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Highlights: 

1. Tradeoff of performance is analyzed using the by-production model and its extensions; 

2. The weights associated with efficiency scores have an impact on productivity growth;  

3. The scenario analysis simulating policy preferences is illustrated using manufacturing data; 

4. Widespread technological progress drove productivity growth in Chinese manufacturing. 
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Analyzing the Tradeoff between the Economic and Environmental 

Performance: the Case of Chinese Manufacturing Sector 

 

1. Introduction 

Combining the measurement of economic and environmental performance is important in 

order to assess the negative externalities imposed by the economic growth on the environment. 

Evaluating the tradeoff between economic revenue and environmental cost has attracted plenty of 

attention from scholars and policy makers alike. The relationship between economic growth and 

its impact on the natural environment has been hypothesized using the environmental Kuznets 

curve (Grossman and Krueger 1991), which posits that growth imposes costs on the environment 

at its initial phases before reaching a certain threshold, beyond which any further improvements in 

living standards can be achieved at progressively lower cost to the environment. Although 

empirical studies of the environmental Kuznets curve have produced mixed results, nearly all 

underline the existence of a positive relationship between economic performance and 

environmental impact (e.g. Dasgupta et al. 2002), prompting some scholars to warn about severe 

consequences for the ecosystems if the costs imposed by growth on the environment continue to 

be ignored (Antal 2014). 

The so-called by-production approach, introduced by Murty and Russell (2002) and Murty 

et al. (2012), represents a significant step towards the development of an improved framework for 

modeling a production technology that considers the environmental impact during the 

measurement of economic performance. The by-production approach is a multi-equation 

framework based on sub-technologies, whose intersection can be used to specify a pollution-

generating technology. However, the original by-production model does not address the potential 

tradeoff between the economic and environmental performance, since it does not impose the 

necessary association between the independent sub-technologies. Although this relationship has 

been addressed in the subsequent studies relying on the by-production approach, the tradeoff 

framework remains ambiguous with respect to the weights to be assigned to the economic and 

environmental sub-objectives. This paper proposes a novel approach to estimate the green 

productivity growth in the Chinese manufacturing sector based on the scenario analysis that 

simulates alternative policy preferences. Our model allows us to measure the tradeoff between the 
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economic expansion and pollution reduction, offering the decision makers a clear interpretation of 

this tradeoff. 

China has been growing rapidly over the last several decades, becoming the world’s largest 

carbon emitter in 2006. Its industrial sector contributes a significant share of the world’s energy 

consumption, attracting plenty of attention from policy-makers and scholars (National Bureau of 

Statistics of China, 2008-2018). Energy consumption and environmental efficiency of the Chinese 

industrial sector have been analyzed in a relatively large number of existing studies. For example, 

Liu et al. (2012) measured the energy utilization of China’s industrial sectors using the 

environmental input-output analysis and report that the total indirect energy consumption greatly 

exceeds that of direct energy consumption. Wu and Huo (2014) estimate the energy efficiency in 

the manufacturing and transportation sectors and rely on the Logarithmic Mean Divisia Index 

decomposition method to demonstrate that industrial furnace technologies are important for energy 

saving in China. Watanabe and Tanaka (2007) used the directional output distance function to 

estimate the efficiency of the Chinese industrial sector under two alternative output definitions. 

They report that the model assuming only the socially desirable outputs tends to overestimate the 

productive efficiency compared to the specification incorporating both the desirable and 

unintended, or socially undesirable, outputs. 

Zhang (2009) use Data Envelopment Analysis (DEA) and the Shephard (1970) output 

distance function to estimate the environmental and technical efficiency of the manufacturing 

sector using data from China's provinces. Among other results, they demonstrate that the air 

pollution can be reduced by 60% when the desirable outputs are kept constant. Zhang et al. (2018) 

use a directional slacks-based model to estimate the green efficiency of China’s industry sectors 

and supply-chains. Their results suggest that sectors representing the light industry had higher 

sectoral green efficiency and lower supply-chain green efficiency compared to that of heavy 

industrial sectors in 2012. Wu et al. (2016) use province-level data spanning 2005–2010 to assess 

the energy and environmental efficiency of the Chinese manufacturing sector. The authors 

demonstrate that the sector’s energy and environmental efficiency was poor especially in the 

central and eastern parts of the country, and suggest that most provinces need to reduce their carbon 

dioxide emissions and energy intensity. 

In their seminal paper, Ayres and Kneese (1969) proposed the materials balance principle 

for all transforming processes: the total weight of all material output of the production process 
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must equal the weight of all material inputs. This concept was ignored by the economists until the 

end of last century (Lauwers 2009), when some environmental economists began considering it in 

their theoretical and empirical models. For example, Bergh and Nijkamp (1994) developed a 

macroeconomic model reflecting the relationship between the economy and natural environment. 

They considered several sectors, including the natural resource extraction, production, and 

treatment of pollutants, establishing the relationship between the economic processes and the 

materials balance principle. Ruth (1995) adopted the materials balance perspective to study the 

U.S. copper mining industry and simulate the optimal resource extraction over time. Krysiak and 

Krysiak (2003) demonstrated that the conventional applied economic models are not consistent 

with the physical constraints of mass and energy conservation and demonstrated how the 

conservation laws can be incorporated into the general equilibrium framework. Finally, Pethig 

(2006) show how the production-cum-abatement technology can be rendered consistent with the 

constraints ensuring material balance. While the above studies rely on the dynamic 

macroeconomic growth models, Coelli et al. (2007) were among the first to add the materials 

balance-related restrictions to a nonparametric DEA specification for measuring the environmental 

efficiency. 

Approaches for modeling technologies characterized by the production of socially 

undesirable outputs can be divided into three main categories. The first group includes the studies 

that either treat the undesirable outputs as inputs or focus on detrimental inputs only. For example, 

Reinhard et al. (2000) did not consider any unintended outputs and defined environmental 

efficiency as the ratio of minimum feasible to observed quantity of environmentally harmful inputs, 

such as nitrogen, phosphate and energy use. Hailu and Veeman (2001) measured the productivity 

in the Canadian pulp and paper industry by treating the undesirable outputs as inputs in the context 

of the Chavas-Cox approach. They report higher productivity improvements when pollutants are 

taken into account during measurement compared to the estimates that do not take undesirable 

outputs into account. Considine & Larson (2006) consider sulfur dioxide emissions as an 

environmental resource and include them among the variable factors of production in their study 

of the U.S. utilities. They argue that emissions are similar to production inputs in that they must 

be tied to tradeable allowances to comply with the environmental regulations and are therefore 

costly. Similarly, in their study of productivity of the OECD countries Mahlberg and Sahoo (2011) 

treat greenhouse gas emissions as an input because they argue countries seek to decrease their level 
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to minimize abatement costs.1 Regardless of its intuitive appeal, this approach has been criticized 

in the literature due to its underlying assumption that, similar to inputs, unintended outputs can be 

increased indefinitely (Färe and Grosskopf, 2004). 

The second approach considers the production of the different types of output as a joint 

process, following the ideas of weak disposability and null-jointness proposed by Shephard (1970) 

and Shephard and Färe (1974), respectively. For example, Färe et al. (1986) and Färe et al. (1989) 

relied on the assumption of weak disposability of outputs in their nonparametric studies of the 

utility companies and paper mills, respectively. Intuitively, the weak disposability axiom stipulates 

that since the undesirable and desirable outputs are closely interrelated, the former cannot be 

decreased at the frontier of technology without incurring cost in terms of the foregone output. In 

other words, if undesirable outputs are to be reduced then the desirable outputs must be reduced 

as well. The null-jointness assumption implies that if no undesirable outputs are produced then no 

desirable outputs can be produced, either. Despite suggestions that the weak disposability of 

outputs disregards the materials-balance considerations thereby violating the first law of 

thermodynamics (Coelli et al. 2007, Hoang and Coelli 2011), the approach based on this 

assumption has remained relatively popular in the literature.2 

Finally, the third group includes the studies using the “by-production” model, introduced 

by Murty and Russell (2002) and generalized by Murty et al. (2012), Murty (2015) and Murty and 

Russell (2018), who argue that socially undesirable by-products need not always be produced 

jointly with desirable outputs and are instead caused by pollution-generating inputs. Under by-

production, the technology is formed by combining two separate sub-technologies, i.e. a 

conventional sub-technology invented by humans and a pollution-generating sub-technology 

consistent with the notion of materials balance.3 As we explain below, our specification extends 

this approach by introducing an exact relationship between the underlying sub-technologies. 

The remainder of the paper is organized as follows. We introduce our methodology in 

Section 2, describe the data and results in Section 3 and discuss possible directions for future 

research along with our conclusions in the final section. 

 
1 See, for example, Lee et al. (2002), Korhonen and Luptacik (2004), and Yang and Pollitt (2009) for additional 

studies based on this approach. 
2 Recent papers using the weak disposability model include, among others, Dakpo et al. (2016), Färe et al. (2017), 

Ray et al. (2018) and Pham and Zelenyuk (2019). 
3 Førsund (2009, 2018) emphasized a similar idea using the term “multi-equation model.” 
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2. The by-production approach and its derivative models 

The reduced form of the by-production technology was introduced by Murty and Russell 

(2002) and Murty et al. (2012). However, their original model lacks the explicit connection 

between the sub-technologies, which may lead to biased results (Dakpo et al., 2016; Baležentis et 

al., 2019). The tradeoff between the economic and environmental performance is naturally based 

on this connection and can be imposed in terms of the weights associated with efficiency scores 

from sub-technologies. However, as we demonstrate below, the original by-production model or 

some of its extensions cannot be used to model this tradeoff. We examine the existing models and 

propose a new specification allowing us to address this issue. 

 

2.1. By-production technology 

To define the by-production technology, we assume there are K decision-making units 

(DMUs) which in our case correspond to provinces in China. Each DMU consumes inputs and 

produces outputs. Two groups of inputs can be defined when defining the production set, namely, 

the ‘clean’ inputs ( nx ) and polluting, or ‘dirty,’ inputs ( px ). Both inputs can produce the desirable 

outputs (y) while only the ‘dirty’ inputs generate the undesirable outputs (z). Accordingly, the 

production technology is separated into two sub-technologies: the production process that focuses 

on intended outputs is regarded as the economic sub-technology (T1), whereas the pollution-

generating process is modelled in the environmental sub-technology (T2). The by-production 

technology (TBP), proposed by Murty et al. (2012), can be defined as follows: 
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where f and g are continuously differentiable functions, with derivatives with respect to inputs and 

outputs, respectively. The production technology also satisfies the standard economic assumptions, 

such as convexity, closedness, disposability of inputs and outputs, and returns to scale. In order to 
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distinguish desirable and undesirable outputs, the free disposability (A1) is imposed on T1 for all 

inputs and desirable outputs, which implies that the given outputs can be produced by more inputs 

than is absolutely necessary or given inputs can produce less outputs. The cost disposability (A2) 

is imposed on T2 for pollution-generating inputs and undesirable outputs, which indicates that the 

undesirable outputs cannot be abandoned as freely as the desirable ones. The free disposability and 

cost disposability are given below: 

 

1 1 1

2 2 2

:   ( , , , ) ,   ( , , , )    ( , , ) ( , , ).

:   ( , ) ,   ( , )    ( , ) ( , ).

n p n p n p n p

p p p p

A if x x y z then x x y z for all x x y x x y

A if x z then x z for all x z x z

T T

T T

  − −  − −

  − 
 (2) 

 

In our empirical application, we assume the manufacturing output is produced using labor 

force, capital stock and energy, while the province-level carbon emissions caused by the energy 

consumption are used to measure the environmental performance. 

From an economic point of view, the social wellbeing can be improved if the desirable 

outputs increase to satisfy the domestic demand. At the same time, the undesirable outputs lead to 

negative externalities but are unavoidable in order to achieve the expansion of desirable outputs. 

In order to evaluate the tradeoff between the economic and environmental development of the 

Chinese industrial sector, we can formulate performance measures defined with respect to the 

environmental production technology and apply them to the Chinese provinces. Distance functions, 

which fully represent a production technology, can be used as a tool for measuring the 

improvement potential of these provinces when evaluated against the associated production 

frontier. For example, using a non-radial directional distance function (DDF), introduced by 

Chambers et al. (1996a), one can expand the desirable outputs and reduce the undesirable outputs 

simultaneously, i.e.: 

 ( , , ; , , ) max , : ( , , )x y z y zD x y z g g g R x y g z g T   +=  + −  ,   (3) 

 

where   and   can be interpreted as the inefficiency scores that denote, respectively, the 

maximum possible increase in the desirable outputs and decrease in undesirable outputs in the 

direction given by the mapping vector (gy, gz). If 0 =  or 0 = , the evaluated province serves as 

a benchmark in a certain sub-technology. 
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2.2. Model specification 

The original by-production model with non-radial DDF (Model 1) can be described as: 
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where 
,( )y zg g is a nonzero vector maximizing the desirable outputs and minimizing the 

undesirable ones, defined by the value of outputs of the evaluated production plan. We use Ecow  

and Envw  as the objective function weights, associated with the economic and environmental sub-

technologies, respectively, and denote by k  and k  the activity variables for T1 and T2, 

suggesting the two production frontiers may correspond to different benchmarks values of px  at 

the optimum.4 The assumption of variable returns to scale (VRS) is imposed on T1 and T2 via 

1

1
K

k

k


=

=  and 
1

1
K

k

k


=

= , respectively. 

The two sub-technologies in the by-production model formulated above are not linked 

explicitly, possibly yielding different benchmarks. Assuming such a link exists is also necessary 

 
4 Murty et al. (2012) assume Ecow = Envw =50%. 
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in order to analyze the tradeoff between the economic and environmental performance. Indeed, as 

we demonstrate in Section 3, the inefficiency scores   and   remain constant unless either Ecow  

or Envw  is assumed to be zero when no explicit relationship is imposed between the two sub-

technologies. Hence, following Lozano (2015), Dakpo et al. (2016) and Baležentis et al. (2019), 

we impose this relationship by adding an additional constraint with respect to the optimal 

quantities of the polluting inputs to Model 1, or 

 

1 1
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K K
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yielding the modified by-production model (e.g., Dakpo et al., 2016), i.e.: 
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However, this specification is still not capable of assessing the tradeoff between the 

economic and environmental performance, because its 3rd, 5th and 7th set of constraints, or 
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collapse to a single restriction, given by 
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implying the quantity of the polluting inputs, which both help produce the good outputs and 

generate the socially unintended ones, remains fixed at its observed level at the optimum. As a 

result, the tradeoff between the roles played by the polluting inputs will not manifest itself properly 

in the solution to the above model and neither will the tradeoff between the sub-technologies and 

their associated efficiency scores. In other words, similar to Model 1, the above specification yields 

mostly identical optimal inefficiency scores   and  , suggesting no tradeoff between the 

economic and environmental performance. Following Baležentis et al. (2019), we solve this 

problem by dropping the constraint 
'

1

K
p p

k k k

k

x x
=

 , implying the attainable quantity of each dirty 

input is restricted to be less than or equal to its corresponding observed level. Hence, our Model 3 

is given by: 
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2.3. Scenario setting 

Given the choice between faster economic growth and better environmental protection, 

analyzing environmental performance requires knowledge of the decision-makers’ individual 

preferences. We treat these preferences as exogenous and model them using the weights entering 

the objective functions associated with Models 1-3. By changing the weights attributed to the 

corresponding sub-technologies, we can model a variety of scenarios representing the decision 

makers’ different policy choices or preferences, summarized in Table 1. In addition to several 

relatively balanced weighing schemes, we also include two extreme scenarios corresponding to 

purely economic and environmental approaches attributing zero weight to the environmental and 

economic efficiency, respectively. 

  



13 

 

 

Table 1 Weights on economic and environmental sub-technologies for scenarios 

Scenario Approach 
Economic Weight Environmental Weight 

Ecow  (%) Envw  (%) 

1 Economic 100 0 

2  90 10 

3 80 20 
4 70 30 

5 60 40 

6 Balanced 50 50 
7  40 60 

8 30 70 

9 20 80 

10 10 90 
11 Environmental 0 100 

 

 

2.4. The Luenberger productivity indicator and its decomposition 

Since distance functions can be used to define indicators of productivity change, we can use 

the DDF in (3) to measure productivity growth between time periods t and t+1 by relying on the 

difference-based output-oriented Luenberger productivity indicator (Chambers 1996, 2002) in the 

presence of undesirable outputs, given by: 
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Following the insights of Chambers et al. (1996b), the Luenberger indicator can be 

decomposed into the efficiency change (EC) and technological progress (TP) components. The 

former component, which is often referred to as the catch-up effect, measures the changes in the 

distance to the production frontier occurring over time and can signal possible improvements 

attributed to a more efficient use of resources. The latter component indicates the frontier shift 

between time periods t and t+1 and reflects the productivity gains due to technological innovations. 
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Its measurement is rendered possible by estimating four different distance function values using 

various combinations of the data and reference technology associated with the two time periods. 

The decomposition of the Luenberger indicator can be summarized as: 
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3. Data and results 

3.1. Data 

For our empirical illustration, we use province-level manufacturing data corresponding to 

30 Chinese provinces except Tibet. Table 2 presents the summary statistics describing our dataset. 

We assume capital and labor are the ‘clean’ inputs and energy is the ‘dirty’ input, generating the 

undesirable output. Due to the lack of the official data on industrial capital stock in China, we 

approximate it by applying the perpetual inventory method, i.e. 

 

1/ (1 )t t t t tk i p k −= + − ,      (9)  

 

where k , i , p , and   represent capital stock, fixed asset investment, price index for fixed asset 

investment, and depreciation rate, at time period t, respectively. 

We aggregate the fixed asset investment corresponding to the manufacturing sector with 

production and supply of electricity, as well as the water and gas industries, to obtain the 

provincial-level volume of fixed asset investment. We subsequently convert this volume into the 

2008 values using the fixed asset investment price index in order to account for inflation. We 

follow Chou (1995) to calculate the initial capital stock and set the depreciation rate at 10%. 

Similarly, we obtain the labor input by aggregating the number of employees across the same 

manufacturing sectors. Both the capital and labor data are collected from the China Statistical 

Yearbook. Our only polluting input – energy – consists of ten different types of fuel, including 
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coal, coke, crude oil, diesel, kerosene, petrol, fuel oil, natural gas, liquefied petroleum gas and 

refinery dry gas, which we collect using the province-level regional energy balance tables. 

Considering coal is used as a final input but also for secondary purposes such as the generation of 

power and heating, we express our coal input as the sum of all coal consumed for various purposes. 

The other types of fuel are represented using their final consumption values. Finally, we convert 

the different types of fuel into their associated coal-equivalent values using the corresponding 

conversion coefficients. The energy use data and the conversion coefficients are taken from the 

China Energy Statistics Yearbook (National Bureau of Statistics of China, 2008-2018). 

Our only desirable output comes from the China Industrial Statistical Yearbook (National 

Bureau of Statistics of China, 2009-2017) and represents the industrial value added, expressed in 

2008 prices using the price index of industrial products. We rely on carbon dioxide emissions as 

our only undesirable output and calculate it by multiplying the quantities of energy generated by 

each fuel type by the corresponding carbon emission factor. These factors come from the 

Provincial GHG Inventory Preparation Guide compiled by the National Development and Reform 

Commission of China (2011). 

 

Table 2 Dataset summary statistics 

 Indicator Unit Mean Std.Dev Trend 

Clean inputs 
Capital 108 RMB at 2008 price 62484.6 83360.6 3.70% 
Labor 104 employees 332.9 362.7 4.32% 

Dirty input Energy 104 tons of coal equivalent 11632.7 7275.8 3.94% 

Good output GDP 108 RMB at 2008 price 7942.3 6998.5 8.07% 

Bad output CO2 104 tons 22730.2 16116.0 2.29% 

 

Except Tibet, Hong Kong, Macao, and Taiwan, the provinces are grouped into three 

geographical zones for performance analysis. The eastern region includes 11 provinces, such as 

Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, 

and Hainan. The inland region comprises 8 provinces, i.e. Shanxi, Jilin, Heilongjiang, Anhui, 

Jiangxi, Henan, Hubei, and Hunan. Finally, the western region’s 11 provinces include Inner 

Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, 

and Xinjiang. 
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3.2 Results 

We measure the performance of China’s manufacturing sector by applying different 

specifications of the by-production model and estimating the linear programs given in Models 1-

3. Our economic and environmental efficiency scores take into account various preferences with 

respect to the tradeoff between these two types of performance, which we model using a range of 

weights, illustrated in Table 1, attached to the efficiency scores in the objective function. In 

addition, all our models allow for non-radial changes in both the inputs and outputs, implying 

different variables can be adjusted to a different extent to reach the production frontier.  

Model 1 is the basic by-production model that assumes no explicit links between the 

economic and environmental sub-technologies. Model 2 introduces this relationship by imposing 

equality between the quantities of the ‘dirty’ inputs used by the two sub-technologies, but does not 

allow these quantities to vary. Model 3 is the most general of the three in that it allows the quantity 

of the ‘dirty’ input to be contracted while simultaneously restricting it to be the same across the 

two sub-technologies. In Table 3 we summarize the corresponding economic and environmental 

efficiency scores, which we obtained by taking the average across all time periods and provinces. 

To demonstrate the true tradeoff between the sub-technologies, we choose to report the 

inefficiency estimates   and   rather than Ecow   and Envw  , allowing us to disregard the impact 

the weights may have on the results. 

 

Table 3 The average economic and environmental inefficiency scores for the Chinese 

manufacturing sector (% p.a., 2008-2017) 

Scenario Approach 
Model 1 Model 2 Model 3 

 (%)  (%)  (%)  (%)  (%)  (%) 

1 Economic 22.18 -5.81 17.82 -9.46 22.18 -2.15 

2  22.18 46.36 17.82 45.56 22.07 56.51 
3 22.18 46.36 17.82 45.56 21.47 59.88 

4 22.18 46.36 17.82 45.56 20.78 61.96 

5 22.18 46.36 17.82 45.56 19.07 65.08 
6 Balanced 22.18 46.36 17.82 45.56 16.71 67.93 

7  22.18 46.36 17.82 45.56 13.81 70.31 

8 22.18 46.36 17.82 45.56 6.56 74.13 

9 22.18 46.36 17.82 45.56 -6.52 78.49 
10 22.18 46.36 17.82 45.56 -17.28 80.43 

11 Environmental -58.43 46.36 -40.82 45.56 -57.51 80.98 

Note:   and   are inefficiency scores associated with the good and bad output, respectively. 
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Looking at the four middle columns of the table we can see that the results rendered by 

Models 1 and 2 are virtually invariant to the choice of the weights defining the different scenarios. 

For example, Model 1 suggests the desirable output could be increased by about 22% and the 

undesirable output simultaneously decreased by roughly 46% when both the economic and 

environmental efficiency scores are attributed non-zero weights, on average. Turning to the 

scenario where economic growth carries all the weight with cost to the environmental playing no 

role whatsoever we note the carbon dioxide emissions could be increased by an average of about 

6% while maintaining the same 22% growth in our desirable output, or value added. Our other 

extreme scenario is the purely environmental approach, which puts the entire weight on the 

environmental performance and ignores economic inefficiency completely. Looking at the last row 

of Table 1 we can see that it would require a roughly 58% decrease in the desirable output while 

the average environmental inefficiency remains the same as in the case of the relatively balanced 

scenarios (46%).  

Results corresponding to Model 2 are very similar in that they too suggest virtually no 

tradeoff between the two approaches. For instance, the estimates of average economic and 

environmental inefficiency equal approximately 18% and 46%, respectively, whenever nonzero 

weights are assumed during estimation. Similar to Model 1, the purely economic approach calls 

for a 9% increase in the undesirable output while the economic inefficiency remains the same as 

when the choice between economic growth and environmental protection is relatively balanced. 

Also similar to Model 1, the purely environmental approach suggests the desirable output should 

fall by 41% as the average level of carbon dioxide emissions is reduced by approximately 46%.  

Model 3 provides more nuanced results across the scenarios. Indeed, the economic 

inefficiency increases from about 13% to 22% when the weight attributed to the desirable output 

grows from 40% to 100%. Unlike with the first two specifications, Model 3 can yield negative 

economic inefficiency estimates under some nonzero weights attributed to economic performance, 

suggesting a decrease in the desirable output is necessary to reach the production frontier. As 

shown at the bottom of the next-to-last column of Table 1, this occurs whenever the weight of the 

corresponding slack falls below 20%. The average environmental inefficiency gradually increases 

from 57% to 81% as the corresponding weight grows from 10% to 100%. Compared to the two 

previous specifications, the estimated increase in the carbon dioxide emissions is slightly smaller 
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under Model 3 at roughly 2% on average when the environmental protection is assumed to be 

completely unimportant. 

Our results have both theoretical and empirical implications. For example, regardless of 

the type of model, the environmental inefficiency estimates are always higher than their economic 

performance counterparts, except under one of the extreme scenarios which ignores the 

environmental impact completely. In addition, Models 1 and 2 are not capable of properly taking 

into account the trade-off between the two sub-technologies and their associated inefficiency 

scores. Imposing a relationship between the economic and environmental sub-technologies via a 

suitable constraint in Model 3 yields solutions that are sensitive to the policy-makers’ preferences, 

modelled via weights included in the algorithm’s objective function. In other words, the weighted 

inefficiency estimates contain little information about the tradeoff between the economic and 

environmental performance unless this additional restriction is included during estimation. 

Since the three geographical areas discussed above have experienced varying degrees of 

economic development, technical progress and environmental degradation, we next turn our 

attention to the differences in the performance across China’s regions. We focus on the Model 3 

results and begin by reporting the mean inefficiency scores for the eastern, inland and western 

region under each of the various scenarios. Our results are illustrated in Figure 1. 
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Figure 1 Inefficiency tradeoff across different scenarios under Model 3 (% p.a., 2008-2017) 

Note: Scenarios from Table 1 are plotted on the horizontal axis;   and   are inefficiency scores for the 

economic and environmental sub-technology, respectively. 

 

As expected, the three regions differ in terms of both their mean economic and 

environmental performance. For instance, the inland regions appear to be the most 

environmentally inefficient ones, while the western zone is associated with the highest economic 

inefficiency regardless of which scenario we assume. Both the economic and environmental 

performance appears to be the best in China’s relatively developed east. We also note that the 

economic inefficiency is more sensitive to the weighting scheme than is the environmental 

performance. The decrease in the importance attributed to the economic performance triggers a 

relatively steep fall in the economic inefficiency and, in turn, improvements in the super-efficiency 

along the economic dimension when the regions are considered simultaneously. However, the 

environmental super-efficiency can only be established under a single scenario representing a 

purely economic approach. In other words, achieving economic super-efficiency assuming 

environmental protection is relatively important appears to have been easier, albeit at a substantial 

cost in terms of environmental inefficiency, than attaining environmental super-efficiency even if 

policy-makers chose to adopt scenarios disregarding environmental degradation and focused 

almost exclusively on economic growth. 

We next turn our attention to the analysis of productivity using distance functions, which 

was outlined in Section 2.4. As we showed in Table 3, the economic and environmental efficiency 

scores corresponding to Model 3 vary across different scenarios. Therefore, the productivity 

measures based on these estimates will also vary with the change in policy-makers’ preferences 

for the two types of performance in question. Hence, we rely on the Luenberger productivity 

indicator in order to analyze the dynamics and sources of the productivity change in China’s 

industrial sector between 2008 and 2017 as a whole. Table 4 summarizes the average year-on-year 

results corresponding to the change in efficiency, technology and productivity we obtained using 

Model 3. 

 

Table 4 Efficiency, technical and productivity change under various scenarios 

(% p.a., 2008-2017) 
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Scenario Approach 
Overall Economic Environmental 

TFP EC TP TFP EC TP TFP EC TP 

1 Economic 2.56 -1.81 4.37 2.56 -1.81 4.37 0.00 0.00 0.00 

2  2.49 -1.74 4.23 2.32 -1.63 3.96 0.16 -0.11 0.27 

3  2.36 -1.68 4.05 2.12 -1.46 3.58 0.24 -0.22 0.46 

4  2.17 -1.60 3.77 2.01 -1.29 3.31 0.16 -0.31 0.47 

5  1.93 -1.48 3.41 1.83 -1.29 3.13 0.09 -0.18 0.28 

6 Balanced 1.64 -1.28 2.93 1.59 -1.17 2.76 0.05 -0.12 0.17 

7  1.27 -1.07 2.34 1.48 -0.98 2.46 -0.20 -0.09 -0.12 

8  0.80 -0.84 1.64 1.27 -0.81 2.08 -0.47 -0.03 -0.43 

9  0.31 -0.52 0.82 0.72 -0.69 1.41 -0.41 0.18 -0.59 

10  -0.08 -0.16 0.08 0.32 -0.26 0.58 -0.40 0.10 -0.51 

11 Environmental -0.43 -0.07 -0.36 0.00 0.00 0.00 -0.43 -0.07 -0.36 

 

The pattern of the change in productivity appears to be consistent with what we reported 

in Table 3 about the average environmental inefficiency generally exceeding the average economic 

inefficiency regardless of the policy-makers’ preferences. Indeed, looking at the estimates of the 

change in environmental productivity summarized in Table 4 we can see that its best improvement 

could have been achieved under the third scenario and would have equaled 0.24% per year on 

average. We can also see that environmental productivity deteriorates under all scenarios treating 

environmental performance as relatively important. By contrast, the annual mean economic 

productivity growth is always positive and its lowest estimate equals 0.32% when the purely 

environmental approach is not taken into account. In other words, our findings suggest the average 

change in economic productivity has been positive but also more substantial than the 

improvements in environmental productivity.  

The overall annual productivity growth combines the change in economic and 

environmental productivity and depends on the chosen scenario as well. Its estimate ranges from 

-0.43% when the environmental performance is attributed the entire weight to 2.56% under the 

purely economic approach. Under a relatively balanced approach assuming both economic growth 

and environmental protection are equally important, the average annual improvement in 

productivity equals 1.64%, with the economic productivity growth of 1.59% acting as the main 

driver of this change. As regards the decomposition of the overall productivity growth itself, the 

annual improvement in technology (2.93%) more than offsets the simultaneous drop in the 

efficiency level (-1.28%) under the balanced approach, suggesting the productivity growth and the 

technological progress that powers it would have been driven by a relatively small number of 

relatively overperforming regions. Looking at the efficiency change estimates, or EC, we note a 
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relatively widespread increase in both economic and environmental inefficiency under almost all 

scenarios, pointing to lack of any significant spread of the best production and environmental 

protection practices from the relatively efficient regions to the relatively inefficient ones, as the 

latter are struggling to catch up. 

Finally, we consider cumulative productivity change for 2008-2017 under different 

scenarios, illustrated in Figure 2. Looking at the trends corresponding to the growth in economic 

productivity depicted at the top panel, we can see that the magnitude of its overall increase depends 

on the underlying scenario and equals around 14% under the approach assuming equal weights. 

As expected, both the overall magnitude of change and the annual rate of growth decline when 

policy-makers choose to pursue approaches favoring primarily the environmental performance. 

For example, the cumulative improvement in economic productivity would have equaled just 2.5% 

under scenario 10, which attributes a 90% weight to the environmental sub-technology. The 

change in environmental productivity appears to have followed a negative trend between 2008 and 

2012 before recovering towards a positive trajectory from 2013 onwards. However, the overall 

cumulative environmental productivity would have declined under half of our scenarios, lending 

support to the premise that the improved economic performance of the Chinese industrial sector 

has likely come at the substantial cost to the environment. 
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Figure 2 Cumulative change in the economic and environmental productivity across different 

scenarios (% p.a., 2008-2017) 
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4. Conclusions 

We extend the so-called by-production model for the measurement of environmental 

efficiency by proposing a modification accounting for the relationship between the model’s 

economic and environmental sub-technologies. In addition to linking the two sub-technologies, 

our main contribution lies in the proposed specification’s flexibility, allowing the quantity of the 

polluting inputs to vary at the optimum. Extensions to the original by-production model recently 

proposed in the literature do not account for the tradeoff between the roles these inputs play in the 

production of good and bad outputs. 

We use Chinese province-level manufacturing data to illustrate our approach empirically. 

Our estimates of the change in efficiency, technology, and productivity between 2008 and 2017 

assume a range of scenarios policy-makers may wish to pursue given the tradeoff between the 

economic and environmental performance. Our results suggest the regions have almost always 

fared much better in terms of their economic efficiency than the environmental one, implying they 

may be far more similar to one another with regards to the traditional practices companies use to 

create value than they are in terms of the procedures aimed at curbing their carbon dioxide 

emissions. Indeed, environmental efficiency appears to be fairly difficult to achieve, as the only 

possible scenario under which it would have been feasible is the extreme case of the purely 

economic approach attributing no importance to the pollution levels whatsoever. 

We also demonstrate that the total productivity in China would have increased under all 

scenarios attributing a meaningful weight to the economic sub-technology. This improvement in 

the overall performance, which combines the economic and environmental productivity, is driven 

almost exclusively by its economic component as the environmental productivity stays almost 

unchanged under the relatively balanced approaches. The improvements in both economic and 

total productivity are in turn a consequence of widespread technological progress, whose 

magnitude is as a rule more than sufficient to offset the equally widespread simultaneous increase 

in both economic and total inefficiency.  Looking forward, it would be interesting to see to what 

extent the relatively inefficient regions manage eventually to catch up with the technically efficient 

geographical zones driving this progress. 

As China is set to continue improving its standard of living in the post COVID-19 era and 

given the emergence of increasingly finessed approaches for measuring the impact of economic 
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growth on the environment, it is important to assess the choices policy-makers have under their 

disposal as they try to strike the perfect balance between economic growth and environmental 

protection. We propose a framework for the measurement of efficiency and productivity allowing 

policy-makers to choose from a number of alternative scenarios associated with this tradeoff. 
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