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Abstract

This contribution focuses on extending the current state of the art in the short-run Jo-

hansen industry model in two ways. First, instead of only considering output-oriented

plant capacity, we allow for alternative plant capacity concepts. In particular, we intro-

duce an input-oriented plant capacity concept, and an alternative attainable output-

oriented plant capacity concept that corrects a major empirical issue in the traditional

output-oriented plant capacity notion. Second, we correct a long-standing issue of the

correct choice of weight variables on the capacity distribution by guaranteeing that

these weights determine production combinations that belong to the production tech-

nology on which the plant capacity estimates are based in the first place. These double

methodological refinements are illustrated with a data set on U.S. fishing vessels by

developing a planning model to curb overfishing.
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1 Introduction

The short-run Johansen (1972) industry or sectoral model has received attention as a plan-

ning tool because it allows analysing industry structure on a disaggregated basis from un-

derlying ex post firm-level inputs and a single output. This model starts from a putty-clay

model of production and investment decisions: ex-ante firms are free to choose among several

production activities exhibiting smooth substitution possibilities, but ex post these firms face

fixed coefficient technologies with capacities that are entirely conditioned by the investment

decision made. The short-run industry model nevertheless exhibits substitution possibilities

when inputs and outputs can be reallocated across the units composing the industry. Over

time, substitution and technical change can be traced via shifts in successive short-run indus-

try models. Surveys of this short-run Johansen (1972) industry model are found in Heathfield

and Wibe (1987) and Førsund and Vislie (2016).1

The short-run industry or ex post macro (Johansen’s terminology) model is derived from

the short-run ex post firm functions. It is a simple linear programming model with an ob-

jective function maximising the sum of firm outputs subject to capacity constraints related

to the aggregate levels of inputs. The weight vectors are subject to an upper bound. Em-

pirical applications of this short-run Johansen (1972) industry model include the following

examples in chronological order: Førsund, Gaunitz, Hjalmarsson, and Wibe (1980) analyse

the Swedish pulp industry, Hildenbrand (1981) studies the Norwegian tanker fleet and the

US electric power-generating industry; Førsund and Hjalmarsson (1983) analyse the Swedish

cement industry; Førsund and Jansen (1983) reflect upon the Norwegian aluminum indus-

try; Førsund, Hjalmarsson, and Eitrheim (1985) provide an international comparison of the

cement industry in the Nordic countries comparing Denmark, Finland, Norway, and Sweden;

the last four empirical chapters in Førsund and Hjalmarsson (1987) focus on a variety of sec-

tors; Wibe (1995) studies the Swedish paper industry; Førsund, Hjalmarsson, and Summa

(1996) scrutinise the Finnish brewery industry; Førsund, Hjalmarsson, and Zheng (2011) de-

velop an analysis for Chinese coal-fired electricity generation plants, and Førsund, Heshmati,

and Wang (2018) study coal-fired electricity generation plants in South Korean and at the

aggregate level of Chinese provinces, among others.

Sengupta (1989) and Färe, Grosskopf, and Li (1992) are the first to establish a link be-

tween the short-run Johansen (1972) industry model and the frontier-based production the-

ory that focuses on best practice instead of average practice (see also Dosi, Grazzi, Marengo,

1The latter survey positions this short-run industry model within the context of the entire oeuvre of Leif
Johansen
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and Settepanella (2016) for some further links). Average practice analysis focuses on average

behaviour, while best practice analysis concentrates on the best performing units on the

boundary of the production possibility set. The book chapter of Dervaux, Kerstens, and

Leleu (2000) innovates by developing an entirely non-parametric frontier-based approach to

the short-run Johansen (1972) industry model. In particular, this work improves two fea-

tures. First, it transforms the single output case into a multiple outputs frontier framework.2

Second, it substitutes the somewhat ad hoc specification of a capacity distribution in the

traditional short-run Johansen (1972) industry model by a non-parametric output-oriented

plant capacity concept introduced in the literature by Färe, Grosskopf, and Kokkelenberg

(1989) in the single output case and by Färe, Grosskopf, and Valdmanis (1989) in the multiple

output case using a pair of output-oriented efficiency measures inspired by Johansen (1968).3

Relaxing the single-output restriction substantially enlarges the scope of empirical applica-

tions beyond the historically almost exclusive focus on industry studies. Furthermore, the

frontier nature allows for a benchmarking perspective when adopting it for social planning

purposes.

Empirical applications of this generalised frontier-based short-run Johansen (1972) in-

dustry model include the following examples: Dervaux, Kerstens, and Leleu (2000) analyse

French surgery units in 1605 hospitals, Kerstens, Moulaye Hachem, Van de Woestyne, and

Vestergaard (2010) provide an analysis of a German bank branch network and how it can

be restructured, Färe, Grosskopf, Kerstens, Kirkley, and Squires (2001) provide a first study

on how to reduce overfishing in the northwest USA Atlantic sea scallop fishery, Kerstens,

Squires, and Vestergaard (2005) and Kerstens, Vestergaard, and Squires (2006) develop a

plan to curb overfishing in the Danish fishery fleet under a variety of scenarios with quota

and fishing days, while Lindebo (2005), Tingley and Pascoe (2005) and Yagi and Managi

(2011) develop a similar plan for the North Sea, Scottish and Japanese fishing fleets, among

others.

Note that the short-run frontier-based Johansen (1972) industry model is but one exam-

ple of a stream of literature on central resource allocation models in the frontier framework.

Central resource reallocation models cover a heterogeneous variety of models reallocating

2However, in the traditional non-frontier literature Dosi, Grazzi, Marengo, and Settepanella (2016, Ap-
pendix B) also develop a multiple output-case. To the best of our knowledge, this multi-outputs approach has
never been empirically implemented. Also Sengupta (1989, p. 49-50) outlines some possibilities to develop a
multiple outputs approach: also these options have never been implemented empirically.

3Johansen (1972) introduces the capacity distribution as a mechanism to derive optimal factor propor-
tions in a dynamic setting. He and followers like Muysken (1985) and Seierstad (1985) explicitly introduce
the capacity distribution notion as a continuous or discrete or mixed statistical distribution of the input
coefficients when plants are used at full capacity.
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some inputs and/or outputs across space and/or time while eventually accounting for mul-

tiple objectives (e.g., efficiency, effectiveness, equality). To the best of our knowledge Färe,

Grosskopf, and Li (1992) and Golany, Phillips, and Rousseau (1993) are among the first

frontier-based central resource reallocation models. Other examples of these models can be

found in the work by Athanassopoulos (1998), Golany and Tamir (1995), Korhonen and

Syrjänen (2004), Lozano and Villa (2004), and Ylvinger (2000), among others. A prelimi-

nary survey of a selection of these frontier-based central resource allocation models is found

in Mar-Molinero, Prior, Segovia, and Portillo (2014).

The purpose of this contribution is twofold. First, we want to remedy one remaining

problem in the short-run Johansen (1972) industry model: while the output-oriented plant

capacity concepts is estimated at the extremes of the empirical data range in the technology,

there is currently no guarantee that the scaling of these plant capacity inputs and outputs

remains technically feasible by remaining within the frontier technology. By contrast, all

frontier-based central resource allocation models in the literature do meet this requirement.

This problem is illustrated using a numerical example and a general remedy is proposed.

Second, another purpose of this contribution is to widen the methodological choices open

to the users of the short-run Johansen (1972) industry model by introducing new plant

capacity concepts. On the one hand, we follow Cesaroni, Kerstens, and Van de Woestyne

(2017) who define a new input-oriented plant capacity measure using a pair of input-oriented

efficiency measures. On the other hand, we follow up on Kerstens, Sadeghi, and Van de

Woestyne (2019b) who argue and empirically illustrate that the traditional output-oriented

plant capacity utilization may be unrealistic in that the amounts of variable inputs needed

to reach the maximum capacity outputs may simply be unavailable at either the firm or

the industry level. This problem is linked to what Johansen (1968) called the attainability

issue and therefore Kerstens, Sadeghi, and Van de Woestyne (2019b) define a new attainable

output-oriented plant capacity utilization at the firm level. Throughout this contribution,

we contrast the traditional average practice-based short-run Johansen (1972) industry model

with the more recent frontier-based short-run industry model to highlight both similarities

and differences.

This contribution is structured as follows. The next Section 2 defines the basic technology

as well as the efficiency measures needed to define the different frontier-based plant capacity

concepts. Section 3 defines the traditional output-oriented plant capacity concept as well

as the alternative input-oriented plant capacity measure and the attainable output-oriented

plant capacity measure. The basic frontier-based short-run Johansen (1972) industry model

is discussed in Section 4. This same section also illustrates the problem that the scaling of
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the plant capacity inputs and outputs need not remain technically feasible by remaining

within the technology. Thereafter, Section 5 develops three new short-run Johansen (1972)

industry models. First, we develop a revised version of the short-run industry model based on

the output-oriented plant capacity that does respect the technology. Second, we introduce

two new plant capacity concepts in the short-run Johansen models: either the attainable

output-oriented plant capacity utilization, or the input-oriented plant capacity measure. The

differences between old and new short-run Johansen (1972) industry models are empirically

illustrated in Section 6 using convex and nonconvex technologies. A final Section 7 concludes.

2 Technology: Basic Definitions

This section introduces some basic notation and defines the technology at the firm level.

Given an N -dimensional input vector x ∈ RN
+ and an M -dimensional output vector

y ∈ RM
+ , the production possibility set or technology T is defined as follows: T =

{(x, y)|x can produce y}. Associated with T , the input set denotes all input vectors x capa-

ble of producing a given output vector y: L(y) = {x|(x, y) ∈ T}. Analogously, the output

set associated with T denotes all output vectors y that can be produced from a given input

vector x: P (x) = {y|(x, y) ∈ T}.

Throughout this contribution, technology T satisfies some combination of the following

standard assumptions:

(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ T and if (0, y) ∈ T , then y = 0.

(T.2) T is a closed subset of RN
+ × RM

+ .

(T.3) Strong input and output disposal, i.e., if (x, y) ∈ T and (x′, y′) ∈ RN
+ × RM

+ , then

(x′,−y′) ≥ (x,−y)⇒ (x′, y′) ∈ T .

(T.4) T is convex.

Briefly discussing these traditional axioms on technology, it is useful to recall the following

(see, e.g., Hackman (2008) for details). Inaction is feasible, and there is no free lunch. Tech-

nology is closed. We assume free disposal of inputs and outputs in that inputs can be wasted

and outputs can be discarded. Finally, technology is convex. In our empirical analysis not all

these axioms are simultaneously maintained.4 In particular, key assumption distinguishing

some of the technologies in the empirical analysis is convexity versus nonconvexity.

4For instance, note that the convex flexible or variable returns to scale technology does not satisfy inaction.

4



The radial input efficiency measure characterizes the input set L(y) completely and can

be defined as follows:

DFi(x, y) = min{λ | λ ≥ 0, λx ∈ L(y)}. (1)

This radial input efficiency measure has the main properties that it is smaller or equal to unity

(DFi(x, y) ≤ 1), with efficient production on the boundary (isoquant) of L(y) represented

by unity, and that it has a cost interpretation (see, e.g., Hackman (2008)).

The radial output efficiency measure offers a complete characterization of the output set

P (x) and can be defined as:

DFo(x, y) = max{θ | θ ≥ 0, θy ∈ P (x)}. (2)

Its main properties are that it is larger than or equal to unity (DFo(x, y) ≥ 1), with efficient

production on the boundary (isoquant) of the output set P (x) represented by unity, and that

this radial output efficiency measure has a revenue interpretation (e.g., Hackman (2008)).

In the short run, we can partition the input vector into a fixed and variable part.

In particular, we denote (x = (xf , xv)) with xf ∈ RNf

+ and xv ∈ RNv
+ such that

N = Nf + Nv. Similarly, a short-run technology T f = {(xf , y) ∈ RNf

+ × RM
+ |

there exists xv such that (xf , xv) can produce at least y} and the corresponding input set

Lf (y) = {xf ∈ RNf

+ | (xf , y) ∈ T f} and output set P f (xf ) = {y | (xf , y) ∈ T f} can be de-

fined. Note that technology T f is in fact obtained by a projection of technology T ⊂ RN
+×RM

+

into the subspace RNf

+ ×RM
+ (i.e., by setting all variable inputs equal to zero).5 By analogy,

the same applies to the input set Lf (y) and the output set P f (xf ).

Denoting the radial output efficiency measure of the output set P f (xf ) by DF f
o (xf , y),

this output-oriented efficiency measure can be defined as follows:

DF f
o (xf , y) = max{θ | θ ≥ 0, θy ∈ P f (xf )}. (3)

The sub-vector input efficiency measure reducing only the variable inputs is defined as fol-

lows:

DF SR
vi (xf , xv, y) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(y)}. (4)

The sub-vector input efficiency measure reducing only the fixed inputs is defined as follows:

DF SR
fi (xf , xv, y) = min{λ | λ ≥ 0, (λxf , xv) ∈ L(y)}. (5)

5See Cesaroni, Kerstens, and Van de Woestyne (2019, p. 388 and following) for more details about this
projection.
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Next, we need the following particular definition of a technology: L(0) = {x | (x, 0) ∈ T}
is the input set with zero output level.6 The sub-vector input efficiency measure reducing

variable inputs evaluated relative to this input set with a zero output level is as follows:

DF SR
vi (xf , xv, 0) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(0)}. (6)

Having introduced all necessary efficiency measures needed to define the various plant

capacity concepts, we now turn to the algebraic definition of the technologies relative to which

plant capacities are estimated. Given data on K observations (k = 1, · · · , K) consisting of a

vector of inputs and outputs (xk, yk) ∈ RN
+×RM

+ , a unified algebraic representation of convex

and nonconvex nonparametric frontier technologies under the flexible or variable returns to

scale assumption is possible as follows:

TΛ =

{
(x, y) | x ≥

K∑
k=1

zkxk, y ≤
K∑
k=1

zkyk, (z1, . . . , zK) ∈ Λ

}
, (7)

where

(i) Λ ≡ ΛC =

{
(z1, . . . , zK) |

K∑
k=1

zk = 1 and zk ≥ 0

}
;

(ii) Λ ≡ ΛNC =

{
(z1, . . . , zK) |

K∑
k=1

zk = 1 and zk ∈ {0, 1}

}
.

The activity vector (z1, . . . , zK) of real numbers summing to unity represents the convexity

axiom. This same sum constraint with each vector element being a binary integer is rep-

resenting nonconvexity. The convex technology satisfies axioms (T.1) (except inaction) to

(T.4), while the nonconvex technology adheres to axioms (T.1) to (T.3). It is now useful

to condition the above notation of the efficiency measures relative to these nonparametric

frontier technologies by distinguishing between convexity (convention C) and nonconvexity

(convention NC). This firm technology allows to compute a series of different frontier-based

concepts of plant capacity to which we now turn.

6As already pointed out in Cesaroni, Kerstens, and Van de Woestyne (2019, p. 388), L(0) can also be
defined as L(ymin) = {x | (x, ymin) ∈ T}, whereby ymin = min

k=1,...,K
yk takes the minimum in a component-

wise manner for every output y over all observations K.
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3 Plant Capacity Notions: Definitions

It is common to distinguish between technical or engineering concepts on the one hand and

economic capacity concepts on the other hand. Johansen (1968) develops a technical approach

by introducing an informally defined plant capacity notion. This informal definition of plant

capacity by Johansen (1968, p. 362) reads:“the maximum amount that can be produced per

unit of time with existing plant and equipment, provided that the availability of variable

factors of production is not restricted.” This clearly output-oriented plant capacity notion

has been admirably made operational by Färe, Grosskopf, and Kokkelenberg (1989) and

Färe, Grosskopf, and Valdmanis (1989) using a pair of output-oriented efficiency measures.

We now recall the definition of this output-oriented plant capacity utilization.

Definition 3.1. The output-oriented plant capacity utilization PCUo is defined as follows:

PCUo(x, x
f , y) =

DFo(x, y)

DF f
o (xf , y)

,

where DFo(x, y) and DF f
o (xf , y) are output efficiency measures including, respectively ex-

cluding, the variable inputs as defined before in (2) and (3).

Since 1 ≤ DFo(x, y) ≤ DF f
o (xf , y), notice that 0 < PCUo(x, x

f , y) ≤ 1. Thus, output-

oriented plant capacity utilization has an upper limit of unity. Following the terminology

introduced by Färe, Grosskopf, and Kokkelenberg (1989), one can distinguish between a

so-called biased plant capacity measure DF f
o (xf , y) and an unbiased plant capacity measure

PCUo(x, x
f , y) depending on whether the measure ignores inefficiency or adjusts for the

eventual existence of inefficiency. Taking the ratio of efficiency measures eliminates any ex-

isting inefficiency and yields in this sense a cleaned concept of output-oriented plant capacity

utilization. Computational issues are discussed in Section 4.

Recently, Kerstens, Sadeghi, and Van de Woestyne (2019b) have argued and empirically

illustrated that the output-oriented plant capacity utilization PCUo(x, x
f , y) may be unreal-

istic in that the amounts of variable inputs needed to reach the maximum capacity outputs

may simply be unavailable at either the firm or the industry level. This is linked to what Jo-

hansen (1968) called the attainability issue. Hence, Kerstens, Sadeghi, and Van de Woestyne

(2019b) define a new attainable output-oriented plant capacity utilization at the firm level

as follows:

Definition 3.2. An attainable output-oriented plant capacity utilization APCUo at level
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λ̄ ∈ R+ is defined by

APCUo(x, x
f , y, λ̄) =

DFo(x, y)

ADF f
o (xf , y, λ̄)

,

where the attainable output-oriented efficiency measure ADF f
o at a certain level λ̄ ∈ R+ is

defined by

ADF f
o (xf , y, λ̄) = max{ϕ | ϕ ≥ 0, 0 ≤ λ ≤ λ̄, ϕy ∈ P (xf , λxv)} (8)

Again, for λ̄ ≥ 1, since 1 ≤ DFo(x, y) ≤ ADF f
o (xf , y, λ̄), notice that 0 < APCUo(x, x

f , y, λ̄) ≤
1. Also, for λ̄ < 1, since 1 ≤ ADF f

o (xf , y, λ̄) ≤ DFo(x, y), notice that 1 ≤ APCUo(x, x
f , y, λ̄).

One can again distinguish between a so-called biased attainable plant capac-

ity measure ADF f
o (xf , y, λ̄) and an unbiased attainable plant capacity measure

APCUo(x, x
f , y, λ̄), whereby the latter is cleaned from any eventual inefficiency. Ker-

stens, Sadeghi, and Van de Woestyne (2019b) pragmatically experiment with values of

λ̄ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.7 Furthermore, these authors note that if expert opinion

cannot determine a plausible value, then it may be better to opt for the next input-oriented

plant capacity measure that does not suffer from the attainability issue. Computational issues

are treated in Section 5 below.

Cesaroni, Kerstens, and Van de Woestyne (2017) define a new input-oriented plant ca-

pacity measure using a pair of input-oriented efficiency measures.

Definition 3.3. The input-oriented plant capacity utilization (PCUi) is defined as follows:

PCUi(x, x
f , y) =

DF SR
vi (xf , xv, y)

DF SR
vi (xf , xv, 0)

,

where DF SR
vi (xf , xv, y) and DF SR

vi (xf , xv, 0) are the sub-vector input efficiency measures

defined in (4) and (6), respectively.

Since 0 < DF SR
vi (xf , xv, 0) ≤ DF SR

vi (xf , xv, y), notice that PCUi(x, x
f , y) ≥ 1.8 Thus,

input-oriented plant capacity utilization has a lower limit of unity. Similar to the previous

cases, one can distinguish between a so-called biased plant capacity measure DF SR
vi (xf , xv, 0)

and an unbiased plant capacity measure PCUi(x, x
f , y), the latter being cleaned of any

prevailing inefficiency. Computational questions are again dealt with in Section 5.

7Notice that λ̄ < 1 is added for completeness sake. Normally there is no need to reduce variable inputs
below their currently available levels.

8Kerstens, Sadeghi, and Van de Woestyne (2019a, Proposition B.1) prove that DFSR
vi (xf , xv, 0) =

DFSR
vi (xf , xv, ymin), where ymin is as defined supra.
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Note that graphical illustrations of plant capacity Definitions 3.1, 3.2 and 3.3 are pro-

vided in Appendix A. Note that Cesaroni, Kerstens, and Van de Woestyne (2019) also define

an input-based and output-based long-run plant capacity concept whereby both fixed and

variable inputs can adjust. Furthermore, Kerstens, Sadeghi, and Van de Woestyne (2019a)

empirically illustrate that both engineering and economic capacity concepts differ systemat-

ically when estimated using convex and nonconvex technologies.

As earlier stated, the average practice single output short-run industry models suffer in

practice from a rather ad hoc specification of capacity distributions (as also admitted in

the recent article of Dosi, Grazzi, Marengo, and Settepanella (2016, footnote 13)). It should

be stressed that some substantial efforts are available in the literature to derive a more

satisfactory solution for this state of affairs: Muysken (1985) develops continuous capacity

distribution, while Seierstad (1985) develops any form of the capacity distribution (discrete,

continuous, or a mixture). However, it is clear that the above frontier-based technical or

engineering plant capacity concepts are quite appealing.

4 Short-run Johansen Industry Model

4.1 Basic Version

Following Dervaux, Kerstens, and Leleu (2000), the focus is on reallocation of production

among units by explicitly allowing improvements in technical efficiency and capacity utilisa-

tion rates. One can distinguish between two phases. In the first phase one computes capacity

inputs and outputs. In the second phase, one constructs the short-run industry model using

the parameters obtained from the first phase. As explained below, this short-run industry

model does not inherit the properties of the technology used to compute the plant capacity

concept.

In the first phase, the short-run output-oriented radial technical efficiency measure

DF f
o (xfp , yp) (i.e., the denominator in Definition 3.1 and introduced in (3)) of firm p,

(p = 1, . . . , K), with fixed inputs xfp ∈ RNf

+ and outputs yp ∈ RM
+ requires the optimiza-

tion of the following program:

9



DF f
o (xfp , yp) = max

ϕ,zk,xv
ϕ

s.t
K∑
k=1

zkyk ≥ ϕyp,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zkx
v
k = xv,

(z1, . . . , zK) ∈ Λ,

ϕ ≥ 0, xv ≥ 0,

(9)

where Λ determines the convex or nonconvex assumption of the technology as defined in

(7). Assume that ϕ∗ is the optimal value of short-run output-oriented model (9). To find a

solution that maximizes slacks and surpluses, the following model can be solved:

max
S+,S−,zk,xv

1M .S
+ + 1Nf

.S−

s.t
K∑
k=1

zkyk − S+ = ϕ∗yp,

K∑
k=1

zkx
f
k + S− = xfp ,

K∑
k=1

zkx
v
k = xv,

(z1, . . . , zK) ∈ Λ,

xv ≥ 0, S+ ≥ 0, S− ≥ 0,

(10)

with 1M = (1, . . . , 1) ∈ RM and 1Nf
= (1, . . . , 1) ∈ RNf . From model (10), an optimal

activity vector zp∗ = (zp∗1 , . . . , z
p∗
K ) is provided for firm p under evaluation. Capacity outputs

and its optimal use of fixed and variable inputs can be computed:

y∗p =
K∑
k=1

zp∗k yk; xf∗p =
K∑
k=1

zp∗k x
f
k ; xv∗p =

K∑
k=1

zp∗k x
v
k. (11)

This has to be repeated for all firms p = 1, . . . , K.

In a second phase, these ‘optimal’ frontier results (capacity output, and capacity variable

and fixed inputs) at the firm level are used as parameters in the industry model. In partic-

ular, the industry model minimises the industry use of fixed inputs in a radial way (using

DF SR
fi (xf , xv, y) from (5)) such that the total production of outputs is at least at the current

total level by a reallocation of production between firms. Reallocation is allowed based on

the frontier production inputs and outputs usage of each firm. In the short run, it is assumed
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that current plant capacities cannot be exceeded either at the firm or at the industry level.

The formulation of the multi-output and frontier-based short-run Johansen (1972) industry

model (hereafter also referred to as the basic version (bv)) can then be specified as follows:

min
θbv ,wbv

k ,Xv
θbv,

s.t.
K∑
k=1

wbvk y
∗
k ≥ Y,

K∑
k=1

wbvk x
f∗
k ≤ θbvXf ,

K∑
k=1

wbvk x
v∗
k ≤ Xv,

0 ≤ wbvk ≤ 1, k = 1, ..., K,

θbv ≥ 0, Xv ≥ 0,

(12)

where

Y =

(
K∑
k=1

yk1, . . . ,
K∑
k=1

ykM

)
and Xf =

(
K∑
k=1

xfk1, . . . ,
K∑
k=1

xfkNf

)
. (13)

After solving model (12), the vector (wbv
∗

p xf∗p , w
bv∗
p xv∗p , w

bv∗
p y∗p) can be a target for firm

p where wbv
∗

p is an optimal solution of model (12) and xf∗p , xv∗p and y∗p are obtained from

the relations (11). Note that Xv in model (12) holding the variable inputs is a vector with

decision variables.

In the short-run Johansen (1972) frontier-based industry model (12), focus is on reducing

fixed inputs by a scalar θbv. This is related to the original empirical application in Dervaux,

Kerstens, and Leleu (2000) where the purpose is to minimize the number of surgery units.

The same motivation applies to the empirical applications curbing overfishing in the fishery

industries where output quota are imposed to guarantee biological sustainability constraints.

While fixed inputs can normally not be reduced by definition, one can mothball either tem-

porarily or definitively the use of particular fixed inputs. However, it is trivial to define an

alternative short-run Johansen (1972) industry model that maximises all industry outputs

using an output-oriented efficiency measure similar to (2). This is similar in spirit to the

original average practice single output short-run industry model in Johansen (1972), except

that in the latter no explicit efficiency measure is available.

Geometrically, this short-run industry model (12) is a set consisting of a finite sum of

line segments, or zonotopes (see Hildenbrand (1981, p. 1096)).9 More precisely, under the as-

9One may also benefit from consulting the work of Koopmans (1977), Hildenbrand (1983) or Settepanella,
Dosi, Grazzi, Marengo, and Ponchio (2015).
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sumptions of divisibility and additivity of production processes the industry technology is ge-

ometrically represented by the space formed by the finite sum of all the line segments linking

the origin and the points representing each production unit (see Dosi, Grazzi, Marengo, and

Settepanella (2016, p. 877)). Furthermore, Dosi, Grazzi, Marengo, and Settepanella (2016,

footnote 3) remark that convexity comes as a result of the chosen analytical framework: it

is not an assumption of some underlying theory of production.

The activity vector w = (w1, . . . , wK) indicates which portions of the line segments

representing the firm capacities are effectively used to produce outputs from given inputs.

The bounds on the activity vector w (0 ≤ wk ≤ 1) reflect the assumption of constant returns

to scale up to full capacity for individual production units (see Hildenbrand (1981, p. 1096)).

The optimal solution to this simple LP gives the combination of firms that can produce the

same or more outputs with less or the same use of fixed inputs at the aggregate level.

Note that the outcomes of model (12) are not unique in general. Hence, there can be mul-

tiple optimal solutions for this model. When facing the problem of multiple optimal solutions,

researchers sometimes present secondary goals to partially try to remove this problem. But,

in general the problem still remains and there is no guarantee that the formulation of one or

more secondary goals leads to a choice of a unique solution among these alternative optimal

solutions. As much as it can be undesirable to have multiple optimal solutions in a social

planning model, it is up to this date unclear how this problem can be avoided.

In brief, one can state that average practice and best practice models share a very similar

formal structure of the short-run Johansen (1972) industry model. The main difference is

that only the best practice version is consistent with the idea of an industry frontier, while

in the average practice version one is not really sure that one estimates an industry frontier

given the uncertainties surrounding the underlying ad hoc capacity estimates. Now, it may

be objected that social planning based on an industry frontier notion may be too demanding:

perhaps, one should allow for some amount of technical inefficiency persisting among firms.

But, as shown in Kerstens, Vestergaard, and Squires (2006) it is straightforward to adjust

the frontier-based short-run Johansen (1972) industry model to allow for some amount of

technical inefficiency.

In addition, there are some more subtle differences between average practice and best

practice models. Average practice models ignore fixed inputs, while best practice models do

include these. As a matter of fact, in average practice models the fixed inputs determine

the capacities. Furthermore, in addition to technical efficiency some of the average practice

authors assume cost minimization (e.g., Hildenbrand (1983, p. 175)). Indeed, average practice

12



models need input prices to determine the cost per output. This is not the case for best

practice models in this contribution that depend solely on physical inputs and outputs.

Finally, we mention a series of methodological refinements of the short-run Johansen

(1972) industry model. First, it has been rather common to trace the evolution of the short-

run average practice Johansen (1972) industry production function over time: examples are

found in Førsund and Hjalmarsson (1983), Førsund and Jansen (1983), several chapters in

the Førsund and Hjalmarsson (1987) book, Wibe (1995), among others. Second, Dosi, Grazzi,

Marengo, and Settepanella (2016) define a normalized volume of the zonotope as a measure of

industry heterogeneity. These authors also propose a measure of productivity change based

on the zonotope’s main diagonal, and assess the role of firm entry and exit on industry

level productivity growth (see Settepanella, Dosi, Grazzi, Marengo, and Ponchio (2015) for

technical details). These developments so far do not seem to have been implemented in a

frontier context.

4.2 Numerical Example

Consider a numerical example containing 13 fictitious observations with two inputs generat-

ing a single output: one input is variable, the other one is fixed. The first four columns of Table

1 contain these data. By solving model (12), we obtain θbv
∗

= 0.638, where θbv
∗

is the optimal

value of θbv. Columns 5 to 7 of Table 1 show the inputs and outputs targets defined in equa-

tion (11) which are obtained by solving model (10). The vector wbv
∗

= (wbv
∗

1 , . . . , wbv
∗

K ) is an

optimal solution of model (12) and is reported in the 8-th column. The final target points of

inputs and outputs obtained by the solving model (12) (i.e., points (wbv
∗

p xf∗p , w
bv∗
p xv∗p , w

bv∗
p y∗p)

corresponding to firm p) are presented in the last three columns.

As can be seen in Table 1, the value of wbv
∗

k for all units is unity except for units 4, 5, 6

and 13. For these four units, we have wbv
∗

4 = wbv
∗

5 = wbv
∗

6 = 0 and wbv
∗

13 = 0.2. Therefore, for

units 4, 5 and 6, the target points are located at the origin. However, the target point of unit

13 is (1.2, 0.8, 1): this point does not belong to the production possibility set. We show this

by reporting the result of the refined output-oriented short-run Johansen industry model in

the Appendix B, section B.1.

Also, we can visualize this infeasibility problem in Figures 1 and 2. A three-dimensional

representation of the technology resulting from these 16 fictitious observations is provided by

Figure 1. This technology consists of two inputs (variable input xv and fixed input xf ) and

one output (y) and is visible by means of its convex boundary. The original observations are
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Table 1: Inputs and outputs targets obtained by solving model (12)

DMUp xvp xfp yp xv∗p xf∗p y∗p wbv
∗

p wbv
∗

p xv∗p wbv
∗

p xf∗p wbv
∗

p y∗p
1 3 3 2 5 3 4 1 5 3 4

2 2 5 2 6 4 5 1 6 4 5

3 2 7 2 6 4 5 1 6 4 5

4 5 2 2 2 2 2 0 0 0 0

5 10 2 2 2 2 2 0 0 0 0

6 2 2 2 2 2 2 0 0 0 0

7 3 7 4 6 4 5 1 6 4 5

8 3 4 4 6 4 5 1 6 4 5

9 5 3 4 5 3 4 1 5 3 4

10 9 3 4 5 3 4 1 5 3 4

11 5 5 5 6 4 5 1 6 4 5

12 6 4 5 6 4 5 1 6 4 5

13 4 6 5 6 4 5 0.2 1.2 0.8 1

visible by means of orange spheres. The projection of the frontier in the vertical plane xv = 0

is visualised by the transparent red region positioned on the xf axis. The projection of the

original observations in the vertical plane xv = 0 is indicated by blue boxes. The optimal

3D points obtained from equation (11) (i.e., (xv∗p , x
f∗
p , y

∗
p)) are denoted with green crosses.

Finally, the targets points obtained after applying model (12) (i.e., (wbv
∗

p xf∗p , w
bv∗
p xv∗p , w

bv∗
p y∗p))

are illustrated with black boxes.

The gray intersecting plane passes through the origin and the output-oriented target

point (xv∗13, x
f∗
13 , y

∗
13) = (6, 4, 5) of observation 13 indicated by label A. Based on the results of

Table 1, since wbv
∗

13 = 0.2, this target point scales down by 0.2 times to (1.2, 0.8, 1) depicted

by the black square indicated by label D in the gray intersecting plane. Obviously, this point

does not belong to the technology.

To even better illustrate this technological infeasibility, we present in Figure 2 the inter-

section of the gray plane and the boundary of technology of Figure 1. The horizontal axis

shows the amount of simultaneous change in fixed and variable inputs (α) for the target

point 13 in a radial way while the vertical axis shows the amount of changes in outputs (ϕ).

For observation 13, (α, ϕ) = (1, 1) since (xv∗13, x
f∗
13 , y

∗
13) = (6, 4, 5). Consequently, the target

point of observation 13 is depicted as the black solid box with label A. Again based on

the results of Table 1, we must scale down point A by a factor 0.2 resulting in the target

point (1.2, 0.8, 1) for which (α, ϕ) = (0.2, 0.2). The corresponding point is labelled D in Fig-

ure 2). Geometrically, this scaling factor corresponds with the ratio of Euclidean distances

‖0D‖/‖0A‖ = 0.2 = wbv
∗

13 . Obviously, this point D does not belong to the technology and is
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A

D

Figure 1: 3-dimensional view of the convex frontier for numerical example

thus not feasible.

Based on the results of Table 1, the output-oriented target points of units 2, 3, 7, 8, 11

and 13 are identical. Therefore, the intersection of the technology with the plane passing

through the origin and the output-oriented target point (xv∗p , x
f∗
p , y

∗
p) of these observations

are the same as illustrated in Figure 2. The value of wbv
∗

k for these units is unity. Therefore,

the target point of these units remains unchanged at point A in Figure 2.

5 Output-, Attainable Output-, and Input-oriented Short-

run Johansen Industry Models: New Proposals

This section develops the methodological refinements to the basic short-run Johansen indus-

try model outlined above. We first correct the short-run Johansen industry model based on

the output-oriented plant capacity concept such that the scaling of the plant capacity inputs

and outputs remains technically feasible by staying within the frontier technology. While this

15



Figure 2: Intersection of the technology with the plane going through the origin and the
output-oriented target point of observation 13

refinement is clearly important for the best practice or frontier-based short-run Johansen in-

dustry model, its pertinence for the traditional average practice short-run Johansen industry

model is harder to assess: we just assume this refinement can never harm. Thereafter, we

develop a new short-run Johansen industry model based on the attainable output-oriented

plant capacity concept. Finally, we develop a new short-run Johansen industry model based

on the input-oriented plant capacity concept.

5.1 Short-run Johansen Industry Model with Output-oriented Ca-

pacity Measures: A Revised Version

The method is developed in two steps as follows. In the first step, from models (9) and

(10), an optimal activity vector zp∗ is provided for each firm p. Hence, capacity output and

its optimal use of fixed and variable inputs y∗p, x
f∗
p and xv∗p can be computed by means of

equation (11).

In a second step, these ‘optimal’ frontier results (capacity output and capacity variable

and fixed inputs) at the firm level are used as parameters in the below short-run industry
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model (hereafter also referred to as the revised version (rv)):

min
θrv ,wrv

k ,Xv
θrv

s.t.
K∑
k=1

wrvk y
∗
k ≥ Y,

K∑
k=1

wrvk x
f∗
k ≤ θrvXf ,

K∑
k=1

wrvk x
v∗
k ≤ Xv,

wrv = (wrv1 , . . . , w
rv
K ) ∈ Γ rv,

θrv ≥ 0, Xv ≥ 0.

(14)

where

Y =

(
K∑
k=1

yk1, . . . ,
K∑
k=1

ykM

)
and Xf =

(
K∑
k=1

xfk1, . . . ,
K∑
k=1

xfkNf

)
,

and

Γ rv = {(w1, . . . , wK) | wk ≤ 1, (wkx
f∗
k , wkx

v∗
k , wky

∗
k) ∈ TΛ, k = 1, . . . , K}. (15)

This set Γ rv determines the feasible area of weights (w1, . . . , wK) such that the target points

(wpx
f∗
p , wpx

v∗
p , wpy

∗
p), (p = 1, . . . , K), belong to the technology. Note that for feasible weights

(w1, . . . , wK) ∈ Γ rv, we have wp ≤ 1 for all p = 1, . . . , K. Therefore in model (14), the decision

variable wrvp scales down the target point (xf∗p , x
v∗
p , y

∗
p) of firm p such that the technology is

respected. Note that in model (14), the variable inputs stored in the vector Xv are decision

variables. To obtain a lower bound Lrvp for wrvp , (p = 1, ..., K), we need to solve model (16):

Lrvp = min
δ,zk

δ

s.t.
K∑
k=1

zkyk ≥ δy∗p,

K∑
k=1

zkx
f
k ≤ δxf∗p ,

K∑
k=1

zkx
v
k ≤ δxv∗p ,

(z1, . . . , zK) ∈ Λ,

δ ≥ 0,

(16)

where y∗p, x
f∗
p and xv∗p are defined in (11). Actually, by solving model (16), we scale down

the output and input capacity targets such that they become feasible within the technology.

Therefore, model (16) can be interpreted as reducing the capacity targets to obtain the lower

bound of weights such that the technology is still respected. This relaxes the assumption of
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constant returns to scale up to full capacity in the basic version of the model.

Note furthermore that the main difference between the basic version (12) and the re-

vised version (14) of the short-run Johansen industry model is in the range of the weights

(w1, . . . , wK): in model (12) we have 0 ≤ wbvk ≤ 1, while in model (14) we have Lrvk ≤ wrvk ≤ 1.

Therefore, after solving model (14), the vector (wrv
∗

p xf∗p , w
rv∗
p xv∗p , w

rv∗
p y∗p), where wrv

∗
p is an

optimal solution of model (14), can be a target for firm p which belongs to the technology

TΛ.

Contrasting the basic version (bv) and the revised version (rv) of the short-run Johansen

industry model immediately leads to the following result:

Proposition 5.1. Assume that (θbv
∗
, wbv

∗
) and (θrv

∗
, wrv

∗
) are an optimal solution of models

(12) and (14),respectively. In technology (7), we have:

(i) θbv
∗ ≤ θrv

∗
and wbv

∗
p

>
=
<
wrv

∗
p .

(ii) If θbv
∗
< θrv

∗
, then for all multiple optimal solutions of model (12), there exists k ∈

{1, . . . , K} such that the corresponding target point (wbv
∗

k xf∗k , w
bv∗

k xv∗k , w
bv∗

k y∗k) does not

belong to the technology.

(iii) If θbv
∗

= θrv
∗
, then there is at least one optimal solution of model (12) for which the

corresponding target points of all observed units belong to the technology.

Proof. See Appendix D.

Interpreting Proposition 5.1, the fact that θbv
∗ ≤ θrv

∗
shows the eventual empirical rele-

vance of relaxing the hypothesis of constant returns to scale up to full capacity. Furthermore,

it also shows that if we have θbv
∗
< θrv

∗
, then for every multiple optimal solution of the basic

version of the short-run Johansen industry model (12), there is at least one observation for

which its target point does not respect the technology. Also, relation θbv
∗

= θrv
∗

guarantees

that there is one optimal solution of the basic version of the short-run Johansen industry

model (12) such that all corresponding target points of observations belong to the technology.

It is important to note that the relation θbv
∗

= θrv
∗

does not guarantee that all multiple

optimal solutions of model (12) lead to target points belonging to the technology. So, even if

θbv
∗

= θrv
∗
, the possibility exists of having a target point of some observations not respecting

the technology.

18



By solving model (12) on the data of the numerical example in Table 1, we obtain

θrv
∗

= 0.660. Hence, we have 0.638 = θbv
∗
< θrv

∗
= 0.660. Therefore, based on Proposition

5.1, for every multiple optimal solution of the basic version of the short-run Johansen industry

model (12), there is at least one observation for which its target point does not respect the

technology.

As illustrated in Figure 2, the traditional output-oriented short-run Johansen industry

model (12) scales down point A to obtain the target point D which is located outside of

the technology. But, by implementing the revised short-run Johansen industry model (14),

the target point A translates to the solid black box B: this remains technically feasible by

remaining within the technology (for more details, please see Appendix B, section B.1).

5.2 Short-run Johansen Industry Model with Attainable Output-

oriented Efficiency Measure: New Proposal

As already mentioned in Section 3, the original output-oriented plant capacity utilization

PCUo(x, x
f , y) has no limitations on the available amounts of variable inputs. However, in

most empirical settings this is not realistic and we have to limit the amount of variable inputs

available at either the firm or the industry level (see Kerstens, Sadeghi, and Van de Woestyne

(2019b) for details). Kerstens, Sadeghi, and Van de Woestyne (2019b) empirically illustrate

that variable inputs must somehow be bounded. Thus, APCUo(x, x
f , y, λ̄) is a more realistic

alternative plant capacity utilization measure provided a reasonable level λ̄ is chosen.

The attainable output-oriented efficiency measure ADF f
o (xfp , yp, λ̄) at level λ̄ ∈ R+ is

computed by solving the following linear program:

ADF f
o (xfp , yp, λ̄) = max

xv ,ϕ,zk
ϕ

s.t
K∑
k=1

zkyk ≥ ϕyp,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zkx
v
k = xv,

xv ≤ λ̄xvp,

(z1, . . . , zK) ∈ Λ,

xv ≥ 0.

(17)
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In model (17), the scalar λ̄ can be varied over some part of the interval (0,∞). But, when

λ̄ < 1, then it is possible that model (17) is infeasible. However, Kerstens, Sadeghi, and

Van de Woestyne (2019b) determine the complete feasible interval for λ̄ by defining three

critical points. We only need two critical points for our purpose:

Definition 5.1. For a given observation (xp, yp), the following two critical points C1
P and

C2
P can be defined.

C1
P = DF SR

vi (xfp , x
v
p, 0), (18)

and

C2
P = DF SR

vi (xfp , x
v
p, yp). (19)

Note that the critical points C1
P and C2

P make up the components of the input-oriented

plant capacity measure PCUi(x, x
f , y) in Definition 3.3. Furthermore, Kerstens, Sadeghi,

and Van de Woestyne (2019b) have proven that for every observation (xp, yp): if λ̄ < C1
P ,

then model (17) is infeasible.

Assume that ϕ∗ is the optimal value of model (17), then the following model can be

solved to find a solution that maximizes slacks and surpluses:

max
xv ,S+,S−,zk

1M .S
+ + 1Nf

.S−

s.t
K∑
k=1

zkyk − S+ = ϕ∗yp,

K∑
k=1

zkx
f
k + S− = xfp ,

K∑
k=1

zkx
v
k = xv,

xv ≤ λ̄xvp,

(z1, . . . , zK) ∈ Λ,

xv ≥ 0, S+ ≥ 0, S− ≥ 0.

(20)

The method is developed in two steps as follows. In the first step, from model (20) an optimal

activity vector zp
∗

= (zp∗1 , . . . , z
p∗
K ) is provided for firm p under evaluation and hence capacity

output and its optimal use of fixed and variable inputs can be computed:

y∗p =
K∑
k=1

zp∗k yk; xf∗p =
K∑
k=1

zp∗k x
f
k ; xv∗p =

K∑
k=1

zp∗k x
v
k. (21)

This has to be repeated for all firms p = 1, . . . , K.
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In a second step, these ‘optimal’ frontier results (capacity output and capacity variable

and fixed inputs) at the firm level are used as parameters in the below industry model

(hereafter also referred to as the attainable version (att)):

min
θatt,watt

k ,Xv
θatt

s.t.
K∑
k=1

wattk y∗k ≥ Y,

K∑
k=1

wattk xf∗k ≤ θattXf ,

K∑
k=1

wattk xv∗k ≤ Xv,

(watt1 , . . . , wattK ) ∈ Γ att,

θatt ≥ 0, Xv ≥ 0,

(22)

where

Y =

(
K∑
k=1

yk1, . . . ,
K∑
k=1

ykM

)
and Xf =

(
K∑
k=1

xfk1, . . . ,
K∑
k=1

xfkNf

)
,

and

Γ att = {(w1, . . . , wK) | wk ≤ 1, (wkx
f∗
k , wkx

v∗
k , wky

∗
k) ∈ TΛ, k = 1, . . . , K}, (23)

where y∗p, x
f∗
p and xv∗p are now defined in (21) instead of (11). Note that Xv in model

(22) holding the variable inputs is a vector of decision variables. Set Γ att determines the

feasible area of weights (w1, . . . , wK) such that the target point (wpx
f∗
p , wpx

v∗
p , wpy

∗
p), where

p = 1, . . . , K, belongs to the technology.

Notice that the constraints wk ≤ 1, (k = 1, ..., K), in set Γ att guarantee that the ob-

tained target points (wpx
f∗
p , wpx

v∗
p , wpy

∗
p) can be magnified at most as much as λ̄ which is an

attainable level of variable inputs defined in model (17). Therefore, in model (22) decision

variable wk scales down the target point (xf∗k , x
v∗
k , y

∗
k) of firm p such that the technology is

respected. Note that we have no relation between θatt
∗

and θrv
∗

in optimality.

To obtain a lower bound Lattp , (p = 1, ..., K), for wattp in model (22) we need to solve model

(16) where y∗p, x
f∗
p and xv∗p are now defined in (21) instead of (11).

Note furthermore that the attainable output-oriented short-run Johansen industry model

(22) can lead to infeasibilities in practical applications. Proposition 5.2 proves some necessary

and sufficient conditions for which model (22) is feasible.

Proposition 5.2. In technology (7), for every observation (xp, yp):
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(i) Model (22) is feasible if and only if
∑K

k=1 y
∗
k ≥ Y .

(ii) If C2
k ≤ λ̄ for all k = 1, . . . , K, then model (22) is feasible.

(iii) If we remove constraint (watt1 , . . . , wattK ) ∈ Γ att in model (22), then model (22) is always

feasible.

Proof. See Appendix D.

Note that based on Proposition 5.2, if there is an m ∈ {1, ...,M} such that
∑K

k=1 y
∗
km <∑K

k=1 ykm, then model (22) is infeasible. Also, if model (22) is infeasible, then there is some

k ∈ {1, ..., K} such that we have C2
k > λ̄. However, since C2

k ≤ 1, hence if we assume

that λ̄ ≥ 1, then the attainable output-oriented short-run Johansen industry model (22)

is feasible. Finally, when the attainable output-oriented short-run Johansen industry model

need not comply with the technology, this model is always feasible.

After solving model (22), the vector (watt
∗

p xf∗p , w
att∗
p xv∗p , w

att∗
p y∗p) can be a target for firm

p which belongs to the technology (7), and in which watt
∗

p is an optimal solution of model

(22) and xf∗p , xv∗p and y∗p are obtained from the relations (21).

Note that if in the industry model (22) instead of minimising the fixed inputs, we max-

imise the outputs in a radial way by a reallocation of production between firms, then Propo-

sition 5.2 becomes redundant.

Note furthermore that by implementing the attainable output-oriented short-run Jo-

hansen industry model (22) by using the numerical example in Table 1, we have θatt
∗

= 0.70

which is higher than θbv
∗

and θrv
∗
. In this case, the target point A translates to the solid

black box C in Figure 2: this remains technically feasible by remaining within the boundary

of the frontier technology (for more details, please see Appendix B, section B.2).
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5.3 Short-run Johansen Industry Model with Input-oriented Ca-

pacity Measures: New Proposal

The input-oriented short-run efficiency measure DF SR
vi (xfp , x

v
p, 0) is computed by optimizing

the following program:

DF SR
vi (xfp , x

v
p, 0) = min

θ,zk
θ

s.t
K∑
k=1

zkyk ≥ 0,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zkx
v
k ≤ θxvp,

(z1, . . . , zK) ∈ Λ,

θ ≥ 0.

(24)

Note that the observed output levels on the right-hand side of the output constraints are

put equal to zero. These zero output levels are compatible with any output levels where

production is initiated and differs from zero (i.e., ymin as defined supra). The reader is

referred to Kerstens, Sadeghi, and Van de Woestyne (2019a, Proposition B.1) for additional

interpretations (see also supra).

Assume that θ∗ is the optimal value of model (24), the following model can be solved to

find a solution that maximizes slacks and surpluses:

max
zk,S+,Sv−,Sf−

1M .S
+ + 1Nf

.Sf− + 1Nv .S
v−

s.t
K∑
k=1

zkyk − S+ = 0,

K∑
k=1

zkx
f
k + Sf− = xfp ,

K∑
k=1

zkx
v
k + Sv− = θ∗xvp,

(z1, . . . , zK) ∈ Λ,

S+ ≥ 0, Sv− ≥ 0, Sf− ≥ 0,

(25)

with 1Nv = (1, . . . , 1) ∈ RNv
+ .

Similar to the output-oriented short-run Johansen models treated so far, we have to

proceed in two steps as follows. In the first step, from model (25) an optimal activity vector
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zp∗ = (zp∗1 , . . . , z
p∗
K ) is provided for firm p under evaluation and hence capacity output and

its optimal use of fixed and variable inputs can be computed:

y∗p =
K∑
k=1

zp∗k yk; xf∗p =
K∑
k=1

zp∗k x
f
k ; xv∗p =

K∑
k=1

zp∗k x
v
k. (26)

This has to be repeated for all firms p = 1, . . . , K.

In a second step, these ‘optimal’ frontier results (capacity output and capacity variable

and fixed inputs) at the firm level are used as parameters in the below industry model

(hereafter also referred to as the input-oriented version (inp)):

min
θinp,winp

k ,Xv

θinp

s.t.
K∑
k=1

winpk y∗k ≥ Y,

K∑
k=1

winpk xf∗k ≤ θinpXf ,

K∑
k=1

winpk xv∗k ≤ Xv,

(winp1 , . . . , winpK ) ∈ Γ inp,

θinp ≥ 0, Xv ≥ 0.

(27)

where

Y =

(
K∑
k=1

yk1, . . . ,
K∑
k=1

ykm

)
and Xf =

(
K∑
k=1

xfk1, . . . ,
K∑
k=1

xfkNf

)
, (28)

and

Γ inp = {(w1, . . . , wK) | wk ≥ 1, (wkx
f∗
k , wkx

v∗
k , wky

∗
k) ∈ TΛ, k = 1, . . . , K}. (29)

This set Γ inp determines the feasible area for the weights (w1, . . . , wK) such that the target

points (wpx
f∗
p , wpx

v∗
p , wpy

∗
p), where p = 1, . . . , K, belong to the technology. Note that for

feasible weights (w1, . . . , wK) ∈ Γ inp, we have wp ≥ 1 for all p = 1, . . . , K. Therefore, in

model (27) decision variable wk scales up the target point (xf∗k , x
v∗
k , y

∗
k) of firm p such that

the technology is respected. Note that θinp
∗

cannot be compared to θbv
∗
, θrv

∗
and θatt

∗
in

optimality.

To obtain an upper bound U inp
p , where p = 1, ..., K, for winpp we need to solve the next
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model (30):

U inp
p = max

δ,zk
δ

s.t.
K∑
k=1

zkyk ≥ δy∗p,

K∑
k=1

zkx
f
k ≤ δxf∗p ,

K∑
k=1

zkx
v
k ≤ δxv∗p ,

(z1, . . . , zk) ∈ Λ,

δ ≥ 0,

(30)

where y∗p, x
f∗
p and xv∗p are defined in (26). Actually, by solving this model we scale up the

output and input capacity targets such that they become feasible within the technology.

Indeed, notice that in all previous models based on output-oriented plant capacity we start

from output and input capacity targets that are situated in point A at the horizontal section

in Figure 2, while here we start from input-oriented plant capacity targets that are situated

at the vertical section in Figure 2: in Figure 3 one can note another point A at the vertical

section.

Therefore, model (30) can be interpreted as expanding the capacity targets to obtain the

upper bound of weights such that the technology is respected. Note that all weights winpk ≥ 1

since the optimal solution starts out from the vertical section in Figure 3 and moves up to

the right in input-output space, while all previous models based on output-oriented plant

capacity start from output and input capacity targets that are situated at the horizontal

section in Figure 2 and move down to the left in input-output space. Hence, in model (30)

we need to scale up capacity outputs and capacity variable and fixed inputs to meet all

requirements.

Note that the input-oriented short-run Johansen industry model (27) can lead to infea-

sibilities in practical applications. But, if there are no upper bounds in the input-oriented

short-run Johansen industry model (27) (i.e., we do not need to respect the technology by

ignoring constraint (winp1 , . . . , winpK ) ∈ Γ inp in model (27)), then model (27) is always feasi-

ble. Proposition 5.3 proves some necessary and sufficient conditions for which model (27) is

feasible.

Proposition 5.3. In technology (7), for every observation (xp, yp):

(i) Model (27) is feasible if and only if
∑K

k=1 U
inp
k y∗k ≥ Y .

(ii) If we remove constraint (winp1 , . . . , winpK ) ∈ Γ inp in model (27), then model (27) is always
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feasible.

Proof. See Appendix D.

After solving model (27), the vector (winp
∗

p xf∗p , w
inp∗
p xv∗p , w

inp∗
p y∗p) can be a target for

DMUp which belongs to the technology (7) where winp
∗

p is an optimal solution of model

(27) and xf∗p , xv∗p and y∗p are obtained from the relations (26).

Note again that the outcomes of these three new models in Section 5 (i.e., models (14),

(22) and (27)) are not in general unique and there can be multiple optimal solutions for

these models.

Figure 3 shows the intersection of the technology with the plane that passes through

the origin and the input-oriented target point of observation 13, i.e., point (xv∗13, x
f∗
13 , y

∗
13) =

(2, 2, 2) which is obtained from equation (26). The horizontal axis shows the amount of

simultaneous changes in fixed and variable inputs (α) for the input-oriented target point 13

in a radial way and the vertical axis shows the amount of changes in outputs (ϕ). Therefore,

for (α, ϕ) = (1, 1) we have (xv∗13, x
f∗
13 , y

∗
13) = (2, 2, 2) (black solid box A).

Figure 3: Intersection of the technology with the plane that passes through the origin and
the input-oriented target point of observation 13

Note furthermore that by implementing the input-oriented short-run Johansen industry

model (27) by using the numerical data in Table 1, we have θinp
∗

= 0.81. In this case, the

target point A (i.e., the target point of unit 13) remains unchanged at point A in Figure 3

(for more details, please see Appendix B, section B.3).
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6 Empirical Illustration

6.1 Data

Our sample is based on 170 steel hulled fishing vessels operating in the northwest Atlantic

Ocean during 2014. All vessels have a similar technology and catch their fish by dragging

a net behind their vessels just off the ocean floor. Catches were grouped into three distinct

categories based on species type: flatfish, roundfish, and “other”. There are three fixed inputs:

vessel length, engine horsepower, and vessel gross tonnage. The only variable input used is

time spent at sea in days.

Table 2 presents basic descriptive statistics for the inputs and the outputs. We report the

average, the standard deviation, and the minima and maxima (depending on the context) for

both the inputs and outputs. Vessels are between 36 and 88 feet in length, with an average

of 63 feet. Their horsepower ranges from 180 to 1,380 (494 average) and their tonnage is

between 5 and 199 (average 90). On average, these vessels fish 67 days per year with a range

between 2 and 242 days. Their average roundfish catch is 99,113 pounds with a range between

zero and 750,976. Flatfish catch is between 9 and 265,617 pounds with an average of 50,602.

The “other” category shows an average catch of 154,253 pounds with a range between 299

and 1,462,807 pounds. Basically, one observes a lot of heterogeneity and a rather wide range

for all inputs and outputs.

An important remark needs to be made with respect to the sole variable input time spent

at sea in days. Based on equation (11) we have xv∗p =
∑K

k=1 z
p∗
k x

v
k and since

∑K
k=1 z

p∗
k = 1,

then min
k=1,...,K

xvkn ≤ xv∗pn =
∑K

k=1 z
p∗
k x

v
kn ≤ max

k=1,...,K
xvkn for all n = 1, . . . , Nv. Hence, we have

2.222 ≤ xv∗p1 ≤ 242.195 for all p = 1, . . . , K. Thus, the optimal amount of variable inputs

is always bounded by the minimum and maximum levels of observed variable inputs in the

data, and it can certainly in no way reach the absolute upper bound of 365 days in 2014.

Table 2: Descriptive Statistics for 170 Observed Data
Fixed input 1 Fixed input 2 Fixed input 3 Variable input Output 1 Output 2 Output 3

Horsepower Length Tonnage Days Roundfish Flatfish Other

Average 494.4824 62.67194 90.14706 67.79868 99113.2254 50601.95 154252.701

St. Dev. 210.1697 14.60609 54.59042 66.21814 154640.012 54758.96 233021.661

Min 180 35.8 5 2.222 0 9 299

Max 1380 88.4 199 242.195 750976 265616.9 1462806.89

Table 3 reports the descriptive statistics of input-oriented, output-oriented and attainable

output-oriented plant capacity utilisation for 170 DMUs using convex and non-convex tech-

nologies, respectively. The main motivation to differentiate between convex and non-convex
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technologies is that recently Kerstens, Sadeghi, and Van de Woestyne (2019a) revealed signifi-

cant differences between convex and non-convex plant capacities. Note that for the attainable

output-oriented efficiency measure ADF f
o (xf , y, λ̄) as well as the attainable output-oriented

plant capacity utilization APCUo(x, x
f , y, λ̄), we have chosen λ̄ = 2. Therefore, we simply

assume that variable inputs can be magnified at most twofold.

Table 3: Descriptive Statistics of Input and Output Plant Capacity Utilisation for 170 DMUs
in both Convex and Non-convex Cases

Convex DFvi(x
f , xv, y) DFvi(x

f , xv, 0) PCUi(.) DFo(.) DF f
o (.) PCUo(.) ADF f

o (.) APCUo(.)

Average 0.576 0.201 16.557 2.283 8.056 0.631 3.892 0.712

St. Dev. 0.242 0.279 21.297 1.735 14.286 0.342 3.777 0.246

Min 0.109 0.009 1.000 1.000 1.000 0.022 1.000 0.134

Max 1.000 1.000 108.999 11.546 129.824 1.000 28.865 1.000

Nonconvex

Average 0.984 0.222 28.120 1.056 3.866 0.679 1.454 0.862

St. Dev. 0.064 0.300 30.095 0.230 10.792 0.344 1.189 0.220

Min 0.543 0.009 1.000 1.000 1.000 0.014 1.000 0.094

Max 1.000 1.000 108.999 2.675 129.558 1.000 11.282 1.000

Analyzing the results in Table 3, one can draw the following conclusions. First, on av-

erage the PCUi(x, x
f , y) indicates that one needs 16.55 times more variable inputs (days)

with current outputs than with zero outputs under C, while under NC one employs 28.12

times more variable inputs (days) with current outputs than with zero outputs. Second, on

average the biased plant capacity utilization measure DF f
o (xf , y) indicates that outputs can

be magnified by at least 8.05 times under C and 3.86 times under NC. Also, there is a lot of

variation in DF f
o (xf , y) as indicated by the standard deviation and the range: the maximum

increase in outputs amounts to 129.824 times under C and 129.558 under NC. Third, on av-

erage the unbiased plant capacity utilization measure PCUo(x, x
f , y) indicates that current

outputs make up 63% from maximal plant capacity outputs under C and 67% under NC.

Also, the heterogeneity in PCUo(x, x
f , y) is large as indicated by the standard deviation and

the range: the minimum of 2.2% under C and 1.4% under NC are simply very low. Fourth,

for the biased attainable plant capacity utilization measure ADF f
o (xf , y, λ̄ = 2) the average

of the output magnification under C is higher than under NC. Also, for a twofold increase

in variable inputs (i.e., λ̄ = 2), we obtain on average a 3.892 output magnification under C

and a 1.454 output magnification under NC. Fifth, the average of APCUo(x, x
f , y, λ̄ = 2) is

smaller under C than under NC.

In conclusion, the different plant capacity measures behave substantially different under

C and NC technologies, which is in line with earlier results reported by Kerstens, Sadeghi,

and Van de Woestyne (2019a).
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6.2 Key Results

Turning to the results of the four short-run Johansen industry models, Table 4 shows basic

descriptive statistics of their efficiency scores (θ), weights (wp), lower and upper bounds (Lp

and Up), the number of units for which their weights coincide to their lower bound (#wp = Lp

), the number of units for which their weights coincide to their upper bound (#wp = Up ), and

the number of units which are located outside of the technology (# DMUp /∈ T ), respectively.

The rows of this Table 4 include two parts: the first part shows the results under the convex

case, and the second part shows the results under the nonconvex case.

Table 4: The results of weights, lower and upper bounds for all methods
Weights Lower or upper bound

Convex θ Average ST. D Min Max Average ST. D Min Max # wp = Lp # wp = Up # DMUp /∈ T
bv 0.3 0.330 0.466 0 1 111 54 117

rv 0.84 0.937 0.108 0.5802 1 0.9366 0.1076 0.580 1 170 170 0

att 0.82 0.946 0.104 0.5802 1 0.9464 0.1040 0.580 1 170 170 0

inp Inf Inf Inf Inf Inf 61.0550 25.4301 1 116.19 Inf Inf Inf

Nonconvex

bv 0.35 0.350 0.474 0 1 109 56 114

rv 0.92 0.996 0.025 0.817 1 0.996 0.025 0.817 1 170 170 0

att 0.91 0.995 0.033 0.6858 1 0.995 0.033 0.686 1 170 170 0

inp Inf Inf Inf Inf Inf 14.567 35.205 1 116.19 Inf Inf Inf

bv: basic version of output-oriented short-run Johansen industry model

rv: revised version of output-oriented short-run Johansen industry model

att: attainable output-oriented short-run Johansen industry model

inp: input-oriented short-run Johansen industry model

We can draw the following conclusions about this Table 4. First, comparing the first

two lines, one observes that fixed inputs can be reduced by 70% in the basic version, while

these can only be reduced by 16% in the revised version. This dramatic reduction in the

basic version is due to the fact that 117 out of 170 vessels are in fact not even part of the

frontier technology, an issue that has so far been ignored in the literature on the short-run

Johansen model. This is reflected in the low average weights in the basic version compared

to the high average weights in the revised version. In the revised version all 170 observations

have weights equal to their lower bound. Second, applying a nonconvex technology slightly

attenuates these results: fixed inputs can be reduced now by only 65% in the basic version,

while they can be reduced by just 8% in the revised version. Average weights are higher

under nonconvexity in both the basic and revised versions.

Third, opting for an attainable output-oriented plant capacity measure slightly improves

the results compared to the revised version of the output-oriented plant capacity because

capacity inputs and outputs are somewhat reduced. Under convexity fixed inputs can be

reduced by 16% in the revised version and by 18% in the attainable case, while in the

nonconvex case fixed inputs can be reduced by 8% in the revised version and by 9% in the

29



attainable case. While the average weight slightly increases under convexity, it marginally

decreases under nonconvexity. Also in the attainable version all 170 observations have weights

equal to their lower bound. Fourth, the input-oriented short-run Johansen industry model

(27) is infeasible for this empirical application under both convex and nonconvex cases. Thus,

it is impossible to scale up the input-oriented capacity targets of units such that these are

capable to generate the current aggregate output levels while respecting the technology. The

reader must realise that the input-oriented short-run Johansen industry model (27) does

yield a solution for the numerical example above, but that the configuration of the empirical

data leads to an infeasibility. More detailed results for each of these four short-run Johansen

industry models is found in Appendix C.

We think it is safe to make the following conclusions from our empirical illustration. A

first conclusion is that the basic version of the short-run Johansen industry model is not only

conceptually wrong, but also leads to far too optimistic reductions in fixed inputs. Another

conclusion is that the degree of reallocation is somehow conditioned on the type of plant

capacity concept one is willing to adhere to. Our results indicate that the traditional output-

oriented plant capacity notion may still be a bit too optimistic compared to the attainable

output-oriented plant capacity concept that leads to fewer reductions in fixed inputs. It

is regrettable that the conceptually appealing input-oriented short-run Johansen industry

model does not lead to a feasible solution for our data set.

7 Conclusions

This contribution has provided a cursory review of the historic development of the short-run

Johansen industry model. It distinguishes between the traditional average practice version

and the best practice or frontier-based version that is of more recent date. The goals of this

contribution have been twofold. First, we have remedied a remaining problem in the short-run

Johansen (1972) frontier-based industry model: we have relaxed the assumption of constant

returns to scale up to full capacity for individual production units. Hence, capacity inputs

and outputs remain technically feasible by firmly remaining within the technology. Second,

we have opened up the methodological choices open to the users of this short-run Johansen

(1972) industry model by introducing new plant capacity concepts: a new input-oriented

plant capacity measure, and an attainable output-oriented plant capacity.

On the one hand, we have provided a basic numerical example to illustrate the differences

and similarities between these different modeling options. On the other hand, we have de-
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veloped an empirical illustration using US based fishery data. Both these illustrations have

shown the viability of our new modeling options.

To conclude, we mention some avenues for future research. One possibility is to further

extend the choice of plant capacity concepts: one option is to include a graph-oriented plant

capacity concept (see Kerstens, Sadeghi, and Van de Woestyne (2020)).
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Appendices: Supplementary Material

A Graphical Illustrations

Now we try to clarify Definitions 3.1, 3.2 and 3.3 with the help of a two-dimensional Figure

A.1 which depicts a single variable input and an output space. In particular, Figure A.1

shows a total product curve for given variable inputs as the polyline abcd and its horizontal

extension at d. We focus on observation e. Note that observations are represented by squares

and projection points by circles.

Figure A.1: Total product curve: Output-oriented, attainable output-oriented and input-
oriented plant capacities

The output-oriented plant capacity measure PCUo(x, x
f , y) compares point e to its ver-

tical projection point e3 on the frontier on the one hand, and the translated point e1 that

consumes more variable inputs to its vertical projection point on the horizontal frontier seg-

ment emanating from point d with maximal outputs on the other hand. Clearly, the maximal

output d can be labeled the plant capacity output. Thus, the unbiased plant capacity mea-

sure PCUo(x, x
f , y) is somehow linked to the distance e3d1, whereby point d1 is simply the

translation of the maximal output at point d to the output level comparable with point e.

The attainable output-oriented plant capacity measureAPCUo(x, x
f , y, λ̄) compares point

e to its vertical projection point e3 on the frontier on the one hand, and the translated point

f that consumes at most a fraction λ̄ more variable inputs to its vertical projection point at

point f1 with maximal outputs at level λ̄ on the other hand. Clearly, the maximal output f1

at level λ̄ can be labeled the attainable plant capacity output. Thus, the unbiased attainable
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plant capacity measure APCUo(x, x
f , y, λ̄) is somehow linked to the distance e3f2, whereby

point f2 is simply the translation of the maximal output at point f1 to the output level

comparable with point e.

The input-oriented plant capacity measure PCUi(x, x
f , y) focuses on a sub-vector of

variable inputs and compares point e to its horizontal projection point e4 on the frontier on

the one hand, and the translated point e2 (consuming equal amounts of variable inputs but

at a zero outputs level) to its horizontal projection point on the vertical frontier segment

ab with zero outputs on the other hand. Clearly, the minimal variable input a yielding zero

output can be labeled the plant capacity input. Thus, the unbiased plant capacity measure

PCUi(x, x
f , y) is somehow linked to the distance b1e4, whereby point b1 is the translation of

the variable input at point b to the variable input level comparable with point e.

B Numerical Example: Supplementary Materials

B.1 Section 5.1: Short-run Johansen Industry Model with Output-

oriented Capacity Measures: A Revised Version

We illustrate the ease of implementing this revised short-run Johansen industry model with

output-oriented capacity measures by using the numerical data in Table 1.

Table B.1 reports input and output targets obtained by solving model (14). The first four

columns show the target points of units obtained by relation (11). The lower bound Lrvp and

the amounts wrv
∗

p are reported in the fifth and sixth columns, respectively. The final targets

of inputs and outputs obtained by solving model (14) (i.e., points (wrv
∗

p xf∗p , w
rv∗
p xv∗p , w

rv∗
p y∗p)

corresponding to firm p) are presented in the 7-th, 8-th and 9-th columns. To see the magni-

fication of the variable inputs we report the ratio of variable inputs of the target point over

the current variable inputs (i.e.,
wrv∗

p xv∗p
xvp

) in the very last column.

Analyzing the results in Table B.1, we can draw the following conclusions. First, the

minimum amount of lower bound wrv
∗

p is 0.667 and its maximum amount remains 1. Com-

paring with the results of Table 1, this new method puts all target points in the production

possibility set by excluding weights below the lower bound wrv
∗

p of 0.667. Second, the opti-

mal amount wrv
∗

p of units 2, 3, 7 and 8 coincides with their lower bounds, and the amount of

wrv
∗

p of units 11, 12 and 13 is situated between their lower and upper bounds. Furthermore,

the amount of wrv
∗

p for the remaining units is unity such that these units reach their upper
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Table B.1: Inputs and outputs targets obtained by solving model (14)

DMUp xv∗p xf∗p y∗p Lrvp wrv
∗

p wrv
∗

p xv∗p wrv
∗

p xf∗p wrv
∗

p y∗p
wrv∗

p xv∗p
xvp

1 5 3 4 1 1 5 3 4 1.667

2 6 4 5 0.667 0.667 4 3 3.333 2

3 6 4 5 0.667 0.667 4 3 3 2

4 2 2 2 1 1 2 2 2 0

5 2 2 2 1 1 2 2 2 0.2

6 2 2 2 1 1 2 2 2 1

7 6 4 5 0.667 0.667 4 3 3.333 1.333

8 6 4 5 0.667 0.667 4 3 3.333 1.333

9 5 3 4 1 1 5 3 4 1

10 5 3 4 1 1 5 3 4 0.556

11 6 4 5 0.667 0.786 5 3 4 0.943

12 6 4 5 0.667 0.786 5 3 3.929 0.786

13 6 4 5 0.667 0.762 5 3.048 3.810 1.143

bounds. For unit 13, we have Lrv13 = 0.667: this means that if we put wrv
∗

13 < 0.667, then

the obtained target point (wrv
∗

13 x
v∗
13, w

rv∗
13 x

f∗
13 , w

rv∗
13 y

∗
13) does no longer belong to the production

possibility set. Note that in the previous Table 1, since we have wbv
∗

13 = 0.2 < 0.667 = Lrv13, the

obtained target of unit 13 in the basic version is situated outside the production possibility

set. As illustrated in Figure 2, the traditional output-oriented short-run Johansen industry

model (12) scales down the target of unit 13 (i.e., point A) to obtain the target point D

which is located outside of the technology.

To solve this problem of the infeasibility of point D in Figure 2, we have now modified

the short-run Johansen industry model (12) such that the scaling of this point A remains

technically feasible by remaining within the frontier technology by only moving along the

segment AC. We can show this feasibility again by reference to Figure 2. Note that since

wrv
∗

13 = 0.762, we now scale down the point (xv∗13, x
f∗
13 , y

∗
13) = (6, 4, 5) (solid black box A) by

0.762 times to obtain the target point (wrv
∗

13 x
v∗
13, w

rv∗
13 x

f∗
13 , w

rv∗
13 y

∗
13) = (5, 3.048, 3.810) in Figure

1. As can be seen in Figure 2, the latter target point translates to point (0.762, 0.762) that is

represented by the solid black box B: this remains technically feasible by remaining within

the technology.

Note that based on the results of Table 1, the output-oriented target point of units

2, 3, 7, 8, 11 and 12 are identical with unit 13. Therefore, the intersection of the technol-

ogy with the plane that passes through the origin and the output-oriented target point

(xv∗p , x
f∗
p , y

∗
p) of these observations are the same as illustrated in Figure 2. The amount of
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wrv
∗

p for the units 2, 3, 7 and 8 coincides with their lower bounds. Hence, their target points

are located on point C in Figure 2. The amount of wrv
∗

p of units 11 and 12 is situated between

its lower and upper bounds and these units have the same behavior as unit 13.

Finally, the last column of Table B.1 indicates the amounts by which the variable inputs

can be magnified. There is rather a large amount of variation in these variable inputs. Indeed,

the range is broad: the minimum change in variable inputs amounts to 0.2 times and the

maximum increase in variable inputs amounts to 2 times.

B.2 Section 5.2: Short-run Johansen Industry Model with Attain-

able Output-oriented Efficiency Measure: New Proposal

Table B.2 reports the results of the short-run industry model with attainable output-oriented

efficiency measure on the numerical example. It is structured in a way similar to the previous

Table B.1. For this numerical example, we have chosen λ̄ = 2. Thus, we believe that an

increase of the variable inputs with a factor more than 2 is implausible. We make three

observations. First, as can be seen in the last column of Table B.2, the variable input can

be magnified by maximum 1.667 times. Only for the first unit this magnification is 1.667

and for the other units, it is smaller than 1.667. Second, the optimal amount watt
∗

p of units

2, 3, 7 and 13 coincides with their lower bounds. The amount of watt
∗

p of units 8, 11 and 12

is situated between their lower and upper bounds. Furthermore, the amount of watt
∗

p for the

remaining units is unity such that these units reach their upper bounds. Third, for none of

the observations in this numerical example we reach the upper bound λ̄ = 2.

Note that based on the results of Table B.2, the attainable output-oriented target point of

units 7, 8, 11, 12 and 13 are (xv∗p , x
f∗
p , y

∗
p) = (6, 4, 5). Therefore, the intersection of the technol-

ogy with the plane that passes through the origin and the attainable output-oriented target

point (xv∗p , x
f∗
p , y

∗
p) of these observations are the same as illustrated in Figure 2. Note that

since watt
∗

13 = 0.667, we need to scale down the point (xv∗13, x
f∗
13 , y

∗
13) = (6, 4, 5) (solid black box

A) by 0.667 times to obtain the target point (watt
∗

13 xv∗13, w
att∗
13 xf∗13 , w

att∗
13 y∗13) = (4, 2.667, 3.333)

in Figure 1 and its projection (0.677, 0.677) in Figure 2 (solid black box C). Also, unit 7 has

the same behavior as unit 13. The amount of watt
∗

p of units 8, 11 and 12 is situated between

their lower and upper bounds.
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Table B.2: Inputs and outputs targets obtained by solving model (22)

DMUp xv∗p xf∗p y∗p Lattp watt
∗

p watt
∗

p xv∗p watt
∗

p xf∗p watt
∗

p y∗p
watt∗

p xv∗p
xvp

1 5 3 4 1 1 5 3 4 1.667

2 4 5 4.667 0.6 0.6 2 3 2.8 1.2

3 4 6 5 0.667 0.667 3 4 3.333 1

4 5 2 2 1 1 5 2 2 1

5 2 2 2 1 1 2 2 2 0.200

6 2 2 2 1 1 2 2 2 1

7 6 4 5 0.667 0.667 4 3 3 1

8 6 4 5 0.667 0.829 5 3 4 1.658

9 5 3 4 1 1 5 3 4 1

10 5 3 4 1 1 5 3 4 0.556

11 6 4 5 0.667 0.778 5 3 4 0.933

12 6 4 5 0.667 0.833 5 3 4.167 0.833

13 6 4 5 0.667 0.667 4 2.667 3.333 1

B.3 Section 5.3: Short-run Johansen Industry Model with Input-

oriented Capacity Measures: New Proposal

Table B.3 reports the results for the short-run Johansen industry model with input-oriented

plant capacity. It is structured in a similar way as Tables B.1 and B.2. The only difference

between these tables is in the 5-th column: while in Tables B.1 and B.2 this column reports

the lower bound of wp, in Table B.3 it shows the upper bound for winpp (i.e., U inp
p ).

Table B.3: Inputs and outputs target obtained by solving of model (27)

DMUp xv∗p xf∗p y∗p U inp
p winp

∗
p winp

∗
p xv∗p winp

∗
p xf∗p winp

∗
p y∗p

1 2 2 2 2.5 1 2 2 2

2 2 2 2 2.5 1 2 2 2

3 2 2 2 2.5 2.5 5 5 5

4 2 2 2 2.5 2.5 5 5 5

5 2 2 2 2.5 2.5 5 5 5

6 2 2 2 2.5 2.417 4.833 4.833 4.833

7 2 2 2 2.5 1.833 3.667 3.667 3.667

8 2 2 2 2.5 2 4 4 4

9 2 2 2 2.5 1 2 2 2

10 2 2 2 2.5 1.75 3.5 3.5 3.5

11 2 2 2 2.5 1 2 2 2

12 2 2 2 2.5 1 2 2 2

13 2 2 2 2.5 1 2 2 2
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Analyzing the results in Table B.3, we can draw the following conclusions. First, the

upper bound winpp of all units is 2.5. This new method keeps all target points within the

production possibility set by excluding weights above the upper bound winp
∗

p of 2.5. Second,

the optimal amount winp
∗

p of units 3, 4 and 5 are bigger that unity and coincides with their

upper bounds. The amount of winp
∗

p of unit 6, 7, 8 and 10 is situated between its lower and

upper bounds. Furthermore, the amount of winp
∗

p for the remaining units 1, 2, 9, 11, 12 and

13 is unity such that these units reach their lower bound that is smaller than their upper

bound.

Based on the results of Table B.3, since U inp
13 = 2.5, hence it can be scaled up 2.5 times such

that its target point remains technologically feasible. But, since we have winp
∗

13 = 1, therefore

unit 13 remains unchanged at point A in Figure 3. Note that based on the results of Table

B.3, the input-oriented target points of all units are identical with the input-oriented target

point of unit 13. Therefore, the intersection of the technology with the plane that passes

through the origin and the input-oriented target points (xv∗p , x
f∗
p , y

∗
p) of all observations are

the same as illustrated in Figure 3. The amount of winp
∗

p for the units 1, 2, 9, 11 and 12 is unity,

hence these units have the same behavior as unit 13 and their targets remain unchanged at

point A in Figure 2.

The optimal amount winp
∗

p of unit 3, 4 and 5 is bigger than unity and coincides with their

upper bounds. Therefore, the target point of these three units translates to point (2.5, 2.5)

that is represented by the solid black box B in Figure 3. The amount of winp
∗

p of units 6, 7, 8

and 10 is situated between their lower and upper bounds. For example, if we focus on unit

8, since winp
∗

8 = 2, hence we must scale up point A by 2 times to obtain the target point B

of unit 8 (i.e., (4, 4, 4) in Figure 1 and its projection (2, 2) in Figure 3).

C Empirical Illustration: Supplementary Material

C.1 Output-oriented Short-run Johansen Industry Model: Basic

Version

Table C.1 shows basic descriptive statistics for all normalised inputs and outputs defined in

equation (11) which are obtained by solving model (10). The rows of this table include two

parts: first part shows the results under convex case, and the second shows the results under

non-convex case. In both parts, we report the arithmetic averages, the standard deviation,

the minima and maxima depending on the context.
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Table C.1: Descriptive Statistics of Normalised Inputs and Outputs Defined in (11)

Convex
xf∗p1

xfp1

xf∗p2

xfp2

xf∗p3

xfp3

xv∗p1
xvp1

y∗p1
yp1

y∗p2
yp2

y∗p3
yp3

Average 0.922 0.926 0.907 3.465 273.639 10.528 16.029

St. Dev. 0.126 0.074 0.138 4.691 1136.602 33.802 55.466

Min 0.477 0.636 0.396 0.425 1.000 1.000 1.000

Max 1.000 1.000 1.000 46.697 11869.221 390.978 670.947

Nonconvex

Average 0.885 0.928 0.815 3.056 211.902 21.029 8.685

St. Dev. 0.141 0.087 0.207 4.680 892.748 204.597 48.571

Min 0.450 0.660 0.323 0.844 1.000 1.000 1.000

Max 1.000 1.000 1.000 49.076 6015.026 2620.529 618.344

Turning to the analysis of Table C.1, we can draw several conclusions. First, the average

magnification of three fixed inputs are smaller and close to unity under both C and NC.

Second, the result indicates that the variable input can be magnified by at least 3.46 times

under C and 3.05 times under NC, on average. Also, the range is broad: the maximum

increase in variable input amounts to 46.70 times under C and 49.07 times under NC.10

Third, the results show that three outputs can be magnified by at least 273.64, 10.53 and

16.03 times under C and 211.90, 21.03 and 8.68 times under NC, on average. There is also

a great amount of variation, as indicated by the standard deviation, and the range is broad:

for example the maximum increase in the first output amounts to 11869.22 times under C

and 6015.03 times under NC.

Table C.2 shows the basic descriptive statistics for all normalised inputs and outputs

obtained by solving model (12), i.e., points (
wbv∗

p xf∗p

xfp
,
wbv∗

p xv∗p
xvp

,
wbv∗

p y∗p
yp

) corresponding to DMUp

where wbv
∗

p is an optimal solution of model (12) and xf∗pn, xv∗pn and y∗pm are obtained from

the relations (11). The rows of this table include again two parts. The first part reports the

results under the convex case, and the second part reports the results under the non-convex

case. In both parts, we report the arithmetic averages, the standard deviation, the minima

and maxima depending on the context.11

Analyzing the results in Table C.2, we can draw the following conclusions. First, the

average of wbv
∗

k indicates that for scaling down capacity outputs and capacity variable and

fixed inputs to meet all requirements, we need on average a 0.335 scaling under C and a

10Based on equation (11) we have xv∗p =
∑K

k=1 z
p∗
k xvk and since

∑K
k=1 z

p∗
k = 1, then min

k=1,...,K
xvkn ≤ xv∗pn =∑K

k=1 z
p∗
k xvkn ≤ max

k=1,...,K
xvkn for all n = 1, . . . , Nv. Hence, based on the information in Table 2, we find that

2.222 ≤ xv∗p1 ≤ 242.195 for all p = 1, . . . ,K. Therefore, the optimal amount of variable inputs is always
bounded by the minimum and maximum levels of observed variable inputs in the data.

11Note that the first output is zero for 6 DMUs: hence, we do not consider these DMUs in the descriptive
statistics.
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Table C.2: Descriptive Statistics of Normalised Inputs and Outputs Obtained by Solving
Model (12)

Convex wbv
∗

p

wbv∗
p xf∗p1

xfp1

wbv∗
p xf∗p2

xfp2

wbv∗
p xf∗p3

xfp3

wbv∗
p xv∗p1
xvp1

wbv∗
p y∗p1
yp1

wbv∗
p y∗p2
yp2

wbv∗
p y∗p3
yp3

Average 0.335 0.299 0.303 0.301 1.319 151.982 2.838 4.771

St. Dev. 0.468 0.425 0.425 0.427 2.918 991.182 6.627 16.113

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max 1.000 1.000 1.000 1.000 19.322 11869.221 45.386 146.072

Nonconvex

Average 0.357 0.311 0.325 0.282 1.465 102.164 18.705 5.748

St. Dev. 0.476 0.422 0.436 0.394 4.574 586.743 204.704 48.382

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max 1.000 1.000 1.000 1.000 49.076 6015.026 2620.529 618.344

0.357 scaling under NC. Second, the minimum amount of wbv
∗

p is zero, Therefore, for some

units the target points are located on the origin.

C.2 Output-oriented Short-run Johansen Industry Model: Revised

version

Table C.3 is structured in a similar way as Table C.2. In this table, the basic descriptive

statistics for all normalised inputs and outputs obtained by solving model (14) are reported.

The amounts of wrv
∗

p and lower bound Lrvp are reported in the second and third columns,

respectively. To see the magnification of the fixed, variable inputs and outputs we report

the ratio of their target point over their current amount, i.e., points (
wrv∗

p xf∗p

xfp
,
wrv∗

p xv∗p
xvp

,
wrv∗

p y∗p
yp

)

corresponding to DMUp where wrv
∗

p is an optimal solution of model (14) and xf∗p , xv∗p and

y∗p are obtained from the relations (11), in the fourth to tenth columns.

Table C.3: Descriptive Statistics of Normalised Inputs and Outputs Obtained by Solving
Model (14)

Convex Lrvp wrv
∗

p

wrv∗
p xf∗p1

xfp1

wrv∗
p xf∗p1

xfp1

wrv∗
p xf∗p1

xfp1

wrv∗
p xv∗p1
xvp1

wrv∗
p y∗p1
yp1

wrv∗
p y∗p2
yp2

wrv∗
p y∗p3
yp3

Average 0.934 0.934 0.863 0.864 0.846 3.309 261.448 10.323 14.839

St. Dev. 0.109 0.109 0.164 0.119 0.157 4.658 1061.042 33.828 44.615

Min 0.580 0.580 0.383 0.576 0.396 0.425 0.580 0.580 0.580

Max 1.000 1.000 1.000 1.000 1.000 46.697 10919.902 390.978 517.788

Nonconvex

Average 0.996 0.996 0.880 0.924 0.811 3.047 211.887 21.022 8.679

St. Dev. 0.026 0.026 0.141 0.088 0.206 4.679 892.751 204.598 48.571

Min 0.817 0.817 0.450 0.660 0.323 0.817 0.817 0.817 0.817

Max 1.000 1.000 1.000 1.000 1.000 49.076 6015.026 2620.529 618.344
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Analyzing the results in Table C.3, we can draw the following conclusions. First, the

minimum amount of lower bound Lrvp as well as wrv
∗

p is 0.580 times under C and 0.817 times

under NC and their maximum amount remains 1 for both C and NC. Second, the amount

of lower bound Lrvp and wrv
∗

p are identical for all units, hence the optimal amount wrv
∗

p of

all units coincides with their lower bounds. Third, since we have wrv
∗

p ≤ 1, comparing with

the results of Table C.1, all final target points obtained by solving model (14) are smaller

than the target points obtained from equation (11). Fourth, comparing with the results of

Table C.2, this new method puts all target points within the production possibility set by

excluding weights below the lower bound wrv
∗

p of 0.580 under C and 0.817 under NC. Fifth,

comparing with the results of Table C.2, in the basic version of the output-oriented short

run Johansen Industry model the average of wbv
∗

p is 0.335 under both C and NC, while in the

revised version of output-oriented short run Johansen Industry model the average of wrv
∗

p is

0.934 under C and 0.996 under NC. It means that for most units, the target points obtained

from model (12) do no longer belong to the production possibility set. Finally, the seventh

column of Table C.3 indicates that the variable inputs can be magnified by at least 3.31

times under C and 3.05 times under NC, on average. There is a large amount of variation

in the variable inputs. Indeed, the range is broad: the minimum changes in variable inputs

amounts to 0.42 times under C and 0.82 times under NC and the maximum increase in

variable inputs amounts to 46.70 times under C and 49.08 times under NC.

C.3 Attainable Output-oriented Short-run Johansen Industry Model

Table C.4 reports the results of the short-run industry model with attainable output-oriented

efficiency measure (22). It is structured in a similar way as the previous Table C.3. For this

empirical example, we have chosen λ̄ = 2. Thus, we believe that an increase of the variable

inputs with a factor more than 2 is implausible.

We make three observations. First, the minimum amount of the lower bound Lattp as

well as watt
∗

p is 0.580 times under C and 0.686 times under NC and their maximum amount

remains 1 for both C and NC. Second, the amount of the lower bound Lattp and watt
∗

p are

identical for all units, hence the optimal amount watt
∗

p of all units coincides with their lower

bounds. Third, as can be seen in the seventh column of Table C.4, the variable input can be

magnified at least 1.476 times under C and 1.207 times under NC, on average, and it can be

magnified by about maximum 2 times.
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Table C.4: Descriptive Statistics of Normalised Inputs and Outputs Obtained by Solving
Model (22)

Convex Lattp watt
∗

p

watt∗
p xf∗p1

xfp1

watt∗
p xf∗p2

xfp2

watt∗
p xf∗p3

xfp3

watt∗
p xv∗p1
xvp1

watt∗
p y∗p1
yp1

watt∗
p y∗p2
yp2

watt∗
p y∗p3
yp3

Average 0.944 0.944 0.857 0.847 0.762 1.476 34.246 5.304 7.029

St. Dev. 0.105 0.105 0.166 0.124 0.206 0.518 151.191 15.470 18.207

Min 0.580 0.580 0.383 0.576 0.226 0.425 0.580 0.580 0.580

Max 1.000 1.000 1.000 1.000 1.000 2.000 1781.082 182.033 221.958

Nonconvex

Average 0.995 0.995 0.878 0.923 0.830 1.207 9.052 2.358 2.052

St. Dev. 0.033 0.033 0.168 0.110 0.238 0.324 49.919 6.221 2.494

Min 0.686 0.686 0.333 0.505 0.113 0.686 0.686 0.686 0.686

Max 1.000 1.000 1.000 1.000 1.000 1.994 610.176 62.861 19.585

C.4 Input-oriented Short-run Johansen Industry Model

Table C.5 shows basic descriptive statistics for all normalised inputs and outputs defined in

equation (26) which is obtained by solving model (25). Turning to the analysis of Table C.5,

we can draw two conclusions. First, the average of magnification of all fixed, variable inputs

and outputs except for the first output are smaller than unity under both C and NC. For

the first output, there is a great amount of variation, as indicated by the standard deviation,

and the range is broad: for example the maximum increase in the first outputs amounts to

1516.43 times under both C and NC. Second, the fixed input and three variable inputs can

be magnified by maximum 1 times under both C and NC.

Table C.5: Descriptive Statistics of Normalised Inputs and Outputs Defined in Relation (26)

Convex
xf∗p1

xfp1

xf∗p2

xfp2

xf∗p3

xfp3

xv∗p1
xvp1

y∗p1
yp1

y∗p2
yp2

y∗p3
yp3

Average 0.8161 0.7346 0.4852 0.1907 13.6486 0.8339 0.3732

St. Dev. 0.2062 0.1614 0.2855 0.2730 120.1295 4.8842 1.3003

Min 0.2855 0.5079 0.1479 0.0092 0.0004 0.0112 0.0032

Max 1.0000 1.0000 1.0000 1.0000 1516.4267 61.1712 15.5652

Nonconvex

Average 0.7953 0.7232 0.4738 0.2100 11.4405 0.9093 0.4244

St. Dev. 0.1967 0.1550 0.2678 0.2927 118.4416 5.9376 1.5092

Min 0.2855 0.5079 0.1479 0.0092 0.0000 0.0112 0.0031

Max 1.0000 1.0000 1.0000 1.0000 1516.4267 74.9765 15.5652

Note that the input-oriented short-run Johansen industry model (27) is infeasible for this

empirical application under both convex and nonconvex cases. Thus, it is simply impossible

to scale up the input-oriented capacity targets of units such that these can generate the

current aggregate output levels while respecting the technology.
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D Proofs of Propositions

Proof of Proposition 5.1:

(i) Suppose that the vector (θrv
∗
, wrv

∗
, Xv∗) is an optimal solution of model (14). Since the

target points (y∗p, x
f∗
p , x

v∗
p ) for models (12) and (14) are the same, hence (θrv

∗
, wrv

∗
, Xv∗)

is a feasible solution for model (12). Therefore, θbv
∗ ≤ θrv

∗
because this kind of model

(12) is a minimising problem. To complete the proof, note that we have wbv
∗

p

>
=
<
wrv

∗
p

because the results of the numerical as well as empirical examples show that wbv
∗

p can

be equal, bigger or smaller than wrv
∗

p .

(ii) Assume that θbv
∗
< θrv

∗
and (wbv

∗
1 , . . . , wbv

∗
K ) is an optimal solution of model (12). This

optimal solution is not a feasible solution of model (14), because if we assume that

(wbv
∗

1 , . . . , wbv
∗

K ) is a feasible solution of model (14), then we have θrv
∗ ≤ θbv

∗
and based

on the part (i), we have θbv
∗ ≤ θrv

∗
. Hence, we have θrv

∗
= θbv

∗
which it is a contra-

diction because we assume that θbv
∗
< θrv

∗
. Therefore, we have (wbv

∗
1 , . . . , wbv

∗
K ) /∈ Γ rv.

Based on equation (15), there is k ∈ {1, . . . , K} such that (wbv
∗

k xf∗k , w
bv∗

k xv∗k , w
bv∗

k y∗k) /∈
TΛ.

(iii) Assume that (wrv
∗

1 , . . . , wrv
∗

K ) is an optimal solution of model (14) with the opti-

mal value θrv
∗
. Therefore, it is a feasible solution of model (12) with the objective

value θrv
∗
. Assume that θbv

∗
is an optimal value of model (12). Since we assume that

θbv
∗

= θrv
∗
, hence (wrv

∗
1 , . . . , wrv

∗
K ) is an optimal solution of model (12) and for this

optimal solution we have (wrv
∗

1 , . . . , wrv
∗

K ) ∈ Γ rv. Thus based on equation (15), we have

(wrv
∗

k xf∗k , w
rv∗

k xv∗k , w
rv∗

k y∗k) ∈ TΛ for all k ∈ {k = 1, . . . , K}.

Proof of Proposition 5.2:

(i) Suppose that model (22) is feasible and (watt
∗

1 , ..., watt
∗

K ) is an optimal solution for

decision variables (watt1 , ..., wattK ). Hence, we have
∑K

k=1w
att∗

k y∗k ≥ Y . Since watt
∗

k ≤ 1,

we have
∑K

k=1 y
∗
k ≥ Y .

Now, assume that
∑K

k=1 y
∗
k ≥ Y . Letting,

watt
∗

k = 1, θatt
∗

= max
n=1,...,Nf

∑K
k=1 x

f∗
kn∑K

k=1 x
f
kn

, Xv∗ =
K∑
k=1

xv∗k .

Hence, (watt
∗

k , θatt
∗
, Xv∗) is a feasible solution of model (22).
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(ii) Suppose that C2
k ≤ λ̄, then ADF f

o (xfp , yp, λ̄) = ϕ∗ ≥ 1. For this reason, assume that

(z∗k, θ
∗ = C2

k) is an optimal solution of model (19). Since C2
kx

v
p ≤ λ̄xvp, hence (ẑk =

z∗k, x̂
v = C2

kx
v
p, θ̂ = 1) is a feasible solution of model (17) with objective value θ̂ = 1.

Therefore, ADF f
o (xfp , yp, λ̄) ≥ 1 because this kind of model is a maximising problem.

Thus, based on model (20), we have
∑K

k=1 y
∗
k ≥ Y . Hence, based on part (i), model

(22) is feasible.

(iii) If we define (watt
∗

k , θatt
∗
, Xv∗) as follows:

watt
∗

1 = max
m=1,...,M

∑K
k=1 ykm
y∗1m

and watt
∗

k = 0 for all k = 2, . . . , K,

θatt
∗

= max
n=1,...,Nf

watt∗
1 xf∗1n∑K
k=1 x

f
kn

,

Xv∗ = watt
∗

1 xv∗1 .

Then, (watt
∗

k , θatt
∗
, Xv∗) is a feasible solution of model (22).

Proof of Proposition 5.3

(i) Suppose that model (27) is feasible and (winp
∗

1 , ..., winp
∗

K ) is an optimal solution for de-

cision variables (winp1 , ..., winpK ). Hence, we have
∑K

k=1w
inp∗

k y∗k ≥ Y . Since winp
∗

k ≤ U inp
k ,

we have
∑K

k=1 U
inp
k y∗k ≥ Y .

Now, assume that
∑K

k=1 U
inp
k y∗k ≥ Y . Letting,

winp
∗

k = U inp
k , θinp

∗
= max

n=1,...,Nf

∑K
k=1 U

inp
k xf∗kn∑K

k=1 x
f
kn

, Xv∗ =
K∑
k=1

U inp
k xv∗k .

Hence, (winp
∗

k , θinp
∗
, Xv∗) is a feasible solution of model (27).

(ii) If we define (winp
∗

k , θinp
∗
, Xv∗) as follows:

winp
∗

1 = max
m=1,...,M

∑K
k=1 ykm

y∗1m
and winp

∗

k = 0 for all k = 2, . . . , K,

θinp
∗

= max
n=1,...,Nf

winp∗
1 xf∗1n∑K
k=1 xkn

f
,

Xv∗ = winp
∗

1 xv∗1 .

Then, (winp
∗

k , θinp
∗
, Xv∗) is a feasible solution of model (27).
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