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Abstract

This contribution extends the literature on super-efficiency by focusing on ranking

cost-efficient observations. To the best of our knowledge, the focus has always been on

technical super-efficiency and this focus on ranking cost-efficient observations may well

open up a new topic. Furthermore, since the convexity axiom has both an impact on

technical and cost efficiency, we pay a particular attention on the effect of nonconvexity

on both super-efficiency notions. Apart from a numerical example, we use a secondary

data set guaranteeing replication to illustrate these efficiency and super-efficiency con-

cepts. Two empirical conclusions emerge. First, the cost super-efficiency notion ranks

differently from the technical super-efficiency concept. Second, both cost and technical

super-efficiency notions rank differently under convex and nonconvex technologies.
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1 Introduction

The seminal articles of Farrell (1957) and Charnes, Cooper, and Rhodes (1978) have con-

tributed to making the nonparametric approach to production theory one of the grand suc-

cess stories in the economics and operations research (OR) literatures in terms of both

methodological developments and empirical applications. An early bibliographical survey

article counts about 800 published articles and dissertations related to the so-called Data

Envelopment Analysis (DEA) literature over the years 1978-1996 (see Seiford (1997)). One

of the most recent bibliographic reviews of Emrouznejad and Yang (2018) surveys the first

40 years of scholarly literature in DEA over the period 1978 till 2016 and lists about 10300

research articles. Empirical studies on efficiency and productivity using so-called frontier

specifications are abundantly available and these frontier methodologies have become stan-

dard empirical tools that serve a variety of academic, regulatory and managerial purposes.

Their widespread application in the academic literature analysing private and public sector

performance-related issues can be glanced from, e.g., the Liu, Lu, and Lin (2013) survey of

empirical frontier applications. But, also the implementation of incentive regulatory mech-

anisms (e.g. price cap regulation) using frontier-based performance benchmarks is, for in-

stance, rather widespread in countries having liberalized their network industries (e.g., for

the electricity industry, one may consult the survey by Jamasb and Pollitt (2000)). Finally,

an example of a managerial application is the Sherman and Ladino (1995) study document-

ing how a US bank employs a basic frontier model to target sufficient savings in its branch

network to fund its own expansion strategy.

While Farrell (1957) provided the first measurement scheme for the evaluation of technical

and allocative efficiency resulting in cost efficiency in a frontier context, Färe, Grosskopf, and

Lovell (1985, pp. 3–5) offer a more extended efficiency taxonomy by adding a scale efficiency

component as well as a congestion component. In general, technical efficiency is solely based

on information regarding physical inputs and outputs in the production process. The same

holds true for congestion. By contrast, to evaluate cost efficiency one also needs information

regarding input prices in addition to physical inputs and outputs. Scale efficiency can be

measured in a technical way based on inputs and outputs alone, but very early on also

a cost-based approach was suggested that also requires information on input prices (see,

e.g., Seitz (1970, 1971)). However, the variations on this basic measurement scheme are not

central to our research questions.

The article of Andersen and Petersen (1993) is the first to ask a question with regard to

the many observations that may obtain a similar relative technical efficiency status of unity.
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If all these observations are apparently equally technical efficient, is there any way to differ-

entiate between these? Andersen and Petersen (1993, p. 1262) answer in the affirmative and

state that “The basic idea is to compare the unit under evaluation with a linear combination

of all other units in the sample, i.e., the DMU (Decision Making Unit) itself is excluded.

It is conceivable that an efficient DMU may increase its input vector proportionally while

preserving efficiency. The unit obtains in that case an efficiency score above one. The score

reflects the radial distance from the DMU under evaluation to the production frontier esti-

mated with that DMU excluded from the sample, i.e., the maximum proportional increase

in inputs preserving efficiency.” This basic idea has led to the so-called super-efficiency lit-

erature which investigates technical efficiency when the unit under evaluation is discarded

from the technology.1 This has led to explore issues of infeasibility under certain assumptions

on technology and certain measurement orientations (see the surveys of Angulo-Meza and

Estellita Lins (2002), Soltanifar and Shahghobadi (2014) and Adler and Volta (2019)).

In addition to ranking efficient observations, super-efficiency models have also been used

to develop tests for influential observations or outliers (examples include Banker and Chang

(2006), Dusansky and Wilson (1994), and Thanassoulis (1999), among others).

This same idea of super-efficiency has also been explored within the context of incentive-

based regulation theory employing frontier methodologies (see Bogetoft (2000) and Agrell

and Bogetoft (2017) for an early and a more recent survey). As far as we are aware of,

Bogetoft (1994, p. 962) provides the first article within which a technical super-efficiency is

defined to guarantee a proper incentive system. Agrell, Bogetoft, and Tind (2002, p. 6-7)

similarly formulate a cost frontier from which the unit being evaluated is excluded from the

technology definition. It seems that the existence of solutions for these technical and cost-

based super-efficiency measures has not been given sufficient attention, especially in this

incentive-based regulation theory employing frontier methodologies.

A first innovation of this contribution is to propose a super-efficiency model for the cost

efficient observations. While cost efficiency is a sufficient condition for being technically

efficient, technical efficiency is only a necessary but not a sufficient condition to being cost

efficient. Thus, while there are fewer cost efficient than technically efficient observations,

one could also wonder whether there is a way to discriminate between several of these cost

efficient observations. This question seems never to have been treated in the literature.

A second innovation of this contribution is to focus on the impact of the convexity ax-

1Banker and Chang (2006) mention an unpublished paper by Banker and Gifford from 1988 that delivered
already the same idea.
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iom on technical and cost super-efficiency models alike in the nonparametric, deterministic

frontier tradition.2 While it is tradition to impose convexity on the technology as a main-

tained axiom (see the seminal contributions of Farrell (1957) and Charnes, Cooper, and

Rhodes (1978)), Afriat (1972) is probably the first to mention a nonconvex Free Disposal

Hull (FDH) model imposing only the assumptions of strong (free) disposal of inputs and

outputs. This first nonconvex single output specification is generalized to the general multi-

ple outputs case in the book chapter of Deprins, Simar, and Tulkens (1984). Kerstens and

Vanden Eeckaut (1999) extend this basic FDH model by introducing specific returns to scale

assumptions and by proposing a new goodness-of-fit method to characterize returns to scale

for nonconvex technologies. Briec, Kerstens, and Vanden Eeckaut (2004) define nonconvex

cost functions corresponding to the specific returns to scale assumptions in Kerstens and

Vanden Eeckaut (1999).

Most researchers are obviously aware of the fact that the convexity assumption affects

the incidence and amount of technical inefficiency: under convexity less observations are

technically efficient and the amount of technical inefficiency is higher. However, few people

seem to realise that convexity also has consequences for the cost function: Briec, Kerstens,

and Vanden Eeckaut (2004) proof that convex cost functions are always smaller or equal

to their convex counterparts for a given returns to scale assumption. There is only equality

between convex and nonconvex cost functions in the case of a single output and constant

returns to scale. In other words, the convexity assumption also affects the incidence and

amount of cost inefficiency. This fact that convexity affects the incidence and amounts of all

sorts of inefficiency makes the issue relevant in super-efficiency model context. Apart from the

early contribution of Van Puyenbroeck (1998) and the more recent one by Aldamak, Hatami-

Marbini, and Zolfaghari (2016) focusing on technical super-efficiency under nonconvexity, we

are unaware of any work focusing on the impact of convexity on technical and cost super-

efficiency from a comparative perspective.

This contribution is structured as follows. Section 2 starts with the basic definitions of the

technology, efficiency measures and the cost function. It also develops some basic efficiency

decompositions. Section 3 starts from the case of technical super-efficiency to introduce the

new notion of cost super-efficiency and the ensuing super-efficiency decompositions. Both

the technical and cost super-efficiency definitions are illustrated with a figure in Section 4.

2In the stochastic parametric and semi-parametric frontier models, all firms are inefficient since inefficiency
is non-negative and the probability that inefficiency is exactly zero equals zero. Hence, there is no ranking
problem of efficient observations. Kumbhakar, Parmeter, and Tsionas (2013) is the seminal article allowing
to represent a mixture of both fully efficient and inefficient firms. Rho and Schmidt (2015) and Tran and
Tsionas (2016) extend this basic idea in several directions. However, we are unaware of the development of
a super-efficiency notion in this part of the frontier literature.
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Key results on technical and cost super-efficiency are developed in Section 5 and partially

illustrated with numerical illustrations. An empirical illustration based on a secondary data

set is developed in Section 6. We finish with some conclusions in the final Section 7.

2 Technology and Cost Function: Basic Definitions and

Decompositions

2.1 Technology and Cost Function: Basic Definitions

In this section, we define technology and some basic notation. Given N -dimensional input

vectors x ∈ RN
+ and M -dimensional output vectors y ∈ RM

+ , the production possibility set

or technology T can be defined as T = {(x, y) | x can produce at least y}. It is common

to impose some conditions on the input and output data defining the technology: (i) each

producer uses nonnegative amounts of each input to produce nonnegative amounts of each

output; (ii) there is an aggregate production of positive amounts of every output, and an

aggregate use of positive amounts of every input; and (iii) each producer uses a positive

amount of at least one input to produce a positive amount of at least one output (see,

e.g., Färe, Grosskopf, and Lovell (1994, p. 44–45)). The input set L(y) = {x | (x, y) ∈ T}
associated with T holds all input vectors x capable of producing at least a given output

vector y. In a similar way, the output set P (x) = {y | (x, y) ∈ T} associated with T holds

all output vectors y that can be produced from at most a given input vector x.

Throughout this contribution, technology T satisfies some combination of the following

standard assumptions:

(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ T and if (0, y) ∈ T , then y = 0.

(T.2) T is a closed subset of RN
+ × RM

+ .

(T.3) Strong input and output disposal, i.e., if (x, y) ∈ T and (x′, y′) ∈ RN
+ × RM

+ , then

(x′,−y′) ≥ (x,−y)⇒ (x′, y′) ∈ T .

(T.4) (x, y) ∈ T ⇒ δ(x, y) ∈ T for δ ∈ Γ, where:

(i) Γ ≡ CRS = {δ | δ ≥ 0};

(ii) Γ ≡ VRS = {δ | δ = 1}.
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(T.5) T is convex.

Commenting these classical assumptions on the production technology, one can recall

the following (see, e.g., Hackman (2008) for details). Inaction is possible and there exists

no free lunch. Technology is a closed set. We assume free or strong disposability of both

inputs and outputs in that inputs can be destroyed and outputs can be discarded at no

opportunity costs. We allow for two returns to scale assumptions: i.e., constant returns to

scale (CRS) and variable returns to scale (VRS). Finally, the technology set is convex. Not

all these axioms are maintained in the empirical analysis.3 In particular, key assumptions

distinguishing some of the technologies in the empirical analysis are CRS versus VRS, and

convexity versus nonconvexity.

The input distance function completely characterizes the input set L(y) and is defined

as follows:

Di(x, y | T ) = max
λ
{λ | λ ≥ 0, (x/λ, y) ∈ T} = max

λ
{λ | λ ≥ 0, x/λ ∈ L(y)}. (1)

Its main properties are: (i) Di(x, y | T ) ≥ 1, with efficient production on the boundary

(isoquant) of L(y) represented by unity; (ii) it has a cost interpretation (see, e.g., Hackman

(2008)). The inverse of this input distance function DFi(x, y | T ) = [Di(x, y | T )]−1 is

known as the radial input efficiency measure. Therefore, this radial input efficiency measure

is defined as:

DFi(x, y | T ) = min
λ
{λ | λ ≥ 0, (λx, y) ∈ T} = min

λ
{λ | λ ≥ 0, λx ∈ L(y)}. (2)

Obvisously, it is situated between zero and unity (0 < DFi(x, y) ≤ 1), with efficient produc-

tion on the boundary (isoquant) of the input set L(y) represented by unity.

Looking to a dual representation of technology, the cost function is defined as the mini-

mum expenses required to produce a given output vector y for a given vector of semi-positive

input prices (w ∈ RN
+ ):

C(y, w | T ) = min
x
{wx | (x, y) ∈ T} = min

x
{wx | x ∈ L(y)}. (3)

Duality relations link these primal and dual representations of technology. Duality allows

a well-behaved technology to be reconstructed from the observations on cost minimizing

producer behavior, and the reverse. The duality between input distance function (1) and

3Note that the convex VRS technology does not satisfy inaction.
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cost function (3) can be stated as follows:

Di(x, y | T ) = min
w
{wx | C(y, w | T ) ≥ 1}, x ∈ L(y), (4)

C(y, w | T ) = min
x
{wx | Di(x, y | T ) ≥ 1}, w > 0. (5)

It is common to establish such duality relations under the hypothesis of a convex technology

or a convex input set (e.g., (Hackman, 2008, Ch. 7)). Briec, Kerstens, and Vanden Eeckaut

(2004) are the first to establish a local duality result between nonconvex technologies subject

to various scaling laws and their corresponding nonconvex cost functions.

2.2 Nonparametric Frontier Technology and Cost Function Spec-

ification

For the methodological results and the empirical application, we assume a convex or non-

convex, nonparametric frontier technology under VRS and CRS assumptions. Let K input-

output combinations (xk, yk) ∈ RN
+ × RM

+ (k ∈ {1, . . . , K}) define the technology, then a

unified algebraic representation of the corresponding convex and nonconvex nonparametric

frontier technologies under the VRS and CRS assumptions is as follows:

TΛ,Γ =

{
(x, y) | x ≥

K∑
k=1

xkδzk, y ≤
K∑
k=1

ykδzk, z = (z1, . . . , zK) ∈ Λ, δ ∈ Γ

}
, (6)

where

(i) Γ ≡ CRS = {δ | δ ≥ 0};

(ii) Γ ≡ VRS = {δ | δ = 1};

and

(i) Λ ≡ C =

{
z |

K∑
k=1

zk = 1 and ∀k ∈ {1, . . . , K} : zk ≥ 0

}
;

(ii) Λ ≡ NC =

{
z |

K∑
k=1

zk = 1 and ∀k ∈ {1, . . . , K} : zk ∈ {0, 1}

}
.

The activity vector z operates subject to a convexity (Λ ≡ C) or a nonconvexity (Λ ≡ NC)

constraint. The activity vector z of real numbers summing to unity represents the convexity
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axiom, while this same sum constraint with each vector element being a binary represents

nonconvexity. There is also a scaling parameter (δ) allowing for a particular scaling of all K

observations determining the technology: this scaling parameter is free under CRS and fixed

at unity under VRS.

To compute the input efficiency measure (2) relative to convex technologies in (6) requires

solving a nonlinear programming (NLP) problem for each evaluated observation. However,

Briec and Kerstens (2006, Lemma 2.1) show how this NLP can be transformed to a linear

programming (LP) problem by substituting z̄k = δzk in (6). For the nonconvex technologies,

nonlinear binary mixed integer programs must be solved, but alternative solution strategies

(including implicit enumeration) are available (see Kerstens and Van de Woestyne (2014)).

Assuming the nonparametric frontier technology TΛ,Γ, the cost function (3) defined as

the minimum expenditures needed to produce a given output vector yp ∈ RM
+ for a given

vector of semi-positive common input prices w ∈ RN
+ is obtained by solving the following

programming problem (Färe, Grosskopf, and Lovell (1985)):

C(yp, w | TΛ,Γ) = min
x
{wx | (x, yp) ∈ TΛ,Γ} = min

x
{wx | x ∈ L(yp)}. (7)

Computing the cost function relative to convex technologies is straightforward when

transforming the NLP to the corresponding LP problem as indicated above. Computing the

cost function relative to nonconvex technologies can be done using implicit enumeration

algorithms specified in Briec, Kerstens, and Vanden Eeckaut (2004).

2.3 Overall or Cost Efficiency Decomposition

Following Farrell (1957), the following basic overall or cost efficiency measure lends itself to a

decomposition into technical and allocative efficiencies. A natural measure for cost efficiency

is to take the ratio of minimum to actual observed cost:

CE(xp, yp, w | TΛ,Γ) =
C(yp, w | TΛ,Γ)

wxp
. (8)

Similar to technical efficiency, cost efficiency is situated between zero and unity: i.e., 0 <

CE(xp, yp, w | TΛ,Γ) ≤ 1.

Allocative efficiency is then defined as a ratio of cost efficiency over technical efficiency.

7



Hence, the allocative efficiency of observation (xp, yp) is defined as a residual as follows:

AE(xp, yp, w | TΛ,Γ) =
CE(xp, yp, w | TΛ,Γ)

DFi(xp, yp | TΛ,Γ)
. (9)

Note that the above components are defined for convex and nonconvex technologies under

both CRS and VRS and it is easy to see that the allocative efficiency component always

exceeds the cost efficiency measure: i.e., AE(xp, yp, w | TΛ,Γ) ≥ CE(xp, yp, w | TΛ,Γ).

While Farrell (1957) already explores the notion of scale efficiency, Färe, Grosskopf, and

Lovell (1985) define scale efficiency by a ratio of technical efficiency under CRS over technical

efficiency under VRS. Hence the scale efficiency of observation (xp, yp) is defined as follows:

SCE(xp, yp | TΛ,.) =
DFi(xp, yp | TΛ,CRS)

DFi(xp, yp | TΛ,V RS)
. (10)

Clearly, scale efficiency is situated between zero and unity, i.e., 0 < SCE(xp, yp | TΛ,.) ≤ 1.

The superscript Λ indicates that scale efficiency can be defined under both convex and

nonconvex cases. Alternatively, Seitz (1971) defines a cost-based scale efficiency component

as the ratio of cost functions under CRS and VRS.

Based on (9) and (10), CRS technical efficiency can be decomposed into VRS technical

efficiency and scale efficiency:

CE(xp, yp, w | TΛ,CRS) = DFi(xp, yp | TΛ,CRS)× AE(xp, yp, w | TΛ,CRS)

= DFi(xp, yp | TΛ,V RS)× SCE(xp, yp | TΛ,.)× AE(xp, yp, w | TΛ,CRS). (11)

Färe, Grosskopf, and Lovell (1985) refine this decomposition by also distinguishing between

pure technical efficiency and structural efficiency or congestion efficiency. Other decomposi-

tions are available in the literature: examples include Aparicio, Pastor, and Zofio (2015) and

Aparicio, Ortiz, and Pastor (2017).
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3 Super-Efficiency: New Definitions and Decomposi-

tions

3.1 Technical Super-Efficiency

Andersen and Petersen (1993) develop a procedure to rank technically efficient units. Their

method enables an efficient observation (xp, yp) to achieve an efficiency score greater than

or equal to unity by removing this observation from those defining technology TΛ,Γ. Refer-

ring with subscript p to the exclusion of this p-th observation, the resulting technology can

mathematically be formulated as follows:

TΛ,Γ
p =

{
(x, y) | x ≥

K∑
k=1

xkδzk, y ≤
K∑
k=1

ykδzk, zp = 0, z ∈ Λ, δ ∈ Γ

}
. (12)

Observe that the removal of the p-th observation is realized by forcing the p-th component

of the activity vector to be zero. Consequently, this p-th observation no longer influences the

constraints.

The traditional technical efficiency measure (2) can now be transformed in a super-

efficiency context as follows:

Definition 3.1. The input-oriented technical super-efficiency model is defined as:

DF SE
i (xp, yp | TΛ,Γ

p ) = min
λ
{λ | λ ≥ 0, (λxp, yp) ∈ TΛ,Γ

p }, (13)

with TΛ,Γ
p defined in (12).

Note that DFi(xp, yp | TΛ,Γ) = DF SE
i (xp, yp | TΛ,Γ

p ) for technically inefficient observa-

tions, while for technically efficient observations, DFi(xp, yp | TΛ,Γ) ≤ DF SE
i (xp, yp | TΛ,Γ

p )

(see (Andersen and Petersen, 1993, p. 1263)). Consequently, observation (xp, yp) is tech-

nically inefficient by the conventional model (2) if and only if the super-efficiency estimate

DF SE
i (xp, yp | TΛ,Γ

p ) < 1 also indicates inefficiency. This observation is technically efficient by

the conventional model (2) if and only if DF SE
i (xp, yp | TΛ,Γ

p ) ≥ 1: it indicates efficiency when

DF SE
i (xp, yp | TΛ,Γ

p ) = 1 and it indicates super-efficiency when DF SE
i (xp, yp | TΛ,Γ

p ) > 1.

Note that the super-efficiency model DF SE
i (xp, yp | TΛ,Γ

p ) can lead to infeasibilities in

practical applications. In fact, this observation has led to a rather substantial literature of

which we now provide a selective overview. Thrall (1996) and Zhu (1996) note that the
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input-oriented super-efficiency model under CRS may well be infeasible. Dula and Hickman

(1997) point out that infeasibility shows that the observation under evaluation is efficient,

though not lending itself to ranking, and that it is useful in locating endpoint positions of the

extreme efficient observations. Seiford and Zhu (1999) prove some necessary and sufficient

conditions under which various super-efficiency models are infeasible and also investigate the

infeasibility when determining returns to scale based on super-efficiency models.

Recently, researchers have been proposing a variety of methods in an attempt to solving

these infeasibility problems of the super-efficiency models. Mehrabian, Alirezaee, and Jahan-

shahloo (1999) propose the MAJ model that has received some attention in the literature:

this model solves the infeasibility issue of the basic Andersen and Petersen (1993) model as

well as the sensitivity of this model to small variations in the data when the observations

have smaller values of inputs or outputs. Jahanshahloo, Lotfi, Shoja, Tohidi, and Raza-

vyan (2004) and Jahanshahloo, Sanei, Lotfi, and Shoja (2004) present alternative versions

of the MAJ model that avoid infeasibilities under some conditions. Chen (2004) also stud-

ies super-efficiency under the condition that not all inputs (or outputs) are simultaneously

changed in the same proportion: this author suggests using both input- and output-oriented

super-efficiency models to fully characterize the super-efficiency.

Chen (2005) provides a necessary and sufficient condition for simultaneous infeasibility of

input- and output-oriented super-efficiency models in the VRS case. It is claimed that both of

these models are infeasible only in exceptional situations. However, Soleimani-Damaneh, Ja-

hanshahloo, and Foroughi (2006) show that this latter contention is not correct by providing

some counterexamples. Ray (2008) proposes an alternative procedure using the directional

distance function to measure super-efficiency by solving the infeasibility problem which gen-

erally leads to a complete ranking of the observations. Johnson and McGinnis (2009) show

that using a non-radial hyperbolic measurement orientation in a super-efficiency model leads

to find feasible solutions for certain cases when the requirement for all data to be strictly

positive is relaxed.

Tone (2001) develops the slacks-based measure (SBM) of super-efficiency. Du, Liang,

and Zhu (2010) extend the SBM of super-efficiency method proposed by Tone (2001) to the

additive (slacks-based) DEA model and point out that -unlike the radial super-efficiency

models- additive super-efficiency models are always feasible. Fang, Lee, Hwang, and Chung

(2013) show that the projection identified by the super SBM model may not be strongly

Pareto efficient. Hence, they develop an alternative super-efficiency SBM model for which

the identified projection is strongly Pareto efficient.
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Cook, Liang, Zha, and Zhu (2009) propose a modified super-efficiency model in which

a super-efficiency score for efficient DMUs can be obtained even when feasible solutions do

not exist. When the VRS super-efficiency model is infeasible, their method finds a (virtual)

referent DMU formed by the remaining DMUs and yields a score that characterizes the

super-efficiency in inputs and outputs. Aldamak, Hatami-Marbini, and Zolfaghari (2016)

modify FDH super-efficiency models related to the optimistic and pessimistic FDH in both

input and output orientations without infeasibility problems.

There have been several further attempts for dealing with infeasibility problem: examples

include, e.g., Lee, Chu, and Zhu (2011); Chen and Liang (2011); Chen, Deng, and Gingras

(2011); Chen, Du, and Huo (2013), among others.

We finish this selective overview of contributions by referring the reader to the surveys

of the super-efficiency literature in Angulo-Meza and Estellita Lins (2002), Soltanifar and

Shahghobadi (2014) and Adler and Volta (2019) for further details. Some prudent conclusions

from this literature appear. First, infeasibilities are hard to avoid in general. Second, infeasi-

bilities can sometimes only be avoided by resorting to the use of more general measurement

orientations that also modify the interpretation of the original model.

Unless infeasibility is investigated explicitly in what follows, we avoid infeasibility issues

by assuming that all required components are well-defined.

3.2 Cost Super-Efficiency

The previous section focused on the technical super-efficiency where input price information

is not available. The super-efficiency concept seems never to have been applied in a cost

function context. This section turns to the topic of cost efficiency to show how nonparametric

frontiers can be used to identify a cost super-efficiency concept when information on input

prices and costs are known exactly.

A natural measure for cost super-efficiency of observation (xp, yp) is to take the ratio of the

minimum cost when this observation is removed from the set of observations, relative to the

actual observed cost. Therefore, we define the cost super-efficiency of (xp, yp) by considering

the production possibility set TΛ,Γ
p defined in (12) as follows:

Definition 3.2. The cost super-efficiency of observation (xp, yp) is defined by

CESE(xp, yp, w | TΛ,Γ
p ) =

CSE(yp, w | TΛ,Γ
p )

wxp
, (14)
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where CSE(yp, w | TΛ,Γ
p ) is obtained as follows:

CSE(yp, w | TΛ,Γ
p ) = min

x
{wx | x ≥ 0, (x, yp) ∈ TΛ,Γ

p }. (15)

Note that CESE(xp, yp, w | TΛ,Γ
p ) = CE(xp, yp, w | TΛ,Γ) for cost inefficient observations,

while CE(xp, yp, w | TΛ,Γ) ≤ CESE(xp, yp, w | TΛ,Γ
p ) for cost efficient observations. Conse-

quently, observation (xp, yp) is cost inefficient by definition (8) if and only if the cost super-

efficiency estimate CESE(xp, yp, w | TΛ,Γ
p ) < 1, and it is cost efficient (i.e., CE(xp, yp, w |

TΛ,Γ) = 1) if and only if CESE(xp, yp, w | TΛ,Γ
p ) ≥ 1.

3.3 Overall or Cost Super-Efficiency Decomposition

By analogy to Section 2.3, we now decompose the cost super-efficiency (14) into several

efficiency components.

Allocative super-efficiency is defined as the ratio of cost super-efficiency over the technical

super-efficiency. Hence, the allocative super-efficiency of observation (xp, yp) is defined as

follows:

AESE(xp, yp, w | TΛ,Γ
p ) =

CESE(wp, yp | TΛ,Γ
p )

DF SE
i (xp, yp | TΛ,Γ

p )
. (16)

Note again that the above components are defined for convex and nonconvex technologies

alike under both CRS and VRS.

Based on the CRS and VRS technical super-efficiency scores, we can define a new scale

super-efficiency by taking ratio of technical super-efficiency under CRS over technical super-

efficiency under VRS. Hence, this scale super-efficiency of observation (xp, yp) is defined as

follows:

SCESE(xp, yp | TΛ,.
p ) =

DF SE
i (xp, yp | TΛ,CRS

p )

DF SE
i (xp, yp | TΛ,V RS

p )
. (17)

Clearly, 0 < SCESE(xp, yp | TΛ,.
p ) ≤ 1. Similar to Seitz (1971), one could equally define a

cost-based scale super-efficiency component as the ratio of cost functions under CRS and

VRS computed relative to technology (12).

Furthermore, based on (16) and (17), CRS technical super-efficiency can be decomposed
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into VRS technical super-efficiency and scale super-efficiency as follows:

CESE(wp, yp | TΛ,CRS
p ) = DF SE

i (xp, yp | TΛ,CRS
p )× AESE(xp, yp, w | TΛ,CRS

p )

= DF SE
i (xp, yp | TΛ,V RS

p )× SCESE(xp, yp | TΛ,.
p )× AESE(xp, yp, w | TΛ,CRS

p ). (18)

Note that if observation (xp, yp) is technically inefficient under VRS (i.e., DFi(xp, yp |
TΛ,V RS) < 1), then DFi(xp, yp | TΛ,V RS) = DF SE

i (xp, yp | TΛ,V RS
p ), DFi(xp, yp | TΛ,CRS) =

DF SE
i (xp, yp | TΛ,CRS

p ) and CE(wp, yp | TΛ,CRS) = CESE(wp, yp | TΛ,CRS
p ). Hence, in this

case, technical efficiency with technical super-efficiency, allocative efficiency with allocative

super efficiency and scale efficiency with scale super efficiency are identical. Consequently,

if the observation is technically inefficient under VRS, then its decomposition of overall or

cost efficiency (11) and its decomposition of overall or cost super-efficiency (18) lead to the

same results.

4 Numerical Illustration

Now we clarify the above Definitions 3.1 and 3.2 by means of Figure 1. The isoquant indicat-

ing the combinations of two inputs x1 and x2 yielding a given output level y is represented

by the polyline ABC and its horizontal and vertical extensions at A and C respectively. This

isoquant is the boundary of the input set L(y). We first focus on observation B to illustrate

technical and cost efficiency as well as technical and cost super-efficiency measures.
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Figure 1: Isoquant with combinations of two inputs yielding a given output level y

The input prices of observation B are such that the cost-minimizing input vector is

located at point B on the boundary of the input set L(y): this cost function is plotted

as a dotted line. The corresponding technical and cost efficiency measures for point B are

DFi(xB, yB | TC,V RS) = OB
OB

= 1 and CE(xB, yB, w | TC,V RS) = OB
OB

= 1, respectively.

Therefore, since DFi(xB, yB | TC,V RS) = CE(xB, yB, w | TC,V RS) = 1 this observation B is

both technically and cost efficient.

By removing observation B from the observations defining the technology, the bound-

ary of the corresponding input set at output level y is represented by the dashed line

segment AC and its horizontal and vertical extensions at A and C respectively. In this

case, the corresponding cost-minimizing input vector is located at point A: the correspond-

ing cost function is drawn as a dash dotted line. In this situation, the technical and cost

super-efficiency measures of observation B are DF SE
i (xB, yB | TC,V RSB ) = OB2

OB
> 1 and

CESE(xB, yB, w | TC,V RSB ) = OB1

OB
> 1, respectively. Since OB2 > OB1, DF SE

i (xB, yB |
TC,V RS) > CESE(xB, yB, w | TC,V RSB ) > 1 meaning that observation B is technically and

cost super-efficient.

Now, we focus on observation D and assume it faces the same input prices as observation
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B. For this observation D, the corresponding technical and cost efficiency measures are

DFi(xD, yD | TC,V RS) = OD1

OD
< 1 and CE(xD, yD, w | TC,V RS) = OD2

OD
< 1, respectively.

Since OD1 > OD2, CE(xD, yD, w | TC,V RS) < DFi(xD, yD | TC,V RS) < 1 from which

we conclude that observation D is both technically and cost inefficient. In this case, the

boundary of the input set L(y) for a given output level y, which is shown by the polyline

ABC and its horizontal and vertical extensions at A and C respectively, remains unchanged

after removing observation D from the observations defining technology. Thus, by removing

this inefficient unit from technology, both technical and cost efficiency measures remain

unchanged. Hence, DFi(xD, yD | TC,V RS) = DF SE
i (xD, yD | TC,V RSD ) and CE(xD, yD, w |

TC,V RS) = CESE(xD, yD, w | TC,V RSD ).

5 Technical and Cost Super-Efficiency: Key Results

A first Proposition 5.1 compares the technical and cost efficiency measures as well as the

technical and cost super-efficiency measures:

Proposition 5.1. For every observation (xp, yp) ∈ TΛ,Γ:

(i) CE(xp, yp, w | TΛ,Γ) ≤ DFi(xp, yp | TΛ,Γ) ≤ 1.

(ii) The number of cost efficient observations is smaller than or equal to the number of

input-oriented technical efficient observations.

(iii) CESE(xp, yp, w | TΛ,Γ
p ) ≤ DF SE

i (xp, yp | TΛ,Γ
p ).

Proof. See Appendix A.

Proposition 5.1 shows that the cost efficiency and cost super-efficiency measures are always

smaller than or equal to the technical efficiency and technical super-efficiency measures,

respectively, in both convex and nonconvex cases and under both CRS and VRS. Moreover,

properties (i) and (iii) of Proposition 5.1 directly lead to the following corollary:

Corollary 5.1.

(i) Allocative efficiency is situated between zero and unity, i.e., for every observation

(xp, yp) ∈ TΛ,Γ: 0 < AE(xp, yp, w | TΛ,Γ) ≤ 1.
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(ii) Allocative super-efficiency is situated between zero and unity, i.e., for every observation

(xp, yp) ∈ TΛ,Γ: 0 < AESE(xp, yp, w | TΛ,Γ
p ) ≤ 1.

The next Proposition 5.2 compares the technical efficiency and technical super-efficiency

measures as well as the cost efficiency and cost super-efficiency measures in both convex and

nonconvex cases and under both CRS and VRS:

Proposition 5.2. For every observation (xp, yp):

(i) DFi(xp, yp | TC,Γ) ≤ DFi(xp, yp | TNC,Γ);

(ii) DF SE
i (xp, yp | TC,Γp ) ≤ DF SE

i (xp, yp | TNC,Γp );

(iii) CE(xp, yp, w | TC,Γ) ≤ CE(xp, yp, w | TNC,Γ);

(iv) CESE(xp, yp, w | TC,Γp ) ≤ CESE(xp, yp, w | TNC,Γp ).

Proof. See Appendix A.

When comparing convex and nonconvex results for all efficiency concepts (i.e., technical and

cost efficiency as well as technical and cost super-efficiency measures), then the obtained

results under the convexity assumption are always smaller than or equal to the ones obtained

under the nonconvexity assumption.

Zhu (1996) indicates that the input-oriented super-efficiency model under CRS is feasible

unless certain patterns of zero data entries are present in the inputs. Therefore, if one assumes

that all inputs data are strictly positive, then the input-oriented super-efficiency CRS model

is always feasible. However, in Proposition 5.3(i), we prove that the cost super-efficiency

model under CRS is always feasible even if there are some zero data entries in the inputs.

Proposition 5.3 focuses on the potential for infeasibility for both technical and cost super-

efficiency:

Proposition 5.3. (i) For every observation (xp, yp) ∈ TΛ,CRS, the cost super-efficiency

model CSE(yp, w | TΛ,CRS
p ) is always feasible.

(ii) Model DF SE
i (xp, yp | TΛ,V RS

p ) is feasible if and only if model CESE(xp, yp, w | TΛ,V RS
p )

is feasible.

(iii) If model DF SE
i (xp, yp | TC,Γp ) is infeasible, then model DF SE

i (xp, yp | TNC,Γp ) is infeasi-

ble.
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(iv) If model CESE(xp, yp, w | TC,V RSp ) is infeasible, then model CESE(xp, yp, w | TNC,V RSp )

is infeasible.

Proof. See Appendix A.

Proposition 5.3(i) shows that the cost super-efficiency model under CRS is always feasi-

ble. Proposition 5.3(ii) shows that infeasibilities occur for the same observations in both

corresponding models DF SE
i (xp, yp | TΛ,V RS

p ) and CESE(xp, yp, w | TΛ,V RS
p ) under both con-

vex and nonconvex cases. Consequently, the number of infeasible observations by solving

the corresponding models DF SE
i (xp, yp | TΛ,V RS

p ) and CESE(xp, yp, w | TΛ,V RS
p ) is identical.

According to Proposition 5.3(iii) and (iv), if an observation results in an infeasibility un-

der convexity, then this same observation also leads to an infeasibility under nonconvexity

for both technical and cost super-efficiency measures. Note that the inverses of Proposition

5.3(iii) and (vi) are not satisfied. Consequently, the number of infeasible observations in the

convex case is smaller than or equal to the number of infeasible observations in the noncon-

vex case for both technical and cost super-efficiency measures. The problem of infeasibility

is worse under nonconvexity because the volume of the production possibility set is smaller

than or equal to the volume of the convex counterpart.

While Agrell, Bogetoft, and Tind (2002, p. 6-7) define the cost frontier for CRS and VRS

assumptions alike, it is clear that a super-efficiency cost frontier version may not exist under

VRS, but it always exists under CRS. This existence result seems new to the incentive-based

regulation theory employing frontier methodologies.

To illustrate the difference in the infeasibility behaviour between technical super-efficiency

and cost super-efficiency in Proposition 5.3(i), consider the isoquant of a CRS technol-

ogy in Figure 2. This isoquant of technology TC,CRS is determined by 6 observations

(A,B,D,E, F,G,H) denoted by square dots in the space of two inputs for a given single

output. It is represented by the polyline ABDE and its vertical and horizontal extensions

at A and E, respectively.
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Figure 2: Isoquant with combinations of two inputs and single output under convexity and
CRS assumptions

We focus on observation E with a second input equal to zero to illustrate technical and

cost efficiency as well as technical and cost super-efficiency measures. The input prices of

observation E are such that the cost-minimizing input vector is located at E on the frontier

of TC,CRS: this cost function is plotted as a dotted line. The corresponding technical and cost

efficiency measures for observation E are DFi(xE, yE | TC,CRS) = CE(xE, yE, w | TC,CRS) =
OE
OE

= 1, respectively. Consequently, observation E is technically and cost efficient.

By removing observation E from the observations defining technology, the boundary of

the altered technology TC,CRSE is represented by the polyline ABDH and its vertical and

horizontal extensions at A and H, respectively. Clearly, there is no referent observation for

E when scaling down or up both inputs in a radial way: to be precise, the ray from the

origin through point E (which coincides with the horizontal axis) has no intersection with

the altered technology TC,CRSE . Consequently, the input-oriented technical super-efficiency

model under CRS is infeasible for observation E.

However, cost minimization is still possible when observation E is removed and results

in the cost-minimizing input vector located at D on the frontier of technology TC,CRS: this

cost function is drawn in a dash dotted line. Hence, the corresponding cost super-efficiency

measure of observation E is simply CESE(xE, yE, w | TC,CRSE ) = OE′

OE
> 1 and is perfectly
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feasible.

Figure 3 illustrates Proposition 5.3(ii), namely how infeasibility for super-efficiency under

VRS may occur for the case of a single input and a single output under both convex and

nonconvex cases. The six observations (A,B,D,E, F,G) determining technologies TC,V RS

and TNC,V RS are denoted by square dots. The boundary of technology TC,V RS is represented

by the polyline ABD and its vertical and horizontal extensions at A and D, respectively.

The boundary of technology TNC,V RS is represented by the polyline AHBID and its vertical

and horizontal extensions at A and D, respectively.

Figure 3: Convex and nonconvex technologies with single input and single output under VRS
assumption

We focus on observation D to illustrate technical and cost efficiency as well as tech-

nical and cost super-efficiency measures. The cost function minimizing expenditures at

the output level of D is plotted as a dotted line. The corresponding technical and

cost efficiency measures for observation D under both convex and nonconvex cases are

DFi(xD, yD | TC,V RS) = DFi(xD, yD | TNC,V RS) = D1D
D1D

= 1 and CE(xD, yD, w | TC,V RS) =

CE(xD, yD, w | TNC,V RS) = D1D
D1D

= 1, respectively. Therefore, we have CE(xD, yD, w |
TΛ,V RS) = DFi(xD, yD | TΛ,V RS) = 1 for Λ = C and Λ = NC. Hence, observation D is

technically and cost efficient under both convexity and nonconvexity.

Removing observation D alters technology in the convex case to the new technology

TC,V RSD represented by the polyline ABE and its vertical and horizontal extensions at A and
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E, respectively. Similarly, removal of observation D changes technology in the nonconvex

case to the new technology TNC,V RSD represented by the polyline AHBJE and its verti-

cal and horizontal extensions at A and E, respectively. Clearly, there are no observations in

technologies TC,V RSD and TNC,V RSD with at least current output level of observation D. There-

fore, both technical and cost super-efficiency measures under VRS and under convexity or

nonconvexity are infeasible.

Figure 4 illustrates Proposition 5.3(iii), namely if an observation results in an infeasibility

under convexity, then this same observation also leads to an infeasibility under nonconvexity

for the technical super-efficiency measure. Also, it shows that the inverse of Proposition

5.3(iii) is not satisfied: i.e., if an observation results in an infeasibility under nonconvexity,

then this same observation may lead to a feasibility under convexity for the technical super-

efficiency measure.

Figure 4: Convex and nonconvex technologies with single input and two outputs under VRS
assumption

The visualization in Figure 4 depicts the case of one input (vertical direction pointing

downwards) and two outputs (upper horizontal plane). We focus on observation 4 indicated

by a small sphere which is an inefficient unit under the convex case and an efficient unit under

the nonconvex case. The visible production frontiers are those with observation 4 excluded:

the nonconvex case is in a solid color, and the convex case is in a slightly transparent color.
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Observation 4 is scaled upward to the position indicated by the cube when optimizing in the

input direction and assuming convexity. But, in the case of nonconvexity, there is no scaling

up or down that reaches the boundary of technology with observation 4 excluded, whence

the infeasibility.

The problem of infeasibilities can lead to several reactions. One position that has been

defended in the literature is to accept the fact that distance functions need not always

be defined and to simply report all infeasibilities whenever these occur (see, e.g., Briec

and Kerstens (2009)). The same argument could be applied to the cost function. This is

the position taken in this contribution. Another position is to remedy the infeasibilities

in distance function and/or cost function whenever this is possible. While some undeniable

progress has been made to reduce or eliminate the infeasibility problem for distance functions

(see supra), we are unaware of any solution to the infeasibility problem for the cost function.

Moreover, depending on whether or not one attaches some importance to the static efficiency

decomposition one may wish to have solutions that are structurally similar across different

super-efficiency concepts. It remains an open question whether this is possible.

Proposition 5.4 compares the allocative and scale efficiency measures with the allocative

and scale super-efficiency measures:

Proposition 5.4. For every observation (xp, yp):

(i) AE(xp, yp, w | TΛ,CRS) ≥ AESE(xp, yp, w | TΛ,CRS
p )

(ii) SCE(xp, yp | TΛ,.) ≥ SCESE(xp, yp | TΛ,.
p )

Proof. See Appendix A.

Proposition 5.4 shows that the allocative and scale efficiency measures are greater than or

equal to the allocative and scale super-efficiency measures, respectively, under both convex

and nonconvex cases.

Proposition 5.5 compares the allocative super-efficiency measure with the cost super-

efficiency measure:

Proposition 5.5. For every observation (xp, yp):

(i) If DF SE
i (xp, yp | TΛ,V RS

p ) ≤ 1, then AESE(xp, yp, w | TΛ,CRS
p ) ≥ CESE(xp, yp, w |

TΛ,CRS
p ).
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(ii) If DF SE
i (xp, yp | TΛ,V RS

p ) > 1, then AESE(xp, yp, w | TΛ,CRS
p )

>
=
<
CESE(xp, yp, w |

TΛ,CRS
p ).

Proof. See Appendix A.

Note that the allocative efficiency measure is always higher than the cost efficiency mea-

sure, and Proposition 5.5 shows that we have the same result for allocative super-efficiency

and cost super-efficiency measures when DF SE
i (xp, yp | TΛ,V RS

p ) ≤ 1. Also, if DMUp is a

super-efficient unit, i.e., DF SE
i (xp, yp | TΛ,V RS

p ) > 1, then we can not compare the allocative

super-efficiency and the cost super-efficiency measures.

Finally, Proposition 5.6 compares the scale super-efficiency measure with the cost super-

efficiency measure:

Proposition 5.6. For every DMUp we have:

(i) If DF SE
i (xp, yp | TΛ,V RS

p ) ≤ 1, then SCESE(xp, yp | TΛ,.
p ) ≥ CESE(xp, yp, w | TΛ,CRS

p ).

(ii) If DF SE
i (xp, yp | TΛ,V RS

p ) > 1, then SCESE(xp, yp | TΛ,.
p )

>
=
<
CESE(xp, yp, w | TΛ,CRS

p ).

Proof. See Appendix A.

Recall that scale efficiency is always greater than or equal to cost efficiency. Proposition

5.6 proves that the same result holds true for scale super-efficiency and cost super-efficiency

measures when DF SE
i (xp, yp | TΛ,V RS

p ) ≤ 1. Also, if an observation is technically super-

efficient (i.e., DF SE
i (xp, yp | TΛ,V RS

p ) > 1), then there is no relation whatsoever between the

scale super-efficiency and the cost super-efficiency measures.

We now turn to an empirical illustration of most of these results.

6 Empirical Illustration

6.1 Description of the Sample

Our empirical illustration of the super-efficiency notions draws upon data that are publicly

available in the data repository of the Journal of Applied Econometrics4 for the sake of repli-

cability. In particular, we opt for an unbalanced panel of three years of French fruit producers

4Web site: http://qed.econ.queensu.ca/jae/
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collected by Ivaldi, Ladoux, Ossard, and Simioni (1996) based on annual accounting data

collected in a survey. Two criteria determine the selection of farms: (i) the production of

apples is positive, and (ii) the acreage of the orchard is at least five acres. This short panel

spans the three successive years from 1984 to 1986. As a description of the technology, one

can say that three aggregate inputs deliver two aggregate outputs. The three inputs are: (i)

capital (including land), (ii) labor, and (iii) materials. The two outputs are (i) the produc-

tion of apples, and (ii) an aggregate of alternative products. Descriptive statistics for the 405

observations in total and details on the definitions of all variables are available in Appendix

2 in Ivaldi, Ladoux, Ossard, and Simioni (1996). A striking feature of this sample is the

large heterogeneity in terms of size among the different inputs as well as the outputs. Due to

the short length of the panel (just three years), we believe that the use of an intertemporal

frontier approach ignoring technical change is justified.

6.2 Empirical Results

Table 1 reports the descriptive statistics of cost efficiency (CE(xp, yp, w | TΛ,Γ), cost super-

efficiency (CESE(xp, yp, w | TΛ,Γ
p ), input-oriented technical efficiency measure (DFi(xp, yp |

TΛ,Γ)) and input-oriented technical super-efficiency measure (DF SE
i (xp, yp | TΛ,Γ

p )) for DMUs

using convex and nonconvex technologies under VRS and CRS, respectively. We report the

average, the standard deviation, and the minima and maxima (depending on the context)

for all these measures. This explains the four horizontal parts of this Table 1: the first two

parts report VRS results, while the last two parts list CRS results, and each of these two

major parts reports results under convexity and nonconvexity, respectively.

Note that for 2 observations under convexity and 8 observations under nonconvexity

in the VRS case, the corresponding models DF SE
i (xp, yp | TΛ,V RS

p ) and CESE(xp, yp, w |
TΛ,V RS
p ) are infeasible. This illustrates that the inverses of Proposition 5.3(iii) and (iv) are

not satisfied. As a result, the prevalence of infeasibility is higher in the nonconvex case.

Therefore, we do not include these infeasible observations in the corresponding descriptive

statistics computations under VRS. By contrast, no observations are infeasible in the CRS

case: this is a clear illustration of Proposition 5.3(i).
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Table 1: Descriptive Statistics for Technical and Cost Efficiency and Super-Efficiency under
VRS and CRS and in both Convex and Nonconvex Cases

VRS, Convex CE(xp, yp, w | TC,V RS) CESE(xp, yp, w | TC,V RSp ) DFi(xp, yp | TC,V RS) DF SE
i (xp, yp | TC,V RSp )

Average 0.434 1.153 0.604 1.251

Stand. Dev. 0.190 0.144 0.193 0.169

Min 0.104 1.011 0.187 1.033

Max 1.000 1.374 1.000 1.661

#Efficient units 7 - 22 -

#Infeasible units 0 2 0 2

#Considered units 405 5 405 20

VRS, Nonconvex CE(xp, yp, w | TNC,V RS) CESE(xp, yp, w | TNC,V RSp ) DFi(xp, yp | TNC,V RS) DF SE
i (xp, yp | TNC,V RSp )

Average 0.629 1.386 0.847 1.456

Stand. Dev. 0.248 0.401 0.190 0.488

Min 0.134 1.020 0.359 1.002

Max 1.000 3.037 1.000 3.513

#Efficient units 62 - 185 -

#Infeasible units 0 8 0 8

#Considered units 405 54 405 177

CRS, Convex CE(xp, yp, w | TC,CRS) CESE(xp, yp, w | TC,CRSp ) DFi(xp, yp | TC,CRS) DF SE
i (xp, yp | TC,CRSp )

Average 0.261 1.380 0.375 1.301

Stand. Dev. 0.161 0.108 0.219 0.246

Min 0.036 1.303 0.048 1.080

Max 1.000 1.456 1.000 1.794

#Efficient units 2 - 9 -

#Infeasible units 0 0 0 0

#Considered units 405 2 405 9

CRS, Nonconvex CE(xp, yp, w | TNC,CRS) CESE(xp, yp, w | TNC,CRSp ) DFi(xp, yp | TNC,CRS) DF SE
i (xp, yp | TNC,CRSp )

Average 0.378 1.333 0.582 1.284

Stand. Dev. 0.219 0.226 0.280 0.252

Min 0.039 1.051 0.049 1.008

Max 1.000 1.724 1.000 2.042

#Efficient units 8 - 52 -

#Infeasible units 0 0 0 0

#Considered units 405 8 405 52

Furthermore, to compute the descriptive statistics for the super-efficiency results (i.e.,

CESE(xp, yp, w | TΛ,Γ
p ) and DF SE

i (xp, yp | TΛ,Γ
p )), we only consider the observations that

are cost efficient (i.e., CE(xp, yp, w | TΛ,Γ
p ) = 1) and input-oriented technically efficient

(i.e., DFi(xp, yp | TΛ,Γ
p ) = 1), respectively. Since the inefficient observations are in common

between standard efficiency and super-efficiency concepts, we focus on the distribution of

the super-efficiency results that are unity or higher. Therefore, the number of efficient units

(#Efficient units), the number of infeasible units (#Infeasible units), as well as the number

of observations that we include in the corresponding descriptive statistics computations

(#Considered units) is shown in the three last lines of each of the four horizontal part of Table

1. Obviously, for the super-efficiency results the sum of #Infeasible units and #Considered

units equals the #Efficient units for the standard efficiency results. Note also that the notion

of #Efficient units is not applicable for the super-efficiency results.

Analyzing the results in Table 1, one can draw the following conclusions. First, as expected
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based on Proposition 5.1(i), the average of DFi(xp, yp | TΛ,V RS) is larger than the average of

CE(xp, yp, w | TΛ,V RS) under both the convex and nonconvex cases and under both VRS and

CRS. Second, Proposition 5.1(iii) cannot be verified at the level of our descriptive statistics:

while we indeed have CESE(xp, yp, w | TΛ,V RS
p ) ≤ DF SE

i (xp, yp | TΛ,V RS
p ) under both convex

and nonconvex cases, under the CRS case this relation does not hold under convexity and

nonconvexity. This is due to the fact that the number of observations that we include in

the corresponding descriptive statistics is different (see last line with #Considered units).

Obviously, the relation in Proposition 5.1(iii) does hold at the level of the common individual

observations.5 Third, the minimum of CESE(xp, yp, w | TΛ,Γ
p ) and DF SE

i (xp, yp | TΛ,Γ
p ) under

both the convex and nonconvex cases and under both VRS and CRS is higher than unity.

Therefore, both CESE(xp, yp, w | TΛ,Γ
p ) and DF SE

i (xp, yp | TΛ,Γ
p ) separately yield a unique

rank for all feasible observations.

Fourth, the obtained VRS results show that 22 units are located on the technically

efficient frontier under convexity, among which 7 units are cost efficient, while 185 units

are located on the technically efficient frontier under nonconvexity, among which 62 units

are cost efficient. Fifth, the results reveal that in the CRS case, 9 units are located on the

technically efficient frontier under convexity, whereby 2 units are also cost efficient, while 52

units are located on the technically efficient frontier under nonconvexity, whereby 8 units are

cost efficient. Both these conclusions underscore Propositions 5.1(ii) and 5.2: the technical

and cost efficiency scores are higher in the nonconvex case.

We apply the decomposition of cost efficiency (11) and cost super-efficiency (18) to

this same empirical example. The convex and nonconvex results for each of these two de-

compositions are exhibited in Table 2. This explains the four horizontal parts of this ta-

ble. As mentioned in subsection 3.3, if observation (xp, yp) is inefficient under VRS (i.e.,

DFi(xp, yp | TΛ,V RS) < 1), then its decomposition of overall or cost efficiency (11) and its

decomposition of overall or cost super-efficiency (18) yield the same results. Hence, to report

the descriptive statistics for the components of the decomposition of cost super-efficiency

(18), we only consider the observations that are input-oriented technically efficient. The

number of observations that we include in the corresponding descriptive statistics compu-

tations (#Considered units) is shown in the last line of every part of Table 2. Note that

this #Considered units for the decomposition of cost super-efficiency corresponds to the

#Considered units for the VRS technical super-efficiency results in Table 1.

5These results at the level of the individual observations are available upon request.
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Table 2: Descriptive Statistics for Overall Efficiency and Overall Super-Efficiency Decompo-
sition

Decomposition of cost efficiency

Convex CE(xp, yp, w | TC,CRS) DFi(xp, yp | TC,V RS) SCE(xp, yp | TC,.) AE(xp, yp, w | TC,CRS)

Average 0.261 0.604 0.612 0.722

Stand. Dev. 0.161 0.193 0.259 0.177

Min 0.036 0.187 0.073 0.242

Max 1.000 1.000 1.000 1.000

#Considered units 405 405 405 405

Nonconvex CE(xp, yp, w | TNC,CRS) DFi(xp, yp | TNC,V RS) SCE(xp, yp | TNC,.) AE(xp, yp, w | TNC,CRS)

Average 0.378 0.847 0.664 0.659

Stand. Dev. 0.219 0.190 0.238 0.180

Min 0.039 0.359 0.079 0.253

Max 1.000 1.000 1.000 1.000

#Considered units 405 405 405 405

Decomposition of cost super-efficiency

Convex CESE(xp, yp, w | TC,CRSp ) DF SE
i (xp, yp | TC,V RSp ) SCESE(xp, yp | TC,.p ) AESE(xp, yp, w | TC,CRSp )

Average 0.441 1.251 0.644 0.558

Stand. Dev. 0.314 0.169 0.289 0.228

Min 0.052 1.033 0.066 0.247

Max 1.303 1.661 0.999 0.892

#Considered units 20 20 20 20

Nonconvex CESE(xp, yp, w | TNC,CRSp ) DF SE
i (xp, yp | TNC,V RSp ) SCESE(xp, yp | TNC,.p ) AESE(xp, yp, w | TNC,CRSp )

Average 0.526 1.456 0.614 0.610

Stand. Dev. 0.253 0.488 0.165 0.188

Min 0.081 1.002 0.111 0.186

Max 1.724 3.513 0.982 0.978

#Considered units 177 177 177 177

The following pertinent conclusions emerge. First, the average of CE(xp, yp, w | TNC,CRS)

and CESE(xp, yp, w | TC,CRSp ) are smaller than the average of their decomposition compo-

nents under both convex and nonconvex technologies. Second, Proposition 5.4 cannot be

verified at the level of our descriptive statistics: while the allocative efficiency measure is

greater than or equal to the allocative super-efficiency measure under both convex and non-

convex cases, it is not the case that the scale efficiency measure is greater than or equal to

the scale super-efficiency measure under both convex and nonconvex cases. Again, this is

because the number of observations included in the corresponding descriptive statistics is

different (see last line with #Considered units). But, of course this relation in Proposition 5.4

holds true at the level of the common individual observations.6 Third, the results show that

the average of allocative super-efficiency is smaller than the average of scale super-efficiency,

under both convex and nonconvex cases. Fourth, the average of scale efficiency under non-

convexity is higher than under convexity, while the average of scale super-efficiency under

convexity is higher than under nonconvexity. Fifth, the average of allocative efficiency under

convexity is higher than under nonconvexity while the average on allocative super-efficiency

under convexity is smaller than under nonconvexity.

6These results at the level of the individual observations are available upon request.
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To formally assess the above reported differences in distributions, we make use of a non-

parametric test proposed initially by Li (1996) and further refined by Fan and Ullah (1999)

and others. The most recent development is probably by Li, Maasoumi, and Racine (2009).

This nonparametric test focuses on the differences between entire distributions instead of

looking at, for instance, first moments (e.g., the Wilcoxon signed-ranks test). It tests for the

eventual statistical significance of differences between two kernel-based estimates of density

functions f and g of a random variable x. The null hypothesis states the equality of both

density functions almost everywhere: H0 : f(x) = g(x) for all x. By contrast, the alternative

hypothesis negates this equality of both density functions: H1 : f(x) 6= g(x) for some x. This

test is valid for both dependent and independent variables.7

Table 3 reports the Li-test results among all technical and cost efficiency as well as techni-

cal and cost super-efficiency notions under VRS and CRS, respectively. Both VRS and CRS

parts of this Table are structured as follows. First, components on the diagonal (in bold)

depict the Li-test statistic between the convex and nonconvex cases. Second, the compo-

nents under the diagonal show the Li-test statistic between convex efficiency measures, and

the components above the diagonal show the Li-test statistic between nonconvex efficiency

notions.

Table 3: Li-test among all technical and cost efficiency as well as technical and cost super-
efficiency notions under VRS and CRS

VRS DFi(xp, yp | TΛ,V RS) DF SE
i (xp, yp | TΛ,V RS

p ) CE(xp, yp, w | TΛ,V RS) CESE(xp, yp, w | TΛ,V RS
p )

DFi(xp, yp | TΛ,V RS) 167.945*** 91.6179*** 108.0296*** 25.2885***

DF SE
i (xp, yp | TΛ,V RS

p ) 123.9854*** 52.6396*** 19.8137*** 29.9605***

CE(xp, yp, w | TΛ,V RS) 275.9821*** -5.3169*** 49.9251*** 22.6708***

CESE(xp, yp, w | TΛ,V RS
p ) 167.7283*** 30.5489*** 32.55*** 21.3846***

CRS DFi(xp, yp | TΛ,CRS) DF SE
i (xp, yp | TΛ,CRS

p ) CE(xp, yp, w | TΛ,CRS) CESE(xp, yp, w | TΛ,CRS
p )

DFi(xp, yp | TΛ,CRS) 154.7688*** 58.1697*** 56.8176*** 12.8614***

DF SE
i (xp, yp | TΛ,CRS

p ) 282.095*** 21.8972*** -2.6741*** 22.8463***

CE(xp, yp, w | TΛ,CRS) 138.9707*** -5.3709*** 20.434*** 22.2282***

CESE(xp, yp, w | TΛ,CRS
p ) 154.7681*** 10.5353*** 10.5306*** 12.7865***

Li test: critical values at 1% level= 2.33(***); 5% level= 1.64(**); 10%level= 1.28(*).

The following three conclusions emerge from studying Table 3. First, for the convex

efficiency and super-efficiency notions (below the diagonal) all efficiency concepts, under both

VRS and CRS cases, follow two by two significantly different distributions. Second, for the

nonconvex efficiency and super-efficiency notions (above the diagonal) all efficiency concepts,

under both VRS and CRS cases, follow two by two significantly different distributions. Third,

all efficiency and super-efficiency notions, under both VRS and CRS cases, follow different

7Note that dependency is a characteristic of nonparametric frontier estimators: i.e., technical and cost
efficiency and super-efficiency levels depend on sample size, among others. Matlab code for this Li-test
adopted here is developed by P.J. Kerstens based on Li, Maasoumi, and Racine (2009). This code is found
at: https://github.com/kepiej/DEAUtils.
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distributions under convexity compared to nonconvexity (on the diagonal).

Table 4 reports the Spearman rank correlation coefficients for technical and cost efficiency

as well as for technical and cost super-efficiency notions under VRS and CRS, respectively.

In both VRS and CRS parts, the components on the diagonal show the rank correlations

between convex and nonconvex cases. The components under the diagonal show the rank

correlations between convex efficiency notions, and the components above the diagonal show

the rank correlations between nonconvex efficiency notions. Note that the numbers in the

parentheses indicate the number of observations in the computations of the Spearman rank

correlation coefficients between the corresponding components.

To obtain the rank correlations between convex and nonconvex cases on the diagonals,

we consider all feasible observations. To be precise, by solving the super-efficiency model (13)

under VRS, we obtain 403 feasible observations under convexity, but only 397 of these are

feasible under nonconvexity. Hence, we consider only these 397 units in common to obtain

the rank correlations between convex and nonconvex cases. Note that in the CRS case all

405 units are feasible and are included in the computations.

To obtain the rank correlations between convex (under the diagonal) and nonconvex

(above the diagonal) efficiency notions under both VRS and CRS respectively, we only con-

sider the input-oriented technically efficient observations. Note that the numbers 20 and 177

for the VRS case and the numbers 9 and 52 for the CRS case coincide with the #Considered

reported in Table 1. Furthermore, since for all input-oriented technically efficient observations

we obviously have DFi(xp, yp | TΛ,Γ) = 1, we cannot compute Spearman rank correlations

between DFi(xp, yp | TΛ,Γ) and the other components under both VRS and CRS.

Table 4: Spearman Correlation among all technical and cost efficiency as well as technical
and cost super-efficiency notions under VRS and CRS

VRS DFi(xp, yp | TΛ,V RS) DF SE
i (xp, yp | TΛ,V RS

p ) CE(xp, yp, w | TΛ,V RS) CESE(xp, yp, w | TΛ,V RS
p )

DFi(xp, yp | TΛ,V RS) 0.730**(397) - - -

DF SE
i (xp, yp | TΛ,V RS

p ) - 0.760**(397) 0.457** (177) 0.496** (177)

CE(xp, yp, w | TΛ,V RS) - -0.192(20) 0.812**(397) 0.986** (177)

CESE(xp, yp, w | TΛ,V RS
p ) - -0.152(20) 0.992**(20) 0.815**(397)

CRS DFi(xp, yp | TΛ,CRS) DF SE
i (xp, yp | TΛ,CRS

p ) CE(xp, yp, w | TΛ,CRS) CESE(xp, yp, w | TΛ,CRS
p )

DFi(xp, yp | TΛ,CRS) 0.933**(405) - - -

DF SE
i (xp, yp | TΛ,CRS

p ) - 0.935**(405) 0.293* (52) 0.302* (52)

CE(xp, yp, w | TΛ,CRS) - 0.577(9) 0.957**(405) 0.998** (52)

CESE(xp, yp, w | TΛ,CRS
p ) - 0.583(9) 0.996**(9) 0.957**(405)

*Correlation is significant at the 0.05 level (2-tailed).

** Correlation is significant at the 0.01 level (2-tailed).

The following conclusions emerge from studying Table 4. First, for the convex results

(under the diagonal) in both VRS and CRS, one can observe that CE(xp, yp, w | TC,Γ) and
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CESE(xp, yp, w | TC,Γp ) have the highest rank correlation among other efficiency notions.

Actually, we compare 20 and 9 units under VRS and CRS, respectively such that only

5 and 2 of these units are cost efficient (see #Considered reported in Table 1). Hence,

we obtain high rank correlations only for these observations. Similar results are obtained

for the rank correlations between CE(xp, yp, w | TC,Γ) and CESE(xp, yp, w | TC,Γp ) for the

nonconvex results (above the diagonal) in both VRS and CRS. Second, comparing convex

and nonconvex results on the diagonal under the VRS case, the rank correlations among

technical standard and super-efficiency notions is lower than the rank correlations among

cost-based standard and super-efficiency notions. Furthermore, the rank correlations among

super-efficiency notions are higher than the rank correlations among standard efficiency

notions. Third, comparing convex and nonconvex results on the diagonal under the CRS

case, the rank correlations are remarkably high overall among efficiency notions, and these

are highest for CE(xp, yp, w | TΛ,CRS) and CESE(xp, yp, w | TΛ,CRS
p ) compared to DFi(xp, yp |

TΛ,CRS) and DF SE
i (xp, yp | TΛ,CRS

p ). Fourth, the rank correlations between technical super-

efficiency and cost super-efficiency are not significant under the convex case (under the

diagonal) for both VRS and CRS. By contrast, the rank correlations between these notions

under the nonconvex case (above the diagonal) under both VRS and CRS is significant at

the 0.01 and 0.05 levels, respectively.

We can end with the following overall conclusions. First, the new notion of cost super-

efficiency is clearly distinct in terms of ranking from the existing technical super-efficiency

concept. This is especially true in the convex case, while in the nonconvex setting the correla-

tions are at least somewhat similar under VRS and CRS in terms of statistical significance.

Second, the technical super-efficiency concept is more clearly distinct in terms of ranking

than the new cost-based super-efficiency concept when comparing convex and nonconvex

cases. Furthermore, the distinction in terms of ranking for these super-efficiency concepts

between convex and nonconvex cases is largest in the VRS case and smallest in the CRS

case.

7 Conclusions

While the technical super-efficiency concept has been around for about two and a half

decades, the cost super-efficiency concept seems entirely new. Apart from the -to our knowledge-

two articles treating technical super-efficiency under nonconvexity, we believe we are the first

to offer a truly comparative perspective on technical and cost super-efficiency conditioned on
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this important convexity axiom. In particular, this contribution explores technical and cost

super-efficiency from a methodological and empirical perspective conditioning on traditional

convex and less common nonconvex technologies and on constant versus variable returns to

scale.

After defining all super-efficiency concepts and numerically illustrating some basic issues,

we derive a series of theoretical results regarding traditional efficiency concepts as well as

super-efficiency concepts. We equally develop some results regarding traditional efficiency

and super-efficiency concepts conditional on the axiom of convexity. Finally, we chart the

potential infeasibilities governing these super-efficiency concepts. Most of our theoretical

results are new to the frontier literature and even broaden our knowledge about the ba-

sic properties of the cost function within the context of incentive-based regulation theory

employing frontier methodologies. An empirical section based on secondary data serves to

illustrate some of these theoretical results. One main lesson is that the cost super-efficiency

notion yields different rankings from the technical super-efficiency concept. Another lesson

is that both cost and technical super-efficiency notions rank differently under convex and

nonconvex technologies.

Among the avenues for future research one can list the following topics. One extension for

future research is to analyse the super-efficiency notion in the context of either the revenue

function or the profit function. Another avenue is to search for solutions for the infeasibility

problem that can be equally applied to the efficiency measures as well as the cost function.
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Appendices: Supplementary Material

A Proofs of Propositions

Proof of Proposition 5.1:

(i) Suppose that λ∗ is an optimal value of the model determining DFi(xp, yp | TΛ,Γ) (model

(2)), therefore (λ∗xp, yp) ∈ TΛ. Based on the technology (6), there is zk(k = 1, · · · , K)

such that:
λ∗xp ≥

∑K
k=1 xkδzk,

yp ≤
∑K

k=1 ykδzk,

z ∈ Λ, δ ∈ Γ.

(A.1)

If we let x∗ = λ∗xp, then (x∗, zk) is a feasible solution of the model determining

CE(xp, yp, w | TΛ,Γ) (model (7)), thus we have: C(yp, w | TΛ,Γ) ≤ wx∗ = λ∗wxp.

Therefore, C(yp,w|TΛ,Γ)

wxp
≤ λ∗. Hence, we have CE(xp, yp, w | TΛ,Γ) ≤ DFi(xp, yp | TΛ,Γ).

(ii) Based on the part (i), the proof is clear.

(iii) Suppose that λ∗ is an optimal value of the model determining DF SE
i (xp, yp | TΛ

p )

(model (13)), therefore (λ∗xp, yp) ∈ TΛ
p . Based on the technology (12), there is zk(k =

1, · · · , K), zp = 0 such that:

λ∗xp ≥
∑K

k=1 xkδzk,

yp ≤
∑K

k=1 ykδzk,

z ∈ Λ, δ ∈ Γ.

(A.2)

If we let x∗ = λ∗xp, then (x∗, zk) is a feasible solution of the model determin-

ing CESE(xp, yp, w | TΛ,Γ
p ) (model (15)), thus we have: C(yp, w | TΛ) ≤ wx∗ =

λ∗wxp. Therefore,
CESE(xp,yp,w|TΛ,Γ

p )

wxp
≤ λ∗. Hence, we have CESE(xp, yp, w | TΛ,Γ

p ) ≤
DF SE

i (xp, yp | TΛ,Γ
p ).

Proof of Proposition 5.2:

(i) Suppose that (z∗k, λ
∗) is an optimal solution of the model determining DFi(xp, yp |

TNC,Γ). Based on the technology (12), since we have TNC,Γ ⊆ TC,Γ, this optimal solution

(z∗k, λ
∗) is a feasible solution of the model determining DFi(xp, yp | TC,Γ). Thus, we have
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DFi(xp, yp | TC,Γ) ≤ λ∗ = DFi(xp, yp | TNC,Γ). In a similar way, the second part, i.e.,

DF SE
i (xp, yp | TC,Γ) ≤ DF SE

i (xp, yp | TNC,Γ), can be proved.

(ii) Suppose that (z∗k, x
∗) is an optimal solution of the model determining C(yp, w | TNC,Γ).

Based on the technology (12), since we have TNC,Γ ⊆ TC,Γ, this optimal solution

(z∗k, x
∗) is a feasible solution of the model determining C(yp, w | TC,Γ). Thus, we have

C(yp, w | TC,Γ) ≤ wx∗ = C(yp, w | TNC,Γ). Therefore, CE(yp, w | TC,Γ) = C(yp,w|TC,Γ)

wxp
≤

wx∗

wxp
= CE(yp, w | TNC,Γ). In a similar way, the second part, i.e., CESE(yp, w | TC,Γ) ≤

CESE(yp, w | TNC,Γ), can be proved.

Proof of Proposition 5.3:

(i) Assume that (xq, yq) is an observed unit such that q 6= p. Based on the constant returns

to scale assumption, there is δ > 0 such that δ(xq, yq) ∈ TΛ,CRS and δyq ≥ yp. Since,

(xq, yq) ∈ TΛ,CRS
p , therefore, δ(xq, yq) ∈ TΛ,CRS

p . Thus, based on technology TΛ,CRS
p ,

there is zk(k = 1, . . . , K), zp = 0 such that:

δxq ≥
K∑
k=1

xkzk,

yp ≤ δyq ≤
K∑
k=1

ykzk,

Hence, zk, k = 1, . . . , K and x = δxq are a feasible solution of the CRS cost super-

efficiency model CSE(yp, w | TΛ,CRS
p ).

(ii) Assume that (z∗k, λ
∗) is a feasible solution of model determining DF SE

i (xp, yp | TΛ,V RS
p ).

If we let x∗ = λ∗xp, then (z∗k, x
∗) is a feasible solution of model determining CSE(yp, w |

TΛ,V RS
p ). Now, suppose that (z∗k, x

∗
i ) is a feasible solution of model determining CSE(yp, w |

TΛ,V RS
p ). We define λ∗ = min{ x

∗
i

xip
, i = 1, . . . , N}, therefore (z∗k, λ

∗) is a feasible solution

of model determining DF SE
i (xp, yp | TΛ,V RS

p ).

(iii) Based on the technology (12), since we have TNC,Γp ⊆ TC,Γ, therefore, if TC,Γp = ∅, then

TNC,Γp = ∅.

(iv) Based on the technology (12), since we have TNC,Γp ⊆ TC,Γp , therefore, if TC,Γp = ∅, then

TNC,Γp = ∅.

Proof of Proposition 5.4:
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(i) If DFi(xp, yp | TΛ,CRS) < 1, then based on Proposition 5.1, we have CE(xp, yp, w |
TΛ,CRS) ≤ DFi(xp, yp | TΛ,CRS) < 1. Hence, CE(xp, yp, w | TΛ,CRS) = CESE(xp, yp, w |
TΛ,CRS
p ) and DFi(xp, yp | TΛ,CRS) = DF SE

i (xp, yp | TΛ,CRS
p ). Therefore, AE(xp, yp, w |

TΛ,CRS) = AESE(xp, yp, w | TΛ,CRS
p ).

If DFi(xp, yp | TΛ,CRS) = 1, then based on Proposition 5.1, we have CE(xp, yp, w |
TΛ,CRS) ≤ 1. Now, we have two items as follows:

(a) If CE(xp, yp, w | TΛ,Γ) < 1, then CE(xp, yp, w | TΛ,CRS) = CESE(xp, yp, w |
TΛ,Γ
p ). Since DF SE

i (xp, yp | TΛ,CRS
p ) ≥ 1, we have AE(xp, yp, w | TΛ,CRS) ≥

AESE(xp, yp, w | TΛ,CRS
p ).

(b) If CE(xp, yp, w | TΛ,CRS) = 1, then since we have assumed that DFi(xp, yp |
TΛ,CRS) = 1, thus we have AE(xp, yp, w | TΛ,CRS) = 1. Also, based on Propo-

sition 5.1, we have CESE(xp, yp, w | TΛ,CRS
p ) ≤ DF SE

i (xp, yp | TΛ,CRS
p ), hence

AESE(xp, yp, w | TΛ,CRS
p ) ≤ 1 = AE(xp, yp, w | TΛ,CRS).

(ii) Assume that DFi(xp, yp | TΛ,V RS) < 1. Hence DFi(xp, yp | TΛ,V RS) = DF SE
i (xp, yp |

TΛ,V RS
p ). Since DFi(xp, yp | TΛ,CRS) ≤ DFi(xp, yp | TΛ,V RS) < 1, thus, we have

DFi(xp, yp | TΛ,CRS) = DF SE
i (xp, yp | TΛ,CRS

p ). Hence, SCE(xp, yp | TΛ,.) =

SCESE(xp, yp | TΛ,.
p ).

Now, assume that DFi(xp, yp | TΛ,V RS) = 1. In this case, we have two items as follows:

(a) If DFi(xp, yp | TΛ,CRS) < 1, then DFi(xp, yp | TΛ,CRS) = DF SE
i (xp, yp | TΛ,CRS

p ).

Since we have assumed that DFi(xp, yp | TΛ,V RS) = 1, hence DF SE
i (xp, yp |

TΛ,V RS
p ) ≥ 1. Therefore, we have SCE(xp, yp | TΛ,.) ≥ SCESE(xp, yp | TΛ,.

p ).

(b) IfDFi(xp, yp | TΛ,CRS) = 1, then since we have assumed thatDFi(xp, yp | TΛ,V RS) =

1, thus we have SCE(xp, yp | TΛ,.) = 1. Also, we have DF SE
i (xp, yp | TΛ,CRS

p ) ≤
DF SE

i (xp, yp | TΛ,V RS
p ), hence SCESE(xp, yp | TΛ,.

p ) ≤ 1 = SCE(xp, yp | TΛ,.).

Proof of Proposition 5.5:

(i) Based on equation (16), we have AESE(xp, yp, w | TΛ,CRS
p )×DF SE

i (xp, yp | TΛ,CRS
p ) =

CESE(wp, yp | TΛ,CRS
p ).

If DF SE
i (xp, yp | TΛ,V RS

p ) ≤ 1, then AESE(xp, yp, w | TΛ,CRS
p ) ≥ CESE(xp, yp, w |

TΛ,CRS
p ).

(ii) When DF SE
i (xp, yp | TΛ,V RS

p ) > 1, the results of the empirical example show that

AESE(xp, yp, w | TΛ,CRS
p ) can be equal, bigger or smaller than CESE(xp, yp, w | TΛ,CRS

p ).
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Proof of Proposition 5.6:

(i) Based on equation (17), we have SCESE(xp, yp | TΛ,.
p ) × DF SE

i (xp, yp | TΛ,V RS
p ) =

DF SE
i (xp, yp | TΛ,CRS

p ).

If DF SE
i (xp, yp | TΛ,V RS

p ) ≤ 1, then SCESE(xp, yp | TΛ,.
p ) ≥ DF SE

i (xp, yp | TΛ,CRS
p ).

Based on part (i) of Proposition 5.1, we have SCESE(xp, yp | TΛ,.
p ) ≥ CESE(xp, yp, w |

TΛ,CRS
p ).

(ii) If DF SE
i (xp, yp | TΛ,V RS

p ) > 1, then the results of the empirical example show that

SCESE(xp, yp | TΛ,.
p ) can be equal, bigger or smaller than CESE(xp, yp, w | TΛ,CRS

p ).
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