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Abstract

We consider a price-mediated contagion framework in which each bank, after an exogenous

shock, may have to sell assets in order to comply with regulatory constraints. Interaction

between banks takes place only through price impact. We characterize the equilibrium of the

strategic deleveraging problem and we calibrate our model to publicly-available data, the US

banks that were part of the 2015 regulatory stress-tests. We then consider a more sophisticated

model in which each bank is exposed to two risky assets (marketable and not marketable) and

is only able to sell the marketable asset. We calibrate our model using the six banks with

signi�cant trading operations and we show that, depending on the price impact, the contagion

of failures may be signi�cant. Our results may be used to re�ne current stress testing frameworks

by incorporating potential contagion mechanisms between banks.

Keywords: Fire sales, price-mediated contagion, Nash equilibrium with strategic complemen-

tarities, CCAR 2015, macro-prudential stress-tests

1 Introduction

Past �nancial crises have repeatedly shed light on the critical role played by �nancial institutions in

propagating and amplifying an exogenous adverse shock [Brunnermeier, 2009, Krishnamurthy, 2010,

Glasserman and Young, 2016]. This was recently illustrated during the 2007 subprime crisis when

a shock in a relatively small asset class, the US subprime mortgages, resulted in magni�ed losses

for numerous �nancial institutions due to contagion e�ects. A salient feature of the 2007 crisis is

the role played by indirect, rather than direct, contagion e�ects [Clerc et al., 2016].
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Direct contagion is the result of contractual links between �nancial institutions, typically debt or

OTC derivatives: the failure of a given institution will trigger losses for its counterparties, potentially

causing the defaults of other institutions, which will in turn trigger losses for their own counter-

parties and further failures etc... This direct contagion, generated by counterparty risk, has long

been acknowledged as an important source of �nancial instability and has been studied by academics

through network models ([Eisenberg and Noe, 2001, Elsinger et al., 2006, Fouque and Langsam, 2013,

Upper and Worms, 2004]). Regulators have recently (partly) tackled counterparty risk by introduc-

ing collateral requirements and limitations of large exposures for OTC derivatives trades, see for

instance [Glasserman and Young, 2015].

Indirect (or price-mediated) contagion is in some sense a more subtle form of contagion as it

occurs through price e�ects, even in the absence of direct contractual links between institutions: a

given �nancial institution may be forced to sell some assets, pushing prices down and generating

losses for all institutions holding the same assets. Such forced sales are generally referred to as �re

sales and typically occur at a dislocated price when a distressed institution is willing to promptly

liquidate part of its portfolio [Diamond and Rajan, 2011, Shleifer and Vishny, 2011]. Depending on

the type of �nancial institution (i.e., depository institution, mutual fund, pension fund, insurance

company, hedge fund ...), various reasons may be found to explain these �re sales, for instance

collateralized short term �nancing [Shleifer and Vishny, 2011]. In the case of (insured) depository

institutions, everything else equal, �re sales may indeed be triggered by regulatory capital require-

ments themselves.

One of the common features of the successive Basel regulations is that supervisors consider the

following capital ratio to assess the solvency of banks:

Risk based capital ratio :=
Total capital

Risk Weighed Assets
(1)

Equation (1) is called a risk-based capital ratio (RBC) because its denominator is the total

risk-weighted assets (RWA), de�ned as the sum of a few risk-related RWAs (typically credit, market

and operational risks) rather than the total value of assets. In Basel III, the numerator of the RBC

is de�ned as the sum of two types of capital, Tier 1 and Tier 2, where Tier 1 is designed to absorb

losses without a�ecting the business as usual while Tier 2 is designed to absorb losses in case of

liquidation of the bank1. Basel III regulation imposes that the RBC of a given bank must be at

least 8% at all times. This means that when the assets of a bank are hit by an adverse shock and

the bank's RBC drops below 8%, because it is generally too costly to issue new stocks in such a

situation � typically due to the classical debt overhang problem [Hanson et al., 2011] and/or the

adverse selection problem [Greenlaw et al., 2012] � the bank is likely to try to restore its capital ratio

above 8% by selling assets, that is, by engaging in �re sales. Such undesirable consequences of capital

1See [BCBS, 2011], the o�cial document on Basel III written by the Basel Committee on Banking Supervison

(BCBS).
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requirements that may induce banks to engage in �re sales have been recognized by academics and

regulators. For example, [French et al., 2010, p46] note in their well-known collective report on the

�nancial system that

�because of the mark to market accounting, �re sales by some �rms may force others to

liquidate positions to satisfy capital requirements. These successive sales can magnify

the original temporary price drop and force more sales.�

while the Basel committee acknowledges ([BCBS, 2014]) that during the subprime crisis, the banking

sector was forced to

�reduce its leverage in a manner that ampli�ed downward pressures on asset prices. This

deleveraging process exacerbated the feedback loop between losses, falling bank capital

and shrinking credit availability.�

While �re sales and price-mediated contagion appear to play a crucial role in spreading and

amplifying market shocks, the academic literature on the topic, which is less abundant compared to

that on direct contagion, either analyze past �re sales episodes instead of anticipating new �re sales

([Anton and Polk, 2014, Jotikasthira et al., 2012, Khandani and Lo, 2011, Cont and Wagalath, 2016])

or consider a simple (i.e., unweighted) capital ratio instead of a risk-based capital ratio for banks

([Caccioli et al., 2014, Greenwood et al., 2015]). We thus believe that there is still a need for a

risk-based capital ratio model of indirect contagion that could be easily calibrated to public data

(i.e., contained in the annual reports of banks) to anticipate �re sales in the banking system and its

consequences after a common shock. Such a framework should be of interest for regulators as a pos-

sible toolkit to draw quantitative regulatory measures such as the systemic risk capital surcharge for

large banks. The seminal paper by [Greenwood et al., 2015] (see also [Duarte and Eisenbach, 2018]

for a related paper) started to bridge this gap by proposing such a framework that can be calibrated

to public data2. However, they consider a simple capital ratio, a proxy for the leverage ratio and

do not address the equilibrium (�re sales) problem.

In this paper, we explicitly consider an equilibrium model of strategic interaction through price-

mediated contagion only in that each bank is assumed to hold the same risky marketable security

such as an exchange-traded fund. The failure of one bank thus has no direct impact on the rest of

the banking system as there is no contractual link (e.g., OTC derivatives, repo...) between banks.

Contagion of failures may occur but only through a price e�ect caused by �re sales. In the literature

on the subject, as already said, it is common to assume that banks are subject to simple capital

ratio instead of a RBC but also that they implement simple rules of thumbs when liquidating their

assets (e.g., [Caccioli et al., 2014], [Cont and Schaanning, 2016], [Greenwood et al., 2015], see also

[Feinstein, 2017]). In [Greenwood et al., 2015], it is assumed that each bank has a leverage target

2Technically, they use public data from the European Banking Authority, which supplement the one contained in

annual reports of banks.
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so that the bank trades assets when the leverage di�ers from the speci�ed target. The authors

note (in appendix B) that when the price impact is large enough, banks will be wiped out in a few

periods but the equilibrium problem (i.e., the stationary state) is not considered. In the same vein,

in [Capponi and Larsson, 2015], each bank tracks a �xed leverage target and buys or sells assets

according to this objective.

We depart from these papers in that we assume that banks are subject to a risk-based capital

requirement, as implemented in practice by regulators and that they liquidate optimally their assets,

as in [Cifuentes et al., 2005] or in [Braouezec and Wagalath, 2018]. More importantly, we recognize

the strategic aspect of the liquidation problem. When some banks liquidate a non negligible portion

of their assets, this generates a "negative externality" to the other market participants through the

price impact and we consider, as usual in economics, the equilibrium situation in which no bank

wants to unilaterally deviate from its equilibrium selling strategy, i.e., the Nash equilibrium. Our

model of �re sales actually gives rise to a game with strategic complementarities, initiated in eco-

nomic theory by [Milgrom and Roberts, 1990] and [Vives, 1990]). It turns out to be closely related

to the one of [Cifuentes et al., 2005] (see also [Chen et al., 2016]) in which they also consider an

equilibrium situation but in a non-strategic framework. However, as they consider a network model

à la [Eisenberg and Noe, 2001], its calibration remains di�cult because information on bilateral ex-

posures between banks are scarce [Upper, 2011], not to say unobservable. Within our framework, we

make the simplifying assumption that there are no bilateral exposures between banks, that is, the

unique source of systemic risk is price mediated contagion, but this allows us to easily calibrate our

model to publicly-available data. Using the panel of banks considered by the American regulator to

implement the 2015 regulatory stress tests (CCAR), once the parameters of each bank have been

calibrated3, we compute the Nash equilibrium associated to the game of liquidation under various

scenarios (shock/price impact) and quantify the e�ects of price-mediated contagion in terms of in-

solvency, i.e., the fraction of banks that are insolvent at equilibrium. In general, the relationship

between the price impact (or the shock) and the fraction of insolvent banks is non-linear and we

quantify this non-linearity for the panel of banks under consideration. For instance, when the com-

mon shock is equal to 5%, at equilibrium, the fraction of insolvent banks is equal to 10% with a

price impact of 3% while this fraction skyrockets to 30% with a price of 5%.

We then relax the one risky asset assumption and o�er a two risky assets model with one mar-

ketable asset and one non-marketable asset (loans). After a shock, we make the realistic assumption

that a given bank can only liquidate the marketable asset. We develop an empirical study using

this more sophisticated model and focus on the six banks participating to the 2015 CCAR and with

the most signi�cant trading operations. We motivate our choice for a benchmark market shock

3It is interesting to note that contrary to the applied literature on game theory in IO, see for instance

[Bajari et al., 2013], we make here no use of econometric methods. We use data contained in the annual reports

of banks, together with our model, to imply the relevant parameters. It is similar in the spirit to the way an implied

volatility is computed using the Black Scholes model together with observed price of the vanilla option.
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using the result of the 2015 CCAR stress test and show that, depending on the price impact, the

contagion of failures, which is not taken into account in the regulatory stress test, can be signi�cant.

The remainder of the paper is organized as follows. Section 2 presents the one (risky) asset

model. Section 3 studies the theoretical properties of the equilibrium while section 4 illustrates our

results on the US banking market. Section 5 presents the two (risky) assets model and the empirical

results. Section 6 concludes.

2 A benchmark framework for price-mediated contagion

2.1 Banks' balance-sheets and regulatory constraints

Consider a set B = {1, 2, ..., p} of p ≥ 2 banks that can invest in a risky asset and in cash. For each

bank i, we denote by vi > 0 the amount of cash (in dollars) and by qiPt > 0 the value (in dollars)

of risky assets, where qi is the quantity (in shares) of risky assets held by the bank and Pt is the

market price of the risky asset at a given date t. Let Di be the sum of the value of deposits and/or

debt securities, typically coupon bonds, that have been issued by bank i. From limited liability of

stockholders, the value of equity (or capital) at time t thus is given by:

Ei,t = max{Ai,t −Di; 0} = max{vi + qiPt −Di; 0} (2)

where Ai,t = vi + Ptqi de�nes the total value of the assets of the bank. The balance-sheet of the

bank at time t is as follows.

Balance-sheet of bank i at time t

Assets Liabilities

Cash: vi Debt: Di

Risky assets: qiPt Equity: Ei,t

Ai,t Ei,t +Di

In practice, banks may invest in various risky securities (subject to market risk, credit risk...)

so that the above balance-sheet, composed with a single risky asset, is a simpli�ed one. We shall

explain later on how to make the connexion between real balance sheets found in the registration

reports of banks and our model.

Assumption 1 The risky asset is a �nancial security issued by a non-�nancial institution whose

price is quoted on �nancial markets.

This marketable security is typically a stock index or an ETF replicating a stock index. It

can also be a stock issued by a non-�nancial corporation or even a bond issued by a government

or a non-�nancial corporation. In particular, this �nancial security is not a claim issued by a
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bank so that the default of a given bank has no direct impact on the rest of the banking system

because there is no direct contractual links (e.g., repo, OTC derivatives...) between banks. As

such, contrary to network models initiated by [Eisenberg and Noe, 2001] and [Cifuentes et al., 2005],

(see [Glasserman and Young, 2016] for a recent and comprehensive overview), direct contagion of

failures is not possible in our framework. The unique source of contagion is indirect, through prices.

This single risky asset setting is relevant from a regulatory stress-testing perspective as it enables

regulators to study worst case scenarios where banks' trading books are highly correlated. It is also

motivated by the fact that banks tend to adopt similar behaviors and invest in the same risky assets

or have positions in risky assets that can be considered as collinear to a common benchmark.

As discussed in section 1, banking regulation imposes banks (i.e., insured depository institutions)

to hold enough capital as a percentage of their risk-weighted assets (RWA). Since cash is a riskless

asset, it does not require any capital so that its regulatory weight is equal to zero. However, a risky

asset requires some capital as a function of its risk, measured in some sense, and thus has a positive

risk weight. Within our model, since there is a single risky asset, the risk-weighted asset of bank i

is simply equal to

RWAi,t = αiqiPt (3)

where αi is the risk weight of bank i associated to the risky asset. Note that αi may vary across

banks because some of them make use of internal models to compute the RWAs.

Let θi,t be the risk-based capital ratio (RBC) as de�ned in equation (1) for a given bank i at

time t:

θi,t :=
Ei,t

RWAi,t
(4)

For the sake of interest, we assume that all banks are solvent at date t, that is, Ei,t > 0 for all

1 ≤ i ≤ p. This means that Ei,t = Ai,t −Di > 0 and the RBC of bank i can be written:

θi,t =
Ei,t

RWAi,t
=
Ai,t −Di

αiqiPt
> 0 (5)

Denote by θmin the minimum capital ratio imposed by the regulator. Since Ei,t is the total capital,

equal to Tier 1 plus Tier 2, θmin thus is equal to 8%. For the sake of interest, we shall assume that,

at date t, all banks comply with the regulatory constraint:

θi,t ≥ θmin for each i = 1, 2, ..., p (6)

When one inspects the balance-sheet of a universal bank (i.e., retail/investment banking), as

already said, it has positions in many risky assets and not only in a single one. Since the total

capital and the total risk weighted assets RWA are publicly disclosed in the annual report, it is

possible to imply from the consolidated balance-sheet of each bank the weight αi that we shall call

an implied aggregate risk weight. From the observed balance-sheet, Ai,t− vi is the total value of the
assets minus cash, so that it su�ces to set qiPt = (Ai,t − vi) to obtain the total value of the risky
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asset. Since both Ei,t and θi,t are also disclosed in the annual report of the bank, from equation

(5), it thus follows that

αi =
Ei,t

θi,t(Ai,t − vi)
=

RWAi,t

Ai,t − vi
(7)

For most large international banks, cash is small compared to the total size of assets (typically

less than 5%), which means that Ai,t − vi ≈ Ai,t so that

αi ≈
Ei,t
θi,tAi,t

=
RWAi,t

Ai,t
(8)

2.2 Impact of an exogenous shock on banks' capital ratios

Assume that a shock on the risky asset occurs at date t+ and denote ∆ ∈ (0, 1) the size of the

adverse shock in percentage of Pt. The price of the risky asset at time t+ thus is equal to

Pt+ = Pt(1−∆) (9)

Since each bank holds the risky asset, ∆ is a common adverse shock price that could even be

interpreted as a systemic shock. At time t+, right after the shock, the balance-sheet of bank i is

given as follows.

Balance-sheet at time t+

Assets Liabilities

Cash: vi Debt: Di

Risky assets: qiPt(1−∆) Equity: Ei,t+

Ai,t+ Ei,t+ +Di

It is the role of equity to absorb the shock, i.e., the loss which is equal to qiPt∆ in dollars. The

RBC of bank i at date t+ is equal to

θi,t+(∆) =
max{Ai,t+ −Di; 0}

RWAi,t+
=

max{Ei,t − qiPt∆; 0}
αiqiPt(1−∆)

(10)

In the remainder of this paper, we work under the following assumption.

Assumption 2 At date t, each bank's equity is lower than the size of its risky assets, that is, for

all 1 ≤ i ≤ p:
Ei,t < qiPt (11)

This assumption is natural in the banking system as, in practice, banks' equities typically do not

exceed 20% of their risky assets.

Lemma 1 Under Assumption 2, the bank's RBC after the shock is a decreasing function of the

shock size ∆.

7



The proof is given in the Appendix. A given bank i may thus be in one of the three following

situations, depending on the size of the shock ∆:

1. solvent and complying with regulatory capital requirement, that is θi,t+(∆) ≥ θmin

2. solvent but not complying with regulatory capital requirement, that is 0 < θi,t+(∆) < θmin

3. insolvent, that is θi,t+(∆) = 0, which is equivalent to Ei,t − qiPt∆ ≤ 0

Let us de�ne two important thresholds:

∆sale
i := inf{∆ ∈ [0, 1] : θi,t+(∆) = θmin} (12)

∆fail
i := inf{∆ ∈ [0, 1] : Ei,t+(∆) = 0} (13)

The following lemma characterizes those two thresholds for each bank and follows directly from

equations (12) and (13):

Lemma 2 For each bank i, the critical thresholds ∆sale
i and ∆fail

i de�ned in equations (12) and

(13) can be written explicitly as follows:

∆sale
i =

Ei,t − αiθminqiPt
qiPt(1− αiθmin)

=
∆fail
i − αiθmin
1− αiθmin

> 0 (14)

∆fail
i =

Ei,t
qiPt

> 0 (15)

with ∆sale
i < ∆fail

i

The knowledge of ∆sale
i and ∆fail

i enables to predict the situation of bank i after a shock

and anticipate potential reactions. If ∆ ≥ ∆fail
i , the shock will leave bank i insolvent, while if

∆ ≤ ∆sale
i bank i's equity will not only absorb the shock but also keep the bank's capital ratio

above the minimum regulatory threshold. The interesting scenario, that we explore within this

paper, occurs when ∆sale
i < ∆ < ∆fail

i for some bank i: in this case, the bank is able to absorb the

exogenous shock ∆ but is left with a regulatory capital ratio that is lower than θmin.

Since each bank is characterized by the two thresholds ∆sale
i and ∆fail

i , the banking system is

characterized by 2p thresholds, i.e., by (∆sale
i ,∆fail

i ), i = 1, 2, ..., p. Without loss of generality, we

shall assume that:

∆fail
1 ≤ ∆fail

2 ≤ ... ≤ ∆fail
p (16)

We de�ne now the four following thresholds:

∆sale = inf
i∈B

∆sale
i ∆

sale
= sup

i∈B
∆sale
i (17)

∆fail = inf
i∈B

∆fail
i = ∆fail

1 ∆
fail

= sup
i∈B

∆fail
i = ∆fail

p (18)
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2.3 Endogenous �re sales and feedback e�ects

Since ∆ is a common shock, it a�ects the balance-sheet of all banks that hold the risky asset and

may leave some of them undercapitalized. Banks that do not comply with the regulatory capital

constraints may restore their capital ratio above the minimum required θmin in two main ways.

1. They may issue new shares and hence increase the numerator of the risk-based capital ratio.

2. They may also sell assets and decrease the denominator of the risk-based capital ratio.

After such a common shock, e.g., what happened during the subprime crisis, it may be di�cult

for such banks to sell new stocks. In such a situation, the preferred solution for a given bank i to

restore its regulatory capital ratio back above the minimum required is to sell assets. In line with

the existing literature on the subject (e.g., [Brunnermeier and Oehmke, 2014, Cifuentes et al., 2005,

Greenlaw et al., 2012, Greenwood et al., 2015]) and consistent with observed behavior of banks, we

make the assumption that undercapitalized banks can only engage in asset sales in order to restore

their capital ratio. Within our study, we de�ne such forced sales as ��re sales�. As in most models,

e.g., [Elliott et al., 2014, Caccioli et al., 2014], when a bank is unable to restore its capital ratio

above θmin, we assume that it is fully liquidated at date t+ 1.

In practice, banks are sometimes able to issue stocks despite the situation of distress. To give a

recent example, following its problems with the American justice, Deutsche Bank decided in March

2017 to issue 687.5 million stocks for a total value of $8 Billion, which is approximately equal to

the amount of the �ne imposed by the US Justice ($7.2 Billion). It is important to point out at

this stage that it wouldn't be di�cult to introduce in our model the possibility for each bank to

recapitalize up to a certain amount, say (at most) a given fraction of their existing total capital. In

such a case, after a large shock, if the recapitalization is not su�cient for the bank to comply with

the regulatory capital ratio, the unique possibility for the banks is to sell assets and we are back to

our model. Allowing each bank to recapitalize up to a certain proportion of its existing total capital

would thus only change the two thresholds ∆sale
i and ∆fail

i .

We denote by xi ∈ [0, 1] the proportion of risky assets sold by bank i at date t+ 1, in reaction

to the shock ∆ at date t+. When bank i does not need to liquidate assets, then xi = 0. On the

contrary, when the shock ∆ is such that bank i is insolvent or unable to restore its capital ratio

above θmin, then it is fully liquidated and xi = 1. The volume (in shares) of liquidation by bank

i is denoted by xiqi and
∑

i∈B xiqi denotes the total volume of �re sales in the banking system at

date t+ 1.

Fire sales obviously impact the price of the asset at date t + 1 and we assume here this price

impact to be linear. We introduce the asset market depth Φ which is a linear measure of the asset

liquidity [Kyle and Obizhaeva, 2016]. In [Cont and Wagalath, 2016], it is shown that the relevant

quantity to capture the magnitude of feedback e�ects is
∑

i∈B qi
Φ . The greater this parameter, the

9



greater the size of the banking system compared to asset market depth and the greater the feedback

on the asset price in the presence of �re sales. The asset price at date t + 1 thus depends on the

vector of liquidations x (∆,Φ) := x = (x1, x2, ..., xp) ∈ [0, 1]p, and this vector of liquidation depends

on both the shock ∆ and the market depth Φ.

Assumption 3 The price of the risky asset at time t+ 1 is equal to

Pt+1(x,Φ) = Pt (1−∆)

(
1−

∑
i∈B xiqi

Φ

)
(19)

Qtot
Φ

< 1 (20)

where Qtot =
∑
i∈B

qi (21)

In a more general model, one could allow the price impact to be a non linear function of the

quantity sold. For instance, it could be possible, as in [Cifuentes et al., 2005], to consider a convex

price impact function in which Pt+1(x ,Φ) = Pt (1−∆) e−
∑

i∈B xiqi
Φ . This would only complicate the

analysis without adding new economic insight. In any event, as we shall see later on, the proof of the

existence of the equilibrium would also work in the non-linear case. The assumption that Qtot

Φ < 1

is aimed at keeping the price strictly positive even if all banks fully liquidate their positions on the

risky asset.

As discussed above, the market depth Φ is a linear measure of the risky asset's liquidity: the

larger this parameter, the more liquid the asset. When Φ =∞, the asset is in�nitely liquid and �re

sales do not impact the asset price. In practice, roughly speaking, the asset liquidity is measured by

the presence of buyers outside the banking system when banks need to sell the risky assets. Such

potential buyers may typically be hedge funds that can absorb �re sales from banks and limit their

impact on asset prices. As such, our model shows the (relative) importance of the shadow banking

as a possible stabilizing force in the case of a banking crisis. Note however that hedge funds might

also face funding di�culties during a banking crisis, which may limit their ability to buy back assets

from distressed banks [Caballero and Simsek, 2013]. In our model, this kind of di�culty would be

translated into a lower Φ. In a dynamic model, Φ could be time-dependent and an evaporation of

the liquidity would be modeled by a sharp fall of Φ.

At time t+1, the balance-sheet of bank i that sold a portion xi of the risky asset is given below:

Balance-sheet of bank i at date t+ 1 after deleveraging

Assets Liabilities

Cash: vi + xiqiPt+1(x ,Φ) Debt: Di

Risky asset: (1− xi)qiPt+1(x ,Φ) Equity: Ei,t+1

Ai,t+1 = vi + qiPt+1(x ,Φ) Ei,t+1 +Di

10



where Pt+1(x ,Φ) is given in Assumption (3). Let Ei,t+1(x ) be the total capital at time t+ 1 after

deleveraging. From the above balance-sheet, it is not di�cult to show that

Ei,t+1(x ,∆) = max

{
Ei,t − qiPt

(
∆ +

∑
j∈B xjqj

Φ
(1−∆)

)
; 0

}
(22)

and note that it is a decreasing function of xi due to the existence of a price impact. The regulatory

capital ratio of bank i at time t+ 1 (i.e., after deleveraging) thus is equal to

θi,t+1(x ,∆) =
Ei,t+1(x )

αiqiPt+1(x ,Φ)(1− xi)
(23)

with the natural convention that θi,t+1(x ,∆) = 0 when xi = 1 and when Ei,t+1 = 0. Let us now

introduce the concept of the implied shock :

∆(x ) := ∆ +

∑
j∈B xjqj

Φ
(1−∆) (24)

associated to the vector of liquidation x such that the price of the risky asset at date t+ 1 can be

written as follows

Pt+1(x ,Φ) = Pt(1−∆(x )) (25)

As long as x 6= 0 (i.e., there is at least one bank engaging in �re sales) and Φ < ∞ (i.e.,

the asset is not in�nitely liquid), ∆(x ) > ∆ so that �re sales at date t + 1 actually reinforce the

underperformance of the asset caused by the initial shock ∆ at date t+. By re-inserting the implied

shock in equation (23) and by dividing the numerator and the denominator by qiPt, equation (23)

reduces to

θi,t+1(x ,∆) =
max{∆fail

i −∆(x ); 0}
αi(1− xi)(1−∆(x ))

(26)

so that we immediately obtain the following equivalence.

Ei,t+1(x ,∆) > 0⇐⇒ ∆fail
i −∆(x ) > 0 (27)

Assumption 4 Each bank i = 1, 2, ..., p rebalances its portfolio of assets (i.e., deleverage) in order

to minimize xi ∈ [0, 1] subject to the constraint

θi,t+1(x,∆) ≥ θmin (28)

If the constraint can not be satis�ed for some xi ∈ [0, 1), then bank i is insolvent and is costlessly

liquidated at time t+ 1 so that xi = 1.

It is usual to call our framework a game in strategic (or normal) form, which is characterized

by three elements (see e.g., [Fudenberg and Tirole, 1991] chapter 1); the set of players, here the set

of p banks, the pure-strategy spaces Xi := [0, 1] for each bank i = 1, 2, ..., p, and payo� functions

ui(x ) for each pro�le x = (x1, ..., x2). Within our framework, since we consider a static game, all

decisions are taken at time t+ 1, that is simultaneously.
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Let x = (xi, x−i) where x−i ∈ [0, 1]p−1 is a p − 1-dimensional vector. To understand the

motivation for assumption 4, assume that x−i is given and known from bank i. From the balance

sheet of a given bank i after deleveraging at time t + 1, the total value of the assets of bank i is

equal to Ai,t+1(xi, x−i) = vi+qiPt+1(xi, x−i,Φ) and is a decreasing function xi. For a given amount

of cash vi, it is fair to think that the expected pro�t of each bank i, denoted Eπi, is a fraction of

the total value of the assets, that is, Eπi(xi, x−i) = γiAi,t+1(xi, x−i) := ui(xi, x−i) for some γi < 1

which may depend upon vi. The expected pro�t of bank i thus is also a decreasing function of xi.

Assumption 4 just says that, given x−i, each bank tries to maximize its expected pro�t by choosing

the smallest xi ∈ [0, 1] such that θi,t+1(xi, x−i,∆) ≥ θmin. Of course, x−i is unknown from bank

i. As usual in game theory, we consider in this paper a Nash equilibrium (in pure strategy), which

is de�ned as the vector of strategy x ∗ = (x∗i , x
∗
−i) such that no bank wants to unilaterally deviate

from this strategy. Put it di�erently, from the observation of the vector x ∗ = (x∗i , x
∗
−i), the best

thing to for each bank i, i = 1, 2, ..., p is precisely to sell a fraction equal to x∗i .

Throughout the paper, we make the assumption that the market depth Φ is �large enough�. By

this, we mean that, for the highest shock size ∆ considered, it is in the interest of solvent banks,

i.e., banks that are not wiped out, to sell a positive fraction of their asset in order to (try to) restore

their risk-based capital ratio back above the minimum required.

Let S∆ = {i ∈ B : ∆ < ∆fail
i }. When there is no price impact, i.e., when Φ = ∞, each

bank i ∈ S∆ will be able to sell a smallest fraction xi < 1 such that θi,t+1(xi, x−i,∆) = θmin since

θi,t+1(xi, x−i,∆) is an increasing function of xi for any x−i. However, when there is a positive price

impact, i.e., Φ < ∞, θi,t+1(xi, x−i,∆) may not be an increasing function for all x−i. For the sake

of interest, we make the following su�cient condition

∂θi,t+1

∂xi
(0,1,∆) > 0 ∀i ∈ S∆ (29)

where 1 = (1, ..., 1) is a p−1 dimensional vector4. In words, each bank i in S∆ is such that if all the

other banks would liquidate 100% of their assets, the risk-based capital ratio of bank i would still

be an increasing function of xi in zero so that it is always in the interest of bank i to try to liquidate

a positive quantity. Of course, this condition does not guarantee the existence of a solution for

bank i. Since the risk-based capital ratio of each bank i is a continuous function of Φ, there exists

a smallest Φ for which the su�cient condition is satis�ed.

[Caccioli et al., 2014], [Cont and Schaanning, 2016] and [Greenwood et al., 2015] also consider

a liquidation problem with price impact but in which each bank is assumed to make use of a purely

mechanical decision rule to liquidate its assets (e.g., the proportional liquidation rule). As a result,

as observed in [Caccioli et al., 2014], the sequence of liquidation over time becomes closely related to

contagion processes in epidemiology. In this paper, we follow a di�erent approach since we explicitly

4This condition is clearly su�cient because it needs only to hold at equilibrium, and not when all the banks except

bank i sell 100% of their assets.
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recognize the strategic feature of the liquidation problem. From equation (23), the RBC of a given

bank i is in�uenced by the decisions of all banks so that a given bank can not decide independently

of the other banks the minimum portion of the risky asset to liquidate. The problem is similar to

a Cournot oligopoly but somehow more complex as each bank is explicitly faced with a regulatory

constraint. Since all liquidation decisions are taken at time t + 1 only, we look for a static Nash

equilibrium.

When a corporation such as a bank (or even more generally a non �nancial institution) is

liquidated, one can identify two main types of costs associated with the failure of that institution

[Glasserman and Young, 2016]. Administrative and legal costs called bankruptcy costs on the one

hand and costs of delay in making payments on the other hand. In (banking) network models,

everything else equal, the greater the bankruptcy costs when bank i fails, the lower the recovery

rate of its claimants (e.g., the other banks in the banking system). As a result, bankruptcy costs

increase the magnitude and the likelihood of failure cascades. Within our model, as there is no

direct links between banks, bankruptcy costs do not a�ect the likelihood nor the magnitude of the

contagion process. Since our aim is to focus on failure contagion, without loss of generality, we

assume that these bankruptcy costs are equal to zero. Of course, if our aim was to analyze the cost

borne say by depositors (or bondholders) in case of failure of banks, then, bankruptcy costs would

play an important role. Note interestingly that in Europe, it is actually the role of the recent single

resolution mechanism, the second pillar of the banking union �to ensure the e�cient resolution of

failing banks with minimal costs for taxpayers and to the real economy5�. It is also stated that the

resolution of a bank could be done over a week-end...

Within our framework, since each bank is assumed to be exposed to a security issued by a non-

�nancial institution, as already discussed, there is no network of interconnections between banks.

As a result, a given bank only needs to know the balance sheet of the other banks and the price

impact to determine whether or not it may be indirectly impacted by �re sales. Given the various

information that are publicly disclosed in the annual reports of banks, we assume that information

is complete.

Assumption 5 Information is complete.

Let Ii = (Di, qi, Ai, Ei, vi,RWAi, RBCi) be the information disclosed in the annual report of

a given bank i. When a bank j knows Ii from the annual report of bank i, since the current

market price is observable, bank j is able to determine αi and the two thresholds ∆sale
i and ∆fail

i .

If one de�nes the structure of the game as {(Ii)pi=1; Φ} together with the decision rules, complete

information is usually de�ned by saying that the structure of the game is common knowledge.

5See https://www.bankingsupervision.europa.eu/about/bankingunion/html/index.en.html
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3 Strategic �re sales: Nash equilibrium with strategic complemen-

tarities

The timing of the liquidation game is by assumption as follows.

1. Right after the shock, the price of the risky asset decreases by a percentage ∆ > 0.

2. At time t+ 1, each bank i = 1, ..., p liquidates a portion xi ∈ [0, 1] of the risky asset, so that

the implied shock is equal to ∆(x ) = ∆ + (1−∆)
(∑

i∈B xiqi
Φ

)
.

3.1 Best responses and upward jumps

Recall that x = (xi, x−i) where x−i ∈ [0, 1]p−1 is a p − 1-dimensional vector and let us write the

vector of liquidation as x = (BRi(x−i), x−i), where BRi(x−i) is the unique best response of bank i

given x−i ∈ [0, 1]p−1 in the sense of the minimization problem given in assumption 4. Within our

model, as there is no direct link between banks, each bank is impacted by the decision of all the

other banks only through the price impact. Let

Svi = {x−i ∈ [0, 1]p−1 :
∑
i 6=j

qjxj = v} (30)

From equation (24), since the implied shock depends on x−i ∈ [0, 1]p−1 only through the sum of

its components
∑

i 6=j qjxj , for bank i, each x−i ∈ Svi yields the same unique best response. As a

result, for any shock ∆ > 0, as long as x−i ∈ Svi , the unique best response of bank i can be written

as a function of v, i.e., x∗i = BRi(v,∆). Assume that x−i ∈ Svi for some v > 0. The implied shock

de�ned in (24) thus can be written as a function of two variables xi and v.

∆(xi, v) = ∆ + (1−∆)

(
xiqi + v

Φ

)
(31)

and is an increasing function of v and of xi. Let BRi(v,∆) be the best response of bank i and note

that this best response also depends on Φ.

Lemma 3 1. For a given ∆ and for each i = 1, ..., p, if v2 ≥ v1, then, BRi(v2,∆) ≥ BRi(v1,∆).

2. Let v > 0. For each i = 1, ..., p, if ∆2 ≥ ∆1, then, BRi(v,∆2) ≥ BRi(v,∆1).

Proof. See the appendix.

Part 2 of the above lemma says, as one can expect, that each bank needs to sell more risky assets

when the shock ∆ is larger, everything else equal. In the same vein, part 1 states that the best

response of a given bank i increases with v, which means that bank i has an incentive to liquidate

more risky assets when the other banks increase their volume of �re sales. In economic theory, this

property of monotone increasing best response is called strategic complementarity [Vives, 1990]. We

shall now show that the best response needs not be a continuous function of v.
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Lemma 4 If there exists ṽ such that

sup
xi∈[0,1]

θi,t+1(xi, ṽ,∆) ≥ θmin (32)

and for all ε > 0:

sup
xi∈[0,1]

θi,t+1(xi, ṽ + ε,∆) < θmin (33)

then BRi(v,∆) is not a continuous function of v and exhibits an upward jump for v = ṽ.

The proof is straightforward: if supxi∈[0,1] θi,t+1(xi, ṽ,∆) ≥ θmin, then this means thatBRi(ṽ,∆)<1.

In addition, if for all ε > 0, supxi∈[0,1] θi,t+1(xi, ṽ + ε,∆) > θmin, this means that bank i has to fail

and so BRi(ṽ + ε,∆) = 1 for all ε > 0. As such, the function BRi(v,∆) exhibits an upward jump

for v = ṽ and is not continuous in v. This is illustrated in �gure 1.

In the classical proof of the existence of a Nash equilibrium, the application of a �xed point

theorem such as the Brower's one requires the best response to be continuous. However, as noticed

in their early paper, [Roberts and Sonnenschein, 1976] proved the existence of the Nash equilibrium

assuming that the discontinuities take the form of upward jumps (see [Vives, 1990] section 7 or

[Milgrom and Roberts, 1994] p. 447 for a discussion). Within our framework, depending on the

parameters, as we have seen, one can not exclude such upward jumps, which means that a more

powerful result than the classical Brouwer's �xed point theorem should be used.

3.2 Existence of a Nash equilibrium

We �rst start by giving the de�nition of a Nash equilibrium in our model.

De�nition 1 For a given initial shock ∆ > 0, the vector of liquidation x∗ = (x∗1, ..., x
∗
p) ∈ [0, 1]p is

a Nash equilibrium if and only if for all i = 1, 2, ..., p:

BRi(x
∗
−i,∆) := x∗i = min

{
xi ∈ [0, 1) such that θi,t+1(xi, x

∗
−i,∆) ≥ θmin

}
or x∗i = 1 (34)

Saying that x ∗ is a Nash equilibrium means that, for each i = 1, 2, .., p, the best response

BRi(x
∗
−i,∆) is equal to x∗i . At equilibrium, the implied shock ∆(x ∗) ≡ ∆∗ thus is equal to

∆∗ = ∆ +

(∑
i∈B x

∗
i qi

Φ

)
(1−∆) (35)

To prove the existence of a Nash equilibrium within our framework, we shall use a �xed point

result that requires some basic preliminaries. Recall that X = [0, 1]p is the set of all liquidation

vectors and consider now the pair (X,≥) where x ≤ y ⇐⇒ xi ≤ yi for each i = 1, ..., p so that (X,≥)

is a partially ordered set (poset for short). A poset (X,≥) is said to be a lattice if, for any pair of

elements x and y of X, the supremum sup{x,y} and the in�mum inf{x,y} exist in X. The lattice is

said to be complete if, for all non-empty subset E ⊂ X, the supremum supE and the in�mum inf E
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Figure 1: The best response may exhibit a discontinuity

exist in X. See for instance [Tarski, 1955],[Vives, 1990], [Milgrom and Roberts, 1990]. When X is

the product of p compact sets, i.e., X = [0, 1]p, it is well-known, and easy to see, that the poset is a

complete lattice. The following result is due to [Tarski, 1955] and, to the best of our knowledge, has

been introduced in economic theory by [Vives, 1990] and [Milgrom and Roberts, 1990]. It has been

subsequently used in �nance by [Eisenberg and Noe, 2001] in their in�uential paper on systemic

risk.

Tarski's theorem ([Tarski, 1955], see also [Vives, 1990] or [Milgrom and Roberts, 1990]). Let

(L,≥) be a complete lattice and f a non decreasing function from L to L and F the set of �xed

points of f . Then, F is non-empty and (F ,≥) is a complete lattice. In particular, supx F and

infx F belong to F .

As observed by [Vives, 2001] in his well-known textbook on oligopoly pricing, this �xed point

result is interesting as it does not make any use of topological properties such as compactness or

continuity. It only requires the function f to be non-decreasing, which is the case in our framework.

The linearity of the price impact function thus plays no role in the proof of the proposition below

and a non-linear price impact function would not change the existence result.

In our context, Nash equilibria will be �xed points of the function f de�ned by:

f(x) = (BR1(x−1), ..., BRp(x−p)) (36)
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where BRi(x−i) is the unique best response of bank i given x−i ∈ [0, 1]p−1 in the sense of the

minimization problem given in assumption 4. The following proposition shows that there always

exists at least one Nash equilibrium, i.e., f has at least one �xed point.

Proposition 1 For all initial shock ∆ ∈ (0, 1) and market depth Φ > 0, the set of Nash equilibria

denoted F∆ is not empty. For any equilibrium x∗ ∈ F∆, the subset of banks that are solvent and

insolvent, denoted S∗ and D∗ respectively, when non empty, are composed with consecutive integers,

i.e., there exists 0 ≤ i(x∗) := i∗ ≤ p such that D∗ = {1, ..., i∗} and S∗ = {i∗ + 1, ..., p}.

Proof. See the appendix.

Note importantly that throughout this paper, when F∆ contains more than one Nash equilib-

rium, we shall always consider the smallest one, that is, the one that minimizes the implied shock

∆(x∗), or equivalently the total amount liquidated equal to the scalar product x ∗q .

It is well-known that games with strategic complementarities can have more than one Nash

equilibrium which may be Pareto ranked (e.g., [Vives, 2005]) and our model is of no exception.

From a �nancial point of view, we claim that it makes only sense to consider the smallest Nash

equilibrium. Assume for the discussion that F∆ = {x ∗,y∗}. Since these two equilibria are ordered,
say y∗ ≥ x ∗, it is in the interest of all market participants � banks, depositors, bondholders � to

choose the Nash equilibrium that minimizes the market impact since it also minimizes the number of

insolvent banks. As noted by [Fudenberg and Tirole, 1991] in their well-known textbook on game

theory, choosing a particular equilibrium relies on some mechanism that leads all the banks to

expect the same equilibrium, which thus becomes the focal point. In general, the explanation of

this choice is based on preplay communication, that is, on the possibility for the banks to �talk�

before the game. As usual in the literature, when Nash equilibria are Pareto ranked, we make here

the assumption that banks are able to coordinate on the Pareto-dominant equilibrium6, that is, on

the smallest Nash equilibrium within our model. Since supervisors monitor �nancial stability and

are reluctant to let large institutions fail, the smallest Nash equilibrium is clearly also the preferred

solution of regulatory public institutions. In such a case, since each bank expects the rest of the

banking sector to choose the smallest one, it is naturally a focal point.

3.3 Case of no price impact

In this section, we assume that there is no price impact, that is, 1
Φ = 0. In this case, the liquidation

problem turns out to be very simple since the problem is not anymore strategic. In such a situation,

6In [Fudenberg and Tirole, 1991] paragraph 1.2.4 entitled Multiple Nash equilibria, Focal points and Pareto Opti-

mality , they o�er an example of a particular game in which players may not choose the Pareto dominant equilibrium

but rather the risk dominant one, which is Pareto dominated.
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when ∆ ∈ (∆sale
i ,∆fail

i ), after deleveraging, the RBC of bank i is equal to

θi,t+1(xi) =
Ei,t − qi∆Pt

αiqiPt(1−∆)(1− xi)
(37)

and the numerator of equation (37) is invariant with respect to xi. Since the denominator is a

decreasing function of xi that converges to zero, there exists a unique solution x∗i < 1 such that

θi,t+1(x∗i ) = θmin. The solution is equal to

x∗i = 1−

[
∆fail
i −∆

αi(1−∆)θmin

]
< 1 (38)

The following proposition is a direct consequence of the above.

Proposition 2 In the absence of price impact, the optimal portion of the risky asset to liquidate

for each bank i = 1, ..., p as a function of ∆ can be written as:

• If ∆ ≤ ∆sale
i , then x∗i = 0

• If ∆sale
i < ∆ < ∆fail

i , then

x∗i = 1−
(

1−∆sale
i

1−∆

)(
∆fail
i −∆

∆fail
i −∆sale

i

)
(39)

• If ∆ ≥ ∆fail
i then x∗i = 1

Denote x+ := max{x; 0} and recall that the payo� of a call option with strike price K when the

underlying asset is equal to x is equal to (x−K)+. For a given bank i, the amount liquidated (in

dollars) is equal to x∗i qiPt(1−∆) and, given equation (39), the amount liquidated is equal to:

qiPt

(
1−∆fail

i

∆fail
i −∆sale

i

)[
(∆−∆sale

i )+ − (∆−∆fail
i )+

]
︸ ︷︷ ︸

Difference between two call options

−qiPt(∆−∆fail
i )+ (40)

This amount liquidated can actually be expressed as the di�erence between two call options,

where ∆ plays the role of the underlying asset and the thresholds ∆sale
i and ∆fail

i the role of the

strike prices. Equation (40) thus shows that the amount liquidated is the di�erence of two convex

functions. This means that the amount liquidated is (highly) convex when ∆ is close to ∆sale
i . We

provide empirical examples of this convexity e�ect in the empirical section of this paper.

3.4 Case with positive price impact: characterization of Nash equilibrium for

a small shock

Let us now characterize the Nash equilibrium in the case of a small shock, when all banks sell a

portion of the risky asset and survive the deleveraging process, that is, when for all 1 ≤ i ≤ p:

∆fail
i > ∆(1 )⇐⇒ Ei − qiPt∆−

Qtot
Φ

qiPt(1−∆) > 0 (41)
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where 1 := (1, ..., 1). The above inequality is equivalent to:

∆ <
∆fail
i − Qtot

Φ

1− Qtot

Φ

(42)

and note that the rhs of equation (42) is positive for bank 1 (and thus for all banks) when Φ high

enough. Recall that x∗i is the optimal portion of risky asset liquidated by bank i (at equilibrium)

when there is a positive price impact, i.e., when 1
Φ > 0. It should be clear that for each i = 1, ..., p,

x∗i ≥ x∗i . Let Q∗ =

p∑
i=1

x∗i qi be the total amount liquidated when the price impact is positive

and let Q∗ =

p∑
i=1

x∗i qi be this total amount liquidated when there is no price impact, where x∗i is

given by proposition 2. Since x∗i ≥ x∗i as long as the price impact is positive, the characterization

of δx∗i := x∗i − x∗i would be a valuable result to (better) understand the sensitivity of δx∗i as a

function of the parameters of our model and hence quantify, in a tractable manner, the increase

in �re sales due to feedback e�ects. It is precisely the aim of the following proposition to provide

such a characterization. Recall that ∆fail and ∆
sale

are de�ned respectively in equations (17) and

(18). In the following proposition, given the shock, it is assumed that each bank needs to sell a

positive portion of the risky asset but also that each bank survived the deleveraging process (at

equilibrium). As a result, at time t + 1, θi,t+1(.) = θmin for all 1 ≤ i ≤ p and this property allows

us to make further computation.

Proposition 3 Assume that the initial shock ∆ > 0 is such that:

∆
sale

< ∆ <
∆fail − Qtot

Φ

1− Qtot

Φ

(43)

Then

x∗i = x∗i +

(
Q∗

Φ

1−∆fail
i

θminαi(1−∆)

)
+ o

(
1

Φ

)
(44)

so that the total quantity sold is equal to

Q∗ = Q∗ ×

(
1 +

1

Φ

p∑
i=1

qi(1−∆fail
i )

θminαi(1−∆)

)
+ o

(
1

Φ

)
(45)

Proof. See the appendix.

In the case of a small shock, the above proposition shows that when all the banks remain

solvent after the deleveraging process, x∗i can be expressed as the sum of x∗i , the optimal portion to

liquidated when there is no price impact, and a positive quantity which depends on the parameters

of the model only. From equation (44), everything else equal, when the size of the shock ∆ increases,

the optimal portion of the risky asset liquidated by each bank i increases while when θmin (or αi)

increases, it decreases. Finally, as expected, x∗i tends to x
∗
i in the limiting case in which Φ tends to

in�nity.
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3.5 Price mediated-contagion and ampli�cation e�ect of a marginal shock

Within our model, due to price impact, the liquidation process of a given bank may adversely

impact the capital ratio of other banks, which may ultimately lead to the failure of some of them

through price-mediated contagion. Because of the heterogeneity in banks' capital structures and

regulatory weights, captured by the distribution of thresholds (∆sale
i ,∆fail

i )1≤i≤p, the fraction of

insolvent banks is a non-linear function of the shock size even when there is no price impact. To

correctly measure the ampli�cation e�ect associated to a marginal shock, we thus consider the no

price impact case as a benchmark. Assume for instance that the marginal shock is equal to 100 bps.

If the resulting marginal fraction of insolvent banks is equal to 5% when there is no price impact,

one can only say that there is an ampli�cation e�ect in the positive price impact case if the marginal

fraction of insolvent banks is greater than 5%.

Assume that the initial shock is such that ∆ = ∆fail
j for some j ∈ {1, 2, ..., p − 1} and denote

λ(∆∗(∆, 1
Φ)) := λ∗(∆, 1

Φ) the fraction of insolvent banks at equilibrium. When there is no price

impact, that is 1
Φ = 0, the subset of banks that are insolvent is equal to {1, ..., j} so that λ∗(∆, 0) = j

p .

When the initial shock increases by δ ≥ 0, that is, the shock is now equal to ∆′ := ∆+δ, the fraction

of insolvent banks increases and is now equal to λ∗(∆ + δ, 0) = m
p , for some m ∈ {j, ..., p − 1}.

The marginal fraction of insolvent banks due to the marginal shock δ is positive and equal to

λ∗(∆ + δ, 0) − λ∗(∆, 0) = m−j
p ≥ 0. Of course, this quantity is positive not because of price-

mediated contagion due to the existence of a positive price impact, but simply because a larger

shock, depending on the distribution of the threshold, triggers additional failures. To measure the

possible ampli�cation of the marginal fraction of insolvent banks due to the existence of a positive

price impact, it is thus natural to consider the following ratio

I
(

∆, δ,
1

Φ

)
=
λ∗(∆ + δ, 1

Φ)− λ∗(∆, 1
Φ)

λ∗(∆ + δ, 0)− λ∗(∆, 0)
≥ 0 (46)

which is indeed a ratio of two slopes. We shall say that there is an ampli�cation e�ect at (∆, δ, 1
Φ)

if I
(
∆, δ, 1

Φ

)
> 1. Let δ = 100 basis points and assume that I(.) = 2. This means that the

marginal fraction of insolvent banks when there is a price impact is doubled compared to the case

without price impact7. Note that when this measure of ampli�cation is greater than one, it may

be thought of as a particular measure of �nancial fragility (of a �nancial system) as de�ned in

[Allen and Gale, 2004].

Note that it may of course be the case that I(.) < 1, and indeed equal to zero. To see this, let

∆Syst(
1
Φ) be the smallest shock ∆ ≤ ∆

fail
such that all the banks are insolvent at equilibrium, ,

i.e., x∗i = 1 for each i = 1, ..., p. Assume that ∆Syst < ∆
fail

and that both ∆ and ∆ + δ belong to

(∆Syst,∆
fail

). It thus follows that λ∗(∆, 1
Φ) = λ∗(∆ + δ, 1

Φ) = 1 so that I(.) = 0. When the initial

7In the same way, it would be possible to de�ne a similar indicator when the market impact increases for a constant

shock.
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shock is large enough and/or the price impact is important, most of the banks are already insolvent

for the initial shock so that one naturally expects no ampli�cation e�ect in such a case.

4 Empirical analysis : Banks participating to the 2015 CCAR stress

tests

Stress testing is the analysis of how a generic entity (or object) such as a human body, a car, a

bank... or a system of interacting entities such as a physical, biological or a �nancial system copes

under pressure. For the speci�c case of a banking system, composed with interacting banks, there

are actually various ways to design a stress test to assess its resilience. The stress test can be done on

a micro prudential basis (bank by bank) or on a macro prudential basis, on a forward looking basis

(based on projections of revenues, losses, capital, RWA in a given scenario) or on a point in time

basis, on a speci�c asset class of assets (banking book or trading book) or on all the asset classes

etc... While supervisory stress tests were �rst coordinated in the U.S. right after the events of 2008,

as recalled in [Dent et al., 2016], internal stress tests have been conducted by banks themselves for

risk management purpose since the early 1990s in order for the bank to (better) assess their trading

portfolio's losses. This practice of stress tests was actually formalized in 1996 in line with the

market risk amendment to Basel accords (see for instance [Dimson and Marsh, 1997]). Since the

last few years, American and European banks are required to follow the guidelines of supervisors to

conduct their stress tests. These supervisory stress tests (see [Hirtle and Lehnert, 2015] for a recent

overview) are now described and sometimes criticized in various recent academic papers such as

[Acharya et al., 2014], [Borio et al., 2014], [Flannery et al., 2017], [Greenlaw et al., 2012].

4.1 Comprehensive Capital Analysis and Review (CCAR) 2015

In their public document entitled CCAR 2015 summary instructions and guidance8, the Board of

Governors of the Federal Reserve System reports that the annual CCAR is �an intensive assessment

of the capital adequacy of large, complex U.S. bank holding companies (BHC) and of the practices

these BHC use to assess their capital needs�. Each bank with consolidated assets of $50 billion or

more is required to participate and there is a total of 31 banks participating. As expected, one

�nds the well-known active international banks (identi�ed as GSIBs) such as JP Morgan, Citigroup

or Bank of America with consolidated assets higher than $1800 billion. But one also �nds smaller

banks such as Comerica Incorporated, Discover Financial Services or Zions Bancorporation with

consolidated assets lower than $100 billion. Overall, the document provides the general instructions,

qualitative and quantitative, required to perform the stress test. For instance, in section 3 entitled

Stress tests conducted by BHCs, the document reports that each bank must conduct its stress test

using �ve scenarios, three supervisory scenarios ranked by their severity (baseline, adverse, severely

8See [Federal-Reserve, 2015b].
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adverse) and two BHC-de�ned scenarios also ranked by their severity (baseline, stress). One also

learns from the document that the stress test is forward looking, from fourth quarter of 2014 to

fourth quarter of 2016 so that each BHC is required, as of September 30, 2014, to estimate quantities

such as revenues, losses, capital. Few BHCs (the six largest), with large trading operations, will

�be required to include a global market shock as part of their supervisory adverse and severely

adverse scenarios�. The interesting feature of this global market shock is that it is an exogenous

loss in the trading book that may reduce the (total) capital of the BHC, indeed Tier 1 capital.

An important feature of the regulatory stress tests is that the BHC is not assumed to decrease its

portfolio positions or RWAs due to losses from that global shock (static balance sheet assumption)

and this is the point that our approach disputes. Within our framework, we make the assumption,

as in the regulatory stress tests, that there is a point in time shock in the trading book. However,

we explicitly allow the bank to react. Right after a systemic shock, within our model, the unique

possibility for the bank to react is to sell a portion of its assets in order to comply with the regulatory

capital requirement and we quantify the resulted price-mediated contagion. In our view, the main

interest of the regulatory stress tests (American or not) as a macroprudential instrument is precisely

to be able to anticipate the contagion process that results from banks reactions, i.e., the vicious

circle between �re sales, price decrease and decrease in capital. But if banks are not allowed to

react, the stress test is unable to quantify this source of indirect contagion. But then, as does

[Goldstein, 2017] in his recent insightful book on stress testing and bank-capital reform, one can

naturally question the usefulness of these regulatory stress tests.

4.2 Calibration of the model and equilibrium computation

For all banks involved in the 2015 CCAR, we collected from Bloomberg the total equity, that is Tier

1 + Tier 2 equity, the risk-weighted assets and total assets as of �scal year end 2014. We display

our data in Table 7 in the appendix. It is important to note that all these data can also be retrieved

from the public annual report of each bank, available on their website. For the empirical analysis,

we make the assumption that the implied aggregate risk weight for each bank is given by equation

(8).

Within our model, the total equity Tier 1 plus Tier 2 corresponds to Ei,t and the risk-weighted

assets to αiqiPt. Moreover, the minimum ratio for total equity over risk-weighted assets is θmin =

8%. Following equations (8), (14) and (15), it is straightforward to calibrate the values of α, ∆sale

and ∆fail for each bank. We display these calibration results in Table (1). For example, the large

international bank JP Morgan Chase has total equity of $206 billion, risk-weighted assets of $1,619

billion and total assets of $2,572 billion. We �nd an implied risk-weight α = 63%, a �re sale

threshold ∆sale = 3.15% and an insolvency threshold ∆fail = 8.03%. This means that if JP Morgan

Chase's assets lose more than 8.03%, the bank will be insolvent. If assets lose more than 3.15%,

but less than 8.03%, JP Morgan Chase will remain solvent but with a capital ratio below 8%. It

will thus have to engage in �re sales to bring back its capital ratio above 8%. From Table (1), one
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Implied risk weight and critical thresholds

Bank α ∆sale ∆fail

Ally Financial Inc 0.8612 0.0485 0.1141

American Express Company 0.8378 0.0683 0.1307

Bank of America Corporation 0.5997 0.0303 0.0768

BB&T Corporation 0.7690 0.0564 0.1144

BBVA Compass Bancshares, Inc 0.7747 0.0398 0.0993

BMO Financial Corp 0.3787 0.0247 0.0542

Capital One Financial Corporation 0.7710 0.0584 0.1164

Citigroup Inc 0.7017 0.0357 0.0898

Citizens Financial Group Inc 0.7976 0.0668 0.1263

Comerica Incorporated 0.9867 0.0268 0.1036

Discover Financial Services 0.8751 0.0854 0.1494

Fifth Third Bancorp 0.8498 0.0577 0.1218

HSBC North America Holdings Inc 0.4631 0.0367 0.0724

Huntington Bancshares Incorporated 0.8217 0.0489 0.1114

JPMorgan Chase &Co 0.6295 0.0315 0.0803

KeyCorp 0.9070 0.0576 0.1260

M&T Bank Corporation 0.8002 0.0616 0.1217

Morgan Stanley 0.5689 0.0503 0.0935

MUFG Americas Holdings Corporation 0.8507 0.0615 0.1254

Northern Trust Corporation 0.5721 0.0421 0.0859

Regions Financial Corporation 0.8278 0.0641 0.1260

Santander Holdings USA, Inc 0.5635 0.0401 0.0833

State Street Corporation 0.3934 0.0350 0.0654

SunTrust Banks, Inc 0.8538 0.0414 0.1069

The Bank of New York Mellon 0.4361 0.0218 0.0559

The Goldman Sachs Group, Inc 0.6661 0.0559 0.1063

The PNC Financial Services Group, Inc 0.8154 0.0690 0.1298

U.S. Bancorp 0.7893 0.0472 0.1073

Wells Fargo & Company 0.7364 0.0589 0.1143

Zions Bancorporation 0.7995 0.0707 0.1301

Table 1: Calibration
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can see that ∆sale = 2.18% and corresponds to the sale threshold of The bank of New York Mellon.

In the same vein, ∆
fail

= 14.94% corresponds to the insolvency threshold of Discover Financial

services.

Once the relevant quantities of our model have been calibrated, i.e., the implied weight and the

two thresholds of each bank, we consider the smallest Nash equilibrium under di�erent scenarios

(shock/price impact). In practice, while the market depth can be estimated using for instance daily

market data, e.g., [Kyle and Obizhaeva, 2016], we here consider a set of possible market depths,

ranging from very low to large ones. In what follows, the price impact is measured by Qtot

Φ .

To explicitly compute the Nash equilibrium, we make use of a �xed-point algorithm. De�ne the

[0, 1]p- valued sequence x(n) by x(0) = (0, ..., 0) and x(n+1) = f(x(n)) where f is de�ned in equation

(36). As f is non-decreasing and x(0) = (0, ..., 0), it is well-known that the sequence x(n) converges

to the smallest �xed point of f , that is, the smallest Nash Equilibrium. There are actually various

algorithms to �nd Nash equilibria in the literature. For instance, in [Echenique, 2007] (see also

[Bigi et al., 2013]) the author presents an algorithm that �nd all the pure strategy equilibria for

games with strategic complementarities, that is, the sequence x(n) converges to a Nash equilibrium

x∗ when n goes to in�nity. Note that the �rst step of our algorithm x(1) = f(x(0)) = f(0, ..., 0)

corresponds to the liquidation vector in a myopic setting, that is, if banks calculate their optimal

rebalancing strategy without taking into account the feedback from other banks, and which is used

for example in [Greenwood et al., 2015].

It is important to point out that our approach is based on calibration and not on econometrics

(see [Bajari et al., 2013] for an overview of game theory and econometrics). The parameters are not

estimated statistically but are rather implied (or calibrated) from the data contained in the annual

reports of banks using our model. It is thus similar in the spirit to the way an implied volatility

is computed from the observed price using the Black and Scholes model or to the way an implied

default probability is computed from the observed CDS spread using an intensity model. The main

advantage of our approach is that it is transparent and simple to reproduce.

4.3 Empirical results

We now examine empirically the impact of an exogenous shock on this banking system made of 30

US bank holding companies. We shall �rst consider liquidation and convexity e�ects and we shall

then discuss contagion.

Liquidation and convexity e�ects. Let us �rst discuss the case where asset market depth/liquidity

is in�nite, that is Φ =∞ or, equivalently, Qtot

Φ = 0. In �gure 4.3, the blue line displays the dollar size

of �re sales in the banking system (Y axis) as a function of the shock size ∆ (X axis). As expected,

when the shock ∆ on risky assets is such that ∆ ≤ ∆sale = 2.18%, all banks remain solvent and

with a regulatory capital ratio above 8% and there is no need to liquidate assets. Symmetrically,

when ∆ ≥ ∆
fail

= 14.94%, all banks become insolvent due to the size of the shock and are fully

24



liquidated. Between those two thresholds, as opposed to the case of a single bank in which �re sales

increase linearly with ∆, we observe a non-linear relationship between �re sales and shock size in

the case of a system with multiple banks. The volumes liquidated turn out to be highly convex for

shock slightly above ∆sale = 2.18%. For instance, the volume of �re sales when ∆ = 6% is equal to

$7,103 billion, which is much more than twice the volume of �re sales when ∆ = 6%
2 = 3%, which

is equal to $1,957 billion. This is due to the fact that the larger the shock, not only the larger the

volumes liquidated by a given bank, but also the greater the number of banks engaging in �re sales.

From a regulatory perspective, our model enables to estimate such convexity e�ects and, more

generally, the endogenous reaction of the banking system to an exogenous shock and hence anticipate

potential destabilizing loops in a macro-prudential context. In order to avoid too large deleveraging

phenomenon, the regulator could temporarily decrease capital requirements for banks after a large

shock, that is decrease θmin. Our approach provides a simple theoretical framework together with

numerical results that enable a regulator to assess the capital requirement relief needed for a given

constraint. Consider once again the no price impact case and let us assume that the regulator would

like (arbitrarily) to limit the volume of �re sales when ∆ = 6% to $6,000 billion. We know that

if θmin = 8%, liquidations will amount to $7,103 billion. We �nd numerically that the regulator

should lower its capital requirement to θmin = 6.75% in order to constrain the �re sales volume to

$6,000 billion when ∆ = 6%. A similar analysis can be obviously done when the price impact is

positive.

Consider now the case in which the price impact is positive. Figure 4.3 displays the volume of

�re sales in the banking system as a function of ∆ for di�erent values of Qtot

Φ . As expected, we

�nd that the greater the size of the banking system compared to asset market depth, the greater

the volume of �re sales following a given exogenous shock ∆. Quite interestingly, one can see from

�gure 4.3 that the excess �re sales due to market frictions are maximal for intermediate shocks.

For instance, for an exogenous shock ∆ = 6%, the volume of �re sales when Qtot

Φ = 3% is doubled

compared to the case without price impact. When banks have large positions compared to asset

liquidity, market frictions are so important that any bank that starts deleveraging its portfolio is

going to have a very large impact on asset prices and lead to a contagion of defaults (see green

line in �gure 4.3). This extreme behavior is actually caused within our model by the fact that

liquidations all take place at the same date t+ 1 whatever their size and price impact. As already

said, in practice, to avoid this kind of problem in which each bank liquidates the same asset at the

same time, regulators may temporarily decrease the required RBC.

Ampli�cation e�ect. In table 2, we compute from table 8 (see the appendix) the possible

ampli�cation due to a marginal shock (see equation 46). It is for an intermediate shock size and price

impact that the ampli�cation e�ect is the highest. Consider once again an initial shock ∆ = 6%

and assume that its size is increased by 100 basis points. Without price impact, the fraction of

insolvent banks increases from 6.6% to 10% (see table 8). With a price impact of 5%, this fraction
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I(∆, δ = 100bps, Qtot

Φ )

∆1 to ∆2 || Qtot

Φ 1% 3% 5% 6.75% 8.5%

5% to 6% 1 1.5 1.5 3 3

6% to 7% 2 3 7 7 0

7% to 8% 3.8 2.5 1.5 0 0.5

8% to 9% 0.5 1.25 1 0.25 0

9% to 10% 2.5 4 0 0 0

10% to 11% 1.25 0.25 0.25 0 0

11% to 12% 1.2 0.2 0 0 0

Table 2: Ampli�cation e�ect

increases now from 40% to 63.33%, which means that the fraction of insolvent banks is multiplied

approximately by 7 i.e., I = 0.633−0.4
0.1−0.066 ≈ 7. Table 2 provides the di�erent values of the index I in

various scenarios and one can see that for moderate initial shocks and moderate price impacts, in

general, I is greater than one. However, when the price impact is high (say higher than 7%) and

when the initial shock is large (say greater than 9%), there is no ampli�cation e�ect because most

of the banks are already insolvent from the initial shock. In such a case, when the size of the shock

is increased by 100 bps, this marginal shock has virtually no consequence and this explains why I
is close to zero or even equal to zero.

4.4 GSIB capital surcharge

In this section, we examine what would happen if GSIB capital surcharges as of 2016 were already

fully implemented in 2014.

On macroprudential regulation. The purpose of macroprudential regulation is to limit the

likelihood and costs of contagion [Greenlaw et al., 2012] (see also the policy paper of [Clerc et al., 2016]).

In the academic literature, various macroprudential tools such as time varying capital, contingent

capital or higher quality capital have indeed been considered [Hanson et al., 2011]. Few years ago,

the Basel Committee proposed a methodology to classify a bank as a global systemically important

bank (GSIB) or not. This methodology is based on a �nal score supposed to re�ect the systemic

impact of the bank, and is computed as a function of indicators such as the size and interconnexions

of the bank ([Board, 2017]). A bank classi�ed as a GSIB will be required, depending upon its �nal

score, to have a higher loss absorbency (HLA), or capital surcharge, expressed in percentage of the

RWA, that is, GSIBs are required to hold additional capital. The �nal score is expressed in basis

points and the HLA is a piecewise constant function; as long as the �nal scores falls between two

thresholds, typically x and x+ 100 bps, the HLA of the bank is constant and is equal to one of the

�ve buckets 1%, 1.5%, 2.%, 2.5%, 3.5% (in 2017, the top bucket 3.5% is still empty). This capital
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Figure 2: Volume of �re sales in Bn dollars in the banking system (Y axis) as a function of shock

size ∆ (X axis)

surcharge requirement began in January 2016 and will be fully implemented in 2019. The 2016

list of American banks classi�ed as GSIBs can be found in a document published by the Financial

Stability Board9.

The situation as of 2014. Consider a shock ∆ = 6%. From table 1, only two banks, namely

BMO Financial corp and The Bank of New York Mellon, have an insolvency threshold ∆fail lower

than 6%. When there is no price impact, i.e., Qtot

Φ = 0%, only these two banks fail. Since there are

30 banks, the fraction of insolvent banks thus is equal to 6.66%, which is the number reported in

table 8 (see the appendix) for this initial shock of 6%. When the price impact is now equal to 3%,

i.e., Qtot

Φ = 3%, seven banks are actually insolvent so that the fraction of insolvent banks is equal

to 23.3%. Among them, we �nd the well-known large international �nancial institutions Bank of

America, HSBC North America Holding, JP Morgan Chase but we also �nd, beside BMO Financial

corp and The Bank of New York Mellon, banks such as Santander Holding USA and State Street

9See the website of the FSB, http://www.fsb.org/wp-content/uploads/2016-list-of-global-systemically-important-

banks-G-SIBs.pdf
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Figure 3: Proportion of insolvent banks (Y axis) as a function of shock size ∆ (X axis)

Corporation, whose total assets are much lower (respectively equal to 118 and 274 billion of dollars).

It is interesting to note that out of the seven banks that are insolvent under our scenario (initial

shock of 6%, price impact of 3%), six are indeed classi�ed as GSIB. The subset of insolvent banks

in our model thus is a good predictor of the subset of banks identi�ed as GSIBs, including banks

with a total value of the assets much lower than the well-known large international banks.

The situation of 2014 assuming the 2016 GSIB capital surcharge. It is now interesting

to conduct our exercise: as a function of the price impact, what can be said of the fraction of

insolvent banks at equilibrium if the capital surcharge would have been fully implemented in 2014

? From the information contained in the 2016 list, the capital surcharge as a function of the RWA

is equal to 2.5% for Citigroup and JP Morgan Chase, 2% for Bank of America and HSBC, 1.5%

for Goldman Sachs and Wells Fargo, 1% for Bank of New York Mellon, Morgan Stanley, Santander

Holding USA and State Street. To be very concrete, as of 2014, the RWA of Bank of America is

equal to $1,262 Billion (see table 7) and is allocated to the bucket 2%. As a result, the additional

bu�er is equal to $25 Billion so that the new total capital is equal to $187 Billion instead of $162

Billion.
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When the initial shock is equal to 6% and the price impact equal to 3%, beside BMO Financial

corp and The Bank of New York Mellon, only State Street Corporation defaults, which means that

only three banks are now insolvent, that is, 10% of the banks are insolvent. Quite interestingly,

the large international banks are able to survive at equilibrium. Compared to the no capital bu�er

case, the di�erence is important as the fraction of insolvent banks is reduced by more than 50%,

i.e., from 23% to 10%.

5 Fine tuning the price-mediated contagion framework : theory

and empirical analysis

Up to now we have made the assumption that each bank is exposed to a single marketable asset

subject to market risk (and possibly to counterparty risk). As a result, the model can be easily

calibrated as the unique regulatory risk weight is implied from the ratio of the risk-weighted assets

and total assets. This single risky asset actually provides an upper bound to the �re sale problem

since in practice, many banks are also exposed to loans, which are risky non marketable assets that

are di�cult to sell in the short-run.

We now consider a model in which a given bank is exposed not only to a marketable asset

subject to market risk but also to a non-marketable asset (loans) subject to credit risk. As opposed

to the marketable asset, which is marked to market, the value of the loans is not. Instead, the value

reported in the balance sheet is derived from a discounted cash-�ow model or an amortized cost

method and may not coincide with its resale value. From the well-known adverse selection problem

([Diamond and Rajan, 2011]), loans are highly illiquid and their resale value is typically low (at

least in the short-run). We shall make here the assumption that, when considering a short-term

horizon to restore its risk-based capital ratio, the bank is unable to �nd a buyer so that the resale

value of the loans is equal to zero. A bank for which its risk-based capital ratio is lower than the

minimum required after the adverse shock thus can only sell a fraction of its marketable assets.

5.1 The two risky assets model

In the one risky asset model, the total value of the assets is equal at time t to Ai,t = vi+Ptqi, where

vi is the cash and qi is the quantity of the risky marketable asset held by bank i. In the two risky

assets model, each bank i has now a set of loans (banking book) whose value at time t is denoted

V Bank
i,t , and a marketable asset (trading book) whose value is equal V Trad

i,t = q′iPt, where q
′
i is the

quantity of the risky marketable asset held by the bank in the two-assets model10. The total value

of the assets thus is equal to

Ai,t = vi + V Bank
i,t + V Trad

i,t (47)

The risk-weighted assets thus is equal to

10We typically add a prime to each quantity to indicate that it is computed in the two risky assets model.
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RWAi,t = RWABank
i,t + RWATrad

i,t (48)

and is de�ned as the sum of the risk-weighted assets of the banking book (RWABank
i,t ) and the

risk-weighted assets of the trading book (RWATrad), where

RWATrad
i,t = αi V

Trad
i,t (49)

RWABank
i,t = βi V

Bank
i,t (50)

In this framework, αi is the (average) risk weight of the trading book while βi is the (average) risk

weight of the banking book. The risk-based capital ratio of each bank i at time t is equal to

θ′i,t :=
E′i,t

RWAi,t
=

Ai,t −Di

RWATrad
i,t + RWABank

i,t

=
Ai,t −Di

αiV Trad
i,t + βiV Bank

i,t

> θmin (51)

and is (as in the one asset model) assumed to be greater than the minimum required. Since the

total value of the assets Ai,t but also the total debt Di coincide in both models, it thus follows that

Ei,t = E′i,t (52)

Assume now that that at time t+, the price of the marketable asset is hit by a shock ∆ so that

its price at time t+ is equal to Pt(1−∆). Noting that the value of the cash vi as well as the value

of debt Di are not impacted by the shock ∆, at time t+, the balance-sheet of bank i is given below.

Balance-sheet at time t+ before deleveraging

Assets Liabilities

Cash: vi Debt: Di

Banking book V Bank
i,t

Trading book V Trad
i,t+ = q′iPt(1−∆) Equity: Ei,t+

Ai,t+ Ei,t+ +Di

The risk-based capital ratio of the bank i at time t+ thus is equal to

θ′i,t+(∆) =
max{Ei,t − q′iPt∆; 0}

αiq′iPt(1−∆) + βiV Bank
i,t

(53)

and, when positive, is a decreasing function of the shock size.

Lemma 5 Each bank i ∈ B is characterized by the two following critical thresholds.

∆′salei : =

∆′faili − θmin
(
αi +

βiV
Bank
i,t

q′iPt

)
1− αiθmin

> 0 (54)

∆′faili : =
E′i,t
q′iPt

> 0 (55)

with ∆′salei < ∆′faili
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Let x′i ∈ [0, 1] be the fraction of the marketable asset sold in the two assets model. After

deleveraging, the balance sheet is as follows.

Balance-sheet of bank i at date t+ 1 after deleveraging

Assets Liabilities

Cash: vi + x′iq
′
iPt+1(x ',Φ) Debt: Di

Banking book : V Bank
i,t

Trading book: (1− x′i)q′iPt+1(x ',Φ) Equity: E′i,t+1

Ai,t+1 = vi + V Bank
i,t + q′iPt+1(x ',Φ) E′i,t+1 +Di

where Pt+1(x ′,Φ) is given as before by equation (19) (see assumption 3). The regulatory capital

ratio of bank i at time t+ 1, after deleveraging, is equal to

θ′i,t+1(x ',∆) =
Ei,t+1(x ')

αiqiPt+1(x ',Φ)(1− x′i) + βiV Bank
i,t

(56)

where, as before, we make the natural convention that θi,t+1(x ,∆) = 0 when xi = 1 and Ei,t+1 = 0.

From a pure mathematical point of view, although the risk-based capital ratio in equation (23) is

not equal to equation (56), nothing is changed regarding the conditions of existence (and uniqueness)

of a Nash equilibrium.

From a �nancial point of view, under the assumption that the banking book can not be liq-

uidated, there is however an important di�erence between the one risky asset model and the two

risky assets model in the no price impact case. In the �rst one, as long as bank i is still solvent

after the shock, it is always able to restore its regulatory capital ratio back above the minimum

required because the risk-weighted assets tends to zero when the fraction of the risky asset sold

tends to one. This is however not anymore true in the two risky assets model. Assume as before

that E′i,t+ = Ei,t−V Trad
i,t ∆ > 0 and recall that V Trad

i,t = q′iPt. When the bank sells a fraction x′i > 0,

the RBC is equal to

θ′i,t+(∆, x′i) =
Ei,t − V Trad

i,t ∆

αiq′i(1− x′i)Pt(1−∆) + βiV Bank
i,t

(57)

In the limiting case in which x′i tends to one, the RBC tends to
Ei,t−V Trad

i,t ∆

βiV Bank
i,t

<∞ and this limit

might be lower than θmin. It is actually the case when the banking book is large enough compared

to the trading book. In such a case, when the bank sells 100% of its trading book, since most

of the RWA is due to credit risk, the RWA after deleveraging remains close to the RWA before

the deleveraging, so that the risk-based capital ratio (after deleveraging) remains very close to the

risk-based capital ratio (before deleveraging), lower than θmin. One can thus compute a critical

shock size denoted ∆crit such that
Ei,t−V Trad

i,t ∆crit

βiV Bank
i,t

= θmin and such that any shock ∆ above ∆crit

will leave the bank unable to restore its capital ratio above θmin even if it solvent and liquidates its
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Severely adverse scenario

Bank holding company Actual Q3 Proj. min. 2015-2016

Bank of America 15.8% 10.7%

Citigroup 17.7% 9.4%

The Goldman Sachs 19.8% 7.6%

JP Morgan Chase & Co 15% 8.36%

Morgan Stanley 19.8% 7.4%

Wells Fargo & Company 15.6% 10.5%

Average 17.26% 9%

Table 3: Banks' capital ratios

trading book in full. It is easy to show that this critical shock is equal to

∆
′crit =

Ei,t − θminβiV Bank
i,t

V Trad
i,t

(58)

5.2 Empirical analysis : the six American banks with signi�cant trading oper-

ations

Benchmark scenario As part of the regulatory stress-test, in addition to the other scenarios

(adverse and severely adverse), the six American BHCs with signi�cant trading operations, namely

Bank of America Corporation, Citigroup inc, The Goldman Sachs Group, Inc, JPMorgan Chase &

Co, Morgan Stanley and Wells Fargo & Company, all classi�ed as GSIBSs (although in a di�erent

bucket), are also required to assume a global market shock. As already seen, this shock is applied

to BHCs' trading book (private-equity positions and counterparty exposures) as of a �point in

time, resulting in instantaneous loss and reduction of capital� and is thus identical to the shock

we assume in the trading book of each bank within our model. The overall loss for each bank in

the severely adverse scenario is equal to the net income before taxes which is negative. This loss

ranges from $19 billion for Morgan Stanley to $54.8 billion for JPMorgan11. We reproduce in table

3 the information found p 15 in the document CCAR 2015: Assessment Framework and Results

(see [Federal-Reserve, 2015a]) for the six banks under consideration.

Two banks out of the thirty one, namely Goldman Sachs and Morgan Stanley, have a (minimum

projected) risk-based capital ratio lower than the minimum required (i.e., 8%) in the severely adverse

scenario. From table 3, before the stress, the average risk-based capital ratio is equal to 17.26%

and this average falls to approximately 9% in the severely adverse scenario. In terms of risk-based

capital ratio, the average loss is equal to approximately 8% which gives us a natural benchmark to

set the initial shock ∆.

11See [Federal-Reserve, 2015c]
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Implied risk weights and critical thresholds

BHC||Quantities α β ∆sale ∆crit ∆fail

Bank of America 0.494 0.8460 0.168 0.201 0.369

Citigroup 0.341 0.898 0.1068 0.131 0.27718

The Goldman Sachs 0.708 0.722 0.101 0.152 0.1919

JP Morgan Chase& Co 0.365 0.773 0.0926 0.11913 0.2409

Morgan Stanley 0.4737 0.7211 0.0928 0.12726 0.174

Wells Fargo & Company 0.366 0.85 0.270 0.291 0.542

Table 4: Parameters of the two risky assets model

Risk-based capital ratio after the shock but before liquidations

Bank holding company Actual Q4 ∆ = 5% ∆ = 9% ∆ = 10% ∆ = 11% ∆ = 12%

Bank of America 14.2% 12.4% 11% 10.6% 10.2% 9.8%

Citigroup 12.8% 10.6% 8.8% 8.3% 7.9% 7.4%

The Goldman Sachs 15.9% 12.2% 8.9% 8.1% 7.3% 6.4%

JP Morgan Chase& Co 12.8% 10.2% 8.1% 7.6% 7.1% 6.6%

Morgan Stanley 16.4% 12% 11% 7.3% 6.4% 5.4%

Wells Fargo & Company 15.5% 14.1% 13% 12.8% 12.5% 12.2%

Average 14.6% 11.9% 10.1 % 9.1 % 8.56 % 7.9 %

Table 5: Situation before liquidation

Model calibration and shocks assumption. We explain in the appendix the methodology

used to derive from a bank's annual report its balance sheet split by trading and banking books

(V Trad and V Bank) and their associated risk-weighted assets (RWATrad and RWABank). Once these

quantities are calibrated, the two weights α and β are easy to obtain. We report in table 4 these

two implied regulatory risk weights and the three critical thresholds for each bank.

Within our model, as in the one asset model, we start with risk-based capital ratios 2014:Q4

(fully loaded) and we obtain table 5 as a function of the severity of the shock ∆ before the possible

bank's reaction. The various risk-based capital ratios thus do not depend upon the price impact

(or market liquidity) measured by Qtot

Φ .

From table 5, one can clearly see that as long as the shock is lower than 9%, the risk-based capital

ratio remains higher than the required minimum for each bank so that there is no liquidation, i.e.,

no �re sale. However, when the shock is equal to 10%, the average risk-based capital ratio falls

to 9.1% and two banks, namely JPMorgan and Morgan Stanley have a risk-based capital ratio

lower than the required minimum. Interestingly, a shock of 10% within our framework yields a

result identical to the CCAR in the severely adverse scenario. In both cases, two banks are under
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Risk-based capital ratio after liquidations at equilibrium (QΦ = 5%)

Bank holding company Actual Q4 ∆ = 10% ∆ = 11% ∆ = 12%

Bank of America 14.2% 9.53% 9.06% 8.64%

Citigroup 12.8% 8% 7.5% (insolv.) 6.88% (insolv.)

The Goldman Sachs 15.9% 8% 8% 8%

JP Morgan Chase& Co 12.8% 7.41% (insolv.) 6.6% (insolv.) 5.87% (insolv.)

Morgan Stanley 16.4% 7.85% (insolv.) 5.74% (insolv.) 3.85% (insolv.)

Wells Fargo & Company 15.5% 12% 11.64% 11.39%

Table 6: Situation after (possible) liquidation : equilibrium

capitalized (i.e., with a risk-based capital ratio lower than the required minimum) and the average

stressed risk-based capital ratio is equal to 9%. Within our model, the average loss in terms of

risk-based capital ratio is equal to 550 bps and thus is much lower than the 800 bps found in the

supervisory stress test. Table 6 shows the risk-based capital ratio at equilibrium, that is, after the

liquidation process, when the price impact is set to 5%.

In the two risky assets model, due to the existence of the banking book which can not be

liquidated, the risk-weighted asset of a given bank i does not tend to zero when xi tends to one. As

a result, and contrary to the one asset model, it may be the case that at equilibrium, the capital

ratio of an insolvent bank remains positive but lower than 8%.

Contagion of failures. In an early survey on the subject, [Pericoli and Sbracia, 2003] o�er

�ve possible de�nitions of �nancial contagion. Some of them involve spillover e�ects of volatility or

signi�cant comovements of prices12 but unfortunately, no de�nition turns out to be suitable for our

stress test model of the banking system.

Following [Elliott et al., 2014] (see also [Acemoglu et al., 2015]), it is more appropriate to de�ne

contagion in terms of cascade of failures after an exogenous shock. Since we work with a static model,

as in [Allen and Gale, 2000], contagion should rather be modeled as an equilibrium phenomenon.

Contagion of failures is said to occur when a subset of banks have their capital ratio greater than

the required minimum 8% after the shock but are insolvent at equilibrium, i.e., after the liquidation

process. Formally, such a contagion of failures is said to occur if there exists at least one bank i ∈ B
such that θi,t+(∆) > θmin and θi,t+1(x ∗,∆) < θmin. Note however that this de�nition does not rule

out the existence of a bank j 6= i such that θj,t+(∆) < θmin but such that θj,t+1(x ∗,∆) ≥ θmin.

The contagion of failures is made possible within our framework due to the existence of a positive

price impact when banks deleverage. Without positive price impact and/or without deleveraging,

contagion of failures makes no sense.

12See [Jayech, 2016] for a recent paper in which the authors investigate whether there is a contagion phenomenon

between the stock markets during the July-August-2011 stock market crash.
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Note importantly that such a contagion of failures can not be captured by the supervisory stress

tests since they do not take into account bank deleveraging. This contagion of failures can only be

partially captured by non-equilibrium �re sales models (e.g., [Greenwood et al., 2015]) since some

banks may be solvent after the �rst round of deleveraging but might be insolvent at equilibrium.

Consider a shock equal to 10%. From table 5, we know that before any liquidation, only two

banks are undercapitalized but solvent, JPMorgan and Morgan Stanley. Note that Goldman Sachs

and Citigroup have a risk-based capital ratio slightly above 8% so that they do not need to react.

However, since JPMorgan and Morgan Stanley must react (i.e., they have to sell a fraction of their

marketable assets to try to restore their risk-based capital ratio back above the required minimum),

these liquidations will impact the price of the marketable asset. Depending on the price impact, at

equilibrium, Goldman Sachs and Citigroup may also have to react. For Citigroup, when the price

impact (measured by Qtot

Φ ) is lower than 4%, no reaction is needed. However, when the price impact

is equal to 5%, to restore back its risk-based capital ratio, Citigroup is forced to sell an important

fraction of its holding, actually 87%. When the price impact is 6%, Citigroup is now unable to

restore its capital ratio and thus is insolvent, it must liquidate 100% of its holding. For Goldman

Sachs, as long as the price impact is lower than 2%, no reaction is required. As for Citigroup, when

the price impact is equal to 5%, the fraction of the marketable asset liquidated to restore back its

risk-based capital ratio is rather high (51%) and when the price impact is equal to 8%, Goldman

Sachs must sell almost 100% of its trading book (98.5%). When the price impact is equal to 9%,

Goldman Sachs is insolvent.

This analysis shows that price impact and, more generally, market liquidity are crucial ingredi-

ents for understanding contagion (at equilibrium) in a severe scenario. As we have seen, when the

price impact is low enough, typically lower than 5%, there is no contagion of failures since both Cit-

igroup and Goldman Sachs remain solvent at equilibrium (for very low price impact, even without

any liquidation at all). However, when this price impact is equal to 10%, Citigroup and Goldman

Sachs are unable to restore their capital ratio back above the minimum at equilibrium. In such a

scenario, the contagion of failures is important since two banks out of six (33%) fail at equilibrium

because of a pure price-mediated contagion e�ect. When one now considers a price impact equal

to 15%, Bank of America is also insolvent so that the contagion of failures increases up to 50%. It

is interesting to note that even when the price impact is equal to 15%, Wells fargo does not even

need to react. Our analysis suggests that Wells Fargo is by far the most resilient bank.

For such high price impact, price mediated contagion is a real issue which is unfortunately

not captured by supervisory stress tests. Our results could however be used to design the capital

surcharge against the contagion of failures generated by large �re sales.
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6 Conclusion

In this paper, we developed a stylized framework of strategic macro stress test in which banks are

hit by a common shock and may have to sell assets. This naturally leads to a game which strategic

complementarities for which we showed the existence of a Nash equilibrium and the way to choose

it when non-unique. We then explained how to calibrate the parameters of our model to public

data and studied empirically the set of American banks that were part of the regulatory stress as

of 2015 (CCAR), providing various comparative analyses as a function of shock size and/or asset

liquidity. Finally we explained how our framework can be used to draw macro prudential regulatory

measures such as the capital surcharge for GSIBs.
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7 Appendix A: proofs

Proof of lemma 1

When ∆ >
Ei,t

qiPt
, then

θi,t+(∆) = 0 (59)

When 0 ≤ ∆ ≤ Ei,t

qiPt
, then

θi,t+(∆) =
Ei,t − qiPt∆
αiqiPt(1−∆)

(60)

and

θ′i,t+(∆) =
αiqiPt(Ei − qiPt)
(αiqiPt(1−∆))2

(61)

which is negative under assumption 2. As a consequence, θi,t+(∆) is a decreasing function of ∆.

Proof of lemma 3

Part 1. We shall �rst prove the following Lemma:

Lemma A 1 Assume that ∆ < ∆fail
i and v1 ≤ v2. Then, for all xi ∈ [0, 1), θi,t+1(xi, v1,∆) ≥

θi,t+1(xi, v2,∆).

Proof. Consider �rst the case in which, for a given xi < 1, ∆fail
i −∆(xi, v2) > 0. Since v1 ≤ v2

and since ∆(xi, v) is an increasing function of v, it thus follows that ∆fail
i − ∆(xi, v1) > 0. It is

not di�cult to show that if v1 ≤ v2, then, θi,t+1(xi, v1,∆) ≥ θi,t+1(xi, v2,∆). Assume now that for

a given xi < 1, ∆fail
i − ∆(xi, v2) ≤ 0 so that θi,t+1(xi, v2) = 0. By de�nition, capital ratios are

positive and we have θi,t+1(xi, v1) ≥ θi,t+1(xi, v2) which concludes the proof of lemma 1 �

We can now prove part 1 of lemma 3. When BRi(v2,∆) = 1, we clearly have BRi(v1,∆) ≤
BRi(v2,∆). Assume that BRi(v2,∆) < 1 and note that this implies that ∆ < ∆fail

i .

• In the case where BRi(v2,∆) = 0, then we have θi,t+1(0, v2) ≥ θmin. Given lemma 1, this

means that θi,t+1(0, v1) ≥ θmin and so BRi(v1,∆) = 0 ≤ BRi(v2,∆).

• In the case where 0 < BRi(v2,∆) < 1, this implies that θi,t+1 (BRi(v2,∆), v2) = θmin. Given

lemma 1, this means that θi,t+1 (BRi(v2,∆), v1) ≥ θmin which implies that BRi(v1,∆) ≤
BRi(v2,∆) and concludes the proof �

Part 2.

The proof of part 2 is similar. One can show that for all v > 0, if ∆1 ≤ ∆2, then, for all

xi ∈ [0, 1), θi,t+1(xi, v,∆1) ≥ θi,t+1(xi, v,∆2) which implies part 2 of lemma 3. �
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Proof of Proposition 1 For an arbitrary shock ∆ and an arbitrary market depth Φ > 0, from

lemma 3, the best response BRi(x−i) of each bank i = 1, ..., p is an increasing function of x−i. By

letting f :=

p∏
i=1

BRi, f is a non-decreasing function from X to X, where X = [0, 1]p so that from

Tarski's theorem, F∆ is not empty and is moreover a complete lattice and this concludes the proof

of existence. Note that although the best response is unique in our model, the existence result

would work for a best response correspondence.

The proof that the subsets S∗ and D∗, when non empty, are composed with consecutive integers

relies on the two following lemma.

Lemma A 2 For all initial shocks ∆ > 0 and all equilibria x∗ ∈ F∆

1. if x∗i < 1, then, ∆(x∗) < ∆fail
i .

2. if x∗i = 1, then, ∆(x∗) ≥ ∆fail
i .

Proof Part 1. Consider a given equilibrium x ∗ ∈ F∆. If x
∗
i < 1, bank i is solvent, i.e., θi,t+1(x∗i , x

∗
−i) ≥

θmin, then, its total capital must be positive; Ei,t+1(x ∗) > 0. From the equivalence provided in

equation (27), it thus must be the case that ∆(x ∗) < ∆fail
i . Part 2. Assume that the contrary

is true, i.e., when x ∗ := (x∗i = 1, x∗−i), ∆(x ∗) < ∆fail
i . From equation (27), this means that

the total capital Ei,t+1(x ∗) > 0. But then, since the total capital is positive for each xi ∈ [0, 1],

given x∗−i ∈ [0, 1]p−1, there exists x∗i < 1 such that θi,t+1(x∗i , x
∗
−i) = θmin, and this contradicts the

optimality of the best response x∗i := BRi(x
∗
−i) = 1.�

Lemma A 3 For all initial shocks ∆ > 0 and all equilibria x∗ ∈ F∆

1. if there exists 0 ≤ i1 ≤ p such that x∗i1 < 1, then x∗i < 1 for all i ≥ i1

2. if there exists 0 ≤ i0 ≤ p such that x∗i0 = 1, then x∗i = 1 for all i ≤ i0

Proof Part 1 Consider a given equilibrium x ∗ ∈ F∆. Assume that x∗i1 < 1 and consider i ≥ i1. Since
x∗i1 < 1, this means that the equity of bank i1 at equilibrium is positive, that is ∆fail

i1
−∆(x ∗) > 0.

Since ∆fail
i ≥ ∆fail

i1
, it thus follows that for each i ≥ i1, ∆fail

i1
−∆(x ∗) ≥ 0. Part 2. Assume that

x∗i0 = 1 and consider i ≤ i0. As x∗i0 = 1, this means that the equity of bank i0 at equilibrium is

equal to zero, that is ∆fail
i0
−∆(x ∗) ≤ 0. Since ∆fail

i ≤ ∆fail
i0

, it thus follows that for each i ≤ i0,

∆fail
i0
−∆(x ∗) ≤ 0 �

That D∗ and S∗, when non empty, are composed with consecutive integers is a direct conse-

quences of the above lemmas and note that the existence of i∗ := i(x ∗) depends on the equilibrium

x ∗, i.e., i(x ∗) ≤ i(y∗) if x ∗ ≤ y∗ �
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Proof of Proposition 3 Given the assumption, we know that for all 1 ≤ i ≤ p, 0 < x∗i < 1,

which means that the capital ratio of each bank at date t+ 1 is equal to θmin. From equation (26),

θi,t+1(.) = θmin for all i is equivalent to

∆fail
i −∆− Q∗

Φ (1−∆)

αi(1− x∗i )(1−∆)
(

1− Q∗

Φ

) = θmin i = 1, 2, ..., p. (62)

and this implies that:

qi − x∗i qi =

[
∆fail
i −∆− Q∗

Φ (1−∆)
]
qi

θminαi(1−∆)
(

1− Q∗

Φ

) i = 1, 2, ..., p. (63)

and, summing for i = 1 to p, we obtain that:

p∑
i=1

qi −Q∗ =

p∑
i=1

[
∆fail
i −∆− Q∗

Φ (1−∆)
]
qi

θminαi(1−∆)
(

1− Q∗

Φ

) (64)

Equation (64) remains an implicit function as Q∗ appears both on the lfs and rhs. Writing (64) as

Q∗+

p∑
i=1

[
∆fail
i −∆− Q∗

Φ (1−∆)
]
qi

θminαi(1−∆)
(

1− Q∗

Φ

) −
p∑
i=1

qi = 0, it reduces to a quadratic equation in Q∗. It thus

follows that Q∗ is the root of a quadratic equation that actually depends on Φ in a smooth manner,

which implies that Q∗ is a smooth function (i.e., regular) of Φ. Recall that when Φ =∞, we know

that Q∗ = Q∗ =

p∑
i=1

xi
∗qi so that, from equation (38), we have:

Q∗ =

p∑
i=1

qi −
p∑
i=1

(∆fail
i −∆)qi

θminαi(1−∆)
(65)

Using the fact that Q∗ ≥ Q∗ and that Q∗ is a smooth function of Φ such that Q∗ tends to Q∗

when Φ tends to in�nity, we thus can write:

Q∗ = Q∗
(

1 +
γ

Φ

)
+ o

(
1

Φ

)
(66)

for some positive γ. Reintroducing the expression of Q∗ given in equation (66) into (64), and

neglecting terms of o( 1
Φ2 ), it is not di�cult (but cumbersome) to identify the term γ to �nd equation

(45). Using equation (63), we then �nd equation (44) �

8 Appendix B : tables and balance sheet split by trading and bank-

ing books

8.1 Tables
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Data from Bloomberg as of 2014.

Bank Total Capital RWA Total Assets RBC

Ally Financial Inc 17294 130590 151631 0,132

American Express Company 20800 133300 159103 0,156

Bank of America Corporation 161623 1262000 2104534 0,147

BB&T Corporation 21381 143675 186834 0,149

BBVA Compass Bancshares, Inc 8254.2 64417.8 83152.4 0,128

BMO Financial Corp 31927 222931 588659 0,143

Capital One Financial Corporation 35886 237587 308167 0,151

Citigroup Inc 165454 1292605 1842181 0,128

Citizens Financial Group Inc 16781 105964 132857 0,158

Comerica Incorporated 7169 68273 69190 0,105

Discover Financial Services 12418 72744.9 83126 0,171

Fifth Third Bancorp 16895 117878 138706 0,143

HSBC North America Holdings Inc 190730 1219800 2634139 0,156

Huntington Bancshares Incorporated 7388 54479 66298 0,136

JPMorgan Chase &Co 206594 1619287 2572274 0,128

KeyCorp 11824 85100 93821 0,139

M&T Bank Corporation 11767.3 77365.6 96685.5 0,152

Morgan Stanley 74972 456008 801510 0,164

MUFG Americas Holdings Corporation 14246 96663 113623 0,147

Northern Trust Corporation 9449.2 62896.9 109946.5 0,150

Regions Financial Corporation 15070 98974 119563 0,152

Santander Holdings USA, Inc 9872.6 66751.9 118457.4 0,148

State Street Corporation 17914 107827 274119 0,166

SunTrust Banks, Inc 20338 162500 190328 0,125

The Bank of New York Mellon 21556 168028 385303 0,128

The Goldman Sachs Group, Inc 90978 570313 856240 0,160

The PNC Financial Services Group, Inc 44782 281379 345072 0,159

U.S. Bancorp 43208 317705.9 402529 0,136

Wells Fargo & Company 192900 1242500 1687155 0,155

Zions Bancorporation 7443.301 45738 57208.8 0,163

Table 7: All quantities except the RBC are in million of dollars
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Fraction of insolvent banks at equilibrium as a function of ∆ and Φ

∆ || Qtot

Φ 0 1% 3% 5% 6.75% 8.5% 10% 11.75% 15%

0.01 0 0 0 0 0 0 0 0 0

0.02 0 0 0 0 0 0 0 0 0

0.03 0 0 0 0 0,33 0 0 0 1

0.04 0 0 0 0.066 0,53 0.66 0.96 1 1

0.05 0 0 0.1 0.3 0.73 0.86 0.96 1 1

0.06 0.066 0.066 0.233 0.4 0.96 0.96 1 1 1

0.07 0.1 0.133 0.333 0.633 0.96 0.96 1 1 1

0.08 0.166 0.266 0.5 0.833 1 1 1 1 1

0.09 0.3 0.33 0.666 0.966 1 1 1 1 1

0.1 0.366 0.5 0.933 0.966 1 1 1 1 1

0.11 0.5 0.666 0.966 1 1 1 1 1 1

0.12 0.666 0.86 1 1 1 1 1 1 1

0.13 0.9 0.966 1 1 1 1 1 1 1

0.14 0.966 0.9667 1 1 1 1 1 1 1

0.15 1 1 1 1 1 1 1 1 1

Table 8: Fraction of insolvent banks
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Best response of each bank when ∆ = 6%.

Bank Qtot

Φ = 0 Qtot

Φ = 1% Qtot

Φ = 3% Qtot

Φ = 5% Qtot

Φ = 15%

Ally Financial Inc 0.16 0.23 0.54 0.84 1

American Express Company 0 0 0.26 0.55 1

Bank of America Corporation 0.62 0.73 1 1 1

BB&T Corporation 0.05 0.13 0.48 0.81 1

BBVA Compass Bancshares, Inc 0.32 0.40 0.76 1 1

BMO Financial Corp 1 1 1 1 1

Capital One Financial Corporation 0.02 0.10 0.45 0.78 1

Citigroup Inc 0.43 0.52 0.91 1 1

Citizens Financial Group Inc 0 0 0.30 0.61 1

Comerica Incorporated 0.41 0.47 0.75 1 1

Discover Financial Services 0 0 0 0.28 1

Fifth Third Bancorp 0.03 0.10 0.41 0.71 1

HSBC North America Holdings Inc 0.64 0.78 1 1 1

Huntington Bancshares Incorporated 0.16 0.24 0.57 0.87 1

JPMorgan Chase &Co 0.57 0.67 1 1 1

KeyCorp 0.03 0.09 0.39 0.66 1

M&T Bank Corporation 0 0.05 0.38 0.69 1

Morgan Stanley 0.21 0.32 0.81 1 1

MUFG Americas Holdings Corporation 0 0.04 0.36 0.65 1

Northern Trust Corporation 0.39 0.50 0.99 1 1

Regions Financial Corporation 0 0.01 0.33 0.63 1

Santander Holdings USA, Inc 0.44 0.56 1 1 1

State Street Corporation 0.81 0.98 1 1 1

SunTrust Banks, Inc 0.27 0.34 0.66 0.95 1

The Bank of New York Mellon 1 1 1 1 1

The Goldman Sachs Group, Inc 0.07 0.16 0.57 0.95 1

The PNC Financial Services Group, Inc 0 0 0.26 0.56 1

U.S. Bancorp 0.20 0.28 0.62 0.94 1

Wells Fargo & Company 0.01 0.10 0.46 0.81 1

Zions Bancorporation 0 0 0.24 0.54 1

Table 9: Liquidated proportions x∗i for ∆ = 6%
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8.2 Balance sheet split by banking and trading books

From equations (49) and (50), abstracting time and bank subscripts for notational simplicity, the

regulatory weights can be implied as follows

α =
RWABank

V Bank
(67)

β =
RWATrad

V Trad
(68)

However, in practice, the balance sheet split by trading and banking books is in general not available

so that V Bank and V Trad but also RWABank and RWATrad are not directly observable. To estimate

the two (average) regulatory weights α and β, we �rst need to construct all these unobservable

quantities.

For depositary institutions with an important lending activity, such as Bank of America, Cit-

igroup, JP Morgan and Wells Fargo, the item �loans� is typically the most important one of the

banking book. Regarding now the trading book, the most important items of the balance sheet are

�trading assets� and �investment securities�, subject to market risk and and to counterparty risk. It

thus follows that (up to additional more minor items), V Bank and RWABank can be approximated

respectively by the value of the loans reported in the balance sheet and the credit risk-weighted

assets disclosed in the annual report. In the same vein, V Trad and RWATrad can be approximated

respectively using the reported value of the items trading assets and investment securities and the

market risk-weighted assets disclosed in the annual report. When counterparty risk-weighted assets

are disclosed, as it is related to the trading activity of the bank, we have chosen to assign those

risk-weighted assets to the trading book risk-weighted assets. Under Basel 3, apart the credit and

the market risk-weighted assets, banks also disclose risk-weighted assets related to operational risk.

This partial risk-weighted assets is more delicate to allocate as both lending and trading activities

are subject to operational risk. As a simple but reasonable rule of thumb, we make the assumption

that the operational risk-weighted assets is proportional to V Bank and V Trad. Let

f =
V Bank

V Bank + V Trad
(69)

To obtain the risk-weighted assets of the banking book (trading book), we add to the credit risk-

weighted assets (market risk-weighted assets) a fraction f (1 − f) of the operational risk-weighted
assets. Under this assumption, the banking book risk-weighted assets and the trading book risk-

weighted assets are computed as follows.

RWABank = RWACredit + f RWAOperat. (70)

RWATrad = RWAMarket + (1− f) RWAOperat. (71)

where, as explained

V Bank ≈ Loans (72)

V Trad ≈ Trading assets + Investment Securities (73)
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Minor items such as goodwill, premises and equipment, and other assets have been assigned to

the banking booking.

Calibrated quantities (in billion)

BHC||Quantities V Trad V Bank RWATrad RWABank α β

Bank of America 565.2 1400.7 279.4 1185.6 0.494 0.846

Citigroup 596.9 1213.17 203.5 1089.1 0.341 0.898

The Goldman Sachs 473.97 324.668 335.91 234.5 0.708 0.722

JP Morgan Chase& Co 857.4 1687.9 313.4 1305.6 0.365 0.773

Morgan Stanley 430.72 349.4 204.04 251.98 0.4737 0.7211

Wells Fargo & Company 355.95 1311.61 130.24 1115.26 0.366 0.85

44



References

[Acemoglu et al., 2015] Acemoglu, D., Ozdaglar, A., and Tahbaz-Salehi, A. (2015). Systemic risk

and stability in �nancial networks. The american economic review, 105(2):564�608.

[Acharya et al., 2014] Acharya, V., Engle, R., and Pierret, D. (2014). Testing macroprudential

stress tests: The risk of regulatory risk weights. Journal of Monetary Economics, 65:36�53.

[Allen and Gale, 2000] Allen, F. and Gale, D. (2000). Financial contagion. Journal of political

economy, 108(1):1�33.

[Allen and Gale, 2004] Allen, F. and Gale, D. (2004). Financial fragility, liquidity, and asset prices.

Journal of the European Economic Association, 2(6):1015�1048.

[Anton and Polk, 2014] Anton, M. and Polk, C. (2014). Connected stocks. The Journal of Finance,

69(3):1099�1127.

[Bajari et al., 2013] Bajari, P., Hong, H., and Nekipelov, D. (2013). Game theory and econometrics:

A survey of some recent research. In Advances in Economics and Econometrics, 10th World

Congress, volume 3, pages 3�52.

[BCBS, 2011] BCBS (2011). Basel 3: A global regulatory framework for more resilient banks and

banking systems.

[BCBS, 2014] BCBS (2014). Basel iii leverage ratio framework and disclosure requirements.

[Bigi et al., 2013] Bigi, G., Castellani, M., Pappalardo, M., and Passacantando, M. (2013). Exis-

tence and solution methods for equilibria. European Journal of Operational Research, 227(1):1�11.

[Board, 2017] Board, F. S. (2017). Global systemically important banks - revised assessment frame-

work.

[Borio et al., 2014] Borio, C., Drehmann, M., and Tsatsaronis, K. (2014). Stress-testing macro

stress testing: does it live up to expectations? Journal of Financial Stability, 12:3�15.

[Braouezec and Wagalath, 2018] Braouezec, Y. and Wagalath, L. (2018). Risk-based capital re-

quirements and optimal liquidation in a stress scenario. Review of Finance, 22(2):747�782.

[Brunnermeier, 2009] Brunnermeier, M. (2009). Deciphering the liquidity crunch 2007-2008. Journal

of Economic Perspectives, 23:77�100.

[Brunnermeier and Oehmke, 2014] Brunnermeier, M. K. and Oehmke, M. (2014). Predatory short

selling. Review of Finance, 18:2153�2195.

[Caballero and Simsek, 2013] Caballero, R. J. and Simsek, A. (2013). Fire sales in a model of

complexity. The Journal of Finance, 68(6):2549�2587.

45



[Caccioli et al., 2014] Caccioli, F., Shrestha, M., Moore, C., and Farmer, J. D. (2014). Stability

analysis of �nancial contagion due to overlapping portfolios. Journal of Banking & Finance,

46:233�245.

[Capponi and Larsson, 2015] Capponi, A. and Larsson, M. (2015). Price contagion through balance

sheet linkages. Review of Asset Pricing Studies, 2:227�253.

[Chen et al., 2016] Chen, N., Liu, X., and Yao, D. D. (2016). An optimization view of �nancial

systemic risk modeling: Network e�ect and market liquidity e�ect. Operations Research.

[Cifuentes et al., 2005] Cifuentes, R., Ferrucci, G., and Shin, H. S. (2005). Liquidity risk and con-

tagion. Journal of the European Economic Association, 3:556�566.

[Clerc et al., 2016] Clerc, L., Giovannini, A., Lang�eld, S., Peltonen, T., Portes, R., and Scheicher,

M. (2016). Indirect contagion: the policy problem. Occasional Paper Series, European Systemic

Risk Board, (9).

[Cont and Schaanning, 2016] Cont, R. and Schaanning, E. F. (2016). Fire sales, indirect contagion

and systemic stress-testing.

[Cont and Wagalath, 2016] Cont, R. and Wagalath, L. (2016). Fire sales forensics: measuring

endogenous risk. Mathematical �nance, 26(4):835�866.

[Dent et al., 2016] Dent, K., Westwood, B., and Segoviano Basurto, M. (2016). Stress testing of

banks: an introduction.

[Diamond and Rajan, 2011] Diamond, D. W. and Rajan, R. G. (2011). Fear of �re sales, illiquidity

seeking, and credit freezes. The Quarterly Journal of Economics, 126(2):557�591.

[Dimson and Marsh, 1997] Dimson, E. and Marsh, P. (1997). Stress tests of capital requirements.

Journal of Banking & Finance, 21(11):1515�1546.

[Duarte and Eisenbach, 2018] Duarte, F. and Eisenbach, T. M. (2018). Fire-sale spillovers and

systemic risk.

[Echenique, 2007] Echenique, F. (2007). Finding all equilibria in games of strategic complements.

Journal of Economic Theory, 135(1):514�532.

[Eisenberg and Noe, 2001] Eisenberg, L. and Noe, T. H. (2001). Systemic risk in �nancial systems.

Management Science, 47(2):236�249.

[Elliott et al., 2014] Elliott, M., Golub, B., and Jackson, M. O. (2014). Financial networks and

contagion. The American Economic Review, 104(10):3115�3153.

[Elsinger et al., 2006] Elsinger, H., Lehar, A., and Summer, M. (2006). Risk assessment for banking

systems. Management science, 52(9):1301�1314.

46



[Federal-Reserve, 2015a] Federal-Reserve (2015a). Comprehensive capital analysis and review 2015:

Assessment framework and results. US Federal Reserve.

[Federal-Reserve, 2015b] Federal-Reserve (2015b). Comprehensive capital analysis and review 2015:

Summary instructions and guidance. US Federal Reserve.

[Federal-Reserve, 2015c] Federal-Reserve (2015c). Dodd-frank act stress test 2015: supervisory

stress test methodology and results. US Federal Reserve.

[Feinstein, 2017] Feinstein, Z. (2017). Financial contagion and asset liquidation strategies. Opera-

tions Research Letters, 45(2):109�114.

[Flannery et al., 2017] Flannery, M., Hirtle, B., and Kovner, A. (2017). Evaluating the information

in the federal reserve stress tests. Journal of Financial Intermediation, 29:1�18.

[Fouque and Langsam, 2013] Fouque, J.-P. and Langsam, J. A. (2013). Handbook on Systemic Risk.

Cambridge University Press.

[French et al., 2010] French, K. R., Baily, M. N., Campbell, J. Y., Cochrane, J. H., Diamond, D. W.,

Du�e, D., Kashyap, A. K., Mishkin, F. S., Rajan, R. G., Scharfstein, D. S., et al. (2010). The

Squam Lake report: �xing the �nancial system. Princeton University Press.

[Fudenberg and Tirole, 1991] Fudenberg, D. and Tirole, J. (1991). Game theory. MIT press.

[Glasserman and Young, 2015] Glasserman, P. and Young, H. P. (2015). How likely is contagion in

�nancial networks? Journal of Banking & Finance, 50:383�399.

[Glasserman and Young, 2016] Glasserman, P. and Young, P. (2016). Contagion in �nancial net-

works. Journal of Economie Literature, 54 (3):779�831.

[Goldstein, 2017] Goldstein, M. (2017). Banking's Final Exam: Stress Testing and Bank-capital

Reform. Columbia University Press.

[Greenlaw et al., 2012] Greenlaw, D., Kashyap, A. K., Schoenholtz, K. L., and Shin, H. S. (2012).

Stressed out: Macroprudential principles for stress testing.

[Greenwood et al., 2015] Greenwood, R., Landier, A., and Thesmar, D. (2015). Vulnerable banks.

Journal of Financial Economics, 115(3):471�485.

[Hanson et al., 2011] Hanson, S., Kashyap, A., and Stein, J. (2011). A macroprudential approach

to �nancial regulation. Journal of Economic Perspectives, 25(1):3�28.

[Hirtle and Lehnert, 2015] Hirtle, B. and Lehnert, A. (2015). Supervisory stress tests. Annual

Review of Financial Economics, 7:339�355.

47



[Jayech, 2016] Jayech, S. (2016). The contagion channels of july�august-2011 stock market crash:

A dag-copula based approach. European Journal of Operational Research, 249(2):631�646.

[Jotikasthira et al., 2012] Jotikasthira, C., Lundblad, C., and Ramadorai, T. (2012). Asset �re sales

and purchases and the international transmission of funding shocks. The Journal of Finance,

67(6):2015�2050.

[Khandani and Lo, 2011] Khandani, A. and Lo, A. (2011). What happened to the quants in August

2007? Evidence from factors and transactions data. Journal of Financial Markets, 14:1�46.

[Krishnamurthy, 2010] Krishnamurthy, A. (2010). Ampli�cation mechanisms in liquidity crises.

American Economic Journal: Macroeconomics, 2(3):1�30.

[Kyle and Obizhaeva, 2016] Kyle, A. S. and Obizhaeva, A. A. (2016). Market microstructure in-

variance: Empirical hypotheses. Econometrica, 84(4):1345�1404.

[Milgrom and Roberts, 1990] Milgrom, P. and Roberts, J. (1990). Rationalizability, learning, and

equilibrium in games with strategic complementarities. Econometrica, pages 1255�1277.

[Milgrom and Roberts, 1994] Milgrom, P. and Roberts, J. (1994). Comparing equilibria. The Amer-

ican Economic Review, pages 441�459.

[Pericoli and Sbracia, 2003] Pericoli, M. and Sbracia, M. (2003). A primer on �nancial contagion.

Journal of Economic Surveys, 17(4):571�608.

[Roberts and Sonnenschein, 1976] Roberts, J. and Sonnenschein, H. (1976). On the existence of

cournot equilbrium without concave pro�t functions. Journal of Economic Theory, 13(1):112�

117.

[Shleifer and Vishny, 2011] Shleifer, A. and Vishny, R. (2011). Fire sales in �nance and macroeco-

nomics. The Journal of Economic Perspectives, 25(1):29�48.

[Tarski, 1955] Tarski, A. (1955). A lattice-theoretical �xpoint theorem and its applications. Paci�c

journal of Mathematics, 5(2):285�309.

[Upper, 2011] Upper, C. (2011). Simulation methods to assess the danger of contagion in interbank

markets. Journal of Financial Stability, 7(3):111�125.

[Upper and Worms, 2004] Upper, C. and Worms, A. (2004). Estimating bilateral exposures in

the german interbank market: Is there a danger of contagion? European Economic Review,

48(4):827�849.

[Vives, 1990] Vives, X. (1990). Nash equilibrium with strategic complementarities. Journal of

Mathematical Economics, 19(3):305�321.

48



[Vives, 2001] Vives, X. (2001). Oligopoly pricing: old ideas and new tools. MIT press.

[Vives, 2005] Vives, X. (2005). Complementarities and games: New developments. Journal of

Economic Literature, 43(2):437�479.

49


	2017-ACF-05_Braouezec.pdf
	EJOR_stress-test-2018-black (00000002).pdf



