product to Service Bids

[17] describes the problem of modularization and configuration of
services. But since our work deals with bid configuration during call
for tenders process, we focus on Business-to-Business (BtoB) ser-
vices, and not Business-to-Customer (BtoC) ones. We also restrict
our study to pure services (and not product service systems). For both
service provision companies we are working with, and it is usually
the case during bidding process, each business is different because
of changes in the customer’s needs. Some parts might be the same as
on a past case, but past offers cannot be exactly reused. As explained
by [6], these companies ”need to balance meeting the needs of indi-
vidual customers with ensuring a satisfactory degree of efficiency in
the deployment of services”. This arises the need for service config-
uration.

[12] and [3] have studied service configuration. As reported in
[12], service configuration seems similar to that of physical products
but the results of research on mass customization of goods may not be
directly applicable. There is relatively little research on configurable
services and on developing suitable configurators. [15] highlights the
gap dealing with mass customization of services, configurable ser-
vices, and configured in services based on a review of product mass
customization and configuration. Three main differences have been
identified [9]:

• Products in manufacturing organizations are highly tangible ; ser-
vices and especially the service delivery process are less so;

• Related to this, production flows are transparent in manufacturing
and less transparent in services. The same holds for problems and
irregularities;

• Finally, the customer is much less involved in the production pro-
cess in the manufacturing domain than in services. The interaction
with the customer determines the quality of the service.

In the context of bidding process, we can extend a part of our
model in a trivial way: companies still have to identify the bid con-
text, define the nomenclature of items and characterize the delivery
process. Thus part (1), (2) and (3) of Figure 5 stay the same. The
important difference for service provision offer is the link between
everything: How to move from an open product configuration model
to an open service configuration model for bidding process ? (Fig. 6).

[11] and [27] define service as a process. Can a service be resumed
by its delivery process ? We think not and we try to define how we can
decompose a service in a kind of nomenclature, such as a deliverable
breakdown structure (DBS).

In [14], Goldstein et al. explain that ”From the service organiza-
tions perspective, designing a service means defining an appropriate
mix of physical and non-physical components”. They precise that
”service components are often not physical entities, but rather are a
combination of processes, people skills, and materials”.

For [1], a service can be decomposed into service elements. These
service elements ”represent what a supplier offers to its customers”.
They precise that ”a service element can be decomposed into smaller
service elements, as long as these smaller elements can be offered
to customers separately, possibly by different suppliers.” Thus the
criteria to decompose a service could be this one: each element can
be offered separately.

In this sub-section, we voluntarily use the generic term of nomen-
clature in contrast to bill of material or BOM which is more specific
to products.

Indeed, we have to point out that the links between the item
nomenclature and the delivery process differ between the companies

51

of the secondary and tertiary sectors. Two main differences have been
identified:

• Firstly, for the secondary sector companies, the delivery process
correspond to the one carried out to produce the final product
(higher level item of the nomenclature), whereas for the tertiary
sector companies, it seems that it is not always the case. A ser-
vice is composed of several deliveries composed of several work-
packages which have all their own delivery process, i.e. there po-
tentially exist as many delivery processes as the number of the
lower level items.

• Secondly, for the secondary sector companies, the activities of the
delivery process are always carried out inside the company. A the
end of the process, the product is ready to be delivered. In con-
trario, some of the activities of the tertiary sector companies, are
carried out outside the company, directly on customers’ premises.
Therefore, the delivery process is decomposed into two types of
activities: those carried out in the company and those carried out
in the customer’s premises. In this section, we only present the de-
livery process for the secondary sector companies. Nevertheless, a
special focus is made in section 5 on the tertiary sector companies.

Figure 6. Offer modeling for bidding process in the tertiary sector

5.2 Service Model: Discussions
Tertiary companies mainly differ by the type of deliverables they pro-
duce. For the two companies of the tertiary sector, we have identified
two types of deliverables:

1. tangible deliverables,
2. intangible deliverables.

For the tangible deliverables, the customer is mostly interested by
the results of the delivery process. The customer expects a very spe-
cific deliverable and is not especially interested in the delivery pro-
cess. For instance, one out of the OPERA industrial partners respond
to call for tenders for Computational Fluid Dynamics (CFD) studies.
We can’t decompose the deliverable in deliveries. Indeed, the deliv-
erable is not material as the way that it is not an assembly of compo-
nents. Here, the deliverable is the result of calculations. This result is
what the potential customer is interested in. (S)He is not interested in
the delivery process, as long as (s)he has the result of the asked cal-
culation. Only the quality and the compliance with the commitments
matter.

For intangible deliverables, there is no physical deliverable. The
potential customer is more interested in the delivery process itself. In
training for instance, the customer is mostly interested in the fact that

people who are trained reach a specif skill level. To define such an
offer, the bid has to specify the given courses, the addressed topics
in the training and how the training will go on, which is actually
a part of the delivery process (activities carried out on customer’s
premises). A large part of the configuration of the bid consists in
deciding which courses to give, which topics to discuss, how much
time to give to each topic and who will be the trainer. This kind of
bid definition is quite closed to the one for products in the sense that
it consists in selecting and picking the relevant courses for a course
catalog, as studied in [10].

6 DISCUSSION AND FUTURE RESEARCH
In this paper, we have presented our first result to define an open
generic model for bid definition. We consider that defining a bid cor-
responds for 90% to a configuration problem and for 10% to a design
problem. We consider two types of bids: the bidder bid, which is built
up in companies and the customer bid, which is submitted to the cus-
tomer. Our work focuses on bidder bids. We have identified a generic
internal bid structure which is decomposed of three different sets of
knowledge: the one characterizing the bid context (customer profile,
call for tender characteristics, bidder profile and environmental fac-
tors), the one characterizing the item nomenclature and the last one,
characterizing the delivery process.

We have instantiated this model for products and show the inter-
est of our proposals. A use-case dedicated to products is actually in
progress. We then have discussed about its applicability to services
and highlighted the fact that depending on the types of the deliver-
ables, the open model for products can easily be used. We have seen
that the open service bid model seems quite similar to the one for
products when the deliverables is intangible and when the items can
be chosen in a item catalog.

We still have to work on how to define an open bid configuration
model for both products and services, independent of the type of de-
liverables. This open configuration model will also integrate a new
metrics to characterize bids: the confidence of the bidder in the cus-
tomer offer [25]. This new metrics is partially based on the notion of
risks which are partially analyzed during the bidding process.

ACKNOWLEDGEMENTS
We would like to thank all the industrial partners of the ANR OPERA
Project4 for their implication in the project.

4 http://gind.mines-albi.fr/en/projet/opera

52

http://gind.mines-albi.fr/en/projet/opera

REFERENCES

[1] Hans Akkermans, Ziv Baida, Jaap Gordijn, Nieves Peña, Ander Al-
tuna, and Iñaki Laresgoiti, ‘Value webs: Using ontologies to bundle
real-world services’, IEEE Intelligent Systems, 19(4), 57–66, (2004).

[2] Ziv Baida, Jaap Gordijn, Hanne Sæle, Andrei Z Morch, and Hans
Akkermans, ‘Energy services: A case study in real-world service con-
figuration’, in International Conference on Advanced Information Sys-
tems Engineering, pp. 36–50. Springer Berlin Heidelberg, (2004).

[3] Jörg Becker, Daniel Beverungen, Ralf Knackstedt, and Martin Matzner,
‘Configurative service engineering - A rule-based configuration ap-
proach for versatile service processes in corrective maintenance’, Pro-
ceedings of the 42nd Annual Hawaii International Conference on Sys-
tem Sciences, HICSS, (2009).

[4] Anne-Lise Benaben, Méthodologie d’identification et d’évaluation de
la sûreté de fonctionnement en phase de réponse à appel d’offre, Ph.D.
dissertation, 2009.

[5] Juan Diego Botero, Cdrick Bler, and Daniel Noyes, ‘Bprm methodol-
ogy: Linking risk management and lesson learnt system for bidding
process.’, in APMS (1), eds., Bernard Grabot, Bruno Vallespir, Samuel
Gomes, Abdelaziz Bouras, and Dimitris Kiritsis, volume 438 of IFIP
Advances in Information and Communication Technology, pp. 233–
240. Springer, (2014).

[6] Per Carlborg and Daniel Kindström, ‘Service process modularization
and modular strategies’, Journal of Business & Industrial Marketing,
29(4), 313–323, (2014).

[7] Rachid Chalal and A R Ghomari, ‘An Approach for a Bidding Pro-
cess Knowledge Capitalization’, World Academy of Science, Engineer-
ing and Technology, 13(7), 293–297, (2006).

[8] M. J. Darlington and S. J. Culley, ‘Investigating ontology development
for engineering design support’, Advanced Engineering Informatics,
22(1), 112–134, (2008).

[9] Jeroen de Mast, ‘Six sigma and competitive advantage’, Total Quality
Management & Business Excellence, 17(4), 455–464, (2006).

[10] Regine Dörbecker and Tilo Böhmann, ‘The concept and effects of
service modularity - A literature review’, Proceedings of the An-
nual Hawaii International Conference on System Sciences, 1357–1366,
(2013).

[11] Bo Edvardsson, Anders Gustafsson, and Inger Roos, ‘Service portraits
in service research: a critical review’, International Journal of Service
Industry Management, 16(1), 107–121, (feb 2005).

[12] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha Tiihonen,
Knowledge-based Configuration: From Research to Business Cases,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1 edn.,
2014.

[13] Lawrence Friedman, ‘A Competitive-Bidding Strategy’, Operations re-
search, 4(1), 104–112, (1956).

[14] Susan Meyer Goldstein, Robert Johnston, JoAnn Duffy, and Jay Rao,
‘The service concept: The missing link in service design research?’,
Journal of Operations Management, 20(2), 121–134, (2002).

[15] Mikko Heiskala, Kaija-Stiina Paloheimo, and Juha Tiihonen, ‘Mass
customization of services: benefits and challenges of configurable ser-
vices’, in Frontiers of e-Business Research (FeBR), (2005).

[16] P.T. Helo, Q.L. Xu, S.J. Kyllnen, and R.J. Jiao, ‘Integrated vehicle con-
figuration systemconnecting the domains of mass customization’, Com-
puters in Industry, 61(1), 44 – 52, (2010).

[17] Thorsten Krebs and Aleksander Lubarski, ‘Towards modularization and
configuration of services–current challenges and difficulties’, in 18 th
International Configuration Workshop, p. 77, (2016).

[18] S. Mittal and B. Falkenhainer, ‘Dynamic constraint satisfaction prob-
lems’, in AAAI, pp. 25–32, Boston, US, (1990).

[19] S. Mittal and F. Frayman, ‘Towards a generic model of configuration
tasks’, in proceedings of the Eleventh International joint Conference
on Artificial Intelligence, pp. 1395–1401, (1989).

[20] U. Montanari, ‘Networks of constraints: fundamental properties and ap-
plication to picture processing’, in Information sciences, volume 7, pp.
95–132, (1974).

[21] Jan Olhager, ‘Strategic positioning of the order penetration point’, In-
ternational Journal of Production Economics, 85(3), 319–329, (2003).

[22] P. Pitiot, M. Aldanondo, E. Vareilles, P. Gaborit, M. Djefel, and S. Car-
boneel, ‘Concurrent product configuration and process planning, to-
wards an approach combining interactivity and optimality’, Interna-
tional Journal of Production Research, 51(2), 524–541, (2013). WoS?.

[23] K. Schierholt, ‘Process configuration: Combining the principles of

product configuration and process planning’, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing: AIEDAM, 15(5),
411–424, (2001).

[24] S. Staab and R. Studer, Handbook on Ontologies, Springer Publishing
Company, Incorporated, 2nd edn., 2009.

[25] A. Sylla, E. Vareilles, M. Aldanondo, T. Coudert, L. Geneste, and
P. Pitiot, ‘Concurrent configuration of product and process : moving
towards eto and dealing with uncertainties.’, in 18th International Con-
figuration Workshop, (2016).

[26] J. Tiihonen, T. Lehtonen, T. Soininen, A. Pulkkinen, R. Sulonen, and
A. Riitahuhta, ‘Modeling configurable product families’, in 4th Work-
shop on Product Structuring (WDK), (1998).

[27] Alan. Wilson, Valarie A. Zeithaml, Mary Jo. Bitner, and Dwayne D.
Gremler, Services marketing : integrating customer focus across the
firm, McGraw-Hill Higher Education, 2012.

[28] Linda Zhang, E. Vareilles, and M. Aldanondo, ‘Generic bill of func-
tions, materials and operations for sap2 configuration’, Technical re-
port, HAL, (2013).

53

Automated Question Generation from Configuration
Knowledge Bases

Amal Shehadeh1 and Alexander Felfernig1 and Müslüm Atas1

Abstract. Knowledge-based configuration systems support
decision-making processes by helping customers (users) to effec-
tively identify products and services that suit their wishes and needs.
These systems have the potential to significantly improve the under-
lying business processes by reducing error rates and time efforts re-
lated to advisory services. Despite the successful application of con-
figuration technologies in different sectors, there are still issues re-
lated to the transfer of configuration-related knowledge to employ-
ees. In this paper, we discuss a new approach to automatically gen-
erate questions related to configuration knowledge from knowledge
bases, to be exploited in training and educating sales representatives.
Furthermore, we present an evaluation of the question generation ap-
proach with regard to performance.

1 Introduction

Knowledge-based configuration systems support users in the identifi-
cation of solutions (configurations) that fulfill their wishes and needs
[6, 10]. Domain examples are cars, financial services, digital cam-
eras, and elevators [6]. Typically, users specify their requirements
and the system tries to identify solutions (configurations) that sat-
isfy all the requirements. These systems exploit deep product domain
knowledge in order to determine the solutions. If no solution could
be found, users have to be supported in finding a way out of this
situation.

Knowledge-based configuration systems have the potential to im-
prove the underlying business processes in various dimensions, for
example, by reducing error rates and time efforts related to customer
advisory services and, as a consequence, increasing customers trust
and satisfaction with the solutions. Furthermore, customer domain
knowledge can be improved by configuration technologies through
the interaction with these systems, where customers gain a deeper
understanding of the product domain and, as a consequence, less ef-
forts are needed related to the explanation of basic domain aspects.

Despite the successful application of configuration technologies
in different sectors, there are still issues related to the transfer of
configuration-related knowledge to employees. In dialogs with cus-
tomers, sales representatives should not only rely on solutions and
related explanations provided by the configuration environment but
should also dispose of the needed domain knowledge [5]. The goal of
this paper is to show how different types of questions can be automat-
ically generated from a configuration knowledge base, to provide e-
learning support to sales representatives with regard to the mentioned

1 Institute for Software Technology, Graz University of Technology, Aus-
tria, email: ashehade@ist.tugraz.at, alexander.felfernig@ist.tugraz.at, mu-
atas@ist.tugraz.at.

knowledge transfer. Examples of application domains can be finan-
cial services, telecommunication, computers, cars, mobiles, TVs, and
digital cameras.

A number of researches have been conducted in the context of
automatic question generation from different types of knowledge
sources. In the remainder of this section, we will shortly analyze ex-
isting approaches to question generation and then focus on our ques-
tion generation approach.

Gütl et al. [9] introduced an approach to the automated creation of
different types of test items. They described the design and develop-
ment of the Enhanced Automatic Question Creator (EAQC), which is
designed to deal with multilingual learning material. EAQC extracts
the most important concepts out of textual learning content and cre-
ates single choice, multiple-choice, completion exercises, and open
ended questions on the basis of these concepts. Their approach com-
bines statistical, structural, and semantic methods of natural language
processing as well as a rule-based solution for concept extraction.
Results of their study show that the extracted concepts and created
questions are relevant with respect to the learning content.

Yllias et al. [17] proposed a topic-to-question generation approach
that generates all possible questions from a topic of interest. They
considered that each topic is associated with a body of texts con-
taining useful information. Questions are generated by exploiting the
named entity information and the predicate argument structures of
the sentences present in the body of texts. The generated questions
are ranked by considering both their importance and syntactic cor-
rectness. They evaluated their approach and found that it can signif-
icantly outperform all other considered systems in terms of topic-
relevance and syntactic correctness.

Mazidi et al. [14] described an approach to automatic question
generation from natural language understanding (NLU) to natural
language generation (NLG). Their approach analyzes first the cen-
tral semantic content of each independent clause in each sentence,
then question templates are matched to what the sentence is commu-
nicating in order to generate higher quality questions. They evaluated
their approach and found that it generates a higher percentage of ac-
ceptable questions than prior state-of-the-art systems.

Agarwal et al. [1] presented an automatic question generation
system (GFQG) that can generate gap-fill questions from a docu-
ment. Gap-fill questions are fill-in-the-blank questions with multiple
choices (one correct answer and three distractors) provided. The sys-
tem selects the most informative sentences of the chapters and gener-
ates gap-fill questions by first blanking keys from the sentences and
then determining the distractors for these keys. Syntactic and lexi-
cal features are used in this process without relying on any external
resource apart from the information in the document.

Majumder et al. [13] presented a system that generates multiple

54

choice questions automatically from an input corpus. The proposed
technique selects informative sentences based on topic modeling and
parse structure similarity. The selected sentences are used then in
the key selection and distractor generation using a set of rules and
name dictionary. Experimental results demonstrated that the pro-
posed technique is quite accurate.

Alsubait et al. [2, 16] discussed an approach to ontology-based
multiple-choice question generation, and proposed a design of pro-
tocol to evaluate the usefulness and difficulty of the generated ques-
tions. They presented an empirical evaluation of their approach and
examined its feasibility to be applied by educators with no prior ex-
perience in ontology building. They found out that their approach can
result in a reasonable number of educationally useful questions with
good predictions about their difficulty levels.

In this paper we introduce an approach that has commonalities
with the question generation approach introduced in [2, 16]. A con-
figuration knowledge base can be used for question generation where
questions do not only refer to the solution space defined by the
knowledge base but also to situations where no solution can be found
for a given set of customer requirements [5]. Compared to the ap-
proach presented in [2, 16], our question generation approach is
based on a configuration knowledge base represented as a Constraint
Satisfaction Problem (CSP) [3]. In this paper, we introduce a new
approach to automatically generate multiple-choice questions out of
a constraint-based configuration knowledge base. To the best of our
knowledge, no similar researches have been conducted before.

The remainder of this paper is organized as follows. In Section 2,
we present a working example from the domain of financial services,
giving the needed background related to configuration concepts. In
Section 3, we introduce our approach to the automated question gen-
eration from a constraint-based configurator knowledge base. An
evaluation of the question generation approach with regard to per-
formance is presented in Section 4. In Section 5, we discuss issues
for future work. Finally, the paper is concluded in Section 6.

2 Working Example: A Simple Financial Services
Configuration Knowledge Base

Knowledge-based configuration systems support users in the iden-
tification of relevant solutions. Typically, these systems try to find
a solution (configuration) that satisfies all user requirements; and if
no solution could be found, such systems propose explanations to
support the user in finding a way out of this dead-end. Constraint-
based configurators are a specific type of knowledge-based configu-
rators that are based on explicit configuration rules (constraints) and
retrieve solutions (configurations) that fulfill these rules. The knowl-
edge base of a constraint-based configurator is defined in terms of a
constraint satisfaction problem (CSP).

Definition (Constraint Satisfaction Problem - CSP). A constraint
satisfaction problem (CSP) can be defined by a triple (V , D, C)
where V is a set of domain variables {v1, v2, ..., vn} describing po-
tential user (customer) requirements and product properties, D rep-
resents variable domains {dom(v1), dom(v2), ..., dom(vn)}, and C
is a set of constraints defining restrictions on the possible combina-
tions of variable values {c1, c2, ..., cn}.

On the basis of such a configuration knowledge base and a given
set of customer requirements, we are able to calculate solutions (con-
figurations). The task of identifying a solution that satisfies the cus-
tomers requirements is denoted as a configuration task.

Definition (Configuration Task). A configuration task can be de-
fined as a CSP (V , D, C, R) - see the previous definition of CSP

with the corresponding representation of V , D, and C - where R
represents a set of user (customer) requirements (i.e. a set of require-
ment variable assignments from V).

On the basis of this configuration task definition, we can now in-
troduce the definition of a concrete configuration (i.e. solution for a
configuration task).

Definition (Configuration). A configuration (CSP solution) for a
given configuration task is a complete set A of variable assignments
vi = a to the variables vi ∈ V (vi = a → a ∈ domain(vi)) with
consistent (A ∪ C ∪R).

Consequently, configurations (solutions) identified for configura-
tion tasks can be considered as candidate solutions for a customer
(user). Alternative configurations (solutions) can be ranked accord-
ing to their utility for the customer. This ranking can be based on the
multi-attribute utility theory (MAUT), which evaluates each solution
with regard to its utility for the customer [10].

Now we introduce a simple example of a configuration task from
the financial services domain that will be used as working exam-
ple throughout the paper. The variables in V are willingness to take
risks (wr), duration of investment (di), expected return rate (rr), and
itemname which represents the name of a financial service.
• V = {wr, di, rr, itemname}
• D = {dom(wr) = {low, medium, high}, dom(di) = {shortterm,

mediumterm, longterm}, dom(rr) = {low, medium, high},
dom(itemname) = {equityfund, investmentfund, bankbook}}

• C = {c1 : wr = low → itemname = bankbook,
c2 : wr = medium → itemname 6= equityfund, c3 :
di = shortterm → itemname = bankbook, c4 : di =
mediumterm→ itemname 6= equityfund, c5 : rr = high∨
rr = medium → itemname 6= bankbook, c6 : ¬(wr =
low ∧ rr = high), c7 : ¬(di = shortterm ∧ rr = high),
c8 : ¬(wr = high ∧ rr = low)}

• R = {r1 : wr = low, r2 : di = shortterm, r3 : rr = low}

A configuration (solution) for the given configuration task is the
following set of variable assignments A = {wr = low, di =
shortterm, rr = low, itemname = bankbook}. In this case, the
given set of customer requirements defined in R is consistent with the
constraints in C. However, even a slight change in customer require-
ments (R) makes it inconsistent with the constraints in C. For exam-
ple, if we change the customer requirements to R = {r1 : wr = low,
r2 : di = shortterm, r3 : rr = high}, R becomes inconsistent
with C and no solution (configuration) can be identified.

In situations where no solution can be found for a given set of
customer requirements, concepts of model-based diagnosis (MBD)
[15] can help to identify a minimal set of requirements that has to
be deleted or adapted such that a solution can be identified. For the
identification of such minimal changes, we introduce the following
definitions.

Definition (Conflict Set). A conflict set is a set CS ⊂ R s.t. C∪CS
is inconsistent. A conflict set CS is said to be minimal iff @ a conflict
set CS′: CS′ ⊂ CS.

Minimal conflict sets can be determined on the basis of conflict de-
tection algorithms, such as QUICKXPLAIN [11] that calculates one
conflict set at a time for a given set of constraints, and follows a
divide-and-conquer search strategy that helps to significantly accel-
erate the performance compared to other approaches.

For example, the identified minimal conflict sets for the previous
set of customer requirements (R = {r1 : wr = low, r2 : di =
shortterm, r3 : rr = high}) are CS1 = {r1, r3} and CS2 =
{r2, r3}.

55

Definition (Diagnosis Task). A diagnosis task is defined as a tu-
ple (C, R) where C is a set of constraints, R is a set of customer
requirements, and R ∪ C is inconsistent.

On the basis of this diagnosis task definition, we can introduce the
definition of a diagnosis.

Definition (Diagnosis). A set ∆ ⊆ R for a given diagnosis task
(C, R) is a diagnosis if R − ∆ ∪ C is consistent, i.e., ∆ is a set of
requirements that has to be deleted from R or adapted such that the
remaining customer requirements are consistent with the constraints
in C. Furthermore, ∆ is minimal iff @ a set ∆′: ∆′ ⊂ ∆.

The standard approach to calculate minimal diagnoses is to resolve
all minimal conflict sets existing in the constraint set. The derivation
of the corresponding diagnoses is based on the calculation of hitting
sets, as in the HSDAG [15] algorithm (hitting set directed acyclic
graph), which follows a breadth-first search strategy. Another ap-
proach to calculate minimal diagnoses is to identify it directly from
the inconsistent constraint set without the need to calculate minimal
conflict sets, as in FASTDIAG [4] algorithm which follows a divide-
and-conquer search strategy.

For example, the identified minimal diagnoses for the previous
set of customer requirements (R = {r1 : wr = low, r2 : di =
shortterm, r3 : rr = high}) are ∆1 = {r3} and ∆2 = {r1, r2}.

In case of large sets of diagnosis alternatives, it will not always be
clear which diagnosis should be selected or in which order alterna-
tive diagnoses should be displayed to the user. Therefore, approaches
to reduce the number of diagnosis alternatives and for the determina-
tion of personalized diagnoses (to identify diagnoses that are more
relevant to users) have been introduced. Felfernig et al. [7] presented
an approach to rank diagnoses based on multi-attribute utility the-
ory, where they assume that customers (users) provide weights for
each individual requirement which represent its importance to them
(users preferences). The higher the importance of a requirement, the
lower the probability that it will be included in a diagnosis displayed
to the user. Also Felfernig et al. [7, 8] presented a personalized
diagnosis approach that integrates collaborative configuration tech-
niques (similarity-based, utility-based, probability-based, ensemble-
based) with diagnosis search to increase the prediction quality (in
terms of precision) of diagnoses. Other existing approaches only fo-
cus on minimal cardinality diagnoses [8] (i.e. minimal diagnoses
with the lowest possible number of included constraints) which are
determined on the basis of breadth-first search strategy, assuming
that repair alternatives with low-cardinality changes are favored com-
pared to alternatives including a higher number of changes, but it
cannot be guaranteed that minimal cardinality diagnoses leads to the
most relevant diagnoses to users.

After having identified the set of possible minimal diagnoses, re-
pair actions [10] for each of those diagnoses should be proposed to
the user so that at least one solution can be identified, i.e., possible
adaptations to the existing set of requirements R so that the user can
find a solution. For the identification of repair actions, we introduce
the following definition.

Definition (Repair Task). Given a set of customer requirements
R inconsistent with C and a corresponding diagnosis ∆ ⊆ R
(∆ = {ra1, ra2, ..., ran}), the corresponding repair task is to de-
termine an adaption to the requirements included in the diagnosis
RA = {ra′

1, ra
′
2, ..., ra

′
n}, such that R−∆∪RA is consistent with

C.
All the aforementioned approaches can be exploited in the con-

text of question generation from knowledge bases (see the following
section).

Types of configuration knowledge. Knowledge-based configura-
tion systems include knowledge in different forms. First, given a set
of customer requirements (R), a configurator can determine prod-
ucts/items that can be recommended to the customer (filter knowl-
edge). Second, given a product/item, a configurator can determine
customer requirements that are consistent with this product/item
(product knowledge). Third, given a configuration (solution), a con-
figurator can determine a set of customer requirements (R) that are
inconsistent with this solution; or given a set of inconsistent cus-
tomer requirements (R), a conflict detection algorithm [11] can de-
termine a minimal subset of R that triggers an inconsistency with C
(inconsistency knowledge). Fourth, in situations where no solution
can be identified for a given set of customer requirements (R), diag-
nosis algorithms [15, 4] can determine the needed minimal changes
to help the user out of the no solution could be found dilemma (anal-
ysis knowledge). Fifth, in situations where no solution can be iden-
tified for a given set of customer requirements R, concrete repair
actions for the requirements included in a diagnosis can determine
what changes in (R) lead to the identification of a solution (repair
knowledge). In the following section, we discuss how configuration
task definitions can be exploited for the generation of questions to be
used, for example, for educating sales representatives.

3 Generating Questions from Configurator
Knowledge Bases

Questions and corresponding answers can be automatically gener-
ated from a configuration task definition. On the basis of our working
example, we now introduce an approach to automatically generate
questions (and related answers) from a knowledge base for the afore-
mentioned types of configuration knowledge. The generated ques-
tions can be exploited for training and supporting sales representa-
tives. The overall goal of these questions is to increase the personal
level of sales knowledge and, as a consequence, to make advisory
processes more efficient.

3.1 Filter knowledge related question generation
(1) The underlying task is to figure out which products/items (P
= {itemname = p1, itemname = p2, ..., itemname = pn}
where pi ∈ domain(itemname)) fit a given set of predefined
customer requirements (R). More formally, filter knowledge related
questions can be generated on the basis of a configuration task def-
inition (V , D, C, R). On the basis of such a definition, a constraint
solver (configurator) is able to calculate configurations (solutions)
that satisfy R∪C i.e. all possible instantiations of customer require-
ments (R) and corresponding products/items (P). The set of cus-
tomer requirements (R) can then be the basis of the generated ques-
tion, and the corresponding products/items (P) can be the correct an-
swer(s), while faulty answers are the remaining products/items i.e. all
possible instantiations of itemname that satisfy {itemname ! =
p1 and itemname ! = p2... and itemname ! = pn}

Example. Given the configuration task definition of our work-
ing example (financial services configurator), a set of customer
requirements could be R = {r1 : wr = low, r2 : di =
shortterm, r3 : rr = low}, the set of corresponding correct an-
swers is P= {itemname = bankbook} and the set of correspond-
ing faulty answers is {itemname = equityfund, itemname =
investmentfund}. The corresponding generated question would
be: Given the following customer requirements ..., which prod-
ucts/items to recommend?

56

(2) The underlying task is to figure out which products/items,
other than a predefined one (itemname = p), fit a given set
of customer requirements (R) without any change in R. For-
mally, this type of questions can be generated on the basis of a
configuration task definition (V , D, C, R). A constraint solver
(configurator) is able to calculate configurations that satisfy R ∪
C ∪ {itemname! = p} i.e. all possible instantiations of cus-
tomer requirements (R) and corresponding products/items (P =
{itemname = p1, itemname = p2, ..., itemname = pn}
where pi ∈ domain(itemname) and pi ! = p}). The set
of customer requirements (R) with the predefined product/item
(itemname = p) can then be the basis of the generated question,
and the corresponding products/items (P) can be the correct an-
swer(s), while faulty answers are the remaining products/items i.e. all
possible instantiations of itemname that satisfy {itemname ! =
p1 and itemname ! = p2... and itemname ! = pn}.

Example. Given the configuration task definition of our working
example, a set of customer requirements could be R = {r1 : wr =
high, r2 : di = longterm, r3 : rr = high} and a predefined
product/item {itemname = equityfund}, the set of correspond-
ing correct answers is P = {itemname = investmentfund},
and the set of corresponding faulty answers is {itemname =
bankbook, itemname = equityfund}. The corresponding gener-
ated question would be: Given the following customer requirements
..., which products/items other than... would you recommend with-
out any changes in the requirements?

(3) The underlying task is to figure out what additional require-
ments can be added to a given incomplete but consistent set of cus-
tomer requirements (R) so that a configuration can still be identi-
fied. Formally, this type of questions can be generated on the basis
of a configuration task definition (V , D, C, R). A constraint solver
(configurator) is able to calculate all sets of requirement variable as-
signments (RV) that satisfy R ∪C (RV = {RV1, RV2, ..., RVm} :
RVi = {v1 = a1, v2 = a2, ..., vn = an} where vi ∈ V, ai ∈
domain(vi), vi = ai /∈ R, and RV ∪R∪C is consistent). The
set of defined customer requirements (R) can then be the basis of the
generated question, and the calculated sets of requirement variable
assignments (RV) are the correct answers, while faulty answers can
be derived from other instantiations of the requirement variables in
RV i.e. possible sets of requirement variable assignments that satisfy
¬RV = {¬RV1 and ¬RV2... and ¬RVm}2 where ¬RV ∪R∪C
is inconsistent.

Example. Given the configuration task definition of our work-
ing example, a set of customer requirements could be R = {wr =
low, di = shortterm}. The set of corresponding correct answers
is RV ={rr = low}, and faulty answers can be ¬RV ={{rr =
medium}, {rr = high}}. The corresponding generated question
would be: Given the following customer requirements ..., which ad-
ditional requirement(s) can be added such that at least one config-
uration (solution) can still be identified?

3.2 Product knowledge related question generation

The underlying task is to figure out which sets of customer require-
ments (R) fit a given product/item (itemname = p). In this context,
a constraint solver (configurator) is able to calculate configurations
that satisfy C ∪ {itemname = p} i.e. all possible sets of cus-

2 If RVi = {v1 = a1, v2 = a2, ..., vn = an} → RVi = {v1 =
a1 ∧ v2 = a2 ∧ ...∧ vn = an} → ¬RVi = {¬v1 = a1 ∨¬v2 = a2 ∨
... ∨ ¬vn = an}

tomer requirements R ={R1, R2, ..., Rn} (Ri = {r1, r2, ..., rm})
where R ∪ C ∪ {itemname = p} is consistent. The given prod-
uct/item (itemname = p) can then be the basis of the generated
question, and the corresponding sets of customer requirements R
represent the correct answer(s). Faulty answers can be represented
by other instantiations of customer requirements that satisfy ¬R =
{¬R1 and ¬R2... and ¬Rn}3 where ¬R∪C∪{itemname = p}
is inconsistent.

Example. Given the configuration task definition of our working
example, the product/item could be {itemname = bankbook}. The
corresponding collection of consistent customer requirements is R=
{R1 : {r1 : wr = low, r2 : di = shortterm, r3 : rr = low},
R2 : {r1 : wr = medium, r2 : di = shortterm, r3 : rr = low},
R3 :{r1 : wr = low, r2 : di = mediumterm, r3 : rr = low},
R4 : {r1 : wr = medium, r2 : di = mediumterm, r3 : rr =
low}, R5 : {r1 : wr = low, r2 : di = longterm, r3 : rr = low},
R6 : {r1 : wr = medium, r2 : di = longterm, r3 : rr = low}},
i.e., in this example there exist 6 sets Ri of customer requirements
that are consistent with the selected product/item bankbook. Exam-
ples of faulty answers are: {wr = high, di = longterm, rr =
medium}, {wr = medium, di = longterm, rr = high},
{wr = high, di = longterm, rr = high}. The corresponding
generated question would be: Given the following product/item ...,
which sets of customer requirements are consistent with this prod-
uct/item?

3.3 Inconsistency knowledge related question
generation

(1) The underlying task is to figure out which sets of customer re-
quirements (R) trigger an inconsistency with a preselected prod-
uct/item (itemname = p). More formally, inconsistency knowledge
related questions can be generated on the basis of a configuration task
definition (V , D, C, R) where all combinations of customer require-
ments have to be determined that never entail {itemname = p}.
A constraint solver (configurator) is able to calculate configurations
that satisfy C ∪ {itemname = p} i.e. all possible sets of cus-
tomer requirements R ={R1, R2, ..., Rn} (Ri = {r1, r2, ..., rm})
where R ∪ C ∪ {itemname = p} is consistent. The given prod-
uct/item (itemname = p) can then be the basis of the gen-
erated question, and the corresponding sets of customer require-
ments R represent the faulty answer(s), while correct answers are
other instantiations of customer requirements that satisfy ¬R =
{¬R1 and ¬R2... and ¬Rn} where ¬R∪C ∪{itemname = p}
is inconsistent.

Example. In our working example, we can preselect the prod-
uct/item {name = equityfund}. Combinations of customer re-
quirements that do not entail {name = equityfund} are all pos-
sible combinations with the exception of the following two combi-
nations (faulty answers): R={R1={wr = high, di = longterm,
rr = medium}, R2={wr = high, di = longterm, rr = high}}.
The corresponding generated question would be: Given the follow-
ing product/item ... which combination(s) of customer require-
ments does not lead to this product/item?

(2) Assuming that the set of customer requirements R is inconsis-
tent with C, the underlying task is to figure out which minimal sets
of R are inconsistent with C. More formally, this type of questions
can be generated on the basis of a conflict detection task (C, R). The

3 If Ri = {r1, r2, ..., rm} → Ri = {r1 ∧ r2 ∧ ... ∧ rm} → ¬Ri =
{¬r1 ∨ ¬r2 ∨ ... ∨ ¬rm}

57

conflict detection task (C, R) can be used for question representa-
tion, and related correct answers are represented by the conflict sets
CSi (calculated on the basis of a conflict detection algorithm, such
as QUICKXPLAIN algorithm [11]). Faulty answers can be derived
from the calculated minimal conflict sets CSi by taking subsets or
supersets of it, since a subset of a minimal conflict set is not a con-
flict and a superset of a minimal conflict set is not a minimal conflict.
For example, if CSi = {ra, rb} is a minimal conflict set, then {ra}
and {rb} are non-conflicts and {ra, rb, rc} is not a minimal conflict
set.

Example. Given the configuration task definition of our working
example with the following inconsistent set of customer require-
ments R = {r1 : wr = low, r2 : di = shortterm, r3 : rr =
high}. Alternative minimal sets of customer requirements that are
inconsistent with C are: {CS1 = {r1, r3}} and {CS2 = {r2, r3}}.
Examples of faulty answers derived from the conflict set CS1 are
{r1}, {r3}, and {r1, r2, r3}. The corresponding generated question
would be: Given the following configuration task definition... which
one is a minimal set of requirements from which no corresponding
configuration (solution) can be identified?

(3) Given an incomplete but consistent set of customer require-
ments R = {r1, r2, ..., rn}, the underlying task is to figure out what
additional requirements induce inconsistency if have been added to
R. More formally, this type of inconsistency knowledge related ques-
tions can be generated on the basis of a configuration task definition
(V , D, C, R). On the basis of such a definition, a constraint solver
(configurator) is able to calculate all sets of requirement variable as-
signments (RV) that satisfy R ∪C (RV = {RV1, RV2, ..., RVm} :
RVi = {v1 = a1, v2 = a2, ..., vn = an} where vi ∈ V, ai ∈
domain(vi), vi = ai /∈ R, and RV ∪R∪C is consistent). The
set of defined customer requirements (R) can then be the basis of the
generated question, and the calculated sets of requirement variable
assignments (RV) are the faulty answers, while correct answers can
be derived from other instantiations of the requirement variables in
RV i.e. possible sets of requirement variable assignments that satisfy
¬RV = {¬RV1 and ¬RV2... and ¬RVm} where ¬RV ∪R ∪ C
is inconsistent.

Example. Given the configuration task definition of our working
example, and a set of customer requirements R = {r1 : wr = low,
r2 : di = shortterm}. The set of corresponding faulty answers
is RV ={rr = low}, while correct answers can be ¬RV ={{rr =
medium}, {rr = high}}. The corresponding generated question
would be: What additional requirements trigger an inconsistency
(lead to no solution) if have been added to the following set of re-
quirements?

3.4 Analysis knowledge related question
generation

(1) Assuming that the set of customer requirements (R) is inconsis-
tent with C, the underlying task is to figure out which minimal sets of
R that have to be deleted or adapted such that consistency can be re-
stored (a solution can be found). More formally, analysis knowledge
related questions can be generated on the basis of a diagnosis task
definition (C,R). The diagnosis task definition can be used for ques-
tion representation, and the related correct answers are represented
by the determined minimal diagnoses ∆i (calculated on the basis of
a diagnosis detection algorithm such as FASTDIAG [4]). Faulty an-
swers can be identified based on the calculated minimal diagnoses
by taking subsets or supersets of it, since a subset of a minimal diag-
nosis is not a diagnosis and a superset of a minimal diagnosis is not

a minimal diagnosis. For example, if ∆i = {ra, rb, rc} is a minimal
diagnosis, then {ra, rb} is a non-diagnosis and {ra, rb, rc, rd} is not
a minimal diagnosis.

Example. Given the configuration task definition of our work-
ing example with the following set of customer requirements R =
{r1 : wr = low, r2 : di = shortterm, r3 : rr = high}.
The corresponding alternative minimal sets of customer require-
ments (diagnoses ∆i) that have to be deleted from R or adapted
such that a configuration can be identified, are the following: {∆1 =
{r1, r2},∆2 = {r3}}. For example, deleting (or adapting) the re-
quirement r3 restores consistency between R and C, i.e., allows the
calculation of a solution. Examples of faulty answers derived from
the diagnosis ∆1 are {r1}, {r2}, and {r1, r2, r3}. The correspond-
ing generated question would be: Given the following configuration
task definition ... which one is a minimal set of requirements that
has to be deleted or adapted such that a configuration (solution)
can be identified?

(2) Assuming that the set of customer requirements (R) is incon-
sistent with C, the underlying task is to figure out which maximal
sets of requirements from R guarantee the identification of a solu-
tion. More formally, this type of questions can be generated either (I)
on the basis of a diagnosis task definition (C,R) where the related
correct answers are represented by R - ∆ where ∆ is a minimal car-
dinality diagnosis or (II) on the basis of finding a maximal satisfiable
subset (MSS) - see the next definition - where the correct answers are
represented by the MSS. Faulty answers are represented by subsets
or supersets of the MSS.

Definition (Maximal Satisfiable Subset ”MSS”). A subset M ⊂ R
is an MSS iff M ∪ C is consistent and ∀ri ∈ {R −M} ⇒ M ∪
{ri} ∪ C is inconsistent.

Example. Given the configuration task definition of our working
example with the same inconsistent set of customer requirements
used in the previous example: R = {r1 : wr = low, r2 : di =
shortterm, r3 : rr = high} and the calculated minimal cardi-
nality diagnosis ∆2 = {r3}. The corresponding maximal set of re-
quirements from R that allows the calculation of a solution is {R
- ∆2}={r1 : wr = low, r2 : di = shortterm}, which repre-
sents also the MSS. Examples of faulty answers are {wr = low},
{di = shortterm}, and {wr = low, di = shortterm, rr =
high}. The corresponding generated question would be: Given the
following configuration task definition ... which one is a maximal
set of requirements that allows the identification of a configuration
(solution)?

(3) Assuming that the set of customer requirements (R) is incon-
sistent with C, the underlying task is to find out what minimal di-
agnoses can be derived from predefined minimal conflict sets (with
which its deletion or adaptation, a solution can be found). More for-
mally, this type of questions can be generated on the basis of a con-
flict detection task (C, R). The conflict detection task with the cal-
culated minimal conflict sets CSi can then be used for question rep-
resentation, and the correct answers are represented by resolving the
conflict sets using a proper algorithm such as HSDAG [15], which
leads to the determination of the minimal diagnoses ∆i. Faulty an-
swers can be identified based on the calculated minimal diagnoses
by taking subsets or supersets of it, since a subset of a minimal diag-
nosis is not a diagnosis and a superset of a minimal diagnosis is not
a minimal diagnosis. This type of questions has the same goal of the
analysis knowledge related questions defined in (1), which is finding
out the minimal diagnoses. The difference is that in (1), the task is
to find out the minimal diagnoses directly from an inconsistent set

58

of customer requirements (R), while here the task is to find out the
minimal diagnoses from predefined conflict sets (CSi).

Example. Given the configuration task definition of our working
example with the following inconsistent set of customer require-
ments R = {r1 : wr = low, r2 : di = shortterm, r3 : rr = high}
and the following conflict sets {CS1 = {r1, r3}, CS2 = {r2, r3}}.
The corresponding derived diagnoses ∆i that have to be deleted from
R or adapted such that a solution can be identified, are the following:
{∆1 = {r1, r2},∆2 = {r3}}. Examples of faulty answers derived
from the diagnosis ∆1 are {r1}, {r2}, and {r1, r2, r3}. The corre-
sponding generated question would be: Given the following config-
uration task definition ... what minimal diagnoses can be derived
from the following minimal conflict sets ...?

3.5 Repair knowledge related question generation
Assuming that the set of customer requirements (R) is inconsistent
with C, the underlying task is to figure out what changes should be
applied on the requirements so that at least one configuration (so-
lution) can be identified, i.e. to define concrete repair actions for
the requirements included in a diagnosis. The identification of re-
pair actions starts with the calculation of minimal diagnoses, assum-
ing that repair alternatives with low-cardinality changes are favored
compared to the ones with higher number of changes (repairs on
minimal cardinality diagnoses). More formally, repair knowledge re-
lated questions can be generated on the basis of a repair task def-
inition (C,R). The repair task definition can be used for question
representation, and the related correct answers are represented by the
repair actions (RA) calculated from the determined minimal cardi-
nality diagnosis ∆ where R − ∆ ∪ RA is consistent with C (i.e.
allows the identification of a configuration). Faulty answers can be
derived from other instantiations of the requirement variables in RA
(¬RA : R−∆ ∪ ¬RA ∪ C is inconsistent).

Example. Given the configuration task definition of our work-
ing example with the following inconsistent set of customer re-
quirements R = {r1 : wr = low, r2 : di = shortterm,
r3 : rr = high}. The corresponding alternative minimal sets of
customer requirements (diagnoses ∆i) that have to be adapted such
that a configuration (solution) can be identified, are the following:
{∆1 = {r1, r2},∆2 = {r3}}. The corresponding repair action
that restores consistency is, based on the minimal cardinality diag-
nosis ∆2, RA = {r′3 : rr = low} i.e., {R − ∆2 ∪ RA} allows
the identification of a configuration. Example of a faulty answer is
{rr = medium}. The corresponding generated question would be:
Given the following configuration task definition ... which one is a
minimal change in the requirements that leads to the identification
of a configuration (solution)?

4 Evaluation
We implemented our question generation approach, based on
CHOCO solver 4, and tested it on five different knowledge bases in-
cluding the knowledge base of our working example (the financial
services knowledge base). The tests have been executed on a stan-
dard desktop computer Intel(R) Core(TM) i5-2320 CPU 3.00GHz
with 8GB RAM, and included all types of generated questions with a
performance evaluation for the question generation approach (the av-
erage time needed to generate the questions). The knowledge bases
we ran our tests on are relatively small, but we will do more tests

4 www.choco-solver.org

and evaluations for our question generation approach on bigger and
more complex knowledge bases in the future. Now, we will present
a performance evaluation for some types of the generated questions.

In our implementation, we used for the calculation of minimal di-
agnoses both algorithms (for performance comparison), the standard
hitting set directed acyclic graphs algorithm HSDAG [15] and FAST-
DIAG algorithm [4]. FASTDIAG complexity in terms of the number
of needed consistency checks for calculating one minimal diagnosis
is O(log2(n

k
)+2k) in the best case (all elements of the diagnosis are

contained in one path of the search tree) and O(2k.log2(n
k

) + 2k) in
the worst case (each element of the diagnosis is contained in a differ-
ent path of the search tree) where k is the minimal diagnosis set size
and n is the number of constraints in R.

The calculation of minimal conflict sets is based on QUICK-
XPLAIN algorithm [11]. QUICKXPLAIN complexity in terms of
needed consistency checks for calculating one minimal conflict set
is O(log2(n

k
) + 2k) in the best case, and O(2k.log(n

k
) + 2k) in the

worst case where k is the minimal conflict set size and n is the num-
ber of constraints in R. So the number of consistency checks needed
for calculating a conflict set (QUICKXPLAIN) and the number of con-
sistency checks needed for calculating a diagnosis (FASTDIAG) fall
into a logarithmic complexity class.

We measured the runtime performance of calculating the first min-
imal diagnosis on different sets of user requirements (of cardinality
3, 5, 7, and 9 requirements) using FASTDIAG algorithm – for diag-
nosis related questions. The results are depicted in Figure 1. Also
the results of a performance evaluation of diagnoses (analysis) re-
lated questions (runtime depending on the number of calculated di-
agnoses) are depicted in Figure 2, where we did a runtime perfor-
mance comparison between FASTDIAG and HSDAG algorithm for
calculating number of diagnoses between 2 and 6. The results show
that FASTDIAG outperforms HSDAG in the time needed to calculate
diagnoses.

The used knowledge base is a simple web hosting services knowl-
edge base with a total of 16 constraints, 10 variables, and a varying
number of conflict sets (of cardinality 1–2) and corresponding di-
agnoses (between 1–6 diagnoses). Each test has been conducted 10
times with a differing constraint ordering. The average runtime is
measured in milliseconds (ms).

Figure 1. RUNTIME EVALUATION: The average runtime in milliseconds
(ms) needed to calculate the first minimal diagnosis with FASTDIAG for 3,

5, 7, and 9 user requirements (req) – for diagnoses related questions.

In the same way, we evaluated the performance of the conflicts

59

Figure 2. RUNTIME EVALUATION: The average runtime in milliseconds
(ms) needed to calculate 2–6 minimal diagnoses with FASTDIAG vs.

HSDAG on 9 requirements set – for diagnoses related questions.

(inconsistency) related questions (runtime depending on the num-
ber of calculated conflict sets) using QUICKXPLAIN algorithm. We
measured the runtime performance of calculating the first minimal
conflict set on different sets of user requirements (of cardinality 3, 5,
7, and 9 requirements), then we measured the runtime performance
of calculating number of conflict sets between 2 and 6. The results
are depicted in Figure 3 and Figure 4.

Figure 3. RUNTIME EVALUATION: The average runtime in milliseconds
(ms) needed to calculate the first minimal conflict set with QUICKXPLAIN
for 3, 5, 7, and 9 user requirements (req) – for conflicts related questions.

Two major factors would influence the performance of QUICKX-
PLAIN [6]. (1) The size of conflict sets – the more elements in the
conflicts, the more consistency checks are needs for determining one
minimal conflict set. (2) The ordering of the constraints in C – the
more constraints are spread over C, the more consistency checks can
be expected since less constraints can be omitted in early phases of
QUICKXPLAIN execution.

Our experiments showed a very good performance for the question
generation approach we presented in this paper but as we mentioned
before, all our tests have been conducted on small knowledge bases.
More tests and evaluations will be conducted, in future, on bigger
and more complex knowledge bases. The evaluations will not include
runtime performance only but also evaluation of the quality of the
generated questions.

Figure 4. RUNTIME EVALUATION: The average runtime in milliseconds
(ms) needed to calculate 2–6 minimal conflict sets with QUICKXPLAIN on 9

requirements set – for conflicts related questions.

5 Future Work

Especially in the context of educating sales representatives, auto-
mated question generation becomes an essential and required func-
tionality, since it reduces the overheads of manual question genera-
tion and management, besides its added benefits related to supporting
sales representatives in strengthening their product and sales knowl-
edge, and hence having better advisory services.

In future, we will test and evaluate our approach on larger and
more complex knowledge bases, where the number of calculated di-
agnoses and repair actions could become very large, which makes
the identification of acceptable diagnoses and repair actions a dif-
ficult task for the user. For this, we will exploit the approaches we
mentioned in Section 2 to reduce the number of calculated diagnoses,
and to personalize diagnoses, in order to identify only the diagnoses
that are more relevant to the user. Consequently, new question types
will be added such as (for example):

• Given the following configuration task definition ... identify the
minimal cardinality sets of requirements that have to be deleted or
adapted such that a solution can be identified.

• Given the following configuration task definition ... which one is
a minimal diagnosis set with a higher probability to be selected by
the user?

Also with the growth of knowledge bases, the number of identified
solutions (configurations) might become very large, which makes it
difficult for the user to select the most relevant solution(s). For this,
approaches to rank solutions according to their relevance to the user
(such as utility-based ranking mechanisms [10]), and approaches to
identify a representative set of solutions to be displayed to the user,
will be studied and used in our question generation approach. Besides
that, the number of generated questions could become very high that
selecting a representative set from it to be displayed to the user will
be needed. In this context, we will analyze potential synergies with
existing approaches to reduce test cases in the context of regression
testing. We will provide a brief look at some of these approaches in
the remainder of this section, but we will analyze it in depth in future.

Regression testing [12] in software engineering is carried out to
ensure that any changes made in the software (in the fixes or any
enhancement changes) don’t influence the previously working func-
tionality. Usually it is done by re-running existing test cases on the

60

modified code to determine whether the changes affect anything.
This process is costly and time-intensive. Instead of re-running all
the existed test cases, a number of different approaches were stud-
ied to reduce the number of selected test cases (selecting an optimal
subset of test cases from the initial test suite to minimize the testing
time, cost and effort).

The three major studied approaches for reducing the number of
test cases include test suite minimization, test case selection, and test
case prioritisation [18]. Test suite minimization seeks to eliminate
redundant test cases in order to reduce the number of tests to run,
and test case selection seeks to identify the test cases that are relevant
to some set of recent changes, while test case prioritization seeks to
order test cases in such a way that early fault detection is maximized
(finding the optimal permutation of the sequence of test cases).

We will provide in future also coverage metrics that indicate the
quality of the generated questions. In this context, we will analyze
coverage metrics used in test case generation in software engineer-
ing, such as, Test Coverage and Test Case Effectiveness metrics. Test
coverage provides an indication of the completeness of the test suite.
The coverage can be with respect to the requirements, functionality,
use cases, etc (in our case, it can be in terms of configuration cover-
age, variable domains coverage, generated questions coverage, etc);
and test case effectiveness provides an indication of the effectiveness
of the test cases and the stability of the software (in our case, effec-
tiveness of the generated questions).

Finally, we will do an evaluation of the effectiveness and applica-
bility of our question generation approach in a real life scenario.

6 Conclusions
In this paper, we introduced an approach for automated question
generation from configuration knowledge bases. To the best of our
knowledge, this approach hasn’t been discussed before. We showed
how configuration task definitions can be exploited for the generation
of different types of questions, to be used for training and education
purposes such as educating sales representatives. We evaluated our
approach with regard to runtime performance of question generation.
Finally, we pointed out further additions and improvements as issues
for future work.

REFERENCES
[1] M. Agarwal and M. Prashanth, ‘Automatic gap-fill question generation

from text books’, in Proceedings of the 6th Workshop on Innovative Use
of NLP for Building Educational Applications, IUNLPBEA ’11, pp.
56–64, Stroudsburg, PA, USA, (2011). Association for Computational
Linguistics.

[2] T. Alsubait, B. Parsia, and U. Sattler, ‘Generating multiple choice ques-
tions from ontologies: Lessons learnt’, in Proceedings of the 11th In-
ternational Workshop on OWL: Experiences and Directions (OWLED
2014) co-located with 13th International Semantic Web Conference on
(ISWC 2014), Riva del Garda, Italy, October 17-18, 2014., pp. 73–84,
(2014).

[3] A. Felfernig and R. Burke, ‘Constraint-based recommender systems:
Technologies and research issues’, in Proceedings of the 10th Interna-
tional Conference on Electronic Commerce, ICEC ’08, pp. 3:1–3:10,
New York, NY, USA, (2008). ACM.

[4] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis
algorithm for inconsistent constraint sets’, Artif. Intell. Eng. Des. Anal.
Manuf., 26(1), 53–62, (February 2012).

[5] A. Felfernig, A. Shehadeh, M. Jeran, C. Gütl, T. Tran, M. Atas, S. Po-
lat, M. Stettinger, A. Akcay, and S. Reiterer, ‘Studybattles: A learn-
ing environment for knowledge-based configuration’, in Proceedings of
the 18th International Configuration Workshop, pp. 109–116, Toulouse,
France, (September 2016).

[6] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha Tiihonen,
Knowledge-based Configuration: From Research to Business Cases,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1 edn.,
2014.

[7] Alexander Felfernig, Monika Schubert, Gerhard Friedrich, Monika
Mandl, Markus Mairitsch, and Erich Teppan, ‘Plausible repairs for in-
consistent requirements’, in Proceedings of the 21st International Joint
Conference on Artificial Intelligence, pp. 791–796, Pasadena, Califor-
nia, USA, (2009).

[8] Alexander Felfernig, Monika Schubert, and Stefan Reiterer, ‘Person-
alized diagnosis for over-constrained problems’, in Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence,
IJCAI ’13, pp. 1990–1996. AAAI Press, (2013).

[9] C. Gütl, K. Lankmayr, J. Weinhofer, and M. Höfler, ‘Enhanced auto-
matic question creator eaqc: Concept, development and evaluation of
an automatic test item creation tool to foster modern e-education’, Elec-
tronic Journal of e-Learning, 9, (2011).

[10] D. Jannach, M. Zanker, A. Felfernig, and G. Friedrich, Recommender
Systems: An Introduction, Cambridge University Press, New York, NY,
USA, 1st edn., 2010.

[11] Ulrich Junker, ‘Quickxplain: Preferred explanations and relaxations for
over-constrained problems’, in Proceedings of the 19th National Con-
ference on Artifical Intelligence, AAAI’04, pp. 167–172. AAAI Press,
(2004).

[12] Passant Kandil, Sherin Moussa, and Nagwa Badr, ‘A study for regres-
sion testing techniques and tools’, International Journal of Soft Com-
puting and Software Engineering [JSCSE], 5(4), 64–84, (2015).

[13] Mukta Majumder and Sujan Kumar Saha, ‘A system for generating
multiple choice questions: With a novel approach for sentence selec-
tion’, in Proceedings of the 2nd Workshop on Natural Language Pro-
cessing Techniques for Educational Applications, pp. 64–72, Beijing,
China, (July 2015). Association for Computational Linguistics.

[14] K. Mazidi and P. Tarau, Automatic Question Generation: From NLU to
NLG, 23–33, Springer International Publishing, Cham, 2016.

[15] R. Reiter, ‘A theory of diagnosis from first principles’, AI Journal,
23(1), 57–95, (1987).

[16] A. Tahani, B. Parsia, and U. Sattler, Knowledge Engineering and
Knowledge Management: EKAW 2014 Satellite Events, VISUAL,
EKM1, and ARCOE-Logic, Linköping, Sweden, November 24-28, 2014.
Revised Selected Papers., chapter Generating Multiple Choice Ques-
tions From Ontologies: How Far Can We Go?, 66–79, Springer Inter-
national Publishing, Cham, 2015.

[17] C. Yllias and H.A. Sadid, ‘Towards topic-to-question generation’, Com-
put. Linguist., 41(1), 1–20, (March 2015).

[18] Shin Yoo and Mark Harman, ‘Regression testing minimisation, selec-
tion and prioritisation - a survey’, Technical Report TR-09-09, King’s
College London, (October 2009).

61

ASP-based Knowledge Representations for
IoT Configuration Scenarios

Alexander Felfernig1 and Andreas Falkner2 and
Müslüm Atas1 and Seda Polat Erdeniz1 and Christoph Uran1 and Paolo Azzoni3

Abstract. The purpose of this paper is to introduce basic applica-
tion scenarios for configuration technologies in Internet of Things
(IoT) product domains. We show how to represent configuration
knowledge in the domain of smart homes on the basis of Answer
Set Programming (ASP). In this context, we introduce different con-
figuration model elements and constraint types and show their cor-
responding ASP representation in a way that is also useful for ASP
beginners. We conclude the paper with a discussion of open issues
for future work.

1 Introduction

Configuration is one of the most successfully applied Artificial In-
telligence technologies [6, 19]. It is a specific type of design activity
where a product is configured on the basis of a set of already de-
fined component types and corresponding constraints that restrict the
way in which component instances can be combined. A configuration
task is defined in terms of a generic product structure, a correspond-
ing set of constraints, and a set of requirements (often also denoted
as customer requirements) that additionally restrict the set of possi-
ble solutions. A solution (configuration) for a configuration task is
represented by a set of component instances, their connections and
attribute settings which altogether are consistent with the constraints
and requirements included in the configuration task definition.

There is a multitude of application domains for knowledge-based
configuration – example domains are the automotive sector, finan-
cial services, operating systems, software product lines, and railway
interlocking systems [6]. Configuration technologies nowadays be-
come increasingly popular in different kinds of Internet of Things
(IoT) [1] scenarios. The Internet of Things is an emerging paradigm
that envisions a networked infrastructure which enables the intercon-
nection of devices (things) anyplace and anytime. In the IoT context,
configurators can be applied, for example, to the identification of
ramp-up configurations (self-configuration), i.e., to figure out which
components (potential software and hardware) are needed in a certain
IoT setting. Configuration technologies can also be applied during
runtime where, for example, a configurator helps to identify pareto-
optimal configurations of communication protocols with regard to
criteria such as performance and cost of data transfer.

The size and complexity of configuration problems in the IoT
domain often does not allow the application of basic configuration

1 Institute for Software Technology, Graz University of Technology, Inf-
feldgasse 16b/2, A-8010 Graz, email:{a.felfernig, muesluem.atas, spolater,
christoph.uran}@ist.tugraz.at

2 Siemens AG Österreich, email:andreas.a.falkner@siemens.com
3 Eurotech Group, Italy, email: paolo.azzoni@eurotech.com

knowledge representation and reasoning such as constraint satis-
faction [23]. Smart homes often consist of hundreds or even thou-
sands of different components and constraints – such scenarios
are in the need of a component-oriented knowledge representation
that is easy to use and maintain [6, 13]. Open source constraint-
based approaches do not support such a representation and exist-
ing component-oriented commercial environments are based on pro-
prietary knowledge representations with limitations also in terms of
standardization. An alternative to constraint-based knowledge rep-
resentations especially useful for large and complex configuration
domains is Answer Set Programming (ASP) [12, 18]. ASP supports
the definition of component hierarchies and related constraints in a
declarative way (which is not possible with basic CSP-based con-
figuration environments). Potential component instances have to be
pre-defined, i.e., in its basic form ASP does not support pure compo-
nent generation during runtime.

There exist a couple of research contributions related to the ap-
plication of answer set programming in the configuration context.
Soininen and Niemelä [18] can be considered as pioneers who first
showed the application of ASP to represent and solve configuration
tasks. A resulting configuration environment is presented, for exam-
ple, in [6, 22]. An object-oriented layer to answer set programs has
been introduced by [4]. In this work, configuration tasks can be rep-
resented on an object-oriented level without being forced to take into
account specific details of ASP-based configuration knowledge rep-
resentations. Thus, this work can be seen as a contribution to improve
the applicability of ASP technologies especially in terms of reduc-
ing efforts related to knowledge base development and maintenance.
Feature model related ASP representations are introduced in [16].
An approach to the testing of object-oriented models on the basis
of ASP is introduced in [5]; in this context it is shown how UML-
based configuration knowledge representations can be represented
in ASP and how positive and negative test cases can be represented
and included for the purpose of supporting unit tests on knowledge
bases. Friedrich et al. [8] introduce an approach to re-configuration in
ASP – in this context, a reconfiguration can be considered as a set of
changes to an already existing configuration such that new require-
ments are taken into account. Finally, Teppan et al. [21] introduce a
hybrid approach that integrates constraint solving with ASP. A ma-
jor advantage of this integration is that the grounding bottleneck4 in
answer set programming can be transformed into a more efficiently
solvable search problem in constraint programming.5 The major fo-

4 See Section 4.
5 Although CSPs often do not support flexible (component-oriented) knowl-

edge representations, they have the potential to support ASP-based reason-
ing processes (e.g., in terms of increasing efficiency).

62

cus of this paper are ASP-based knowledge representations. For an
overview of different further approaches to configuration knowledge
representation we refer to [13].

The contributions of this paper are the following. First, we in-
troduce ASP-based configuration knowledge representations in the
context of Internet Of Things (IoT) scenarios. Second, our aim is to
provide easy to understand examples (for ASP newbies) of how to
represent configuration knowledge in ASP and also to show limita-
tions of ASP knowledge representations. Third, we discuss different
issues for future research that will help to accelerate a broad applica-
tion of ASP technologies in knowledge-based configuration.

The remainder of this paper is organized as follows. In Sec-
tion 2 we discuss IoT-related configuration domains and introduce a
smart home configuration model which is used as working example
throughout the paper. In Section 3 we show how to translate individ-
ual model elements into a corresponding ASP-based representation.
In this context we also sketch how ASP solvers operate to determine
a solution for a configuration task (Section 4). In Section 5 we sketch
the role of ASP solving in our IoT-related research project. The paper
is concluded with a discussion of open research issues (Section 6).

2 IoT Domains and Configuration Models

In the following we provide an overview of IoT domains where the
application of ASP-based configuration technologies is reasonable.
In this context, we introduce a simplified configuration model from
the domain of smart homes in order to show different facets of ASP-
based configuration knowledge representations.

Air Pollution Monitoring. Air pollution monitoring systems help
to ensure healthy living conditions, for example, in cities. An issue
in this context is the distribution of sensors in a city topology that
assures a representative collection of measurement data. This data is
analyzed on the basis of different types of learning algorithms that
help to figure out in which contexts which actions have to be trig-
gered. Examples of related actions are a general warning to leave
the house, reduced speed limits on highways, recommendations to
groups (e.g., schools) in terms of the maximum time that should be
spent outdoors, and warnings regarding the malfunctioning of filter
equipments in industrial production. In air pollution monitoring, con-
figuration technologies can be used to select the type and placement
of sensors given a specific topology (e.g., a topology of a city) and
also to select the types of algorithms that should be used for data
analysis in certain contexts.

Health Monitoring. Health monitoring solutions can be based on
different types of data that can be used to determine recommen-
dations related to factors such as eating behavior, sports activities,
sleeping times, and also data about the body condition. Many tools
already allow the manual entering of consumed food, however, in fu-
ture scenarios such information will be available on the basis of stan-
dardized data exchange protocols. Measurement of sports activities
and sleeping time is already included in many commercial solutions.
Finally, detailed information about the physical condition of a per-
son is not taken into account in many of the existing tools. In such
scenarios, configuration technologies can be used to parametrize the
underlying algorithms, for example, recommended heart rates when
doing physical practices depend on the age, gender, and weight of
a person (and further physical parameters). Whether specific food
items can be recommended or not depends, for example, on potential
allergies of a person. Finally, especially in group sports (e.g. foot-
ball or tennis), the type of training also depends on the participating
persons. For example, if three persons are participating in a tennis

training session and one person has a bad physical condition, this has
an impact on the selection of exercise units for this group.

Energy Production and Management. Energy production is in the
need of configuration technologies in various scenarios, for exam-
ple, wind turbines must be configured and parametrized in order to
be able to maximize energy production in a certain environment.
Knowledge about where and when a higher amount of energy will be
needed can trigger a corresponding reconfiguration of the load fac-
tor of water reservoirs. In the context of private energy production,
configuration technologies can help to rearrange energy consump-
tion times, for example, when to recharge the electric car or when
to activate the washing machine. Especially in the context of energy
management in buildings, reconfiguration technologies can play a
role by supporting the change of building parameters depending on
given environmental data such as temperature, weather conditions,
and forecasts.

Enhanced Retail Services. In-store shopping is based on specific
distributions of sensors and other devices such as information dis-
plays. During the ramp-up phase of such an application it has to be
assured that customer location sensors are distributed in a reasonable
fashion and information displays are positioned in such a way that
the information can be easily seen by customers. In such scenarios,
configuration technologies can be applied in order to determine the
amount of sensors needed, the positioning of information displays,
and also to determine the layout of the whole shop depending on the
product assortment that should be offered to a customer.

Animal Monitoring. There exist a couple of scenarios where in-
formation about animal locations and information about the physical
condition of animals is important. For example, in wildlife scenarios
where animals are spread over huge and not accessible areas, it is im-
portant to provide an infrastructure for animal monitoring that is not
based on physical presence of human administrators. In such con-
texts, for example, different types of drones can be used to support
data collection. Depending on the region size and topography and
requirements regarding the amount of data to be collected, drones
have to be configured in a way that optimizes the trade-off between
energy consumption, range, and support of the defined data collec-
tion requirements. In such scenarios, configuration technologies can
be useful to support the complete configuration of the needed data
collection equipment.

Figure 1. Simplified configuration model (reduced #component types,
#attributes, domains, and multiplicities) of a smart home used for

demonstration purposes. Additional constraints are presented in our
discussion of ASP-based configuration knowledge representations.

2

63

Smart Homes. A simplified smart home configuration model is de-
picted in Figure 1. Smart homes [15] include functionalities for ac-
tively supporting persons in their daily life. Examples thereof are in-
telligent light management that allows to (semi-automatically) adapt
the illumination of rooms depending on the time of the day and sea-
son, energy management that supports intelligent air conditioning
for whole buildings, security management (e.g., when nobody is at
home), and functionalities related to the support of ambient assisted
living scenarios with related functionalities such as automated fall
detection. In such scenarios, configuration technologies can be used
to design in detail which smart home hardware and software compo-
nents (e.g., sensors, actuators, and apps) have to be installed in which
part of the building. The smart home model depicted in Figure 1 will
serve as working example in this paper to demonstrate ASP-based
configuration knowledge representations.

3 Configuration Knowledge Representation in ASP

In the following we will show how to represent configuration knowl-
edge for a simplified configuration model from the domain of
smarthomes (see Figure 1).6

(a) Potential Component Instances. In the ASP context, all deci-
sion variables have to be pre-specified. In our example model shown
in Figure 1, three different component types are included which are
represented by the predicate names smarthome, room, and appliance
(with the subtypes stove and room). For these component types we
have to specify the maximum amount of instances that can be part of
a related smarthome configuration (see Figure 2), i.e., one smarthome
(e.g., psmarthome(1) denotes a potential instance of smarthome with
id 1), two instances of room, and 4 instances of each subtype of ap-
pliance. The integer number arguments (e.g., proom(2;3)) in the ASP
facts serves as a unique key to distinguish the (potential) instances.

psmarthome (1) .
proom (2 ; 3) .
p s t o v e (4 ; 5 ; 6 ; 7) .
p t v (8 ; 9 ; 1 0 ; 1 1) .

Figure 2. Definition of potential smart home component instances using
Answer Set Programming (ASP) notation. For example, proom(2;3) denotes

two potential instances of type room.

(b) Component Types and Instances. For a configuration, it has to
be decided which of the potential instances shall be included. There-
fore we establish an association of the aforementioned definitions of
potential instances with the ”real” component instances that can be
included in a configuration (see Figure 3). For each potential instance
it has to be decided whether to include this as an instance in a con-
figuration or not, for example in our configuration knowledge base,
each potential room instance can be part of a configuration or not
(this is specified by the corresponding lower and upper bounds of the
corresponding rule).

0{ smarthome (X) }1 :− psmarthome (X) .
0{ room (X) }1 :− proom (X) .
0{ s t o v e (X) }1 :− p s t o v e (X) .
0{ t v (X) }1 :− p t v (X) .

Figure 3. Definition of component types (in ASP). For example, each
potential instance of type room (i.e., proom(X)) can be part of a

configuration as room(X).

6 For demonstration purposes we use the syntax of the clingo environment
(see potassco.sourceforge.net).

(c) Generalization Hierarchies. Generalization hierarchies allow
to further categorize different component types (see Figure 4). For
demonstration purposes, we represent stove and tv as (disjunctive)
subtypes of the component type appliance – an alternative to intro-
ducing a type attribute similar as for room. We also include a rule
that assures that instances of appliances are instantiated to stove or
tv. Note that disjunctiveness between subtypes is assured by defini-
tion (see Figures 2 and 3).

As we are not interested in incomplete configurations (e.g., in-
stances of appliance that are not refined to stove or tv), we add a con-
straint that ensures that each appliance instance is either refined to a
stove instance or a tv instance. This is only necessary when users are
allowed, for example, to include component instances represented by
corresponding facts (e.g., appliance(4)).

a p p l i a n c e (X) :− s t o v e (X) .
a p p l i a n c e (X) :− t v (X) .
:− a p p l i a n c e (X) , n o t s t o v e (X) , n o t t v (X) .

Figure 4. Defining generalization hierarchies (in ASP). For example, each
stove is an appliance and each tv is an appliance, and vice-versa, each

appliance is either a stove or a tv.

(d) Attributes. For the defined component type attributes, we have
to introduce attribute domain definitions (see Figure 5).

dommaxprice (1 . . 1 0 0) .
domcountry (germany ; a u s t r i a) .
domcommunication (wi red ; w i r e l e s s) .
domtype (k i t c h e n ; l i v i n g r o o m) .
domisa lwayson (t r u e ; f a l s e) .
domisdange rous (t r u e ; f a l s e) .
d o m p r i c e o f s e n s o r (6 0) .

Figure 5. Attribute domain definitions (in ASP). For example,
dommaxprice represents an (integer) attribute that will be used to specify the

maximum price of a smarthome solution. For simplicty, we only include
price information related to stoves – see also Figure 6.

Attribute domain definitions have to be associated with the corre-
sponding component types, for example, the domain definition dom-
country of the attribute country has to be associated with the com-
ponent type smarthome (see Figure 6). With ASP choice rules we
enforce that each instance has exactly one domain value for each
of its attributes. Generalization is covered in a natural way: see the
right-hand-side of the last two rules in the figure. As attributes are
created only for existing instances (but not for potential instances),
spurious solutions (such as arbitrary attribute settings for unused po-
tential instances and their combination) are avoided.

1{ c o u n t r y (X,Y) : domcountry (Y)}1:− smarthome (X) .
1{ communica t ion (X,Y) : domcommunication (Y)}1:− smarthome (X) .
1{maxpr i ce (X,Y) : dommaxprice (Y)}1:− smarthome (X) .
1{ t y p e (X,Y) : domtype (Y) }1:− room (X) .
1{ i s a l w a y s o n (X,Y) : domisa lwayson (Y)}1:− a p p l i a n c e (X) .
1{ i s d a n g e r o u s (X,Y) : domisdange rous (Y)}1:− a p p l i a n c e (X) .
1{ p r i c e o f s e n s o r (X,Y) : d o m p r i c e o f s e n s o r (Y)}1:− s t o v e (X) .

Figure 6. Associating attributes with component types (in ASP). For
example, country is an attribute associated with smarthomes. On an instance

level, attribute instances are only generated if corresponding component
instances exist, i.e., attribute instances are only created when necessary.

If domain definitions are reduced in subcomponent types, this
can be expressed in a corresponding ASP rule, for example,
isdangerous(X,false):- tv(X). expresses the fact that a tv set is not
considered as a dangerous appliance (see Figure 7).

(e) Associations and Multiplicities. Associations between compo-
nent types on the model level are represented in terms of binary pred-
icates on the ASP level (see Figure 8). We use ASP rules to define

3

64

i s a l w a y s o n (X, f a l s e) :− s t o v e (X) .
i s d a n g e r o u s (X, t r u e) :− s t o v e (X) .
i s a l w a y s o n (X, f a l s e) :− t v (X) .
i s d a n g e r o u s (X, f a l s e) :− t v (X) .

Figure 7. Reducing ASP attribute domain definitions, for example, in
generalization hierarchies. For example, the isdangerous attribute of type
appliance is reduced to true if the corresponding component is a stove.

potential links, e.g. smarthomeroom, with the allowed minimum and
maximum multiplicities of the association.

1{ smarthomeroom (X,Y) : room (Y) }2 :− smarthome (X) .
1{ smarthomeroom (Y,X) : smarthome (Y) }1 :− room (X) .
1{ r o o m a p p l i a n c e (X,Y) : a p p l i a n c e (Y) }2 :− room (X) .
1{ r o o m a p p l i a n c e (Y,X) : room (Y) }1 :− a p p l i a n c e (X) .

Figure 8. Defining associations and corresponding multiplicities (in ASP).
For example, each smarthome has 1-2 associated components of type room.

(f) Incompatibility Constraints. Such constraints typically specify
incompatibilities regarding the combination of specific component
types or simply combinations of incompatible attribute values. An
example of an incompatibility is represented by the following con-
straint that expresses the fact that a tv should not be situated in a
room of type kitchen (see Figure 9).

:− r o o m a p p l i a n c e (X,Y) , t y p e (X, k i t c h e n) , t v (Y) .

Figure 9. Defining incompatibility constraints (in ASP). For example, no
tv should exist in a kitchen.

(g) Requires Constraints. Requirements relationships describe sit-
uations where the integration of a certain component or the selection
of a certain attribute value also requires the integration/selection of
further component types/attribute values. An example constraint is
the following: smarthomes in Austria must have two rooms (the cor-
responding ASP representation is shown in Figure 10).

2{ smarthomeroom (X,Y) : room (Y) }2 :−
smarthome (X) , c o u n t r y (X, a u s t r i a) .

Figure 10. Defining requires constraints (in ASP). For example,
smarthomes in Austria include at least two rooms.

(h) Resource Constraints. Resource constraints specify producer
and consumer relationships, for example, a resource (producer)
could be the money available for the smarthome (maxprice speci-
fied by the customer) and the consumers could be the installed sen-
sors (represented by the attribute priceofsensor). A corresponding re-
source constraint could indicate that the sum of the prices of all sen-
sors must not exceed the upper price limit specified by the customer
(attribute maxprice). An implementation of a resource constraint in
ASP is shown in Figure 11.

s e n s o r p r i c e (T) :− T = #sum{ PR , A : p r i c e o f s e n s o r (A, PR)} .
:− smarthome (X) , maxpr i ce (X,Y) , s e n s o r p r i c e (P) , P > Y.

Figure 11. Defining resource constraints (in ASP). For example, the price
of a smarthome (represented by sensorprice only) must not exceed the

maxprice defined by the customer.

(i) Navigation Constraints. ASP allows to represent complex con-
straints which require navigation between instances. For example,
a stove in one room excludes further stoves in other rooms of the
same smarthome (see Figure 12). This can also be interpreted as a
further example of an incompatibility constraint (see Figure 9). Even
recursively defined predicates can be used in such constraints such

that transitive closures (e.g. reachability in graphs) and constraints
on them can be expressed. This is a modeling advantage compared
to standard constraint solvers.

:− s t o v e (A1) , r o o m a p p l i a n c e (R1 , A1) , smarthomeroom (H, R1) ,
R1 != R2 ,
smarthomeroom (H, R2) , r o o m a p p l i a n c e (R2 , A2) , s t o v e (A2) .

Figure 12. Defining navigation constraints (in ASP). For example, two
different rooms with a stove must not be part of the same smarthome

configuration. In this context, R1 != R2 assures that two different rooms are
analyzed with regard to the inclusion of a stove.

(j) Example Customer Requirements. Having defined the whole
configuration knowledge base, customers can specify their require-
ments with regard to a corresponding smarthome configuration as
facts and even more generally as constraints (see Figure 13). Exam-
ples of such customer requirements are: the smarthome installation
will be located in Austria and no dangerous appliances should be
installed (see the following constraints).

smarthome (1) .
c o u n t r y (1 , a u s t r i a) .
:− a p p l i a n c e (X) , i s d a n g e r o u s (X, t r u e) .

Figure 13. Defining requirements (in ASP). For example, the smarthome
should be in austria and no dangerous appliances should be included.

4 ASP Solving and Limitations
Classical ASP solvers [9] work in two steps: (1) grounding which
translates the ASP program to a variable-free format and (2) propo-
sitional (SAT) solving of the grounded program. Figure 14 shows a
reduced version of our smarthome configuration knowledge base.

% p o t e n t i a l i n s t a n c e s
psmarthome (1) . proom (2 ; 3 ; 4) .

% a t t r i b u t e domain d e f i n i t i o n s
domcountry (germany ; a u s t r i a) . domtype (k i t c h e n ; l i v i n g r o o m) .

% d e f i n i t i o n / g e n e r a t i o n o f i n s t a n c e s
0{ smarthome (X) }1 :− psmarthome (X) .
0{ room (X) }1 :− proom (X) .

% a s s o c i a t i n g a t t r i b u t e s wi th component t y p e s
1{ c o u n t r y (X,Y) : domcountry (Y) }1 :− smarthome (X) .
1{ t y p e (X,Y) : domtype (Y) }1 :− room (X) .

% d e f i n i t i o n / g e n e r a t i o n o f a s s o c i a t i o n s
1{ smarthomeroom (X,Y) : room (Y) }2 :− smarthome (X) .
1{ smarthomeroom (Y,X) : smarthome (Y) }1 :− room (X) .

% f u r t h e r c o n s t r a i n t s
:− smarthome (X) , c o u n t r y (X, a u s t r i a) ,

n o t 2{ smarthomeroom (X,Y) : room (Y) }2 .

% c u s t o m e r r e q u i r e m e n t s
room (2) . t y p e (2 , k i t c h e n) .

Figure 14. Restricted version of example smarthome configuration model.

The knowledge base in Figure 14 is a subset of the class diagram
in Figure 1. It includes a component type smarthome with the at-
tribute country and a component type room with the attribute type.
A smarthome can have 1 or 2 rooms but Austrian smarthomes must
have two rooms (this is defined in terms of an additional constraint).
One potential instance is defined for smarthome and three potential
instances are defined for room. The requirements specify the inclu-
sion of a room of type kitchen.

The grounding results are shown in Figure 15 – the relationship to
the knowledge base of Figure 14 is explained in terms of comments.
ASP facts of the original knowledge base are also represented as facts

4

65

in the grounded knowledge base. Variables in rules are removed and
the rules are duplicated accordingly, for example, three rules are gen-
erated for the three possible room instances: i.e., proom(X) in the
second rule for generation of instances is replaced with each of the
three facts for potential instances and the head of the rule is replaced
accordingly. Furthermore, the count aggregate is represented in its
standard form instead of just curly brackets.

% p o t e n t i a l i n s t a n c e s
psmarthome (1) . proom (2) . proom (3) . proom (4) .

% a t t r i b u t e domain d e f i n i t i o n s
domcountry (germany) . domcountry (a u s t r i a) .
domtype (k i t c h e n) . domtype (l i v i n g r o o m) .

% d e f i n i t i o n / g e n e r a t i o n o f i n s t a n c e s
0<=#c o u n t {1 ,0 , smarthome (1) : smarthome (1)}<=1.
0<=#c o u n t {1 ,0 , room (2) : room (2)}<=1.
0<=#c o u n t {1 ,0 , room (3) : room (3)}<=1.
0<=#c o u n t {1 ,0 , room (4) : room (4)}<=1.

% a s s o c i a t i n g a t t r i b u t e s wi th component t y p e s
1<=#c o u n t {1 ,0 , c o u n t r y (1 , germany) : c o u n t r y (1 , germany) ;

1 , 0 , c o u n t r y (1 , a u s t r i a) : c o u n t r y (1 , a u s t r i a)
}<=1:− smarthome (1) .

1<=#c o u n t {1 ,0 , t y p e (2 , k i t c h e n) : t y p e (2 , k i t c h e n) ;
1 , 0 , t y p e (2 , l i v i n g r o o m) : t y p e (2 , l i v i n g r o o m)
}<=1:− room (2) .

1<=#c o u n t {1 ,0 , t y p e (3 , k i t c h e n) : t y p e (3 , k i t c h e n) ;
1 , 0 , t y p e (3 , l i v i n g r o o m) : t y p e (3 , l i v i n g r o o m)
}<=1:−room (3) .

1<=#c o u n t {1 ,0 , t y p e (4 , k i t c h e n) : t y p e (4 , k i t c h e n) ;
1 , 0 , t y p e (4 , l i v i n g r o o m) : t y p e (4 , l i v i n g r o o m)
}<=1:−room (4) .

% d e f i n i t i o n / g e n e r a t i o n o f a s s o c i a t i o n s
1<=#c o u n t{

1 , 0 , smarthomeroom (1 , 2) : smarthomeroom (1 , 2) : room (2) ;
1 , 0 , smarthomeroom (1 , 3) : smarthomeroom (1 , 3) : room (3) ;
1 , 0 , smarthomeroom (1 , 4) : smarthomeroom (1 , 4) : room (4)

}<=2:−smarthome (1) .

1<=#c o u n t {1 ,0 , smarthomeroom (1 , 2) :
smarthomeroom (1 , 2) : smarthome (1)}<=1:− room (2) .

1<=#c o u n t {1 ,0 , smarthomeroom (1 , 3) :
smarthomeroom (1 , 3) : smarthome (1)}<=1:− room (3) .

1<=#c o u n t {1 ,0 , smarthomeroom (1 , 4) :
smarthomeroom (1 , 4) : smarthome (1)}<=1:− room (4) .

% f u r t h e r c o n s t r a i n t s
:− smarthome (1) ; c o u n t r y (1 , a u s t r i a) ; n o t 2<=#c o u n t
{1 ,0 , smarthomeroom (1 , 2) : smarthomeroom (1 , 2) : room (2) ;

1 , 0 , smarthomeroom (1 , 3) : smarthomeroom (1 , 3) : room (3) ;
1 , 0 , smarthomeroom (1 , 4) : smarthomeroom (1 , 4) : room (4)}<=2.

% c u s t o m e r r e q u i r e m e n t s
room (2) . t y p e (2 , k i t c h e n) .

Figure 15. Grounded version of restricted smarthome configuration model.

In general, grounding can lead to extremely large knowledge
bases, especially if rules or constraints entail many variables with
a large domain. The domain sizes are multiplied which leads to ex-
ponential growth in the number of variables in the worst case. This
shows one of the weaknesses of answer set programs - they are not
well suited for problems with large integer domains or floating point
numbers. Ways to deal with this issue is to combine answer set pro-
gramming with constraint solving techniques (see, e.g., [11, 21]) and
lazy grounding (see, e.g., [3]).

Solving an ASP results in answer sets (solutions). Each solution
must be well-founded (i.e., derived from the given facts) and consis-
tent (i.e. not violating any constraint). Figure 16 shows all solutions
(answer sets) derived from the example in Figure 14.

As the customer prefers room 2 and country austria requires 2
rooms, there is only one answer set (Answer: 1) with one room - its
type is kitchen (as specified by the customer requirements) and the
country is germany. Sketch of the reasoning steps: room(2) can be
seen as a propositional variable with truth value TRUE. It appears
in the body of the second rule for generation of associations and
that body contains no other variables. Therefore the head is evalu-

ated and requires exactly one variable in the count aggregate to be
set to TRUE. The only one is smarthomeroom(1,2) and it is founded
if smarthome(1) is generated by the first count aggregate for genera-
tion of instances. Therefore, it derives the facts smarthomeroom(1,2)
and smarthome(1). For country, there are exactly two alternatives,
but only germany does not lead to a constraint violation. Therefore
country(1,germany) is added as a fact (i.e. assigned truth value TRUE
in the SAT view of the reasoning process). As no other variables need
to be set (all count aggregates are fulfilled), we have the first solution.

All other solutions derive a second room. This allows all combina-
tions of the alternatives for type (kitchen, livingroom), country (ger-
many, austria) and identifier (3, 4). One can imagine that the cor-
responding multiplication of alternatives can lead to tremendously
many solutions. At least concerning the identifiers, the solutions are
equivalent (i.e. there is no relevant difference between answer sets
2 to 5 and answer sets 6 to 9). In order to reduce the search space
for such unneeded solutions, symmetry breaking techniques [2] and
search heuristics [10] can be used.

− Answer : 1 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n)
smarthomeroom (1 , 2)
− Answer : 2 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n) room (4) t y p e (4 , l i v i n g r o o m)
smarthomeroom (1 , 2) smarthomeroom (1 , 4)
− Answer : 3 −
smarthome (1) c o u n t r y (1 , a u s t r i a)
room (2) t y p e (2 , k i t c h e n) room (4) t y p e (4 , l i v i n g r o o m)
smarthomeroom (1 , 2) smarthomeroom (1 , 4)
− Answer : 4 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n) room (4) t y p e (4 , k i t c h e n)
smarthomeroom (1 , 2) smarthomeroom (1 , 4)
− Answer : 5 −
smarthome (1) c o u n t r y (1 , a u s t r i a)
room (2) t y p e (2 , k i t c h e n) room (4) t y p e (4 , k i t c h e n)
smarthomeroom (1 , 2) smarthomeroom (1 , 4)
− Answer : 6 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n) room (3) t y p e (3 , k i t c h e n)
smarthomeroom (1 , 2) smarthomeroom (1 , 3)
− Answer : 7 −
smarthome (1) c o u n t r y (1 , a u s t r i a)
room (2) t y p e (2 , k i t c h e n) room (3) t y p e (3 , k i t c h e n)
smarthomeroom (1 , 2) smarthomeroom (1 , 3)
− Answer : 8 −
smarthome (1) c o u n t r y (1 , germany)
room (2) t y p e (2 , k i t c h e n) room (3) t y p e (3 , l i v i n g r o o m)
smarthomeroom (1 , 2) smarthomeroom (1 , 3)
− Answer : 9 −
smarthome (1) c o u n t r y (1 , a u s t r i a)
room (2) t y p e (2 , k i t c h e n) room (3) t y p e (3 , l i v i n g r o o m)
smarthomeroom (1 , 2) smarthomeroom (1 , 3)

Figure 16. Solutions for smarthome knowledge base of Figure 15.

Figure 17 shows symmetry breaking constraints which force the
solver to use identifiers from lowest to highest. In the knowledge base
defined by the ASP entries of Figure 2–13, the number of answer
sets would be reduced from 8.400 to 2.800 if the symmetry break-
ing constraints are taken into account. Adding constraint :- room(X),
proom(Y), X>Y, not room(Y). to Figure 14 would reduce the number
of answer sets from 9 to 5 in Figure 16.

:− room (X) , proom (Y) , X>Y, n o t room (Y) .
:− s t o v e (X) , p s t o v e (Y) , X>Y, n o t s t o v e (Y) .
:− t v (X) , p t v (Y) , X>Y, n o t t v (Y) .

Figure 17. Symmetry breaking constraints for the entries of Figures 2–13.

5

66

5 AGILE Configuration Technologies

The configuration knowledge representations discussed in this paper
are applied within the scope of the European Union project AGILE7

that focuses on the development of recommendation and configu-
ration technologies for IoT gateways. Within AGILE, configuration
technologies are applied to support different kinds of ramp-up sce-
narios, i.e., initial setups of IoT gateways infrastructures entailing
the needed hardware and software components. Furthermore, AGILE
supports runtime configuration and reconfiguration, for example, in
terms of optimizing the usage of data exchange protocols with regard
to optimality criteria such as economy and efficiency. The basis for
AGILE configuration solutions in ramp-up domains is the clingo en-
vironment. In AGILE, we are especially focusing on improving the
performance of constraint-based reasoning and model-based diagno-
sis that are both supporting technologies also in the context of answer
set programs [7, 17, 21].

6 Research Issues

There are still a couple of research challenges to be tackled to make
ASP-based configuration more applicable and performant. Graphical
configuration knowledge representations and a corresponding auto-
mated translation into ASP-based representations will help to im-
prove knowledge engineering processes. An automated generation
of ASP knowledge bases from object-oriented product topologies
has already been proposed in [4]; translation routines for standard
constraints such as requires, excludes, and resources would help to
further increase knowledge engineering efficiency. Improving con-
straint answer set programming or finding new ways of integrating
ASP and CSP could lead to a full exploitation of the different advan-
tages of both paradigms. In order to solve large-sized problems, lazy
grounding and heuristics must be combined and improved (related
work is reported, e.g., in [24]). All means to reduce problem sizes
of ASPs should be exploited, for example, precise estimation of the
number of needed instances (see [20]). Finally, domain-specific con-
straints such as discussed in [14] have to be analyzed with regard to
their representation in ASP.

7 Conclusions

In this paper we give an overview of basic applications of configura-
tion technologies in Internet of Things (ioT) scenarios. In this context
we show how to apply answer set programming (ASP) techniques to
represent and solve configuration problems. ASP is a logic-based ap-
proach and well-suited for a component-oriented representation of
configuration tasks. This capability is extremely useful especially in
large and complex product domains. In order to provide a basic ref-
erence for ASP beginners, we show how to represent most represen-
tative constraints in ASP.

ACKNOWLEDGEMENTS

The work presented in this paper has partially been conducted within
the scope of the Horizon 2020 Project AGILE (Adoptive Gateways
for dIverse MuLtiple Environments, 2016–2018).

7 agile-iot.eu.

REFERENCES
[1] L. Atzori, A. Iera, and G. Morabito, ‘The Internet of Things: A Survey’,

Computer Networks, 54(15), 2787–2805, (2010).
[2] C. Drescher, O. Tifrea, and T. Walsh, ‘Symmetry-breaking answer set

solving’, in ICLP10 Workshop on Answer Set Programming and Other
Computing Paradigm, (2010).

[3] T. Eiter, T. Kaminski, C. Redl, and A. Weinzierl, ‘Exploiting Partial As-
signments for Efficient Evaluation of Answer Set Programs with Exter-
nal Source Access’, in 25th International Joint Conference on Artificial
Intelligence (IJCAI-16), pp. 1058–1065, New york, NY, USA.

[4] A. Falkner, A. Ryabokon, G. Schenner, and K. Shchekotykhin,
‘OOASP: Connecting Object-Oriented and Logic Programming’, in
13th International Conference on Logic Programming and Nonmono-
tonic Reasoning, pp. 332–345, Lexington, KY, USA, (2015).

[5] A. Falkner, G. Schenner, G. Friedrich, and A. Ryabokon, ‘Testing
Object-Oriented Configurators With ASP’, in ECAI 2012 Workshop on
Configuration, pp. 21–26, Montpellier, France, (2012).

[6] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration: From Research to Business Cases, Elsevier/Morgan
Kaufmann Publishers, 1st edn., 2014.

[7] A. Felfernig, M. Schubert, and C. Zehentner, ‘An Efficient Diagnosis
Algorithm for Inconsistent Constraint Sets’, Artificial Intelligence for
Engineering Design, Analysis, and Manufacturing (AIEDAM), 26(1),
53–62, (2012).

[8] G. Friedrich, A. Ryabokon, A. Falkner, A. Haselböck, G. Schenner,
and H. Schreiner, ‘(Re)configuration using Answer Set Programming’,
in Workshop on Configuration, pp. 17–25, Barcelona, Spain, (2011).

[9] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set
Solving in Practice, Morgan & Claypool Publishers, 1st edn., 2012.

[10] M. Gebser, B. Kaufmann, J. Romero, R. Otero, T. Schaub, and
P. Wanko, ‘Domain-Specific Heuristics in Answer Set Programming’,
in 27th AAAI Conf. on AI, pp. 350–356, Bellevue, WA, USA.

[11] M. Gebser, A. Ryabokon, and G. Schenner, ‘Combining heuristics for
configuration problems using answer set programming’, in 13th Inter-
national Conference on Logic Programming and Nonmonotonic Rea-
soning, pp. 384–397, Lexington, KY, USA, (2015).

[12] M. Gelfond and V. Lifschitz, ‘The stable model semantics for logic
programming’, in 5th International Conference of Logic Programming
(ICLP’88), pp. 1070–1080, (1988).

[13] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley, and
K. Wolter, ‘Configuration Knowledge Representation and Reasoning’,
in Knowledge-Based Configuration: From Research to Business Cases,
41–72, (2014).

[14] L. Hotz and K. Wolter, ‘Smarthome Configuration Model’, in
Knowledge-based Configuration – From Research to Business Cases,
eds., A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, chapter 10, 157–
174, Morgan Kaufmann Publishers, (2013).

[15] G. Leitner, A. Fercher, A. Felfernig, K. Isak, S. Polat Erdeniz, A. Ak-
cay, and M. Jeran, ‘Recommending and configuring smart home instal-
lations’, in Workshop on Configuration, pp. 17–22, (2016).

[16] V. Myllärniemi, J. Tiihonen, M. Raatikainen, and A. Felfernig, ‘Using
Answer Set Programming for Feature Model Representation and Con-
figuration’, in Workshop on Configuration, pp. 1–8, (2014).

[17] K. Shchekotykhin, ‘Interactive Query-Based Debugging of ASP Pro-
grams’, in 29th AAAI Conf. on AI, pp. 1597–1603, Austin, Texas, USA.

[18] T. Soininen and I. Niemelä, ‘Developing a declarative rule language for
applications in product configuration’, in PADL, pp. 305–319, (1998).

[19] M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI
Communications, 111–125, (1997).

[20] R. Taupe, A. Falkner, and G. Schenner, ‘Deriving tighter component
cardinality bounds for product configuration’, in 18 th International
Configuration Workshop, p. 47, (2016).

[21] E. Teppan and G. Friedrich, ‘Heuristic Constraint Answer Set Program-
ming’, in ECAI 2016, pp. 1692–1693, (2016).

[22] J. Tiihonen, T. Soininen, I. Niemelä, and R. Sulonen, ‘A practical
tool for mass-customizing configurable products’, in 14th International
Conference on Engineering Design, pp. 1290–1299, (2003).

[23] E. Tsang, Foundations of Constraint Satisfaction, Academic Press,
London, 1993.

[24] A. Weinzierl, ‘Blending lazy-grounding and CDNL search for answer-
set solving’, (2017).

6

67

Cluster-Based Constraint Ordering
for Direct Diagnosis

Muesluem Atas1 and Alexander Felfernig1 and Seda Polat Erdeniz1

and Stefan Reiterer1 and Amal Shehadeh1 and Thi Ngoc Trang Tran1

Abstract. Prediction quality and runtime performance are
important performance indicators for diagnosis algorithms.
In this paper, we propose a new method (ClusDiag Cluster-
Based Constraint Ordered Direct Diagnosis) which can im-
prove both indicators. ClusDiag has a learning phase to find
a constraint ordering heuristic. After the learning phase, a
diagnosis is found by applying the direct diagnosis algorithm
FastDiag on an inconsistent constraint set where the con-
straints are reordered with respect to the constraint ordering
heuristic.

Keywords— Configuration Systems; Diagnosis; Con-
straint Satisfaction; Variable and Value Ordering Heuristics;
Clustering; Performance Optimization

1 Introduction

When a constraint set is inconsistent, there is no solution
for the corresponding constraint satisfaction problem (CSP)
/ configuration problem [5]. In this case, a diagnosis is re-
quired to make the CSP solvable (s.t. at least one solution can
be found). Direct diagnosis algorithms find diagnoses without
need of finding corresponding the minimal conflict sets. In
diagnosis identification, the most important aspects are the
runtime performance of the algorithm and the prediction qual-
ity of the result [4].

We propose a new method called ClusDiag which can
find diagnoses using cluster-specific [12] constraint ordering
heuristics that are exploited by direct diagnosis search (in
our case by the FastDiag algorithm). These heuristics help
to increase the efficiency of diagnosis determination in two
different aspects: runtime performance and prediction quality.
Time-efficient heuristics find diagnoses faster, whereas predic-
tion quality-efficient heuristics help to find a diagnosis that
can be used to provide solutions which are more likely ac-
cepted by the user.

Prediction quality-efficient heuristics can be learned based
on user interaction logs that contain information on which
solution trade-offs were acceptable in the case of inconsis-
tent user requirements. In order to determine the prediction
quality of heuristics during the learning phase, we use user
interaction data collected within the scope of a user study.
Entries in this dataset consist of specified user requirements
inconsistent with the knowledge base and corresponding solu-
tions finally selected by the user. In the mentioned user study,
we first asked users to specify the customer requirements (or
constraints) and then to select alternative solutions if their

1 Software Technology Institute, Technical University of Graz,
Austria, email {muesluem.atas, alexander.felfernig, spolater, ste-
fan.reiterer, amal.shehadeh, ttrang} @ist.tugraz.at

requirements could not be fulfilled by the underlying config-
uration knowledge base (represented as a product table).

In our approach we differentiate between two phases: (1)
in the offline phase, clustering and learning of cluster-specific
heuristics for direct diagnosis (in our case FastDiag) is per-
formed, (2) in the online phase, cluster specific heuristics are
used to support direct diagnosis search.

In order to evaluate the performance of ClusDiag, we ap-
plied the algorithm on the dataset collected within the scope
of our user study. In order to evaluate the prediction quality
of the algorithm in combination with a specific constraint or-
dering heuristic, we analyzed whether a predicted diagnosis
leads to a solution selected by the user.

The contributions of our paper are the following. First, the
prediction quality of direct diagnosis algorithms can be im-
proved based on our clustering-based learning approach for
constraint ordering. Second, our approach can also improve
the runtime performance of direct diagnosis search.

The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce a working example to show the basic
ClusDiag approach. In Section 3, we report the results of
evaluating the approach with regard to runtime performance
and prediction quality. The paper is concluded with a discus-
sion of related and future work.

2 Working Example

To show the basic ClusDiag approach, we introduce a sim-
ple working example. In this example, there are five products
available in the product catalog of a bike shop and each bike
is further characterized by values related to the three features
f1 = motorsize, f2 = price, and f3 = rating as shown in
Table 1. 2 We know about six previous customer requirement
specifications that lead to an inconsistency, i.e., no solution
could be found (see Table 2). Inconsistency in this context
means that there does not exist a bike in the product table
that supports the properties specified by the requirements.
Note that for simplicity we assume the existence of equality
constraints that specify the relationship between customer re-
quirements and bike properties (e.g., cs1.f1.val = p1.f1.val).
Furthermore, we assume that the set of features describing
customer requirements and bike properties is equivalent.

Finally, we know which products were selected by the cus-
tomers after changing their initial requirements in such a way
that the new set of requirements is consistent with the prod-
uct table, i.e., at least one product could be found (see Table

2 Our working example includes a set of explicitly enumerated con-
figurations. However, our approach can be applied the same way
in the context of implicitly enumerated configurations described,
for example, in terms of variables, domains, and constraints.

68

3).

bike1 bike2 bike3 bike4 bike5

f1 (motor size in cc) 1000 1000 600 600 1200
f2 (price) 1400 1200 1000 1000 1600
f3 (rating) 1200 870 1450 720 1100

Table 1. Product table with five types of bikes where each has

three features as motor size, price, and rating.

cust.1 cust.2 cust.3 cust.4 cust.5 cus.6
cs1 cs2 cs3 cs4 cs5 cs6

f1=1400 f1=1000 f1=1400 f1=900 f1=900 f1=500
f2=1000 f2=700 f2=900 f2=700 f2=700 f2=300
f3=1000 f3=700 f3=900 f3=700 f3=700 f3=300

Table 2. Inconsistent constraint sets of six past customers.

cust.1 cust.2 cust.3 cust.4 cust.5 cus.6

bike1 bike1 bike2 bike5 bike4 bike2

Table 3. Bikes finally selected by customers (after their specified

requirements given in Table 2).

2.1 Clustering Phase

In the clustering phase, we cluster similar customer require-
ments using the former user interaction data (in our working
example, this data is represented by Tables 2 and 3). We apply
k-means clustering on the customer requirements.

K-means clustering creates k clusters where it minimizes
the sum of squares of distances between cluster elements [9]
as shown in Formula 1. In the context, k is the number of
target clusters, S is a cluster set, µi is the average value of
cluster elements in Si, and x is a cluster element in Si.

min

k∑
i=1

∑
x∈Si

‖x− µi‖
2

(1)

In k-means clustering, the difference (or distance) between
two cluster elements x and y with multiple attributes can be
calculated based on the Euclidean Distance (n-dimensional)
[2] as shown in the Formula 2 where xj is the jth attribute of
x and yj is the jth attribute of y.

x− y =

√√√√ n∑
j=1

(xj − yj)2 (2)

In our working example, we set the parameters of the k-
means clustering algorithm as follows: k=2, i.e., two clusters,
maximum number of iterations of k-means clustering: 3. In the
example, k-means clustering is applied to the data mentioned
in Table 2.

First, we create the mentioned two clusters and assign the
two items with the highest pairwise distance (see Formula
2) as initial cluster elements. The remaining items are now
examined in sequence and assigned to the cluster to which
they are closest, in terms of Euclidean distance to the cluster
mean (or centroid). The mean vector is recalculated each time
a new member is added to a cluster and after five steps we
established the two clusters as shown in Table 4.

After having created the clusters, we cannot yet be sure
that each item has been assigned to the right cluster. So, we
compare each item’s distance to its own cluster mean and

cluster1 cluster2
items centroid items centroid

s.1 cs1 [1400,1000,1000] cs6 [500,300,500]
s.2 cs1,cs2 [1200,850,850] cs6 [500,300, 500]
s.3 cs1,cs2,cs3 [1266,866,866] cs6 [500,300,500]
s.4 cs1,cs2,cs3 [1266,866,866] cs6,cs4 [700,500,500]
s.5 cs1,cs2,cs3 [1266,866,866] cs6,cs4,cs5 [766,566,566]

Table 4. Clustering customer requirements in five steps.

to that of the other cluster. Only item cs2 is nearer to the
mean of the other cluster (cluster2) than to its own cluster
(cluster1).

The iterative relocation would now continue up to defined
number of maximum iterations. However, in this example each
item is now nearer its own cluster mean than to that of the
other cluster and the iteration stops since no further adapta-
tions are needed.

cluster1 cluster2
items centroid items centroid

i.1 cs1,cs2,cs3 [1266,866,866] cs6,cs4,cs5 [766,566,566]
i.2 cs1,cs3 [1400,950,950] cs6,cs4,cs5,cs2 [825,600,600]

Table 5. Iterations of relocating constraint sets.

2.2 Learning Constraint Orderings

After clustering the user requirements specified in the user
interaction log (see Table 2), we apply a genetic algorithm
for learning two different constraint ordering heuristics: one
for optimizing the prediction quality of direct diagnosis and
the other one for optimizing the runtime performance per
cluster.3

In the working example, the genetic algorithm learns con-
straint ordering heuristics for improving the prediction qual-
ity. Prediction quality in our case is measured in terms of
precision ([8]), i.e., the overall share of correct diagnosis pre-
dictions (diagnoses that lead to a product that also has been
selected by the user) in relation to the total number of diagno-
sis predictions (determined by FastDiag on the basis of the
constraint ordering within a cluster). We initialize the genetic
algorithm with the parameters population size = 2, maximum
number of generations = 2, mutation rate = 0.015, uniform
rate = 0.5, and target fitness value = 1.

In the first generation, for cluster-1, we create two (since
population size is set to two) random constraint orderings
(individuals): [c2,c1,c3], [c3,c2,c1]. Then, one by one we use
these constraint orderings as constraint orderings in the direct
diagnosis algorithm FastDiag [6]. The prediction quality of
the [c2,c1,c3] for cs1 is 0.5, which means the average of the di-
agnosis algorithm’s correct predictions (where the constraint
ordering heuristic [c2,c1,c3] is applied) is 0.5.

We calculate the precision values for all constraint order-
ings in the populations of each generation and select the best
individuals (individual is constraint ordering in our case) in
the populations.

After 2 generations (maximum number of generations is
set to 2), the genetic algorithm stops. Then we can use the
best constraint ordering learned by the genetic algorithm. As
shown in Table 6, the best constraint ordering for cluster1 is
[c3, c2, c1] whereas [c1, c3, c2] for cluster2.

We apply the same algorithm for learning constraint order-
ing heuristics for runtime performance. In this case we set the

3 Combined heuristics allowing tradeoffs between runtime perfor-
mance and prediction quality will be analyzed within the scope
of our future work.

69

cluster1 cluster2
ordering fitness ordering fitness

gen.0 [c2, c3, c1] 0.4 [c3, c2, c1] 0.3
gen.1 [c3, c2, c1] 0.5 [c3, c2, c1] 0.3
gen.2 [c3, c2, c1] 0.5 [c1, c3, c2] 0.6

Table 6. Learning constraint ordering heuristic for each cluster.

target fitness value to 0 because this time the fitness value is
the runtime which we aim to minimize this time.

2.3 Application Phase

In the offline phase, we focus on cluster generation and learn-
ing of heuristics for direct diagnosis. Now, in the online phase,
we apply our heuristics to a new inconsistent set of customer
requirements.

c1 c2 c3

cs new f1=1200 f2=1000 f3=1000

Table 7. A new set of customer requirements (represented in

terms of constraints).

In the working example, we need to find a diagnosis with a
high prediction quality since our aim is to find a product of
high relevance for the customer.

First, we find a cluster that is closest to the new set of cus-
tomer requirements cs new[1200, 1000, 1000]. This is cluster1
with centroid [1400, 950, 950]. Then, we apply the identified
optimal constraint ordering for cluster1 (which is [c3, c2, c1])
to cs new. The reordered constraint set is cs new reordered =
{(f3=1000), (f2=1000), (f1=1200)}.

When we apply the FastDiag algorithm to
cs new reordered, we find the diagnosis {c1, c3}. After
removing the diagnosis from the constraint set, we have
cs new reordered diagnosed = {(f2=1000)}. According to
this new constraint set, there are two solutions available in
the product table which are bike3 and bike4.

Applying the diagnosis means to remove elements from the
customer’s inconsistent constraint set (set of requirements).
In our example, we can find two products which can be rec-
ommended.

3 Evaluation

In order to evaluate ClusDiag, we applied our approach to a
dataset collected within the scope of a user study - the dataset
comprises 264 different inconsistent requirements specifica-
tions and the corresponding products users (study partici-
pants) selected after changing their requirements. In the men-
tioned user study, the product table consisted of 30 digital
cameras which were described by 10 features.

We compared the mentioned two versions of ClusDiag
with each other and with the FastDiag algorithm with ran-
domized constraint ordering (baseline version). For random-
ized constraint ordering, we calculated the average perfor-
mance and prediction quality values from 10 random con-
straint orderings. Figure 1 shows a comparison of ClusDiag-
enhanced FastDiag (FastDiag that exploits the cluster-
based constraint ordering heuristics) and a basic FastDiag
version (constraints are ordered randomly) with regard to pre-
diction quality. In Figure 2, we show the comparison of the
runtime performance of FastDiag with the corresponding
clustering-supported version of the algorithm (in this case,
heuristics were optimized with regard to algorithm runtime
performance).

4 Related Work

Most widely known algorithms for the identification of mini-
mal diagnoses are QuickXplain [10] for predetermining min-
imal conflict sets which are used by a hitting set based ap-
proach such as HSDAG [13] to compute minimal diagnoses.
FastDiag [6] also determines minimal diagnoses but does this
without the need of identifying minimal conflict sets.

De Kleer et al. [3] introduce a probability-based approach
to estimate relevant diagnoses. This approach is based on tra-
ditional hitting set based diagnosis determination, i.e., is in
the need of predetermining conflict sets.

Methods to find approximate solutions for diagnosis tasks
are introduced, for example, in [1, 14]. In contrast to our ap-
proach, approximate solutions do not guarantee the minimal-
ity of diagnoses. Since the initial version of HSDAG intro-
duced by [12], a couple of algorithms have been proposed to
increase the efficiency of the inital version – see, for example,
[15].

The authors of [11] focus on interactive settings where users
of constraint-based applications are confronted with situa-
tions where no solution can be found. In this context, the
authors propose an approach to determine representative sets
of diagnoses, i.e., diagnoses that cover as much as possible all
potential faulty elements of the solution space. Direct diag-
nosis as used in our work focuses on constraint orderings that
help to increase the probability of finding diagnoses relevant
for the user. Focusing on such leading diagnosis is not the
central focus of the work presented in [11].

Authors of [7] present an algorithm for computing a general-
ization of conflict-based explanations of inconsistency for the
QCSP (Quantified Constraint Satisfaction Problem) which is
a generalization of the classical CSP in which some of the
variables can be universally quantified.

Direct diagnosis is an approach to omit conflict detection
and directly determine diagnoses without the need to iden-
tify the corresponding conflict sets. FastDiag [6] is a diag-
nosis algorithm that supports direct diagnosis. It is based on
a divide-and-conquer strategy with a number of consistency
checks similar to QuickXplain [10]. QuickXplain [10] itself
is a conflict detection algorithm that helps to identify mini-
mal conflict sets. Similar to FastDiag, the algorithm relies
on a linear ordering of the constraints. It is often used in
combination with HSDAG to determine diagnoses [13].

5 Conclusions

In this paper, we have introduced a new diagnosis approach
called ClusDiag that increases the efficiency of direct diagno-
sis algorithms with respect to prediction quality and runtime
by applying cluster-specific constraint ordering heuristics.

As future work, we will test our approach with different
clustering techniques such as hierarchical clustering. Further-
more we will include further optimization criteria for learn-
ing constraint ordering heuristics. For example, we will learn
constraint ordering heuristics that support trade-offs between
runtime performance and prediction quality.

Acknowledgement

The work presented in this paper has been conducted
within the scope of the EU Horizon 2020 project AGILE
(http://agile-iot.eu/).

70

Figure 1. Comparison of the prediction quality (measured in terms of precision [0..1]) of the different variants of FastDiag

(ClusDiagFD-P = FastDiag with constraint orderings optimized for high prediction quality, ClusDiagFD-T = FastDiag with heuristics

focusing on runtime performance, and FastDiag with random constraint ordering = basic version with randomized constraint orderings).

We ran the algorithms over 264 inconsistent CSPs (dataset collected within the scope of a user study). We observed that increasing the

number of clusters also helps to increase the prediction quality.

Figure 2. Runtime performance comparison of diagnosis algorithms. We ran the algorithms over 264 inconsistent CSPs (from user study

data). Then we have taken the average of the runtimes (over 264 CSPs) needed for diagnosis identification. Performance denotes the number

of diagnoses found per millisecond. When we increase the number of clusters, diagnosis speed is increasing which means performance of

ClusDiag increases.

REFERENCES

[1] Rui Abreu and Arjan JC Van Gemund, ‘A low-cost approx-
imate minimal hitting set algorithm and its application to
model-based diagnosis.’, in SARA, volume 9, pp. 2–9, (2009).

[2] Per-Erik Danielsson, ‘Euclidean distance mapping’, Com-
puter Graphics and image processing, 14(3), 227–248, (1980).

[3] Johan de Kleer, ‘Using crude probability estimates to guide
diagnosis’, Artificial Intelligence, 45(3), 381–391, (1990).

[4] Alexander Felfernig, Gerhard Friedrich, Monika Schubert,
Monika Mandl, Markus Mairitsch, and Erich Teppan, ‘Plau-
sible repairs for inconsistent requirements.’, in IJCAI, vol-
ume 9, pp. 791–796, (2009).

[5] Alexander Felfernig, Lothar Hotz, Claire Bagley, and Juha
Tiihonen, Knowledge-based Configuration: From Research
to Business Cases, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1 edn., 2014.

[6] Alexander Felfernig, Monika Schubert, and Christoph Zehent-
ner, ‘An efficient diagnosis algorithm for inconsistent con-
straint sets’, Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, 26(01), 53–62, (2012).

[7] Alex Ferguson and Barry O’Sullivan, ‘Quantified constraint
satisfaction problems: From relaxations to explanations.’, in
IJCAI, pp. 74–79, (2007).

[8] Dietmar Jannach, Markus Zanker, Alexander Felfernig, and

Gerhard Friedrich, Recommender systems: an introduction,
Cambridge University Press, 2010.

[9] Xin Jin and Jiawei Han, K-Means Clustering, 563–564,
Springer US, Boston, MA, 2010.

[10] Ulrich Junker, ‘Quickxplain: Conflict detection for arbitrary
constraint propagation algorithms’, in IJCAI’01 Workshop
on Modelling and Solving problems with constraints, (2001).

[11] Barry O’Sullivan, Alexandre Papadopoulos, Boi Faltings, and
Pearl Pu, ‘Representative explanations for over-constrained
problems’, in AAAI, volume 7, pp. 323–328, (2007).

[12] Seda Polat Erdeniz, Alexander Felfernig, and Muesluem Atas,
‘Cluster-specific heuristics for constraint solving’, Interna-
tional Conference on Industrial, Engineering, Other Appli-
cations of Applied Intelligent Systems, (2017).

[13] Raymond Reiter, ‘A theory of diagnosis from first principles’,
Artificial intelligence, 32(1), 57–95, (1987).

[14] Staal Vinterbo and Aleksander Øhrn, ‘Minimal approximate
hitting sets and rule templates’, International Journal of ap-
proximate reasoning, 25(2), 123–143, (2000).

[15] Franz Wotawa, ‘A variant of reiter’s hitting-set algorithm’,
Information Processing Letters, 79(1), 45–51, (2001).

71

Modeling and configuration for Product-Service Systems:
State of the art and future research

Daniel Schreiber 1 and Paul Christoph Gembarski and Roland Lachmayer

Abstract. Regarding that boundaries between products and services
vanish, the number of Product-Service Systems (hereinafter referred
as PSS) rises continuously. One of the biggest advantages of a PSS is
at the same time one of the biggest challenges: Upgrade, adaptation
and modernization of the product itself during the life cycle, which
was already suggested 15 years ago. Since then, modeling and con-
figuration of PSS has been discussed, but the approaches that can be
identified in literature remain mainly vague and conceptual.
In this paper modeling and configuration approaches for PSS are
firstly discussed and assessed with respect to their knowledge-
modeling capabilities and data models. It will be shown that con-
straint based approaches with parametric representation of product
and service components of a PSS would be beneficial for a general
PSS design approach. An useful procedure to develop such a data
model could be the property-driven-development approach invented
by Weber. Therefore, it is examined to what extent an existing ap-
proach to transfer Webers property-driven-development approach to
PSS is a basis for this.

1 INTRODUCTION

The international assimilation of standards and the rapid dissemina-
tion of knowledge makes it more and more difficult for companies to
distinguish themselves from their competitors by means of technical
product characteristics.
One way of addressing this challenge is to expand their offer into
an integrated problem solution, which consists of a combination of
products and services. Such Product-Service Systems (PSS) exist,
but in most cases as an additional service for an existing product. For
manufacturers, an additive ratio of products and service is not desir-
able since this only leads to discount requirements. In order to use
the advantages of PSS, an integrative relationship between product
and service has to be created, which has a real added value [28].
Literature agrees that the setup of the development process has a de-
cisive influence on the quality of the PSS. For the integrated design of
PSS, service and product components must be treated equally in the
development process. At the same time, PSS must be seen as solu-
tions which fulfill customer requirements. Whether the value propo-
sition is primarily achieved by the product or the service components,
is only a secondary aspect [29].
To fulfill individual customer requirements a specific solution is
needed and so an individual integrated development process. Litera-
ture agrees on that, but the approaches remain vague and conceptual.
The transfer to other use cases is difficult, because the approaches
are partly discussed on very simple or special examples [9].

1 Leibniz Universität Hannover, Institut für Produktentwicklung und
Gerätebau, email: schreiber@ipeg.uni-hannover.de

The lack of evaluation and insufficient detailing of the existing ap-
proaches makes it impossible to use one of them as the definition of
a generally accepted and standardized approach for the development
of PSS [11]. Annarelli et al. [2] emphasize that looking at the existing
literature in the field of PSS research, PSS design is one of the most
attractive areas. Nevertheless, the number of papers, which is focus-
ing exclusively on design, is very limited. Commonly, the authors
consider the development of PSS as a secondary field of interest, be-
neath their actual research question. This leads to the fact that PSS
design cannot be considered as a research stream per se [2].
In this paper, firstly the necessary basic information on PSS and the
existing approaches to the development and configuration of PSS will
be presented. In the following section, the need for a constraint-based
approach is elaborated and existing approaches to their potential and
possible extensions are presented. Finally, an overview of the next
steps and future research is given.

2 PSS
There are several definitions of PSS in literature. This section pro-
vides a brief overview about existing characterizations of PSS and
documented requirements on PSS is given.

2.1 Characterization of PSS
Mont [20] described the concept of PSS as a system of products,
services, supporting networks and infrastructure. This system has a
lower environmental impact than traditional business models, it is
competitive and satisfies customer needs. She accentuates the benefit
of PSS for manufacturers and assumes an extension of the product
life-cycle. An additional value for the customer is based on the pos-
sibility of upgrading and modernization of the product.
In his classification of PSS, Tukker [30] categorizes eight different
types of PSS. The main categories, which are product-oriented, use-
oriented and result-oriented, are shown in figure 1.
For Morelli [21] PSS is a description of solution oriented partner-
ships with material and immaterial components, which satisfies the
requirements of each stakeholder. He mainly sees the use of PSS in
business to business relationships, not between companies and con-
sumers [21].
Meier [19] also focuses on industrial PSS as business to business ap-
plications. He defines PSS as a knowledge-intensive socio-technical
system, which is characterized by the joint development, provision
and use of product and service parts. He also identifies the adaptabil-
ity of the solution to changing customer requirements in the product
life-cycle as a core aspect of PSS. Thereby he draws attention on fu-
ture reconfiguration and adaptation of already deployed PSS.

72

Service content
(intangible)

Product-service sytem

Product
content (tangible)

Pure
Product

Value
mainly in
service
content

Value
mainly in
product
content

A: Product
oriented

Pure
Servie

C: Result
oriented

B: Use
oriented

Figure 1. Main Categories of PSS (acc. to Tukker [30])

Müller [22] defines PSS also as a socio-technical system which is
life-cycle, sustainability and customer-oriented. Customer and ven-
dor are integrated in the resulting business relationship which pro-
vides the functionality that meets the customer needs. He highlights
that the success of development and implementation of PSS depends
on the ability to adapt quickly to changing customer requirements
and to anticipate these changes in the early stages of PSS develop-
ment. This requires efficient recording and monitoring of customer
requirements.
According to Tukker [31], the most common concepts of PSS were
defined in the period just after the year 2000. In recent literature au-
thors still come up with their own definitions of PSS, but these do not
differ fundamentally from the existing concepts.
From the authors’ point of view, the fact that there are repeated at-
tempts to redefine PSS and the terminologies involved shows that
there is no general definition accepted by all researchers. This is
partly due to the very heterogeneous composition of the research
community with members from various disciplines. In the forthcom-
ing years, proposed terminologies will increase. The goal is to de-
velop a common ontology for the PSS community for further re-
search. Nevertheless, in the current literature it is emphasized that
further research is needed to develop an efficient PSS design method-
ology. [33].
Based on the existing concepts of PSS and the former postulated
theses about PSS design research, three major characteristics can be
named, which are the basis for the understanding of PSS in this pa-
per:

• coequal development of product and service components

• integration and addressing of individual customers in the devel-
opment process

• monitoring and addressing of the customer requirements during
the whole life-cycle of the PSS

2.2 Requirements on PSS

Like mentioned before, a general accepted characteristic of PSS
is the fulfillment of individual customer requirements and needs
[21, 19, 9]. This leads to a large number of requirements, which must
be summarized and abstracted at a rational level.
Ryynänen et al. [24] aggregated about 200 requirements and con-
densed them to 20 key requirements in five categories. For this paper
relevant points are documented and discussed hereinafter. Ryynänen
et al. describe a platform to fulfill the requirements, that should allow
the designer to manage product requirements, track design changes

and versions, manage product architecture and logical structure for
product configuration and use intelligence in the design based on pre-
vious models, rules and design methods.
Furthermore, the platform should enable a conversion between dif-
ferent file formats (CAD files, product models, visualization models,
manufacturing models) and manage results of tests and simulations
of the digital prototype [24].

3 DEVELOPMENT AND CONFIGURATION OF
PSS

In this section an overview about existing approaches of PSS de-
velopment is given. Beginning with general approaches for the PSS
design process followed by approaches of PSS configuration and ap-
proaches about Computer-Aided-Engineering (CAE) for PSS. This
section is completed with approaches of knowledge-based modeling
of PSS.

3.1 Design Processes for PSS
One of the basic statements named in section 2 is the integrated de-
velopment of PSS. Most of the existing publications are restricted to
partial aspects of the development process or to one component of
the PSS, either the product or service part [3, 26, 33].
Steinbach introduced an approach based on the idea of Webers
Characteristics-Properties Modeling/ Property-Driven Developments
(CPM/PDD) [27]. Weber [34] distinguishes between properties and
characteristics. The properties describe the behavior of a product,
they can not be determined directly by the developer, but only by
means of the change of the specified characteristics. These charac-
teristics can be determined directly by the developer. They capture
the shape of a product, defined by the structure, the arrangement of
the components as well as the shapes, dimensions, materials and sur-
face parameters. With these structure describing characteristics and
behavioral properties, Steinbach [27] characterizes his PSS develop-
ment process. Integrating service development and modeling in the
design of physical products, properties mirror the result dimension
of services (and the whole PSS), whereas characteristics correspond
to their potential and process dimension.
The approach presented by Morelli [21] shows processes for the PSS
development based on the idea of ‘blueprints’ which uses various al-
ready successfully planned PSS. This is comparable to the procedure
of using templates in software and product development. According
to Hirz [13] product templates are predefined design model structures
or geometry models, which can be augmented with additional func-
tionalities. Product templates can be divided into structure, geome-
try and function templates, where geometry templates are subdivided
into rigid and variable (component and assembly) templates.
From the point of view of system engineering Müller [22] presented
the process oriented approach of ‘layer-based PSS development’
which is adapted from the V-Model R© XT. It depicts the development
of building blocks, which are deviated from the whole system, as well
as the integration and validation of these building blocks in the final
PSS. The approach combines the different perspectives ‘life-cycle’,
‘architecture’ and ‘development and management’ of PSS. The basic
framework of the approach is presented as a 150% process, which
has to be tailored for every new PSS development task, according to
scope and requirements of the desired result.
The approaches presented in this section are summarized in Figure 2
with their main features. Further aspects of contributions on PSS En-
gineering, development process models, engineering process models

73

Figure 2. Design Processes for PSS

of PSS and adopted methods in the PSS Engineering literature are
presented by Cavalieri and Pezzotta [7]. It is remarkable that modu-
lar product and service architectures as well as product configuration
are not mentioned in this overview, since these are a major building
block in variant design of physical products.

3.2 CAE for PSS
Today complex products are modeled in a CAE-environment. Their
application is common and, at least in the everyday business, no task
which is only carried out by specialists. CAE systems take over rou-
tine jobs and create additional capacities that can be used for further
value-adding activities [32].
A computer-aided engineering environment is a toolbox for the de-
velopment of domain-specific artifacts. This includes all the tools
for all synthesis and analysis activities, as well as their information
technology interfaces and data storage, which are needed for the en-
gineering process [9].
From the perspective of product development, these systems are used
to design the product (mechanical CAD, MCAD) and to derive the
necessary production data in the sense of a technical drawing [13].
From the point of view of service development, there are only in-
dividual approaches documented (Service-CAD, SCAD). Sakao et
al. [25] provide with their Service Explorer a computer aided service
modeling tool which is based on a vendor-consumer system. They as-
sume that a service is defined as an activity that a provider executes
for a receiver to change something from an existing state to a new
state that the receiver desires. Therefore, the main point in PSS is not
the function of a product, but rather the state change of the receiver.
In the presented system, first the requirements and the state of a buyer
are modeled. Based on this, transformation rules are designed. This
is realized with functional units of the service provider, similar to the
feature-based modeling in MCAD. In figure 3, the main idea of the
Service Explorer of Sakao is shown. The framework of the system is
based on the idea of Roth’s functional structures [23].
Hara et al. [12] point out that in CAD systems for physical prod-
ucts no modeling of the customer’s use is possible. Gembarski et

al. [9] mentioned that this statement is not sustainable, taking into
account the possibilities of parametric and knowledge implementa-
tion in today’s CAD systems, since the fulfillment of quantifiable
requirements and the resulting benefits can very well be integrated
into digital product models.

Figure 3. Service Explorer by Sakao

3.3 Knowledge-based modeling of PSS

In the product development of physical components, parametric,
feature-based and even knowledge-based modeling are state of the
art. All these techniques (shown in figure 4) are build on conven-
tional CAD systems and have an inner connection [32].
In contrast to conventional models, parametric models have no fixed
values but formulas and constraints in the models. Feature-based sys-
tems capture, besides the geometric data, additional informations (for
example in terms of production characteristics). To be flexible and
adaptable to the environment, the basic elements of these systems
need to be parametric Thereby, feature-based systems can be under-
stood as an extended parametric system [32]. Knowledge-based de-
sign assists to automate aspects of the design process as the system
has the ability of reasoning and drawing conclusions [9].
Vanja [32] points out that, in the case of incomplete models, the ad-
vanced techniques quickly reach their limits, so that corresponding
solutions cover only a very limited scope. This should be kept in
mind while considering existing approaches.
Yang et al. [35] presented a life-cycle oriented approach based on
the idea of knowledge-based assignment of service modules. In their
considerations, a product already exists on which the service mod-
ules can be linked. Based on data monitored during the product use,
the service modules are released. An example in this approach is the
monitoring of a game console with regard to accelerations and me-
chanical shock. If a shock occurs, potentially damaged components
of the console can be replaced directly, without an additional diag-
nostic step in customer service. Details on the necessary knowledge
base for the evaluation of events or their design are not given, as well
as information on possible reasoning mechanisms, which are typical
for knowledge-based systems [35].
The service design catalog is an extension for the Service Explorer
provided by Akasaka et al. [1]. The catalog is described as a support
system for developers that provides service modules for functions
that can be implemented. This is based on a merger of service parts
for a PSS. According to the authors, they oriented themselves by
the design catalog developed by Roth [23] as a knowledge base for
design knowledge. However, the typical setup of classification part,
main part and selection characteristics is not used.

74

Knowledge-based CAD
Ability to draw conclusions from the current design
situation (geometrical and also background
information)

Feature-based CAD
Recording and processing of geometry and
stored information (semantics), such as function,
production technology

CAD (parametric)
Recording and processing of geometrical
elements with variable references:
a) Chronology-based: Editable modelling

history
b) Constraint-based: Editable equation

systems

CAD (conventional)
Recording and processing of geometrical
elements with fixed values

Figure 4. 3D modeling basics (VDI 2209) [32]

Kuntzky [15] presents an approach for a knowledge-based develop-
ment system for PSS based on case-based reasoning. For this pur-
pose, she uses a modular design of the PSS components as well as
the formulation of requirements and knowledge about the composi-
tion of a specific PSS. With these data, a configuration of PSS in
the early stage of development is possible when the same or similar
PSS and its requirements can be found and adapted to the case base.
With this technique of knowledge-base systems, there is no need of
a translation into a formal, explicit model.
Not a new approach for KBE modeling, but a modeling language
(KbeML) has been specified by Klein [14]. In his point of view,
the approach is a standardized representation for codified engi-
neering knowledge. He describes KbeML as enabler for making
development-related rules and algorithms accessible for different
CAx systems, because it is based upon a formal machine-readable
representation of knowledge. The general applicability, as well as
the advantages over existing modeling languages like MML (MOKA
Modeling Language invented by Brimble et al. [6]), has to be shown.
Summing up this discussion, figure 5 shows knowledge-based engi-
neering of PSS approaches.

3.4 Computer Aided Configuration of PSS

To fulfill the customer needs, the configuration of a PSS is an im-
portant part of efficient development. Therefore, the approaches of
configuration of PSS discussed in literature are presented in the fol-
lowing section. Aurich et al. [3] focus on the possible product and
service architectures for PSS. The approach uses combination matri-
ces and is based on the idea of modularization.
The approach of Laurischkat [16] considers the configurability, only
of service components of PSS. She specifies that a generation of PPS
(which is equivalent to a configuration) can be made with five ba-
sic types of PSS. The service components are based on the criteria
of value proposition, life-cycle phase, reference and allocation, le-
gal liability, case distinction, remote support, degree of automation

Figure 5. Knowledge-based engineering for PSS

and accountability. With these criterias, service components can be
connected to functions of PSS by use of configuration rules (if-then
rules) or decision tables.
In contrast to the pure configuration of service components,
Mannweiler [18] concentrates on predefined building blocks, which
are mainly product components. He presents an approach for PSS
based on customers requirements. In order to fulfill these require-
ments, the designer aggregates these building blocks and evaluates
the degree of fulfillment.
Lubarski et al. [17] focus on the modularization of service compo-
nents. They set up a framework by analyzing existing modularization
methods. In the course of this framework, they discuss which method
is localized in which phase of modularization (information capturing,
decomposition, structuring, module creation, interface definition and
testing) related to the structure level (logical, temporal, combined/
complex structure).
In the approach of integrated PSS development from Bochnig et al.
[5, 4] a CAE tool is invented which is based on 16 modules includ-
ing a configuration tool (module 6-9). This generates PSS variants
by combining existing PSS modules. The CAE tool is designed to
extend and link existing development tools from various disciplines
(mechanics, electronics, software and service). It displays the inter-
dependency among different elements and implements the service
by symbols in the CAD environment. As of today, there is no docu-
mented modification in the physical product model through different
services. The ideas of the approaches presented in this section are
summarized in figure 6 with their main features.
In summary, it can be noted that methods existing in the literature
and presented in this paper contain approaches for rule-based and
case-based configuration. A model-based configuration has not yet
been implemented. The reason is a lack of an integrated parametric
PSS model that incorporates both product and service features.
Here again the statement of Vajna [32] is taken up that in CAD the
models of conventional CAD, parametric CAD, feature-based CAD
and knowledge-based CAD are build on each other and have an inner
connection. With incomplete models, advanced techniques quickly
reach their limits and can only be applied to a restricted area.

75

Figure 6. Computer aided configuration for PSS

This thesis fits very well with the result of the analysis of the exist-
ing approaches for design, computer aided engineering, knowledge-
based engineering or computer aided configuration of PSS, with re-
gard to the conceptuality of the approaches and their limitation to
clearly defined examples. This awareness leads to the conclusion that
there is a lack of a common data model for all artifacts of a PSS and
their relationships.
One possibility is the development of a parametric model like the one
that is already state of the art in available CAD systems for purely
physical products. With such a model, the customization and variant
design of PSS could be similar to that of physical products. In addi-
tion, computer-aided product optimization could be carried out [9].
This idea is further developed in the following chapter.

4 CONSTRAINT BASED APPROACH
In this section an introduction into the idea of a constraint based ap-
proach is given. Starting with the requirements on PSS models fol-
lowed by showing the need and advantages of a parametric model.
Subsequent an existing approach is presented and its advantages and
disadvantages are shown.

4.1 Requirements on PSS Models
Requirements on PSS models depends on the requirements on the
belonging PSS and the development process. The requirements for
PSS, which are outlined by Ryynänen et al., can be served by the
existing development tools in the classic product development. How-
ever, so far, a model is missing that PSS adequately maps for these
tools [24].
According to Bochnig [4] a general PSS data model is needed for an
efficient data exchange. Existing partial models of PSS form a very
heterogeneous system with various data formats. The general model

should, among other things, support the development process in each
phase, show all components of the PSS, be able to combine elements
to modules and allow links between partial models.
As shown in Chapter 3 and according to Gembarski [9], the
literature-based approaches to PSS configuration are primarily rule-
based or case-based systems, suggesting that parametric systems are
difficult to set up for PSS and are therefore restricted to physical
products.
However, a model-based configuration is not limited to physical
models, as it was already showed in the 1990s by the concept of the
XRAY expert system. This is a very promising concept for the con-
figuration of physical and non-physical development artifacts based
on requirements, dependencies and specification of tasks. XRAY was
developed in PLAKON, an expert system core like today’s software
development environments. PLAKON provided necessary functions
and classes for the creation of planning and configuration systems,
including reasoning and conflict resolution mechanisms. The system
has developed for prototypically X-ray analysis systems and fulfilled
the following requirements: an interactive definition of the test task,
an automatic selection and configuration of the hardware compo-
nents, an automatic generation of a test plan, an automatic config-
uration of the software and an interactive simulation and test of the
software [8, 9]. Special attention must be paid to the common config-
uration of hardware and software in this approach, which is essential
for the efficient performance of the test tasks.
Meier [5] also points out that a parametric development of PSS can
be made possible by the modeling of product and service in one data
structure model. This model has to include the interactions between
different parts and has the possibility to incorporate formula relation-
ships between them .

4.2 Parametric model

Parameters are necessary to characterize the properties of a system.
They can refer to geometry, kinematics, tensions, deformations, dy-
namics or other aspects. During the product development process,
the developer defines numerous parameters ”directly”. This can be
automated by the parametric modeling [32].
In CAD systems, relationships are established between directly de-
fined parameters and system elements in order to reduce the num-
ber of independent parameters. The (mathematical and logical) con-
straints represent mathematical models. The parameters of the mod-
els usually have a hierarchical structure [32].
In figure 7 the product structure of a assembly design is shown, in-
cluding the parameter-based relations.

The parameterization of geometry data in 3D-CAD leads to
the separation of the management of geometry and its controlling
parameters. The possibility of parameter-based control offers a
wide field of application for problem-specific design applications.
State of the art in CAD programs are additional functionalities,
such as data interfaces, the integration of catalogue and knowledge
functions, and the possibility of macro-based procedures. In product
development, highly flexible development processes are possible
with a development based on parametric product models [13].
These parametric models exist so far only for physical products.
The complete and equitable implementation of services is a major
challenge, but necessary if a parametric model is to be used for
model-based configuration of PSS.
In this context, it appears meaningful to examine whether Stein-
bach’s idea to transfer the approach of property driven development
to PSS (as described in chapter 3.1) is promising [9].

76

Product structure

Main parameter level

Skeleton (adapter) model

Component (1)

User-defined parameters (1)

Geometry elements (1)

Other elements (1)

Pa
ra

m
et

er
 c

on
tr

o
l

Component (2)

User-defined parameters (2)

Geometry elements (2)

Other elements (2)

Component (x)

User-defined parameters (x)

Geometry elements (x)

Other elements (x)

Figure 7. Parameter based relations in assembly design [13]

4.3 Seinbachs approach

In his work, Steinbach [27] formulates the goal that a PSS must be
described in such a way that both the requirements of the customer
and the needs of the developer are respected. For this, it is necessary
to create a structure for PSS, in which both products and services are
consistently described on a common basis.
Based on the idea of Weber, the definitions of characteristics and
properties are adapted to PSS. The characteristics are defined by the
developer directly and define the PSS and its structure. Additionally,
they contain on the service level potential and process dimension.
The properties here are only indirectly influenced by the characteris-
tics and represent the resulting dimension of the PSS [27].
Steinbach’s concept can be used to represent PSS and to define and
visualize the distinction between customer requirements (properties)
and controllable parameters (characteristics), as well as their rela-
tions. An excerpt of this product model concept can be seen in Figure
8.
The customer requirements are notated on the property level and di-
vided in different property classes. The product and service parts are
notated on the characteristic level while product parts are subdivided
in characteristic classes and services in process characteristics. The
internal relationships of the PSS are notated and can exist between
product parts and service parts, or between some of their character-
istics [27].
Thus, an abstraction level can be found on which the entire system
PSS is represented. In addition, relationships between different prod-
uct and software elements are identified and referred to as internal
relationships [27].
A configuration of this model could be done by adapting and chang-
ing the customer’s wishes (properties), which would be passed on to
the characteristics level via the relations, where they would change
and influence the controllable parameters. Additionally the relations
are influenced by external conditions (noted as EC). These are an

property class 1

P 1

 property level
(view of the customer)

property class 2

P 2

property class 3

property class 4

property class x

relations

R 1

EC 1

R 2

EC 2

R o

EC o

Dx1

Dxr

 characteristic level
(view of the developer)

product part 1

characteristic class 1

C1

characteristic class 2

characteristic class 3

C4

service part 1

process characteristics

Cj+1

Cj+2

process characteristics

Cj+4

in
te

rn
al

 r
el

at
io

n
s

D
x

Figure 8. Concept of a PSS model based on Steinbach

important tool, that helps the developer to define restrictions, like
profitability of the System or dimensions of transport capacities.
However, the implementation in a data model that is comparable to
that of MCAD is missing. One reason for the lack of implementation
could be that Steinbach had already published its approach more than
15 years ago and the CAD programs had not yet reached the standard
of today. In addition, the application of the Steinbach approach was
documented only in a very simple and theoretically constructed ex-
ample. This leaves open the question whether the approach is also
applicable in general and can be applied to examples with a higher
complexity or other areas.
Nevertheless, the approach provides a good theoretical foundation
for further development steps and researches with regard to the rep-
resentation and modeling of PSS systems. It helps to capture the sys-
tem of PSS and to sketch it in a first schematic design. The property
and characteristic level provide a good description of the inhomo-
geneous PSS system and the relations between the parameters that
can be influenced (characteristics) and the properties perceived by
the customer. In order to configure this PSS and develop it further
in a customer-specific manner and to use higher development tech-
niques (up to knowledge-based development), a parametric model is
required.
For the development of such a model, the Steinbach approach should
be used as a starting point. This model and the necessary informa-
tions are already indicated in the approach by the block of internal
relations. These relationships must be formulated and translated into
a model.

5 CONLUSION AND FURTHER RESEARCH

In summary, the importance of research on the development of PSS
is agreed in the literature. Nevertheless, it has not yet been possible
to find a general approach. Since, as already described, the quality of
the PSS depends on the quality of the development, further extensive
and targeted research is needed in the development of PSS.
Because PSS represent solutions which fulfill the needs of cus-
tomers, they must be in development configurable and adaptable to
the respective customer.

77

5.1 Conclusion

Various approaches to develop PSS have been shown. There are ap-
proaches that look at the whole development process and approaches
that look at specific kinds of development. These focus mainly on
computer-based and knowledge-based development as well as a de-
velopment for the computer-aided configuration.
All these approaches tend to be conceptual or concentrated on very
specific examples. In this paper, it has been shown that the basic mod-
els (whether conventional or parametric) are skipped for the under-
lying models of these development procedures. In the literature of
product development, there is the suggestion that the models (con-
ventional, parametric, feature-based and knowledge-based) build on
one another and incomplete models quickly push the advanced tech-
niques like KBE and feature-based design to their limits. This is in
line with the results of analysis of existing approaches in PSS devel-
opment.
In this paper, an approach has been examined from the literature with
the result that it provides a useful basis for describing a PSS. From
this approach a further procedure could be derived to deduce a para-
metric model.

5.2 Further research

In the next steps, exemplary systems will be described with the dis-
cussed approach and parametric models will be created with the in-
ternal relationships resulting from the approach. Here, we will exam-
ine the extent to which the models can be derived directly from the
formulas and the effects of different detailed formulas on the models.
As CAD system, Autodesk Inventor will be used for further research
and the prototypical implementation of examples. Gembarski et al.
[10] showed in 2015 that in this CAD programm all common mod-
eling techniques of knowledge-based design are available. The use
of design rules is implemented in the iLogic concept and equations
can directly be entered at dimensioning or in the parameter table.
Additionally, it is possible to implement calculations due to the im-
plementation by MS Excel.
Another point to be investigated is a possible change from the PSS
models in the life cycle. Since an advantage of PSS is the configu-
ration in the usage phase, the model would have to be adapted ac-
cordingly, because an existing product can not be parameterized and
configured as desired.

ACKNOWLEDGEMENTS

This research was conducted in the scope of the research project
SmartHybrid – Product Engineering (ID: 85003608) which is partly
funded by the European Regional Development Fund (ERDF) and
the State of Lower Saxony (Investitions- und Förderbank Nieder-
sachsen NBank). We like to thank them for their support.

REFERENCES

[1] Fumiya Akasaka, Yutaro Nemoto, Koji Kimita, and Yoshiki Shimo-
mura, ‘Development of a knowledge-based design support system for
product-service systems’, 63(4), 309–318.

[2] Alessandro Annarelli, Cinzia Battistella, and Fabio Nonino, ‘Product
service system: A conceptual framework from a systematic review’,
139, 1011–1032.

[3] J.C. Aurich, C. Fuchs, and C. Wagenknecht, ‘Life cycle oriented design
of technical product-service systems’, 14(17), 1480–1494.

[4] Holger Bochnig, Eckart Uhlmann, Hoi Nam Nguyn, and Rainer Stark,
‘General data model for the IT support for the integrated planning
and development of industrial product-service systems’, in Product-
Service Integration for Sustainable Solutions, ed., Horst Meier, 521–
533, Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-30820-
8 44.

[5] Holger Bochnig, Eckart Uhlmann, and Alexander Ziefle, ‘As-
sistenzsystem IPSS-CAD als informationstechnische untersttzung
der integrierten sach- und dienstleistungsentwicklung in der IPSS-
entwurfsphase’, in Industrielle Produkt-Service Systeme, eds., Horst
Meier and Eckart Uhlmann, 95–115, Springer Berlin Heidelberg. DOI:
10.1007/978-3-662-48018-2 5.

[6] Richard Brimble and Florence Sellini, ‘The MOKA modelling lan-
guage’, in Knowledge Engineering and Knowledge Management Meth-
ods, Models, and Tools, eds., Rose Dieng and Olivier Corby, volume
1937, 49–56, Springer Berlin Heidelberg. DOI: 10.1007/3-540-39967-
4 4.

[7] Sergio Cavalieri and Giuditta Pezzotta, ‘Productservice systems engi-
neering: State of the art and research challenges’, 63(4), 278–288.

[8] Roman Cunis, Andreas Gnter, and Helmut Strecker. Das PLAKON-
buch. DOI: 10.1007/978-3-662-06485-6.

[9] Paul Christoph Gembarski and Roland Lachmayer, ‘Mass customiza-
tion und product-service-systems: Vergleich der unternehmenstypen
und der entwicklungsumgebungen’, in Smart Service Engineering, eds.,
Oliver Thomas, Markus Nüttgens, and Michael Fellmann, 214–232,
Springer Fachmedien Wiesbaden. DOI: 10.1007/978-3-658-16262-
7 10.

[10] Paul Christoph Gembarski, Haibing Li, and Roland Lachmayer, ‘KBE-
modeling techniques in standard CAD-systems: Case studyautodesk in-
ventor professional’, in Managing Complexity, eds., Jocelyn Bellemare,
Serge Carrier, Kjeld Nielsen, and Frank T. Piller, pp. 215–233. Springer
International Publishing. DOI: 10.1007/978-3-319-29058-4 17.

[11] Marc Gräle, Thomas Thomas, Michael Fellmann, and Julian Krumeich,
‘Vorgehensmodelle des product-service systems engineering: berblick,
klassifikation und vergleich’.

[12] Tatsunori Hara, Tamio Arai, and Yoshiki Shimomura, ‘A concept of
service engineering: A modeling method and a tool for service design’,
pp. 13–18. IEEE.

[13] Mario Hirz, Wilhelm Dietrich, Anton Gfrerrer, and Johann Lang, Inte-
grated computer-aided design in automotive development, Springer.

[14] Patrick Klein. Definition and development of KBE-systems.
[15] Katrin Kuntzky, Systematische Entwicklung von Produkt-Service-

Systemen, Schriftenreihe des Instituts für Werkzeugmaschinen und
Fertigungstechnik der TU Braunschweig, Vulkan-Verl. OCLC:
862841861.

[16] Katja Laurischkat, Product-Service Systems: IT-gestützte Gener-
ierung und Modellierung von PSS-Dienstleistungsanteilen, number
2012,3 in Schriftenreihe des Lehrstuhls für Produktionssysteme, Ruhr-
Universität Bochum, Shaker. OCLC: 830664357.

[17] Aleksander Lubarski and Jens Poeppelbuss, Methods for Service Mod-
ularization - a systematization framework, number 277 in PACIS 2016
Proceedings. OCLC: 964654802.

[18] Carsten Mannweiler, Konfiguration investiver Produkt-Service Sys-
teme, number 2014,1 in Produktionstechnische Berichte aus dem FBK,
Lehrstuhl für Fertigungstechnik und Betriebsorganisation, Techn. Univ,
als ms. gedr edn. OCLC: 894132943.

[19] H. Meier, R. Roy, and G. Seliger, ‘Industrial product-service system-
sIPS2’, 59(2), 607–627.

[20] O.K Mont, ‘Clarifying the concept of productservice system’, 10(3),
237–245.

[21] Nicola Morelli, ‘Developing new product service systems (PSS):
methodologies and operational tools’, 14(17), 1495–1501.

[22] Patrick Müller and Rainer Stark, Integrated engineering of prod-
ucts and services: [layer-based development methodology for product-
service systems], Berichte aus dem Produktionstechnischen Zentrum
Berlin, Fraunhofer Verl. OCLC: 931607716.

[23] Karlheinz Roth and Karlheinz Roth, Konstruktionslehre, number Karl-
heinz Roth ; Bd. 1 in Konstruieren mit Konstruktionskatalogen,
Springer, 3. aufl., erw. und neu gestaltet edn. OCLC: 313839832.

[24] Tapani Ryynänen, Iris Karvonen, Kim Jannson, Heidi Korhonen, Mat-
teo Cocco, Donatella Corti, and Reinhard Ahlens. Structuration and
organization of requirements.

[25] Tomohiko Sakao, Yoshiki Shimomura, Erik Sundin, and Mica Com-
stock, ‘Modeling design objects in CAD system for service/product en-

78

gineering’, 41(3), 197–213.
[26] Dieter Spath and Lutz Demuß, ‘Entwicklung hybrider produkte gestal-

tung materieller und immaterieller leistungsbündel’, in Service Engi-
neering, eds., Hans-Jrg Bullinger and August-Wilhelm Scheer, 463–
502, Springer-Verlag. DOI: 10.1007/3-540-29473-2 20.

[27] Michael Steinbach, Systematische Gestaltung von Product-Service-
Systems: integrierte Entwicklung von Product-Service-Systems auf Ba-
sis der Lehre von Merkmalen und Eigenschaften, number 35 in
Schriftenreihe Produktionstechnik, LKT. OCLC: 162223620.

[28] Flavius Sturm, Alexandra Bading, and Michael Schubert, Investitions-
gterhersteller auf dem Weg zum Lsungsanbieter: eine empirische Studie
; fit2solve, IAT, Univ. OCLC: 213388428.

[29] Oliver Thomas, Philipp Walter, and Peter Loos, ‘Konstruktion und an-
wendung einer entwicklungsmethodik für product-service systems’, in
Hybride Wertschpfung, eds., Oliver Thomas, Peter Loos, and Markus
Nüttgens, 61–81, Springer Berlin Heidelberg. DOI: 10.1007/978-3-
642-11855-5 4.

[30] Arnold Tukker, ‘Eight types of productservice system: eight ways to
sustainability? experiences from SusProNet’, 13(4), 246–260.

[31] Arnold Tukker, ‘Product services for a resource-efficient and circular
economy a review’, 97, 76–91.

[32] Sandor Vajna, Christian Weber, and Peter Hehenberger. CAx für inge-
nieure: eine praxisbezogene einführung. OCLC: 301962310.

[33] Gokula Vijaykumar Annamalai Vasantha, Rajkumar Roy, Alan Lelah,
and Daniel Brissaud, ‘A review of productservice systems design
methodologies’, 23(9), 635–659.

[34] Christian Weber, ‘Modelling products and product development based
on characteristics and properties’, in An Anthology of Theories and
Models of Design, eds., Amaresh Chakrabarti and Lucienne T. M.
Blessing, 327–352, Springer London. DOI: 10.1007/978-1-4471-6338-
1 16.

[35] Xiaoyu Yang, Philip Moore, Jun-Sheng Pu, and Chi-Biu Wong, ‘A prac-
tical methodology for realizing product service systems for consumer
products’, 56(1), 224–235.

79

Complexity of Configurators Relative to Integrations and
Field of Application

Katrin Kristjansdottir1 and Sara Shafiee and Lars Hvam and Loris Battistello and Cipriano Forza

Abstract.1 Configurators are applied widely to automate the
specification processes at companies. The literature
describes industrial application of configurators supporting
both sales and engineering processes, where configurators
supporting the the engineering processes are described more
challenging. Moreover, configurators are commonly
integrated to various IT systems within companies.
Complexity of configurators is an important factor when it
comes to performance, development and maintenance of the
systems. Yet, a direct comparison of the complexity based
on the different application and IT integrations is not
addressed to great extent in the literature. Thus, this paper
aims to analyse the relationship of complexity of the
configurators, which is based on parameters (rules and
attributes), in terms of first different applications of
configurators (sales and engineering), and second
integrations to other IT systems. The research method
adopted in the paper is based on a survey followed with
interviews where the unit of analysis is based on operating
configurators within a company.

1 INTRODUCTION

In today’s business environment customers are increasingly
demanding high quality customised products, with short
delivery time, and at competitive prices [1]. To respond to
those increasing demands, mass customisation strategies
have received increasing attention from both practitioners
and researchers. Mass customisation refers to the ability to
make customised products and services that fit all
customers’ needs through flexibility and integration at
similar costs to mass-produced products [2]. Configurators
are used to support design activities throughout the
customisation process in which a set of components and
connections are pre-defined and constraints are used to
prevent infeasible configurations [3].

Configurators can be used to support different
specification process at companies, which can include sales,
design/engineering and/or production. Configurators can
bring substantial benefits, such as shorter lead times for
generating quotations, fewer errors, increased ability to meet
customers’ requirements regarding product functionality,
use of fewer resources, optimised product designs, less
routine work and improved on-time delivery [4–8].

1 Management Engineering, Technical University of Denmark, email:

katkr@dtu.dk

Configurators used to support the engineering processes
are considered more complex [1,9]. However, a direct
comparison of configurators to support the different
applications within the same company has not been
conducted. Furthermore, in configuration projects there is
usually the need of integration to IT systems, such as ERP,
CAD, PLM and PIM systems. However, the literature does
not address what influences it will have on the configurators
complexity when integrations to other system are made.

In this paper the complexity of configurators is
determined based on parameters, or number of rules and
attributes, included in the configurators. By analysing the
complexity in terms of application, configurators supporting
sales and engineering processes, and in relation to different
integrations, it will give more understanding of what factors
influence the complexity of the configurators. Complexity
of configurators is a relevant topic as it influences the
performance of the system and affects the effort needed in
terms of development and maintenance. Nevertheless,
complexity can be both good and bad depending on whether
it is value adding or not. This paper therefore aims to
provide more understanding on factors influencing
complexity of configurators by providing answers to the
following research questions (RQs):

RQ 1: What are the differences in terms of
complexity between sales and engineering
configurators?

RQ 2: What are the differences in terms of
complexity when configurators are integrated to
other IT systems?

To answers to the RQs, a survey followed with

interviews is conducted. The results presented in this paper

are preliminary as this is an ongoing study. This includes

analysis based on one company where the unit of analysis is

based on operating configurators within the company.

The structure of the paper is as follows. Chapter 2

discusses the literature background for the study, and

Chapter 3 explains the research method. Chapter 4 presents

the results of the research, and Chapter 5 discusses the

results in relation to the RQs and presents the conclusion.

80

2 Literature Review

This section aims to provide the background for the
study. Section 2.1 discusses configurators and integrated
system, and provides definition of configurators complexity.
Section 2.2 discusses the difference between configurators
supporting sales and engineering processes.

2.1 Configurators and Integrated Systems

The underlying IT structure of a configurator consists of
configuration knowledge representation and reasoning,
conflict detection and explanation, and finally an user
interface [10]. Configurators can be applied as standalone
software, as well as data-integrative and application-
integrative systems [11]. Data-integrative configurators can
be used to avoid data redundancies and application-
integrative configurators allow for communication across
different applications (e.g. CAD drawings can be generated
from the output of the configurator) [11]. In terms of data
integration for configurators, common sources for master
data can be found in Enterprise resource planning (ERP)
systems that often define a production-relevant view of the
material. This is required for the assembly process, product
data management (PDM) and product lifecycle management
(PLM) systems, which are used to maintain production
relevant data. Finally, product information management
(PIM) systems are used to maintain sales-relevant data [12].
Different configurators can be integrated in terms of, for
example, sales and engineering configurators [13]. Finally,
configurators can be integrated into suppliers systems to
retrieve the required data from the configuration processes
[14].

To measure the complexity of configurators, Brown et al.
[15] categorize them into three major components; (1)
execution complexity, (2) parameter complexity, and (3)
memory complexity. Execution complexity covers the
complexity involved in performing the configuration actions
that make up the configuration procedure and the memory
complexity refers to the number of parameters that system
manager must remember. In this paper, the parameter
complexity is considered the most important, as it measures
the complexity of providing configuration data to the
computer system during a configuration procedure [15].
Therefore, the article focuses on parameters complexity to
determine the complexity of the configurators. The
parameter complexity is determined based attributes and
rules included in the configurators.

2.2 Sales and Engineering Configurators

Configurators are used to support the product configuration
process, which consists of a set of activities that involve
gathering information from customers and generating the
required product specifications [13,16]. The product
configuration process can be divided into sales and technical
configuration processes [17]. The sales configuration
process is concerned with identifying products that fulfil
customers’ needs and determining the main characteristics
of the products [17]. The technical configuration process, on

the other hand, is concerned with generating documentation
for the product based on the input gathered during the sales
phase [17]. In this article, the technical configurations are
referred to as the configurators supporting the engineering
processes. Another dimension of the configuration process
is production configuration [18].

The challenges of configurators used to support the
engineering companies are described in terms product
characteristics, customer relations, and long time span of
projects [19]. Further, the sales process in engineering
companies can be categorized where a high-level design is
made in the sales phase and the actual design processes does
not start before the sale is confirmed. Thus, sales
configurators in engineering companies are often modeled
on high level of abstraction where the engineering
configurators that are concerned with the actual design of
the product have to include more detailed information [4].
This usually leads to higher complexity of the configurators
supporting the engineering than the sales processes.

3 RESEARCH METHOOD

The chosen research method for this article is survey
followed with interviews. As this is still ongoing study only
one company is analyzed. However, by only including one
company it was possible to get an in-depth knowledge about
the configuration setup and compare the complexity of the
configurators within the same settings. The unit of analysis
is based on operational configurators at the company, where
a configurator is defined as a system that has its own
knowledge base or product model and user interface. The
company uses commercial configuration software for all of
their configurations. Meaning that the same modelling
paradigms are used in the company for all the configurators,
which is a requirement to compare of the complexity of the
different configurators.

The case company introduced in the study has a world
leading position in providing process plants and related
equipment for industrial use. The company has utilized
configurators since 1999 and has currently 159 operational
configurators, which support the product specification
processes both in sales and the engineering. The company
therefore has an extensive experience from working with
configurators.

To analyse the complexity of the configurators first a
questioner was developed and reviewed several times by the
research team in order to check consistency and
understandability. Secondly, the questionnaire was emailed
to the company and an interview was setup. Based on the
first interview it was decided that the data gathering would
be conducted in collaboration with one of the project
manager from the configuration team for two days. The data
was gathered from internals systems and evaluated by the
project manager to check accuracy and consistency.

The data was then analyzed in Microsoft Excel in relation
to the RQs. First, the configurators, were grouped according
to processes they supported, or into sales, sales and
engineering, engineering and few configurators where
grouped under others. A limitation of the data is that the
majority of the configurators are used to support the

81

engineering processes (75%), and sales and engineering
processes (19%) while there are few configurators used to
support only sales processes (3%) and finally configurators
used to support other processes are (2%). Nevertheless, the
results presented are thought to provide valuable insight into
the parameters complexity of configurators, while further
data gathering is planned to support the findings. Secondly,
the data related to the configurators integrated IT systems
was grouped. In cases where there is more than one
integration to the configurators they were listed under
combination of integrations, which included the following
combinations: (1) CAD and ERP, (2) CAD, ERP and
calculation systems, and finally (3) ERP and calculation
system. This is required as the focus of the study is to
analyze integrations to what IT systems results in the most
complexity and therefore including combinations of
integrations would give biased results.

4 RESULTS

In this chapter the main result from the survey are presented
aligned with the two RQs introduce in the paper.

 Section 4.1 elaborates on the complexity of the
configurators used in the sales, both in sales and engineering
processes and finally only in the engineering processes (RQ
1). Section 4.2 elaborates and the complexity of the
configurators in relation to integrations to IT systems (RQ
2). The integrations include, ERP, CAD, calculation
systems, integrations to other systems or combination of
systems and finally few configurators that have no
integrations. The results presented are based on data from
159 configurators that are used within on company as
explained in Section 3.

4.1 Complexity in Relation to Engineering and
Sales Configurators

This section provides the results in relation to the
complexity based on sales and engineering configurators.
Figure 1 shows the percentages of configurators used to
support the (1) sales, (2) sales and engineering, (3)
engineering, and finally (4) other activities.

Figure 1. Percentages of configurators used to support different

activates at the company.

As can be seen in Figure 1 only 5% of the total
configurators support the sales processes, while 19% of the
configurators are used to support both sales and engineering,
75% of the configurators are used to support only
engineering and 2% support other activities.

The complexity of the configurators used for the different
activities are shown in Figure 2 in terms of average numbers
of rules and attributes and total where the numbers of rules
and attributes are summarized.

Figure 2. Complexity of the configurators used to support the

different activities at the company.

Figure 2 shows that in terms of rules configurators used by
engineering have on average 477, while sales have 397 and
configurators used by sales and engineering have on average
329. In terms of attributes, configurators used by
engineering have on average the most attributes or 652,
while configurators used by sales and engineering have on
average 518 and sales have 440. Finally, as previously
defined, the complexity of the configurators is determined
based on parameters or the sum of attributes and rules. Thus,
configurators supporting only engineering activities have the
highest total score of complexity or 1129 while if we look at
the configurators only supporting sales or sales and
engineering the total score is 837 and 847 respectively.
Other configurators supporting simpler tasks at the company
have the lowest rate of complexity or only 248.

4.2 Complexity of Configurators in Relation to
Integrations

In the company used for this study, the application of the
configurators was divided according the integrations. The
integrations included the following IT systems (1) ERP, (2)
CAD, (3) calculation systems, (4) combination of the above
mentioned systems, and in few case (5) other systems. Only
4% of the configurators did not have any integration, while
70% of the configurators were integrated to one of the above
mentioned systems and 26% were integrated to one or more
of the systems. Figure 3 shows the percentages of
integrations the different configurators have.

82

Figure 3. Percentages of integrations and combinations of

integrations to different IT systems used at the company.

As can be seen in Figure 3 the majority of the
configurators are intergraded to the CAD and the ERP
system used at the company or 32% and 30% respectively
while only 4% are integrated only to calculation systems or
other IT systems used at the company. Finally, 26% of the
configurators are integrated to more than one of the above
mentioned IT systems.

The complexity of the configurators integrated to the
different IT systems is shown in Figure 4 in terms of
average numbers of rules, attributes and then the sum of the
average rules and attributes.

Figure 4. The main characteristics of the configurators integrated

to different IT systems at the company.

From Figure 4 it can be seen that in terms of both attributes
and rules the configurators integrated to CAD system score
the highest in terms of complexity. Configurators that have
combinations of integrations, or more than one integration,
have the second highest score. That can be explained by the
fact that in most cases that also includes and integration to a
CAD system. By looking into configurators that have

integrations to calculation systems it can be seen that they
have the fewest rules, may be due to the calculations being
performed within another system. Finally, it can be seen that
configurators with no integration have the lowest
complexity factor.

5 DISSCUSSIONS AND CONCLUSIONS

This study provides insights into the complexity of the
configurator where the complexity is analysed based on
parameters, which consists of numbers of attributes and
rules. The complexity is analysed first based on field of
application (sales and engineering) and then based on
integrations to different IT systems. The results provided in
the present article aim to contribute to the field of
configurators’ complexity and the factors influencing them.
This is an important topic not only for the research
community but also for practitioners. The results show that a
difference can be found in relation to the complexity by
analysing the field of application and different kind of
integrations.

The first research question in this study aims to identify if
there is any relationship between the complexity of the
configurators and the field of applications. Our analysis
show that the configurators that are only aimed at supporting
the engineering processes have the highest parameters
complexity. However, there was only a slight difference
between the complexity factor of the configurators only
used to support sales and the configurators used to support
both sales and engineering.

The second research question aims to analyse the
relationship between integrations and complexity of the
configurators. In the literature, it is discussed how
configurators are integrated to different IT systems e.g.,
[11–14,18]. However, the literature does not explain to what
extent the integrations to different IT system will influence
the complexity level of the configurators. In this paper
integration to CAD, ERP and calculation systems is
analyzed. The result shows out of the above mention IT
systems the complexity of the configurators integrated to
CAD systems is the highest. This can be supported by the
fact that in order to generate CAD files from the
configurators, they have to be able to support the detail
design including all the product dimensions, which will
increase the complexity. Thus, configurators integrated to
CAD systems can be defined as product design
configurators, which support the engineering processes
where the complexity can be anticipated to be higher even
though not integrated to a CAD system. Configurators
integrated to ERP systems scored as the second highest
while configurators integrated to calculation systems scored
the lowest out of those systems. When configurators are
integrated to calculation a system the reason is usually that
the calculations being too complex or specialized to handle
within the configurator. This supports the fact that
configurators integrated to calculations systems have very
low number of rules and thereby they also have low
parameters complexity.

The result presented in the paper is based on answers and
interviews from one company. This is thought to provide a

83

valuable insight as by studying one company an in-depth
knowledge about the configuration setup could be accessed.
Furthermore, it allows comparison of the complexity as all
the configurators are developed based on the same
commercial configuration platform. More companies will be
contacted in the future, to enable cross-functional
comparison.

REFERENCES

[1] L. Hvam, J. Riis, N.H. Mortensen, Product customization,

Springer, Berlin Heidelberg, 2008.

[2] B.J. Pine II, B. Victor, Boyton, ‘Making mass

customization work’, Harvard business review, 71, 109–

119, (1993).

[3] A. Felfernig, G.E. Friedrich, D. Jannach, ‘UML as domain

specific language for the construction of knowledge-based

configuration systems’, International Journal of Software

Engineering and Knowledge Engineering, 10, 449–469,

(2000).

[4] A. Haug, L. Hvam, N.H. Mortensen, ‘The impact of

product configurators on lead times in engineering-

oriented companies’, Artificial Intelligence for

Engineering Design, Analysis and Manufacturing, 25,

197–206, (2011).

[5] L. Hvam, A. Haug, N.H. Mortensen, C. Thuesen,

‘Observed benefits from product configuration systems’,

International Journal of Industrial Engineering-Theory

Applications and Practice, 20¸ 329-338, (2013).

[6] A. Trentin, E. Perin, C. Forza, ‘Product configurator

impact on product quality’, International Journal of

Production Economics, 135, 850–859 (2012).

[7] L.L. Zhang, ‘Product configuration: a review of the state-

of-the-art and future research’, International Journal of

Production Research, 52, 6381-6398, (2014)

[8] A. Trentin, E. Perin and C. Forza, ‘Overcoming the

customization-responsiveness squeeze by using product

configurators: Beyond anecdotal evidence’, Computers in

Industry, 62, 260-268, (2011).

[9] S. Shafiee, L. Hvam, A. Haug, M. Dam, K.

Kristjansdottir, ‘The documentation of product

configuration systems: A framework and an IT solution’

Advanced Engineering Informatics, 32, 163–175, (2017).

[10] A. Felfernig, L. Hotz, C. Bagley, J. Tiihonen, Knowledge-

based configuration: From research to business cases,

Morgan Kaufman, 2014.

[11] T. Blecker, N. Abdelkafi, G. Kreutler, G. Friedrich,

‘Product configuration systems: state of the art,

conceptualization and extensions, (2004).

[12] T. Krebs, ’Encoway’, in: A. Felfernig, L. Hotz, C. Bagley,

J. Tihonen (Eds.), Knowledge-Based Config. From

Research to Bussiness Cases, Morgan Kaufman, pp. 271–

279, 2014.

[13] C. Forza, F. Salvador, Product information management

for mass customization, Palgrave Macmillan, New York,

2007.

[14] L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D.

Jannach, G. Petrone, R. Schafer, M. Zanker, ’A

Framework for the Development of Personalized,

Distributed Web-Based Configuration Systems’, AI

Magazine, 24, 93, (2003).

[15] A.B. Brown, A. Keller, J.L. Hellerstein, ’A Model of

Configuration Complexity and its Application to a Change

Management System’ Integrated Network Management,

2005. IM 2005. 2005 9th IFIP/IEEE International

Symposium on, 4, 13-27, (2007).

[16] C. Forza, F. Salvador, ’Managing for variety in the order

acquisition and fulfilment process: The contribution of

product configuration systems’, International journal of

production economics, 76, 87-98, (2002).

[17] C. Forza, F. Salvador, ’Application support to product

variety management’, International Journal of Production

Research, 46, 817-836, (2008).

[18] L.L. Zhang, E. Vareilles, M. Aldanondo, ’Generic bill of

functions, materials, and operations for SAP2

configuration’, International Journal of Production

Research, 51, 465-478, (2013)..

[19] T. D. Petersen, “Product Configuration in ETO

Companies,” in Mass Customization Information Systems

in Bussines, T. Blecker, Ed. Igi Global, 2007, ch. 3, pp.

59 – 76.

84

	CWS_2017_paper_12.pdf
	Introduction
	Motivation, Background and Example
	Problem Filtering Methods
	Solution Filtering Methods
	Hybrid Proposed Method & Discussions

	CWS_2017_paper_13.pdf
	INTRODUCTION
	OPERA PROJECT SCOPE
	OPERA Companies
	OPERA Interview Process
	OPERA Tender Response Process Definition

	GENERIC BID STRUCTURE FOR PRODUCTS
	Bidder and Customer Bids
	Bid Context
	Product decomposition
	Bill of materials
	Key Performance Indicators

	Delivery Process for Products
	Why configuring the delivery process during the bidding process ?
	Proposition of a generic delivery process for products
	Key features identification

	OPEN BID CONFIGURATION MODEL FOR PRODUCTS
	Open Bid Configuration for Products & CSP
	OPERA Application
	Open Bid Configuration Model for Products: Synthesis

	MOVING TO AN OPEN GENERIC BIDDING MODEL FOR SERVICE PROVISION
	From Product to Service Bids
	Service Model: Discussions

	DISCUSSION AND FUTURE RESEARCH

	CWS_2017_paper_16.pdf
	Introduction
	Working Example
	Clustering Phase
	Learning Constraint Orderings
	Application Phase

	Evaluation
	Related Work
	Conclusions

	configuration_HF.pdf
	Introduction
	Motivation, Background and Example
	Problem Filtering Methods
	Solution Filtering Methods
	Hybrid Proposed Method & Discussions

