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Some Generalisations 
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Establishing a link between the so-called “neoclassical” and “axiomatic” approaches 

to production theory, we deal with some central and unresolved issues concerning 

scale economies in multi-output technologies. First, we reformulate Panzar and 

Willig’s (1977) result on the duality between primal and dual scale elasticity 

measures, which helps pointing out the unknown role played in this regard by the 

monotonicity of the local degree of homogeneity of the technology. Second, under a 

general representation of a convex technology - allowing for non-differentiability of 

the cost function and multiple optima - we determine the shape of the ray average 

cost function. Third, in the same setting, we determine an unambiguous relationship 

between cost scale elasticity and cost scale efficiency, and therefore between local 

and global scale economies. Fourth, we develop a complete map of values taken by 

primal and dual scale elasticities and point out that the equality between returns to 

scale and scale economies local measures breaks down in a convex technology at 

points where the cost function is not differentiable. These general results are then 

applied to simplification and solution of some theoretical and computational 

problems featured by some important models for the estimation of scale economies, 

such those of Baumol and Fisher (1978), Färe and Grosskopf (1985) and Sueyoshi 

(1999). 
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1. Introduction 

The introduction of the concept of ray average cost (RAC) as a tool to investigate scale 

economies in multiple output technologies dates back to the seminal contributions of Baumol 

(1977), Panzar and Willig (1977) and Baumol et al. (1982). Following Färe et al. (1988, pp. 721-

722), these contributions fall within the “neoclassical approach” to the measurement of scale 

economies, which is broadly characterized by the use of the transformation and cost functions, and 

the recourse to quantitative and local measures of scale economies such as the primal and dual scale 

elasticities. Conversely, in the competing “axiomatic” approach initiated by Koopmans (1957), the 

nature of scale economies is “deduced from the structure of the production set, or from a 

comparison of the production set with larger production sets exhibiting known scale behavior” 

(Färe et al. 1988, p. 721), with the comparison yielding qualitative information on the nature of 

scale economies (see, e.g., Färe et al. 1983, Banker et al. 1984). This approach is based on the 

computation of scale efficiency measures and generally disregards the local behavior of the cost 

function, even in the only instance when the analysis of costs is considered (Färe and Grosskopf 

1985). Thus, while the “neoclassical” approach focuses on local scale economies in terms of both 

production and cost analyses, the “axiomatic” approach is mainly concerned with global measures1 

in returns to scale analysis in production: i.e., on the detection of the direction towards the most 

productive scale size (see Banker 1984). 

A first attempt to establish a correspondence between scale elasticity and scale efficiency 

measures is offered in Färe et al. (1988). However, their results are limited to the analysis of returns 

to scale - characterized by equiproportionate changes in inputs and outputs - in the specific case in 

which the regular ultra-passum law holds (see Frisch (1965)). Moreover, these authors fail to realize 

that the definition of the degree of scale economies taken from Panzar and Willig (1977) is not valid 

for any behavior of the coefficient r along the production frontier, a problem that the literature has 

                                                           
1 The adjective global is introduced in Podinovski (2004).  
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not yet addressed. A second important contribution for the integration of both approaches is made 

by Chavas and Cox (1999, p. 308). They are the first to explicitly define the RAC function in the 

context of production possibilities sets and to point out that its minimum over this set is strictly 

connected to the evaluation of allocative inefficiency via the constant returns to scale (CRS) cost 

function, which implies non-equiproportionate changes in inputs (see also proposition 1 in Baumol 

1977, p. 812). However, the impossibility of establishing the behavior of the RAC function in a 

general technology, an unsolved issue in the neoclassical approach (see, e.g., Baumol 1977, Baumol 

and Fisher 1978), led these authors to conclude that their proposed cost scale efficiency measure is 

a criterion to detect the presence of local CRS.        

The recourse to cost analysis is required by the necessity of taking into account of the 

change in input proportions associated to scale effects, an element absent in the more traditional 

analysis of the axiomatic approach based on returns to scale (RTS), where only the ratio between 

the proportional change in outputs to that in the inputs - i.e., the ray average productivity (RAP) - is 

considered (see Banker and Thrall 1992, Banker et al. 1996, section 2.1 in Tone and Sahoo 2003). 

In fact, as shown in Cesaroni and Giovannola (2015) and Zelenyuk (2014), the presence of 

allocative inefficiency in input proportions determines different global classification results between 

RAC and RAP analyses. This clarifies why Podinovski’s (2004) result on the monotonic behavior 

of the RAP function in a convex technology may not apply to RAC, and as a consequence the 

coincidence between local and global RTS indicators may not necessarily hold for scale economies 

(SE) indicators. 

For these reasons, our work pursues a better integration of the two approaches by 

investigating SE in terms of RAC in a convex technology which allows for multiple optima and for 

a cost function that is not-everywhere differentiable. In particular, the properties of the cost function 

permit to clarify the above unresolved issues: the determination of the shape of the RAC, the 

relation between cost scale efficiency and dual scale elasticity measures, and the correspondence 
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between primal and dual scale elasticity measures when differentiability of the cost function does 

not hold.  

This contribution is structured as follows. Section 2 introduces assumptions and some 

preliminary definitions, along with a critical discussion of the duality relationships between primal 

and dual scale elasticities of Panzar and Willig (1977). Section 3 derives the shape of RAC in the 

presence of multiple optima on the basis of a Shepard’s (1970) property of the cost function in the 

output space. Section 4 shows the ensuing relationships between cost scale efficiency, and primal 

and dual scale elasticities. Section 5 applies some results of the previous section to determine the 

exact relation between RTS and SE classifications in a convex technology. Section 6 applies our 

theoretical results to the solution of problems featured in some important models for the 

determination of SE, such those of Färe and Grosskopf (1985), Sueyoshi’s (1999) and Baumol and 

Fisher (1978). In particular, it is shown that Sueyoshi’s characterization of the relation between 

RTS and SE is incorrect. Section 7 illustrates our main results by means of an empirical application 

based on a secondary data set using a non-parametric multiple inputs and outputs technology. 

Finally, Section 8 summarizes our contributions to the literature. 

2. Production Technology and Duality between Scale Elasticity Measures  

2.1 Definitions and Review 

The multiple input and output production process is described as an 1m  input vector 

Xx  used in the production of an 1s  output vector Yy , where m
RX   and s

 RY  are 

compact sets. The production technology, or production possibility set, is represented by the 

feasible set 

    from produced becan   ),( xyRyx
smT 

                                                       (1) 
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where  T is a closed subset of YX which we assume to satisfy some standard regularity conditions 

(see, e.g., Panzar and Willig 1977, Färe and Primont 1995, Chavas and Cox 1999): 

(A.1) T is non-empty and there exists 0x   and 0y   such that   Tyx, ; 

(A.2)   Ty0, , unless 0y  ;  

(A.3) for   Tyx,  and   YXyx '' , , yyxx  ''  ,  implies   T'' ,yx .  

The above conditions state that in the feasible set, which includes its boundary and is bounded, (i) 

there are some semi-positive production processes, (ii) no free lunch is allowed and inaction is 

possible, (iii) inputs and outputs are freely (strongly) disposable. These three assumptions are 

maintained throughout the contribution, with T representing a general, nonconvex, feasible set. 

When convexity is required, then the feasible set is denoted by 
CT .    

According to Panzar and Willig (1977, pp. 487), conditions (A.1)-(A.3) are sufficient to 

establish that efficient production exists and that a continuous production transformation function   

  T yxyx ,  0),( ,                                                                                        (2) 

with 0




ix
 and 0





jy
 exists - where i and j denote a generic input and output, respectively. 

The same conditions are also necessary and sufficient for the existence of a cost function C that is 

positive for positive outputs and weakly increasing in prices 
iw  and outputs jy , where  

   TminC  ),(  , yxwxwy ,                                                                                (3) 

with m

Rw  a vector of input prices. 

In the remainder of the contribution, an additional assumption is sometimes considered: 
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(A.4) ),( yx  is continuously differentiable2 in x , and in jy  for 0jy  at points  yx,  where x  is 

cost-efficient for y ;  

As far as RTS are concerned, observe that no assumption is being imposed on both T and 

CT , which therefore are variable returns to scale (VRS) technologies. For future reference, we 

remark that the CRS extension of technology T is   0 somefor  ,:),(   TT CRS
yxyx .3 

Finally, note that the smoothness condition (A.4) is sufficient for the existence of the partial 

derivatives of C:  
j

j
y

C
C






(.)
 at any 0jy  (see Panzar and Willig 1977, p. 488).  

In the framework built by assumptions (A.1)-(A.4), Panzar and Willig (1977) are the first to 

prove two important results on the relationship between production and cost scale elasticities in 

multi-output production, where the first can be defined as the ratio of the maximum proportional 

expansion in outputs associated to a given proportional expansion in inputs, and the second as the 

ratio of average to marginal cost (see also Färe and Primont 1995, pp. 39 and 53, and Tone and 

Sahoo 2003, p. 173). Panzar and Willig (1977) formulate these scale elasticities in a general and 

useful way that applies not only to the standard case of a smooth technology. More specifically, 

primal and dual scale elasticities are respectively defined as:  

Definition 1: Production scale elasticity is defined as: 

   1for  ),(such that  1 r TsupS r
yx .                                 (4)  

Definition 2: Cost scale elasticity is defined as: 

   1for  ),(),(such that  1 rˆ /1
wywy CCsupS r .                             (5)  

                                                           
2 Assumption R3 in Panzar and Willig (1977, pp. 487-488).   

3 Obviously, the same holds - mutatis mutandum - for the CRS extension of the convex technology.   



6 

On this basis, at a cost-efficient point ),(*
ywx , where *),( wxwy C , Panzar and Willig (1977) 

prove the following:  

Result 1): Under (A.4), equality SS ˆ obtains;  

Result 2): Without (A.4), the inequality relationship SS ˆ  holds.  

Here, we remark that these pioneering results are only correct under specific conditions. 

First, definitions (4) and (5) may not necessarily apply to either T or 
CT . Second, Result 1) is not 

properly formulated, not only for the previous reason, but also because it may be shown to imply 

SS ˆ  (see Appendix 1). Third, since definitions (4) and (5) exclude values 1 , which is 

legitimate only in the smooth case, Result 2) is an incomplete description of the relationships 

between S  and Ŝ  at a frontier point of the feasible set 
CT  where continuous differentiability of 

(.)  and differentiability of C are not possible. 

For the purposes of the present contribution, a first step is achieved by means of the 

refinement of Result 1, which we are developing in the following sub-section. 

    2.2 A Duality Relationship  

As mentioned earlier, for Result 1 to be referable to a general feasible set T, one needs to 

employ a different operational definition of primal and dual scale elasticities compared to (4) and 

(5). Given the use of assumption (A.4), these elasticities can be defined in a straightforward manner 

by employing differential calculus as 

Definition 3: 

Production scale elasticity under (A.4) is  



7 













j j
j

i i
i

y
y

x
x

S .                                                                                                      (4bis) 

Definition 4: 

Cost scale elasticity under (A.4) is 




j

jjCy

C

),(

),(
Ŝ

wy

wy
.                                                                                                       (5bis) 

Moreover, for an efficient point  yx,  we determine )(r  as  

0),( )(  yx
 r ,                                                                                                          (6) 

and define  

)(1  r limr  .                                                                                                              (7) 

Observe that condition (6) amounts to the consideration of a point along the boundary of T 

generated by a contraction/expansion 0  of the input vector of an efficient point  yx,  such that 

0),(  yx : i.e., )(r  is endogenously determined by the efficient production frontier.  

We are now in a position to establish the desired result: 

Proposition 1: Under assumptions (A.1)-(A.4), at a cost-efficient point T),( *
yx  the following 

equalities hold ŜS r . 

Proposition 1 reformulates Corollary 2 of Panzar and Willig (1977) by using the 

transformation function, typical for the neoclassical approach, in conjunction with the production 

frontier determined by (6), a concept mainly developed in the axiomatic approach. An analogous 

proposition is offered in Färe and Primont (1995, p. 53), but our proof differs because of the use of 
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Panzar and Willig’s transformation function and of the ensuing possibility of establishing an 

immediate link between scale elasticities and RAP in a smooth technology. Following up on some 

important economic contributions like those of Menger (1954) and Frisch (1965) dealing with 

average productivity in a multiple inputs-single output setting, Banker (1984) extends this concept 

to multiple outputs production. More recently, Podinovski (2004, section 11.2) has introduced the 

term RAP to denote the ratio of the proportional increase in outputs to the proportional increase in 

inputs along the efficient frontier. Therefore, from (6) the RAP function can be easily obtained as 

 1)()(   r . This allows to determine its derivative with respect to   as: 

                                             







 









 











  1)(
ln1)( rrr .                                         (8) 

Expression (8) evaluated at 1  yields: 

                                                                1 lim 1 



 r




 .                                                          (9) 

Expression (9) intuitively shows that the behavior of the RAP function corresponds to the behavior 

of )(r  over the   domain. Recent research shows that in T the RAP function is in general not 

concave (see Cesaroni et al. 2017 and Podinovski 2004) and that even in 
CT  the RAP function is 

only quasi-concave, as proven by Podinovski (2004, p. 246).  Consequently, over some interval in 

both T and 
CT , )(r  may be increasing: in these cases the use of the operator sup in the definition 

of scale elasticities (4) and (5) is not legitimate, because of the implied reference to a frontier point 

which is not coincident with the one under examination. To the best of our knowledge, this 

conclusion - which motivates the necessity of reformulating both duality result of Panzar and Willig 
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(1977) - is new to the literature, as witnessed by the use of the sup operator by Färe et al. (1988, p. 

724 and p. 728) in the definition of scale elasticities.4               

The conclusions so far leave us with two open problems. First, how to find conditions under 

which )(r  is monotonically decreasing and the sup definitions can be used? Second, given the 

former, how to determine a relationship between primal and dual elasticities in a non-smooth 

technology? As we see in the remainder of this contribution, the analysis of cost and ray average 

cost functions in a convex technology offers adequate solutions to these issues.  

3. Ray Average Cost   

The concept of RAC as a tool to investigate scale economies in multiple output technologies 

dates back to the seminal contributions of Baumol (1977), Baumol and Fisher (1978) and Baumol et 

al. (1982) in a setting where inefficiency in the production technology is ignored. By contrast, 

Panzar and Willig (1977) allow for inefficiency in the production technology, but - differently from 

the preceding authors - overlook the issue of the shape of the RAC function, as a consequence of 

their specific focus on the relationship between primal and dual measures of scale elasticity at a 

point of the cost function. Chavas and Cox (1999, p. 308) are the first to explicitly define the RAC 

function in the context of VRS production technologies with inefficiency and to point out that the 

concept is strictly connected to the evaluation of scale inefficiency with respect to the constant 

returns to scale (CRS) cost function.  

Contrary to the more traditional approach in economics based on average productivity, this 

strand determines SE by means of the behavior of the cost function in response to equiproportional 

variations in outputs at given input prices (see, e.g., Baumol 1977, beginning of p. 811, and 

proposition 1, p. 812). Constant SE arise when average cost remains stationary at a minimum level. 

                                                           
4 At p. 724, Färe et al. (1988) use the sup operator, while at p. 728 they literally state that the validity of their analysis 

does not require that the scale elasticity E declines monotonically.     
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Otherwise, we have increasing or decreasing SE depending on whether the average cost is 

decreasing with an increase or a decrease in the output’s scale size, respectively (see definition 5 in 

Panzar and Willig 1977; cf. also Sueyoshi 1999 - section 4.2.1, and Tone and Sahoo 2003 - section 

4.2). In any case, to the best of our knowledge no contribution addresses the issue of the RAC 

shape, which has so far been conceived as an assumption rather than a consequence of the form of 

the technology (see, e.g., Baumol and Fisher 1978 p. 460, Chavas and Cox 1999 p. 307, Baumol et 

al. 1982 p. 257). 

In the following, we address this issue under general conditions in the sense that we allow 

both for multiple minima of the RAC and for non-differentiability of C.    

3.1 Preliminaries: RAC Function, Optimal Scale Sizes and Scale Efficiency 

Adopting Baumol’s definition (see Baumol 1977, p.811; Baumol et al. 1982, pp. 48-49), the 

RAC function of an output vector y  is 

                                                              
t

tC
tRAC

)(
),(

y
y  , 0t ,                                   (10) 

where for notational convenience we have suppressed the input price vector w  -which we assume 

as given- from the cost function at numerator and *)( wxy tC  with Ttt )),,(( *
yywx .     

Chavas and Cox (1999, pp. 307-308) establish that if 0y  , then a minimum of (10) with 

respect to t ( *RAC ) exists under mild conditions which our technology satisfies, and that it is equal 

to the minimum cost of y  in CRST . In other words, at given input prices the minimum RAC of an 

output mix in a VRS production technology corresponds to the value determined by the CRS cost 

function.  



11 

Following Cesaroni and Giovannola (2015, p. 123), a radial scaling factor between the 

output vectors of two different production possibilities belonging to T -the one under examination j 

and a generic reference unit h- can be derived from this operational definition5:  










rh

rj

r
hj

y

y
max, , where ],0(, hj                                                                    (11) 

Then, by putting hj
t

,

1
  in (10), we can interpret its argmin as the production possibility that 

determines *RAC , which we term optimal scale size (OSS): Too ),( yx .  

Therefore, if we define an efficiency measure as the ratio   

                                         
)(

*
*

j

j
C

RAC
R

y
 ,                                                                    (12)   

then it is evident that this efficiency measure equals one if and only if the output mix j under 

examination is an OSS6, otherwise it is less than one. Moreover, 
*

jR  can be readily interpreted as 

the cost measure of scale efficiency of point )),,(( *

jjjj yywx 7 (see Färe and Grosskopf 1985). 

Furthermore, the associated oj ,  is a straightforward indicator of global SE, that is the direction in T 

-increasing ( 1, oj ), decreasing ( 1, oj ), or sub-constant (both 1, oj  and 1', oj )- along 

which outputs can be moved to achieve the minimum RAC (see Cesaroni et al. 2017b, p.1446).           

 

 

                                                           
5  We consider the set of affinely extended real numbers.  

6 See Proposition 3 in Cesaroni and Giovannola (2015, p. 124), which states that ratio (12) equals unity for the output 

mix of an Oss. 

7 From now on, we simplify notation by omitting w and y as independent variables in x.   
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3.2 RAC function within the Range between Two Optimal Scale Sizes     

The former sub-section allows to address two important issues regarding the multiplicity of 

OSS points (RAC minima) and the behavior of RAC in the range comprised between two OSS 

points.  To this end, we present a useful lemma. 

Lemma 1: The OSS of a cost-efficient point Tjj ),( *
yx  is unique up to a positive multiplicative 

constant. 

Lemma 1 reveals that multiple solutions to the minimization of RAC can occur if and only if 

exact proportional replicas of an OSS ),( oo yx  are present in T. This lemma is useful in ascertaining 

the behavior of )( jtC y  as a function of t in the interval comprised between two OSS. In fact, if the 

cost-efficient point j has two OSS, o and o’ with 1, oj 1', oj  respectively, this amounts to 

examining the behavior of C in  tt, , where 
oj

t
,

1


  and 

',

1

oj

t


 .    

Theorem 1: In 
CT , for a cost-efficient output mix *)( RACtC j y   ttt , .  

In graphical terms we point out that Theorem 1 implies that for a convex technology the 

behavior of the VRS cost function depicted in Figure 1 cannot occur, because in the interval 

between two OSS (i.e., points A and B) it does not deviate from the straight line OB denoting the 

CRS cost function, i.e., *RAC . By contrast, Figure 1 may describe the shape of the VRS cost 

function in a nonconvex technology such as T. Note that, for given input prices, the RAC function 

is given in this figure as the ratio )(tyC / t , that is as the slope of the ray joining the origin and a 

point on )(tyC . 
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                             Figure 1. Nonconvex cost function with multiple RAC minima  

                  

 

3.3 RAC Function Outside the Range Including an Optimal Scale Size  

Theorem 1 establishes that in 
CT  the RAC function is stationary (i.e., 1)( ,

* ojjR  ) in the 

interval between two OSS. Therefore, given this result, we only need to determine the behavior 

outside the above-mentioned range, that is to say the case where the output mix jy  is 

expanding/contracting towards the level determined by an OSS ),( oo yx , j

oj

y
,

1


 with 1, oj . 

To this purpose, we can express any output level 












 j

oj

j yyy
,

' 1
,


 as 

)
1

()1(
,

'

j

oj

j yyy


  , where )1,0[  is a continuous control-parameter.8 The RAC of 

output level 
'

y  -generated by jy - can thus be expressed as  

                                                           
8 For the ease of exposition, we are assuming that 1

,


oj
 , but the same representation obviously holds for the opposite 

case 1
,


oj
 . 
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t

jj )(* xw
,                                                                                                                         (13) 

where 
j

t
y

y
'

  and )()( '*
yxw Cjj  . We can now point out that the problem under discussion may 

be solved by analyzing the derivative of expression (13) with respect to  . This leads to the 

following key result. 

Theorem 2: In 
CT , )( jRAC y  -where 0jy  is a cost-efficient but not scale-efficient output mix- 

is monotonically decreasing and convex in either an expansion or a reduction to the output level of 

an OSS.  

The algebraic proof employs a Shephard (1970) result on the cost function to determine the 

sign of the first and second derivative of (13) with respect to   at 0 . Recall that Shephard’s 

(1970) result can be used to justify an empirical property of the cost function in the outputs: the cost 

function is convex (nonconvex) in the outputs when the production technology is convex 

(nonconvex). As long as )(* jj xw  and t are positive -i.e., a minimum RAC exists9- the proof holds 

for any convex technology including the case of nonparametric (polyhedral) production 

technologies (see Ray 2004). In graphical terms, we point out that Theorem 2 implies that the 

behavior depicted in Figure 2, which is possible in a nonconvex T, cannot occur for 
CT : here, the 

curve-section to the right of point A is monotonically increasing and convex. 

                         

 

 

 

                                                           
9 See Chavas and Cox (1999, p. 307): footnote 18.  
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                                   Figure 2. Nonconvex cost function with a unique RAC minimum      

                                   

The cost function generated by a polyhedral technology corresponds to the case 0)0(''  . 

Figure 3 illustrates the algebraic sign of )0('  and )0(''  implied by the cost function of a convex 

technology to graphically illustrate Theorem 2. In Figure 3 (left), point A is a generic cost-scale 

inefficient point, while C denotes its optimal scale size. The dashed line is the linear approximation 

of the cost function: ojjj xwxw   *)1( . Clearly, at point A: 0)0('   and 0)0(''  . 

Differently from the smooth case, in Figure 3 (right) we have two kinds of cost-scale inefficient 

points, i.e., point A and point B. For point A, we note that 0)0('   and 0)0(''  , while for point 

B we have 0)0('   and 0)0(''  , because in this last case the linear approximation of the cost 

function coincides with the line segment BC. 
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Fig. 3 Cost function of a smooth technology (left) and a polyhedral technology (right) 

  

Observe that in Figure 3 (right), we only need to assume that the right derivatives )0('  and 

)0(''  exist. Conversely, in the case of a contraction to the output level of an optimal scale size (i.e., 

starting from a point located above C), we only need to assume that left derivatives exist. In other 

words, we are not imposing differentiability of (.)  and (.)'  in the proof of Theorem 2.  

We conclude this sub-section by remarking that Theorems 1 and 2 prove that in a convex 

production technology the RAC function is convex. In other words, RAC is ‘U-shaped’. To the best 

of our knowledge, this is a finding that is absent from the literature, as paradigmatically shown by 

Førsund and Hjalmarsson (2004) and Ray (2015) where a convex technology is assumed but no 

general conclusion on the form of the RAC function is supplied. Figure 4 illustrates this shape in 

the case of a differentiable C and multiple OSSs in   21 , tt .    
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                            Figure 4. U-shape of RAC with multiple minima 

                              

4. Scale Efficiency, Primal and Dual Scale Elasticities 

In this section the U-shape of RAC is used to derive some fundamental properties 

concerning the relations among cost scale efficiency, primal and dual scale elasticities. 

4.1 Cost Scale Efficiency and Dual Scale Elasticity 

The specific relationship between cost scale efficiency and dual scale elasticity in CT  is a 

result that is unavailable in the literature (cf., e.g.,  Färe et al. 1988, Färe and Primont 1995), as a 

consequence of the difficulties in the literature in determining  the RAC shape.  

The first step to get the needed result consists in the differentiation of RAC in expression 

(10) with respect to t evaluated at 1t  yielding: 

                    











1
Ŝ

1
)(

(.)

1

yC
dt

dRAC

t

,                                                                           (19) 
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where Ŝ  is the dual scale elasticity (5bis). At points where C is not differentiable, expression (19) 

takes two values determined by  Ŝ  and 
Ŝ , respectively the left and right limit at y of (5bis).  

As a second step, observe that the proof of Theorem 2 - part I - unambiguously determines 

the sign of (19) for cost scale inefficient points. Accordingly, we can formulate 

Proposition 2: When C is everywhere differentiable, at a cost-efficient point   CTyx ,*  we have: 

GDSE  and  11Ŝ

GCSE  and  11Ŝ

GISE  and  11Ŝ







SE

SE

SE

                                                                                 (20) 

where SE is the scale efficiency measure (12) and GISE, GCSE and GDSE stand for globally 

increasing, globally constant, and globally decreasing scale economies respectively. 

At points where C is not differentiable but its left and right derivatives exist, the convexity 

of the cost function in the outputs implies that Ŝ  is a non-increasing function10of t. As a 

consequence   ŜŜ , which combined with Proposition 2 readily explains the following result: 

Corollary 1  

GDSE  and  11ŜŜ

GCSE  and  1Ŝ1Ŝ

GISE  and  11ŜŜ













SE

SE

SE

                                                                       (20bis) 

Note that, with respect to Proposition 2, the GCSE case now includes three additional possibilities: 

a)   Ŝ1Ŝ , b) 1ŜŜ   , and c) 1ŜŜ    - i.e., discontinuity of C at a single OSS, 

                                                           
10 According to definition (5bis), the dual scale elasticity at a point corresponds to the cosine of the angle between the 

line tangent to the cost function at that point and the horizontal axis. From Figure 3, left and right, it can be easily seen 

that this scale elasticity is a decreasing function of t in the smooth case (left), and a non-increasing function of t in the 

polyhedral technology (right).     
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discontinuity of C at either the left or right end of the interval determined by multiple OSS points, 

respectively.  

 Proposition 2 and Corollary 1 conclude that in 
CT  both the scale-elasticity and the scale 

efficiency criterion provide the same indications for the SE regime. In other words, the result 

reached by Podinovski (2004) for local and global indicators of RTS for radial technical-efficient 

points on the production frontier is extended to the corresponding indicators of SE for efficient 

points along the cost function. However, note that while Podinovski’s conclusion -which is obtained 

under assumption (A.4)- can be derived for cost-efficient points by means of our Propositions 1 and 

2, the reverse is not true. In addition, our Corollary 1 extends the result to the non-differentiable 

case. Finally, the convexity of  C and the U-shape of RAC enable to reach some new significant 

properties (see Propositions 3 and 4 below) that cannot be obtained on the basis of the RAP 

function, which is only quasi-concave in 
CT  (see above, end of Section 2.2). 

  4.2 Primal and Dual Scale Elasticities 

Finally, we are in a position to generalize what we have called Result 2 in Panzar and Willig 

(1977). In this regard, it suffices to consider Proposition 1 and the convexity of C in a convex 

technology to reach the following result: 

Proposition 3: At a cost-efficient point CT),( *
yx  where differentiability of C does not hold, we 

have 

                                        








ŜS

ŜS
                                                                          (21) 

Proposition 3 reveals that ŜS   (i.e., proposition 5 in Panzar and Willig 1977, p. 491) only 

holds for a convex technology and for the right limits of primal and dual scale elasticities, while the 

sign of the inequality must be reversed for their left limits.  
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5. Correspondence between Returns to Scale and Scale Economies Regimes  

The identification of scale economies regimes based on scale elasticity (i.e., local) and scale 

efficiency (i.e., global) measures, discussed in Section 4.1, permits to avoid reference to global 

measures and to focus directly on the relationship between primal and dual scale elasticities as 

indicators of returns to scale and scale economies regimes, respectively.  

In a convex smooth technology, Proposition 1 confirms the well-known result about the 

coincidence of RTS and SE measures (see, e.g., Tone and Sahoo 2003). However, our Proposition 3 

suggests that this simple result may not hold at points where the cost function is not differentiable. 

In this case, which indeed is expected to be the rule rather than the exception, a specific relationship 

must be worked out.           

To this purpose, Corollary 1 and Proposition 3 can be employed to yield the result: 

Proposition 4: At a cost-efficient point CT),( *
yx  where differentiability of C does not hold, we 

have  

                       

CRSor  DRSDSE

CRSCSE

CRSor  IRSISE







                                                                          (22) 

where IRS, CRS and DRS stand for increasing, constant and decreasing returns to scale, 

respectively. 

We remark that Proposition 4 can also be read from the right to the left side: in fact, it can be 

immediately checked that, at a cost-efficient point CT),( *
yx  where differentiability of C does not 

hold, we have 

            

DSEDRS

DSEor  CSEor  ISECRS

ISEIRS







                                                                         (22bis) 
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Relationships (22) and (22bis) are important since, to the best of our knowledge, such kind 

of correspondence for general convex technologies is not found in the literature. Therefore, we 

remark that non-differentiability of the cost function can bring about a significant divergence 

between RTS and SE regimes even in a convex setting, where local and global indicators are 

coincident. This result complements at the local level some recent findings proving the differences 

at the global level -i.e., when using measures based on scale efficiency- between RTS and SE 

concepts (strict scale economies and scale economies in Baumol’s 1977 jargon), as those of 

Cesaroni and Giovannola (2015) and Zelenyuk (2014). 

6. Applications of the Main Results 

6.1 Global and Local Methods for Scale Economies in Nonparametric Convex Production 

Technologies  

The method of Färe and Grosskopf (1985: p. 600) computes cost scale efficiency defined as 

the ratio between CRS and VRS cost efficiency scores of points lying on the frontier of a convex 

nonparametric technology11 (see (12) above). If the point under examination is cost scale efficient, 

then it displays CRS. If the examined point is not cost scale efficient, then a third non-increasing 

returns to scale (NIRS) technology is employed to establish qualitative information on the nature of 

cost scale inefficiency: i.e., on the direction to the VRS optimal scale size whose projection 

determines the CRS cost efficiency score. To be precise, when NIRS and VRS cost efficiencies 

coincide, then scale inefficiency is due to DRS: i.e., the optimal scale size is lower than the current 

one. Otherwise, when NIRS and VRS cost efficiencies do not coincide, then scale inefficiency is 

due to IRS: i.e., the optimal scale size is greater than the current one. This method ignores the 

possibility of multiple CRS solutions. Following Podinovski (2004), we denote this classification as 

global because it is based on the absolute-minimum cost (i.e., the CRS cost) and it is determined by 

                                                           
11 As far as the assumption of boundedness of the feasible set is concerned, we point out that this assumption is not 

violated as long as the observations (observed input-output combinations) are bounded. See (A.3).  
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a scale size which may be rather distant from the current scale examined. Note that this method 

does not provide quantitative information relating to the degree of scale economies, as commonly 

measured at the local level by the scale elasticity Ŝ . 

This scale elasticity approach is developed by Sueyoshi (1999) to ascertain the scale 

economies regime of frontier points in the convex nonparametric technology. In addition to a VRS 

cost-efficiency linear programming problem, a complex problem, which is the dual of the former 

(see Sueyoshi 1999, pp. 1599-1601), is set to compute the cost-scale elasticity Ŝ  at the projection of 

an observation onto the efficient frontier. In analogy with the returns to scale analysis of Banker et 

al. (1984) and Banker and Thrall (1992), this elasticity can be interpreted as the intercept of the 

supporting hyperplane in the cost-outputs space. The cost-efficient point under examination exhibits 

increasing, decreasing and constant SE if 1ŜŜ   , 1ŜŜ   ,   Ŝ1Ŝ  hold, respectively 

(see Sueyoshi 1999, p. 1603). In particular, we may remark that this method does not discuss the 

relationship between a solution to the CRS cost-efficiency problem and a VRS solution featuring 

local constant SE - i.e.,   Ŝ1Ŝ -, while also multiple solutions to the CRS problem are not 

taken into account (cfr., a contrario, Banker 1984, Banker and Thrall 1992 in a RTS setting).12   

Complementing the RAP analysis of Podinovski (2004), Cesaroni et al. (2017b) show that in 

a nonconvex technology the multiplicity of CRS solutions and the non-monotonicity of the RAC 

function may lead to both an erroneous global classification and a non-coincidence of global and 

local scale economies classifications. These problems are illustrated in Figures 1 and 2, where for 

the ease of exposition a smooth technology is assumed. 

                                                           
12 Note that Sueyoshi’s (1999) “multiple solutions” are the multiple values of the scale elasticity at a corner point 

(vertex) of the frontier, and not the multiple CRS solutions to the scale-efficiency problem. The relationship between 

this kind of multiplicity and the multiplicity of solutions in a reference set is discussed in Sueyoshi and Sekitani (2007), 

but only for production-based returns to scale. 
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Figure 1 describes the hypothetical case of multiple CRS solutions and nonconvex behavior 

of RAC. The Färe and Grosskopf (1985) criterion classifies point C as global increasing SE, while 

it is in fact characterized by global sub-constant SE.13  

Moreover, we note that also the Sueyoshi (1999) local criterion yields a misleading result: 

since 1Ŝ  , point C is denoted as CSE instead of the global sub-constant SE characterization. In 

other words, the local indicator does not detect the direction to an OSS.  

This kind of divergence between local and global SE indicators can also take the form 

illustrated in Figure 2. Here, each point along the curve-section BC operates under local increasing 

scale economies ( 1Ŝ  ) while these points are actually in a DSE regime from the global point of 

view -given that point A is their optimal scale size. 

For these reasons, it is important to integrate CRS multiple-solutions in a global 

classification method and to determine the form of the RAC curve to check the correspondence 

between local and global indicators in a convex technology. Our study has just shown that even in 

the presence of multiple CRS solutions and a non-differentiable cost function, which may occur in a 

convex technology, the U-shape of RAC prevents those incorrect classifications, so that local and 

global scale economies indicators coincide. In other words, we have proven that the Färe and 

Grosskopf (1985) and the Sueyoshi (1999) methods can also be employed as local and global 

methods, respectively, for the estimation of SE in convex technologies and even in the presence of 

multiple CRS solutions.  

With respect to the Färe and Grosskopf (1985) method, we point out that our Proposition 2 

and its proof show that there is no necessity to compute the cost efficiency score relative to the 

NIRS technology, because to achieve the desired global SE classification the computation of oj ,  in 

the VRS technology suffices.      

                                                           
13 See the numerical example in Cesaroni et al. (2017b, p. 1444).  
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6.2 Correspondence of Returns to Scale and Scale Economies Regimes in Nonparametric Convex 

Production Technologies 

To the best of our knowledge, the only analysis dealing with the relation between RTS and 

SE in multi-output production when the frontier is not differentiable is offered in Sueyoshi (1999, 

section 4.2.2) for polyhedral convex technologies. In this regard, when compared to our study, two 

remarks are in order.  

First, Sueyoshi’s analysis does not hold for convex technologies other than polyhedral ones, 

while its conclusions are derived exclusively from linear programming programs and not from the 

properties of the cost function C. Second, perhaps as a consequence of this last shortcoming, it can 

be shown that his specific conclusions are incorrect. 

In fact, besides failing to distinguish between technical-efficient and cost-efficient points on 

the frontier of the technology -while only for the latter exact conclusions on the relation between 

primal and dual scale elasticities can be reached (see, e.g., Panzar and Willig 1977, Färe and 

Primont 1995)- Sueyoshi (1999, p. 1604) presents the following scheme: 

(a) if one of the two scale elasticities indicates IRS14, then the other may take either IRS or 

CRS; 

(b) if one of the two is CRS, then the other may take any type of RTS; 

(c) if one of the two is DRS, then the other may take either DRS or CRS.           

Our relationship (21) and (21bis) can be used to check the validity of this scheme for a cost-

efficient point. This yields the following remarks: 

(a) is valid for the dual scale elasticity, but not for the primal scale elasticity; 

                                                           
14 Sueyoshi (1999) uses the same notation for RTS and SE regimes.   
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(b) is not valid for the dual scale elasticity, while it is valid for the primal scale elasticity; 

(c) is valid for the dual scale elasticity, but not for the primal scale elasticity. 

Therefore, we can conclude that the Sueyoshi (1999) correspondence-scheme between RTS and SE 

is wrong, as illustrated in the empirical section below.   

6.3 RAC and the Determination of the Optimal Number of Firms in Baumol and Fisher (1978) 

In their discussion of the determination of the cost-minimizing number of firms in a multi-

product industry, Baumol and Fisher (1978) make, among others, the assumption of a U-shaped 

RAC with a unique minimum (see, ibid., assumption 2, pp. 441-442). Ten Raa (1983) shows that 

this only assumption -enlarged to take account of multiple RAC minima- is sufficient for the 

existence of the desired upper and lower bounds on the optimal number of firms (see, ibid., 

Revision 1, fn. 2 and Theorem 1, pp. 214-215). Therefore, our analysis, which allows for multiple 

RAC minima, can be applied to show that in any convex production technology, independently 

from the differentiability of C, the conditions for a determinate cost-minimizing number of firms 

are indeed satisfied.  

7. Empirical Illustration 

The theoretical results achieved in the previous sections are illustrated in detail using the 

data set of Cesaroni et al. (2017b) for the case of a nonparametric convex technology. This data set is 

published as supplemental material of the article: it is freely accessible. It concerns a three inputs-two 

outputs production technology associated with the Italian local-public-transit sector, where each 

firm faces a specific input price vector.  

Corollary 1 of Proposition 2 is shown in Table 1 where our RAC method for the estimation 

of global SE is coupled with that of Sueyoshi (1999) for cost scale elasticities 
Ŝ  and 

Ŝ , both 

methods being applied to cost-efficient points -i.e., to the projections of the original observations on 
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to the cost frontier. For the sake of completeness, OE denotes the VRS cost efficiency of the 

original observation. In particular, we spell out the details of all elements reported in Table 1. OE is 

obtained by substituting the numerator of expression (12) with the optimal cost in the VRS technology. The 

Rj ratio is given by expression (12), while the gamma ratio 
,j o  is defined by expression (11). These 

variables have been computed by means of the R-package Benchmarking. Cost scale elaticities 
Ŝ  and 

Ŝ  

are computed by means of models (34) and (30) in Sueyoshi (1999). These computations have been 

performed in Maple. 

Table 1. Global and local scale economies (RAC and Sueyoshi methods)  

  Global scale economies   Local scale economies 

DMU  OE 
*

jR  ,j o  GSE   Ŝ   Ŝ  LSE 

1 0.636 0.998 0.976 I# 1.141 1.095 I 

2 1.000 0.931 4.546 D# 0.981 0.000 D 

3 0.564 0.992 1.157 D 0.823 0.823 D 

4 0.579 0.929 0.553 I 1.286 1.190 I 

5 0.718 0.794 4.616 D 0.225 0.225 D 

6 0.713 0.975 0.799 I 1.201 1.143 I 

7 0.629 0.994 0.940 I 1.163 1.111 I 

8 0.627 0.975 1.535 D 0.955 0.848 D 

9 1.000 1.000 1.000 C# 1.186 0.701 C 

10 0.605 0.858 0.366 I 1.486 1.288 I 

11 0.795 0.946 2.976 D 0.973 0.910 D 

12 0.664 0.861 0.347 I 1.508 1.269 I 

13 0.467 0.967 1.733 D 0.957 0.854 D 

14 0.635 0.915 0.480 I 1.322 1.195 I 

15 0.533 0.945 3.994 D 0.982 0.934 D 

16 0.660 0.991 0.915 I 1.176 1.122 I 

17 0.971 0.915 0.523 I 1.329 1.218 I 

18 1.000 0.809 0.304 I +inf 1.379 I 

19 0.738 0.997 0.971 I 1.146 1.098 I 

20 0.699 0.981 0.820 I 1.172 1.118 I 

21 0.737 0.999 1.018 D 0.932 0.932 D 

22 1.000 0.512 16.000 D 0.906 0.530 D 

23 0.928 0.934 4.230 D 0.980 0.931 D 

24 0.380 0.940 2.868 D 0.969 0.904 D 

25 0.664 0.868 0.393 I 1.428 1.278 I 

26 0.530 0.989 0.868 I 1.146 1.094 I 

27 0.429 0.959 2.251 D 0.968 0.892 D 

28 0.756 0.972 1.524 D 0.949 0.830 D 

29 0.878 0.874 4.568 D 0.600 0.200 D 

30 0.562 0.949 0.614 I 1.232 1.151 I 
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31 0.717 0.991 1.150 D 0.816 0.815 D 

32 1.000 1.000 1.000 C 1.149 0.781 C 

33 0.545 0.936 0.549 I 1.257 1.164 I 

34 1.000 0.555 17.564 D 0.922 0.000 D 

35 0.795 0.956 1.866 D 0.952 0.829 D 

36 0.577 0.925 0.509 I 1.267 1.181 I 

37 0.736 0.989 1.165 D 0.936 0.936 D 

38 0.649 0.982 0.820 I 1.162 1.109 I 

39 0.875 0.601 8.174 D 0.434 0.434 D 

40 0.735 0.936 3.101 D 0.971 0.910 D 

41 0.641 0.979 1.617 D 0.967 0.862 D 

42 0.543 0.953 4.288 D 0.942 0.942 D 

43 0.818 0.952 2.452 D 0.968 0.892 D 

# I = Increasing scale economies; C = Constant scale economies; D = Decreasing scale economies 

 

We remark that computations empirically confirm the coincidence of global and local scale 

economies indicator (GSE and LSE) in the case of a convex production technology at points where 

C is not differentiable, as established by Corollary 1.   

Table 2 employs the results obtained from the application of Sueyoshi (1999) computation 

method regarding primal and dual scale elasticities, ( S ,
S ) and ( Ŝ ,

Ŝ ) respectively, to show the 

empirical effectiveness of Propositions 3 and 4 in establishing the correspondence between RTS 

and SE classifications. In particular, the primal scale elasticities have been obtained from models (33) and 

(14) in Sueyoshi (1999), while the dual scale elasticity is computed as indicated when discussing Table 1. 

Computations have been performed in Maple. 

                        Table 2. Primal and dual scale elasticities, RTS and SE 

  Primal scale el. and RTS Dual scale el. and SE 

DMU  S  S  RTS   Ŝ   Ŝ  SE 

1 1.270 0.993 C 1.141 1.095 I 

2 1.005 0.000 C 0.981 0.000 D 

3 1.017 0.732 C 0.823 0.823 D 

4 1.539 0.986 C 1.286 1.190 I 

5 0.944 0.102 D 0.225 0.225 D 

6 1.341 0.991 C 1.201 1.143 I 

7 1.282 0.993 C 1.163 1.111 I 

8 1.013 0.783 C 0.955 0.848 D 
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9 1.300 0.644 C 1.186 0.701 C 

10 1.965 0.976 C 1.486 1.288 I 

11 1.007 0.874 C 0.973 0.910 D 

12 2.049 0.974 C 1.508 1.269 I 

13 1.012 0.802 C 0.957 0.854 D 

14 1.652 0.984 C 1.322 1.195 I 

15 1.005 0.903 C 0.982 0.934 D 

16 1.291 0.993 C 1.176 1.122 I 

17 1.580 0.985 C 1.329 1.218 I 

18 +inf 0.968 C +inf 1.379 I 

19 1.271 0.993 C 1.146 1.098 I 

20 1.331 0.992 C 1.172 1.118 I 

21 1.019 0.890 C 0.932 0.932 D 

22 0.985 0.336 D 0.906 0.530 D 

23 1.005 0.908 C 0.980 0.931 D 

24 1.007 0.870 C 0.969 0.904 D 

25 1.868 0.979 C 1.428 1.278 I 

26 1.309 0.992 C 1.146 1.094 I 

27 1.009 0.840 C 0.968 0.892 D 

28 1.013 0.782 C 0.949 0.830 D 

29 0.936 0.082 D 0.600 0.200 D 

30 1.471 0.988 C 1.232 1.151 I 

31 1.017 0.731 C 0.816 0.815 D 

32 1.262 0.703 C 1.149 0.781 C 

33 1.545 0.986 C 1.257 1.164 I 

34 1.006 0.000 C 0.922 0.000 D 

35 1.012 0.800 C 0.952 0.829 D 

36 1.602 0.985 C 1.267 1.181 I 

37 1.017 0.733 C 0.936 0.936 D 

38 1.331 0.992 C 1.162 1.109 I 

39 0.971 0.233 D 0.434 0.434 D 

40 1.007 0.878 C 0.971 0.910 D 

41 1.013 0.791 C 0.967 0.862 D 

42 1.005 0.909 C 0.942 0.942 D 

43 1.009 0.851 C 0.968 0.892 D 

 

Table 2 makes evident that inequalities (21) of Proposition 3 empirically hold, but also that 

the correspondences (22) and (22bis) (associated to Proposition 4) are satisfied (see columns RTS 

and SE). We point out that the empirical validity of Proposition 4 confirms that Sueyoshi’s (1999) 

interpretation of the relationship between RTS and SE classification is not appropriate. In fact, as 
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far as our remark (b) and (c) in Section 6.2 are concerned15, note that each of the two constant SE 

observations (i.e., 9 and 32) features also constant RTS, while each of the decreasing RTS 

observations (i.e., 5, 22, 29, 39) is in a decreasing regime -not in a constant- also on the SE side.     

Finally, Figure 5 illustrates the different shape that VRS and CRS cost and ray-average-cost 

functions assume in convex (C) and nonconvex (NC) nonparametric technologies (see Ray 2004, p. 

57 and p. 137 resp.). This is being done with reference to the output mix of observation 21: Figure 5 

(left) plots )(tyC  against t  (just like in Figures 1 and 2), while Figure 3 (right) plots RAC against 

t . Starting from positive values of t near to 0 and expanding the output mix towards 1, the convex 

VRS (C-VRS) technology clearly exhibits a U-shaped RAC (i.e., the ratio )(tyC / t  is a convex 

function). By contrast, in addition to the discontinuities generated by the horizontal segments of its 

cost function, the non-convex VRS (NC-VRS) technology presents a RAC which is not U-shaped, 

because it is simultaneously increasing/decreasing both for t<1 and t>1 (i.e., the ratio )(tyC / t  is 

nonconvex). Thus, not only the cost function behaves differently depending on the convexity or 

nonconvexity of the underlying technology, but also the RAC function shares this same property: 

RAC is convex (nonconvex) in the outputs when the production technology is convex (nonconvex).  

                                                           
15 The absence of DMUs with increasing returns to scale does not allow to show the validity of our remark (a) in section 

6.2.   
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Fig. 5 Cost function C(ty) (left) and RAC (right) for DMU 21 

  

 

 

8. Conclusions 

This contribution advances the literature on scale economies in convex production 

technologies in several ways. First, it determines the U-shape of the RAC function and extends the 

coincidence of local and global returns to scale from production to cost analysis in the case of 

multiple minima and with a non-differentiable cost function. Second, it introduces a global method 

for the determination of scale economies which simplifies the Färe and Grosskopf (1985) procedure 

and supplies quantitative information, by means of the oj ,  coefficient, that is otherwise not 

available. Third, besides showing that a required monotonicity condition is satisfied on the basis of 

the former results, it establishes a correct correspondence between returns to scale and scale 

economies classification for points of the cost function where differentiability does not hold. An 

empirical illustration documents these results. 

 



31 

References 

Banker, R.D. (1984) Estimating most productive scale size using Data Envelopment Analysis, 

European Journal of Operational Research 17, 35-44. 

Banker, R.D., Chang, H., Cooper, W.W. (1996) Equivalence and implementation of alternative 

methods for determining returns to scale in Data Envelopment Analysis, European Journal of 

Operational Research 89, 473–481. 

Banker, R.D., Charnes A., Cooper, W.W. (1984) Models for the estimation of technical and scale 

inefficiencies in Data Envelopment Analysis, Management Science 30, 1078-1092. 

Banker, R.D., Thrall, R.M. (1992) Estimation of returns to scale using Data Envelopment Analysis, 

European Journal of Operational Research 62, 74-84. 

Baumol W.J. (1977) On the proper cost tests for natural monopoly in a multiproduct industry, 

American Economic Review 67, 809-822. 

Baumol W.J., Fisher D. (1978) Cost-minimizing number of firms and determination of industry 

structure, Quarterly Journal of Economics 92, 439-468. 

Baumol, W.J., Panzar, J.C., Willig, R.D. (1982) Contestable markets and the theory of industry 

structure. New York: Harcourt Brace Jovanovich. 

Chavas, J.P., Cox, T.L. (1999) A generalized distance function and the analysis of production 

efficiency, Southern Economic Journal 66, 294-318. 

Cesaroni, G., Giovannola, D. (2015) Average-cost efficiency and optimal scale sizes in non-

parametric analysis, European Journal of Operational Research 242, 121-133. 

Cesaroni, G., Kerstens, K., Van De Woestyne, I. (2017a) Global and local scale characteristics in 

convex and nonconvex nonparametric technologies: A first empirical exploration, European 

Journal of Operational Research 259, 576-586. 

Cesaroni, G., Kerstens, K., Van De Woestyne, I. (2017b) Estimating scale economies in non-

convex production models, Journal of the Operational Research Society 68, 1442-1451.  

Färe, R., Grosskopf, S., Lovell, C.A.K. (1983) The structure of technical efficiency, Scandinavian 

Journal of Economics 85, 181-190. 



32 

Färe, R., Grosskopf, S., Lovell, C.A.K. (1988) Scale elasticity and scale efficiency, Journal of 

Institutional and Theoretical Economics 144, 721-729. 

Färe, R., Grosskopf, S. (1985) A nonparametric cost approach to scale efficiency, Scandinavian 

Journal of Economics 87, 594-604.  

Førsund, F., Hjalmarsson, L. (2004) Are all scales optimal in DEA? Theory and empirical evidence, 

Journal of Productivity Analysis 21, 25-48. 

Førsund, F., Kittelsen S., Krivonozhko V. (2009) Farrell revisited-Visualizing properties of DEA 

production frontiers, Journal of the Operational Research Society 60, 1535-1545. 

Frisch, R. (1965) Theory of production, Dordrecht: Reidel Publishing Company. 

Koopmans, T.C. (1957) Three essays on the nature of economic science, New York: McGraw-Hill. 

Menger, K. (1954) The logic of the laws of return: A study in meta-economics, in Morgenstern O., 

Ed., Economic activity analysis Part III, New York: Wiley. 

Panzar, W., Willig, R.D. (1977) Economies of scale in multi-output production, Quarterly Journal 

of Economics 91, 481-493. 

Podinovski, V. (2004) Efficiency and global scale characteristics on the “No free lunch” assumption 

only, Journal of Productivity Analysis 22, 227-257. 

Ray, S.C. (2004) Data envelopment analysis: Theory and techniques for economics and operations 

research, Cambridge: Cambridge University Press. 

Ray, S. (2015) Nonparametric measures of scale economies and capacity utilization: An application 

to U.S. manufacturing, European Journal of Operational Research 245, 602-611. 

Shephard, R.W. (1970) Theory of cost and production functions. Princeton: Princeton University 

Press. 

Sueyoshi, T. (1999) DEA duality on returns to scale in production and cost analyses: An occurrence 

of multiple solutions and differences between production-based and cost-based RTS estimates, 

Management Science 45, 1593-1608. 

Sueyoshi, T., Sekitani K. (2007) The measurement of returns to scale under a simultaneous 

occurrence of multiple solutions in a reference set and a supporting hyperplane, European Journal 

of Operational Research 181, 549-570. 



33 

Ten Raa, T. (1983) On the cost-minimizing number of firms, Economics Letters 12, 213-218. 

Tone, K., Sahoo, B.K. (2003) Scale indivisibilities and production function in Data Envelopment 

Analysis, International Journal of Production Economics 84, 165-192. 

Zelenyuk, V. (2014) Scale efficiency and homotheticity: equivalence of primal and dual measures, 

Journal of Productivity Analysis 42, 15-24.   

 



34 

Appendices (Online supplement) 

Appendix 1: Result 1) of Panzar and Willig (1977)  

As pointed out in Section 2.1, the duality result established by Corollary 2 in Panzar and 

Willig (1997, p. 491) is not correct, because of a specific inconsistency that affects the proof of 

Theorem 1 (see, ibid., pp. 489-490).  

Albeit authors state that under their axioms “efficient production exists” (see, ibid., p.487) 

they do not employ the notion of efficient frontier in the proof in question. This notion, represented 

by equality (6), when considered in the proof yields 0)1(' H  and r ; as a consequence,  is 

not an upper bound on R  while no contradiction arises from S , therefore Corollary 1 is wrong 

because it holds with the inequality sign, i.e. 













j j
j

i i
i

y
y

x
x

S

*

. Now, note that this inequality 

sign combined with Theorem 2 implies SS ˆ , that is Corollary 2 is wrong (see, ibid., pp. 490-491).   

 

Appendix 2: Proofs 

Proof of Proposition 1: At a cost-efficient point T),(*
ywx , ŜS   is proven as equality (5) in 

Panzar and Willig (1977, pp. 488-489). Furthermore, given expression 0),( )(*  yx
 r  and 

assumption (A.5), 0
),( )(*






 

d

d r
yx

 yields  

0
)(
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),( )(*
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

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


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 
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






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

yx
. Finally, evaluating 

this expression at 1  gives Sr . Q.E.D.   
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Proof of Lemma 1: Suppose that point j has two different optimal scale sizes, o and o’. Compare 

first o’ with o. From a minimum RAC property of an optimal scale size (see Proposition 3 in 

Cesaroni and Giovannola 2015) we have 1,'

'

 oo

oj

oj


xw

xw
, where










ro

ro

r
oo

y

y '

,' max . In addition, the 

minimization of point j’s RAC implies ojojojoj ,','   xwxw , from which we have (a1) 

oj

oj

oj

oj

,

',

' 




xw

xw
. We can then express the former inequality as (a2) 1max '

,

',











ro

ro

r
oj

oj

y

y




. Moreover, 

the property of being a most productive scale size implies that the RAP of o’ with respect to o is 

equal or greater than one, therefore we have (a3) 1

max

1

'',

,












ro

ro

r

oj

oj

y
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
 (see Proposition 4 and 

expression (10) in Cesaroni and Giovannola 2015). Now, note that (a3) is the reciprocal of (a2): 

both inequalities can hold if and only if the equality sign applies. Selecting inequality (a2), we must 

then have (a4) 1max '

,

',




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




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. The same reasoning applies in the comparison between o and 

o’, so that (a5) 1max
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 follows as well. Employing (a4), (a5) can be rewritten as 
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, (a5) can be finally read as 
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y '' minmax , which amounts to establishing that output vectors 
'oy  and oy  are equal up 

to a multiplicative constant, oo yy ' . Equality (a4) can then be used to show that 
',

,

oj

oj




  , 

while 
oo xx '
 because of the identity of input prices in (a1). Q.E.D. 
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Proof of Theorem 1: Suppose not, then 1* jR . Lemma 1 has proven that each optimal scale size is 

a proportional replica of the other. This implies that in 
CT , by taking a suitable linear convex 

combination of o and o’, an OSS o  can always be obtained such that 1, oj . Consequently 

)(*

oCRAC y , while jo yy   and the cost-efficiency of  j imply )()( jo CC yy  . Therefore,  

)()(*

jo CCRAC yy   and 1* jR , which contradicts the assumption 1* jR . Q.E.D. 

 

Proof of Theorem 2: Shephard (1970) proves that the cost function is convex in the outputs if the 

production technology is convex (see, ibid., the definition of graph, pp. 180-181, and proposition 72 

- property Q.11, p. 227). This allows to get equality )()1()( **   ojjjjj xwxwxw , 

with 10   and 0)(  . Thus, we can express the RAC (13) as 
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 xwxwxw
            (13bis) 

The proof is made up of two parts. 

Part 1: Monotonicity 

By differentiating (13bis) with respect to   and rearranging, we obtain the final expression 

of the derivative as  
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                        (14bis) 

where )('   denotes the derivative of   with respect to  . 

Being 0)0(  , (14bis) evaluated at 0  reduces to  
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)0()
1
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oj xwxw                                                                         (15bis) 

This expression is negative because of: a) 0)
1

( *

,

 jj

oj

oj xwxw


, where this last 

inequality comes from the assumption of ),( oo yx  being the optimal scale size of ),( jj yx : 

*

, jjojoj xwxw  , and from the positivity of oj , ; and b) 0)0('  - resulting from the convexity 

of the cost function in the outputs.   

The derivative of the RAC function is negative at 0  - i.e. at the initially selected value 

jy  - but this value can be arbitrarily close to or distant from  j

oj

y
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
 because oj ,  can take any 

positive value, therefore negativity holds for each 
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. Note moreover that this 

conclusion is independent from 1, oj : it identically holds for 1, oj , i.e., for each 













 jj

oj

yyy ,
1

,

'


. 

Part 2: Convexity 

The second derivative of the RAC with respect to   can be obtained from the 

differentiation of (14). After some manipulations, we get its final expression as  
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where )(''   indicates the second derivative with respect to   and num is the numerator of 

(14bis). Now, at 0 , (16bis) reduces to  

)1
1

()0(2)0(
,

'' 
oj

num


        (17bis) 
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where num(0) is expression (15bis), which has a negative sign. Moreover, note that convexity of the 

cost function in the outputs implies 0)0(''   and 0)0(''   for 1, oj  and 1, oj , respectively. 

Therefore, (17bis) is positive for 1, oj , and negative for 1, oj . This implies that the 

RAC function is convex in both an expansion and a contraction to an optimal scale size. Q.E.D.   

 

Proof of Proposition 2: Observe that 1Ŝ   and 1Ŝ    respectively yield a negative and positive 

value of (19); given Theorems 1 and 2, the negative value implies 1SE  and GISE - i.e. 1, oj  -, 

while the positive implies 1SE  and GDSE - i.e. 1, oj . Moreover, the reverse of these two 

implications is immediately ensured by Theorem 2. As for 1Ŝ  , note that it implies a minimum 

RAC, but Theorem 1 shows that this is equivalent to 1SE  and GCSE - i.e. 1, oj , while the 

reverse implication follows from the definition of an optimal scale size and the differentiability 

of C. Q.E.D. 

 

Proof of Proposition 3: Suppose that A.4 holds for 0),( )(*  yx
 r  in a small symmetrical 

neighborhood of 1 , but not at 1 . In this neighbourhood, the convexity of C makes Ŝ  to be a 

non-increasing function of t while Proposition 1 establishes that Ŝr , these imply that also r  is a 

non-increasing function of t. Therefore, we have  

 1for  ),(such that  1 rS   Tinf r
yx    

   1for  ),(such that  1 rS Tsup r
yx  

 1for  ),(),(such that  1 rŜ /1   wywy CCinf r , 

   1for  ),(),(such that  1 rŜ /1
wywy CCsup r .  



39 

Now, if we denote by R  and R̂  the set of values of r  such that, respectively, the second and the 

fourth equality hold, it easy to check that RR ˆ  (see Panzar and Willig 1977, p. 491), so that  

  ŜS . Note that RR ˆ  also holds when these sets are being referred to the first and third 

equality, respectively, therefore   ŜS . Q.E.D.     

 

Proof of Proposition 4: When (A.4) does not hold, the same relations between values of left and 

right scale-elasticity shown in (20bis) also apply to S  and 
S  in the definition of IRS, CRS and 

DRS respectively (see, e.g., definition 8 in Banker and Thrall 1992, p 79). Then, the implications in 

(22) easily follow from the three cases of Ŝ  and 
Ŝ in (20bis) combined with inequalities (21). 

Q.E.D. 

 




