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1 Introduction

Productivity is an important component of profitability. In fact, Total Factor Productivity

(TFP) change, as the most encompassing measure of productivity change, is nothing but

the “real” component of profitability change (see Balk (2003)). Productivity is therefore an

important driver to changing standards of living. TFP growth is an index number aimed at

capturing any technology shifts from output growth that is unexplained by input growth (e.g.,

Hulten (2001)). In the recent literature a lot of attention has been devoted to what has been

aptly called theoretical productivity indices (see Russell (2018)) A theoretical productivity

index is defined on the assumption that the technology is known and non-stochastic, but

unspecified and thus most often approximated by a nonparametric multiple-input, multiple-

output specification using some form of distance functions. The foundational concepts are on

the one hand the Malmquist productivity index (initially developed by Caves, Christensen,

and Diewert (1982)) and on the other hand the Hicks-Moorsteen productivity index (Bjurek

(1996)). While the Malmquist productivity index is fundamentally a measure of the shift of

the production frontier, the Hicks-Moorsteen productivity index is a ratio of an aggregate

output index over an aggregate input index. Thus, the Malmquist productivity index mea-

sures local technical change (i.e., the local change of a production frontier) but in general

not TFP change, while the Hicks-Moorsteen productivity index has a TFP interpretation.

In the last decades, awareness has developed that ignoring inefficiency may potentially

bias productivity measures. Nishimizu and Page (1982) is probably the seminal article de-

composing productivity into a technical change component and a technical efficiency change

component. Caves, Christensen, and Diewert (1982) analyze the discrete time Malmquist

productivity index using distance functions as general representations of technology. This

Malmquist index happens to be related to the Törnqvist productivity index that uses both

price and quantity information, but needs no knowledge on the technology. Färe, Grosskopf,

Lindgren, and Roos (1995) are the first to propose a procedure to estimate the distance

functions in the Malmquist productivity index by exploiting their relation with the ra-

dial efficiency measures computed relative to nonparametric technologies, and also integrate

the two-part Nishimizu and Page (1982) decomposition. Bjurek (1996) offers an alternative

HicksMoorsteen TFP index that can be defined as the ratio of an aggregate Malmquist

output- over an aggregate Malmquist input-index.

From a theoretical point of view, these Malmquist and Hicks-Moorsteen productivity

indexes are known to be identical only under two very stringent conditions: (i) inverse ho-

motheticity of the technology; and (ii) constant returns to scale (see Färe, Grosskopf, and
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Roos (1996)). Therefore, from an empirical point of view both indices are in general expected

to differ, since these two conditions that need to hold for their equality are unlikely to be

met in practice. Kerstens and Van de Woestyne (2014) empirically show that the Malmquist

productivity index offers a poor approximation to the HicksMoorsteen TFP index in terms of

the resulting distributions, and that for individual observations one may well even encounter

conflicting evidence regarding the basic direction of productivity growth or decline.

A substantial part of the subsequent literature extends these two theoretical productiv-

ity indices to incorporate on the one hand the possibility of technological inefficiency (i.e.,

operation below the production frontier), and on the other hand decompositions into a va-

riety of components of productivity change (e.g., efficiency change, scale effects, input- and

output-mix effects). It is fair to say that most focus has been on decomposing the Malmquist

productivity index: this has led to various controversies that have been summarised in the

now somewhat dated survey by Zof́ıo (2007). The Hicks-Moorsteen TFP index has long been

thought not to be amenable to decomposition, but a recent proposal for a decomposition is

found in Diewert and Fox (2017).

In the literature, more general primal productivity indicators have meanwhile been pro-

posed. Chambers, Färe, and Grosskopf (1996) introduce the Luenberger productivity in-

dicator as a difference-based indicator of directional distance functions (Chambers (2002)

provides the best background). These directional distance functions generalize traditional

distance functions by allowing for simultaneous input reductions and output expansions

and these are dual to the profit function. Briec and Kerstens (2004) define a Luenberger-

Hicks-Moorsteen TFP indicator using these same directional distance functions. Though

not as popular as the Malmquist productivity index, the Luenberger productivity indicator

has been rather widely used. The Luenberger-Hicks-Moorsteen TFP indicator is relatively

speaking less employed. Luenberger output (or input) oriented productivity indicators and

Luenberger-Hicks-Moorsteen productivity indicators coincide under similar demanding prop-

erties spelled out in Briec and Kerstens (2004). Kerstens, Shen, and Van de Woestyne (2018)

empirically document that the Luenberger productivity indicator provides a poor approxima-

tion to the Luenberger-HicksMoorsteen TFP indicator in terms of the resulting distributions,

and that for individual observations one may obtain conflicting results with respect to the

basic direction of productivity growth or decline.

In our contribution, we focus on one potentially neglected issue in the development of

the Malmquist productivity index, namely that variations in capacity utilisation have so

far largely been ignored. In traditional productivity decompositions -mainly based on para-

metric functional specifications- several proposals for incorporating measures of capacity
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utilisation have been available in the literature. Examples of such theoretical contributions

include Hulten (1986), Morrison (1985) or Morrison Paul (1999) (see, e.g., Fousekis and Pa-

pakonstantinou (1997) for an empirical example). Since the basic Malmquist productivity

index focuses on primal technologies, a seminal theoretical proposal to include an output-

oriented plant capacity utilisation measure (proposed in Färe, Grosskopf, and Valdmanis

(1989)) within an output-oriented Malmquist productivity index is found in De Borger and

Kerstens (2000).1

For several decades the output-oriented plant capacity utilisation measure has been the

only technical or engineering capacity notion available in the literature. However, recently

two innovations have been proposed. First, Kerstens, Sadeghi, and Van de Woestyne (2019)

criticize the traditional output-oriented plant capacity utilisation measure for not being

attainable: it determines maximal outputs for potentially unlimited amounts of variable

inputs, but it ignores the basic fact that the amounts of variable inputs needed to obtain

these maximal outputs may well not be available at either the firm or the industry level. The

same authors then go on to define an attainable output-oriented plant capacity utilisation

measure: it modifies the basic output-oriented plant capacity utilisation measure by including

an upper bound on the amount of available variable inputs. In empirical applications the

problem is to determine a realistic upper bound on the amount of available variable inputs.

Second, an alternative input-oriented plant capacity utilisation measure has been intro-

duced in Cesaroni, Kerstens, and Van de Woestyne (2017). It is based on a pair of input-

oriented efficiency measures using a nonparametric frontier framework, very much in line

with the output-oriented plant capacity utilisation measure that is based on a couple of

output-oriented efficiency measures. In a recent study, Kerstens and Shen (2020) use these

plant capacity concepts to measure hospital capacities in the Hubei province in China during

the outbreak of the COVID-19 epidemic. Using the medical literature indicating that mor-

tality rates increase with high capacity utilization rates leads to the preliminary conclusion

that this relatively new input-oriented plant capacity concept correlates best with mortality.

Therefore, this contribution sets itself two main goals. First, it develops a proper de-

composition of the input-oriented Malmquist productivity index that is compatible with

the new input-oriented plant capacity notion. This decomposition is distinct from the ex-

isting decomposition of the output-oriented Malmquist productivity index developed in De

Borger and Kerstens (2000). In addition, the existing decomposition of the output-oriented

Malmquist productivity index is extended by including the attainable output-oriented plant

1An alternative proposal that does not yield an adequate decomposition is found in Sena (2001).
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capacity utilisation measure. Second, we are -to the best of our knowledge- the first empiri-

cal application of both these basic decompositions of the input-oriented and output-oriented

Malmquist productivity indices on a data set of Chinese provincial data from tourism activ-

ities. For a lack of realistic upper bound on the amount of available variable inputs, we do

not estimate the output-oriented Malmquist productivity index extended with the attainable

output-oriented plant capacity utilisation measure.

This contribution is structured in the following way. The next section 2 defines the basic

technologies, the Malmquist productivity indices, the necessary plant capacity concepts, as

well as integration of these plant capacity concepts in the corresponding Malmquist produc-

tivity indices. Section 3 provides a succinct literature review about efficiency and productivity

measurement in the tourism industry. The next section 4 discusses the specification and the

data employed. The empirical results are listed and discussed in Section 5. A final section 6

concludes.

2 Technology, Primal Productivity Indices, and Plant

Capacity: Definitions

We first introduce the assumptions on technology and the definitions of the required efficiency

measures. Then, we define the Malmquist productivity indices (MPI) as well as the necessary

plant capacity utilisation notions. The latter elements are then finally integrated into the

components of the Malmquist productivity indices.

2.1 Technology and Efficiency Measures

This subsection introduces basic notation and defines the production technology. Assume

that for periods t = 1, ..., T , N−dimensional input vectors xt ∈ RN
+ are employed to produce

M−dimensional output vectors yt ∈ RM
+ . In each period t, the production possibility set or

technology S is defined as follows: St = {(xt, yt)|xt can produce at least yt}. A first alter-

native definition of technology St is the input set denoting all input vectors xt capable of

producing a given output vector yt: Lt(yt) = {xt|(xt, yt) ∈ St}. A second alternative defini-

tion of technology St is the output set denoting all output vectors yt that can be produced

from a given input vector xt: P t(xt) = {yt|(xt, yt) ∈ St}.

The following standard assumptions are imposed on the technology St:
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(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ St and if (0, yt) ∈ St, then yt = 0.

(T.2) St is a closed subset of RN
+ × RM

+ .

(T.3) Strong input and output disposal, i.e., if (xt, yt) ∈ St and (x̄t, ȳt) ∈ RN
+ × RM

+ , then

(x̄t,−ȳt) ≥ (xt,−yt)⇒ (x̄t, ȳt) ∈ St.

(T.4) St is convex.

These traditional axioms on technology can be succinctly commented upon as follows

(see, e.g., Hackman (2008) for details). First, inaction is feasible, and there is no free lunch.

Second, the technology is closed. Third, we impose free or strong disposal of both inputs

and outputs in that inputs can be wasted and outputs can be discarded. Finally, technology

is convex. In our empirical analysis later on these axioms are not always simultaneously

maintained.2 In particular, in the empirical analysis one key assumption distinguishing some

of the technologies is convexity versus nonconvexity.

Turning to the definition of the input-and output-oriented efficiency measures needed to

define Malmquist productivity index as well as the plant capacity notions, we start with the

radial input efficiency measure that can be defined as follows:

DF t
i (xt, yt) = min{λ | λ ≥ 0, λxt ∈ Lt(yt)}. (1)

This radial input efficiency measure characterizes the input set Lt(yt) completely. Its main

properties are that it is smaller or equal to unity (DF t
i (xt, yt) ≤ 1), with efficient production

on the boundary (isoquant) of Lt(yt) represented by unity, and that it has a cost interpre-

tation (see, e.g., Hackman (2008)).

The radial output efficiency measure can be defined as follows:

DF t
o(xt, yt) = max{θ | θ ≥ 0, θyt ∈ P t(xt)}. (2)

This radial output efficiency measure offers a complete characterization of the output set

P t(xt). Its main properties are that it is larger than or equal to unity (DF t
o(xt, yt) ≥ 1),

with efficient production on the boundary (isoquant) of the output set P t(xt) represented

by unity, and that this radial output efficiency measure has a revenue interpretation (e.g.,

Hackman (2008)).

2For instance, note that the convex variable returns to scale technology does not satisfy inaction.
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In the short run, it is customary to distinguish between fixed and variable inputs.

Thus, we can partition the input vector into a fixed and a variable part. In par-

ticular, we denote xt = (xtf , x
t
v) with xtf ∈ RNf

+ and xtv ∈ RNv
+ such that N =

Nf + Nv. In an analogous way, a short-run technology St
f = {(xtf , yt) ∈ RNf

+ ×
RM

+ | there exists some xtv such that (xtf , x
t
v) can produce at least yt} and the correspond-

ing short-run input set Lt
f (yt) = {xtf ∈ RNf

+ | (xtf , y
t) ∈ St

f} and short-run output set

P t
f (xtf ) = {yt | (xtf , yt) ∈ St

f} can be defined (see Cesaroni, Kerstens, and Van De Woestyne

(2019) for more details).

Denoting the radial output efficiency measure of the short-run output set P t
f (xtf ) by

DF t
o(xtf , y

t), this short-run output-oriented efficiency measure can be defined as follows:

DF t
o(xtf , y

t) = max{θ | θ ≥ 0, θyt ∈ P t
f (xtf )}. (3)

The sub-vector input efficiency measure reducing only the variable inputs is defined as

follows.

DF t
i (xtf , x

t
v, y

t) = min{λ | λ ≥ 0, (xtf , λx
t
v) ∈ Lt(yt)}. (4)

Finally, we need the following particular definition of technology: Lt(0) = {xt | (xt, 0) ∈
St} is the input set with a zero level of outputs. The sub-vector input efficiency measure

reducing variable inputs evaluated relative to this input set with zero outputs level is as

follows:

DF t
i (xtf , x

t
v, 0) = min{λ | λ ≥ 0, (xtf , λx

t
v) ∈ Lt(0)}. (5)

Given data on K observations (k = 1, · · · , K) consisting of a vector of inputs and outputs

(xtk, y
t
k) ∈ RN+M

+ , a unified algebraic representation of convex and nonconvex nonparametric

frontier technologies under the flexible or variable returns to scale assumption is possible as

follows:

St,Γ =

{
(xt, yt) | xt ≥

K∑
k=1

xtkzk, y
t ≤

K∑
k=1

ytkzk, z ∈ Γ,

}
, (6)

where

(i) Γ ≡ ΓC =

{
z |

K∑
k=1

zk = 1 and zk ≥ 0

}
;

(ii) Γ ≡ ΓNC =

{
z |

K∑
k=1

zk = 1 and zk ∈ {0, 1}

}
.
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The convexity axiom is represented by the activity vector z of real numbers summing to

unity. This same sum constraint with each vector element being restricted to be a binary

integer represents the nonconvexity axiom. The convex technology satisfies axioms (T.1)

(except inaction) to (T.4), while the nonconvex technology complies with axioms (T.1) to

(T.3). In the remainder, we condition the above notation of the efficiency measures relative

to these nonparametric frontier technologies by distinguishing between convexity (convention

C) and nonconvexity (convention NC).

Kerstens and Van de Woestyne (2014) empirically illustrate that to measure local tech-

nical change using a Malmquist productivity index one obtains the most precise results for

flexible returns to scale assumptions rather than for the often used constant returns to scale

assumptions.3

2.2 Malmquist Productivity Indices: Definitions

Using the output-oriented radial efficiency measures one can define the output-oriented

Malmquist productivity index in base period t as follows:

M t
o(x

t, yt, xt+1, yt+1) =
DF t

o(xt, yt)

DF t
o(xt+1, yt+1)

. (7)

Values of this base period t output-oriented Malmquist productivity index above (below)

unity reveal productivity growth (decline).

Similarly, a base period t+ 1 output-oriented Malmquist productivity index is defined as

follows:

M t+1
o (xt, yt, xt+1, yt+1) =

DF t+1
o (xt, yt)

DF t+1
o (xt+1, yt+1)

. (8)

Again, values of this base period t+ 1 output-oriented Malmquist productivity index above

(below) unity reveal productivity growth (decline).

To avoid an arbitrary selection among base years, the output-oriented Malmquist pro-

ductivity index is commonly defined by Färe, Grosskopf, Lindgren, and Roos (1995) as a

3Another more pragmatic reason to opt for variable returns to scale is that some plant capacity notions
are not well defined under constant returns to scale.
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geometric mean of a period t and a period t+ 1 productivity index:

M t,t+1
o (xt, yt, xt+1, yt+1) =

√
M t

o(x
t, yt, xt+1, yt+1) ·M t+1

o (xt, yt, xt+1, yt+1)

=
√

DF t
o(xt,yt)

DF t
o(xt+1,yt+1)

· DF t+1
o (xt,yt)

DF t+1
o (xt+1,yt+1)

.

(9)

The base period of this productivity index changes over time: it can be conceptualized

as an index computed in a two year window sliding over the observations through time.

Moreover, this geometric mean output-oriented Malmquist index (9) can be decomposed

into two mutually exclusive components:

M t,t+1
o (xt, yt, xt+1, yt+1) =

DF t
o(xt, yt)

DF t+1
o (xt+1, yt+1)︸ ︷︷ ︸

(i)

√
DF t+1

o (xt+1, yt+1)

DF t
o(xt+1, yt+1)

· DF
t+1
o (xt, yt)

DF t
o(xt, yt)︸ ︷︷ ︸

(ii)

. (10)

The first component (i) measures the change in technical efficiency over time, while the

second component (ii) is related to the shift of the frontier of the production technology

(i.e., it captures technical change).

By analogy, an input-oriented Malmquist productivity index with base period t is defined

as the ratio of two input efficiency measures as follows:

M t
i (x

t, yt, xt+1, yt+1) =
DF t

i (xt, yt)

DF t
i (xt+1, yt+1)

. (11)

Values of this base period t input-oriented Malmquist productivity index below (above) unity

reveal productivity growth (decline).

Similarly, an input-oriented Malmquist productivity index with base period t + 1 can

similarly be defined as:

M t+1
i (xt, yt, xt+1, yt+1) =

DF t+1
i (xt, yt)

DF t+1
i (xt+1, yt+1)

. (12)

Again, values of this base period t + 1 input-oriented Malmquist productivity index below

(above) unity reveal productivity growth (decline). Note that since the DFi(x, y) ≤ 1 and

DFo(x, y) ≥ 1, the interpretation of equations (11) and (12) are inverse of the interpretation

of equations (7) and (8).

To avoid an arbitrary choice of base period, the input-oriented Malmquist productivity
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index is defined as a geometric mean of a period t and t+ 1 productivity index:

M t,t+1
i (xt, yt, xt+1, yt+1) =

√
M t+1

i (xt, yt, xt+1, yt+1) ·M t+1
i (xt, yt, xt+1, yt+1)

=

√
DF t

i (xt,yt)

DF t
i (xt+1,yt+1)

· DF t+1
i (xt,yt)

DF t+1
i (xt+1,yt+1)

.

(13)

Note that when the geometric mean input-oriented Malmquist productivity index is larger

(smaller) than unity, it points to a productivity growth (decline). Moreover, the Malmquist

index (13) can be decomposed into two mutually exclusive components:

M t,t+1
i (xt, yt, xt+1, yt+1) =

DF t
i (xt, yt)

DF t+1
i (xt+1, yt+1)︸ ︷︷ ︸

(i)

√
DF t+1

i (xt+1, yt+1)

DF t
i (xt+1, yt+1)

· DF
t+1
i (xt, yt)

DF t
i (xt, yt)︸ ︷︷ ︸

(ii)

. (14)

The first component (i) measures the change in technical efficiency over time, while the

second component (ii) is related to the shift of the frontier of the production technology (i.e.,

it captures technical change). Note that when this input-oriented Malmquist productivity

index (14) is smaller (larger) than unity, it points to a productivity growth (decline). A

similar interpretation applies to the separate components.

Following Ouellette and Vierstraete (2004), the sub-vector input-oriented Malmquist pro-

ductivity index can now be defined as follows:

M t,t+1
i (xtf , x

t
v, y

t, xt+1
f , xt+1

v , yt+1)

=
DF t

i (xt
f ,x

t
v ,y

t)

DF t+1
i (xt+1

f ,xt+1
v ,yt+1)

√
DF t+1

i (xt+1
f ,xt+1

v ,yt+1)

DF t
i (xt+1

f ,xt+1
v ,yt+1)

· DF t+1
i (xt

f ,x
t
v ,y

t)

DF t
i (xt

f ,x
t
v ,y

t)
.

(15)

The interpretation of this sub-vector input-oriented Malmquist productivity index as well as

its decomposition is exactly similar to the previous index (14).

Note that since the DFi(x, y) ≤ 1 and DFo(x, y) ≥ 1, the interpretation of equations

(11) and (12) are inverse of the interpretation of equations (7) and (8). Moreover, when the

input-oriented Malmquist productivity index (15) is smaller (larger) than unity, it points to

a productivity growth (decline) while the interpretation of the output-oriented Malmquist

productivity index (10) is exactly the inverse.
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2.3 Plant Capacity Utilisation: Definitions

The informal definition of output-oriented plant capacity by Johansen (1968, p. 362) has

been made operational by Färe, Grosskopf, and Valdmanis (1989) using a pair of output-

oriented efficiency measures. We now recall the definition of their output-oriented plant

capacity utilization (PCU). The output-oriented plant capacity utilization (PCUo) in each

period t is defined as:

PCU t
o(x

t, xtf , y
t) =

DF t
o(xt, yt)

DF t
o(xtf , y

t)
, (16)

where DF t
o(xt, yt) and DF t

o(xtf , y
t) are output efficiency measures including respectively ex-

cluding the variable inputs as defined before in (2) and (3).

Since 1 ≤ DF t
o(xt, yt) ≤ DF t

o(xtf , y
t), notice that 0 < PCU t

o(x
t, xtf , y

t) ≤ 1. Thus, output-

oriented plant capacity utilization has an upper limit of unity. This output-oriented plant

capacity utilisation compares the maximum amount of outputs with given inputs to the

maximum amount of outputs in the sample with potentially unlimited amounts of variable

inputs, whence it is smaller than unity. It answers the question how the current amount

of efficient outputs relates to the maximal possible amounts of efficient outputs. Following

the terminology introduced by Färe, Grosskopf, and Valdmanis (1989) and Färe, Grosskopf,

and Lovell (1994) one can distinguish between a so-called biased plant capacity measure

DF t
o(xtf , y

t) and an unbiased plant capacity measure PCU t
o(x

t, xtf , y
t). Taking the ratio of

efficiency measures eliminates any existing inefficiency and yields an in this sense cleaned

concept of output-oriented plant capacity. This leads to the following output-oriented de-

composition:

DF t
o(xt, yt) = DF t

o(xtf , y
t) · PCU t

o(x
t, xtf , y

t). (17)

Thus, the traditional output-oriented efficiency measure DF t
o(xt, yt) can be decomposed

into a biased plant capacity measure DF t
o(xtf , y

t) and an unbiased plant capacity measure

PCU t
o(x

t, xtf , y
t).

Recently, Kerstens, Sadeghi, and Van de Woestyne (2019) have argued and empirically

illustrated that the output-oriented plant capacity utilization PCU t
o(x

t, xtf , y
t) may be unre-

alistic in that the amounts of variable inputs needed to reach the maximum capacity outputs

may simply be unavailable at either the firm or the industry level. This is linked to what Jo-

hansen (1968) called the attainability issue. Hence, Kerstens, Sadeghi, and Van de Woestyne

(2019) define a new attainable output-oriented plant capacity utilization at the firm level.

We now recall the definition of their attainable output-oriented plant capacity utilization
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(APCU) at level λ̄ ∈ R+ in each period t as follows:

APCU t
o(x

t, xtf , y
t, λ̄) =

DF t
o(xt, yt)

ADF t
o(xtf , y

t, λ̄)
, (18)

where the attainable output-oriented efficiency measure ADF f
o at a certain level λ̄ ∈ R+ is

defined by

ADF t
o(xtf , y

t, λ̄) = max{ϕ | ϕ ≥ 0, 0 ≤ λ ≤ λ̄, ϕyt ∈ P t(xtf , λx
t
v)} (19)

Again, for λ̄ ≥ 1, since 1 ≤ DF t
o(xt, yt) ≤ ADF t

o(xtf , y
t, λ̄), notice that 0 <

APCU t
o(x

t, xtf , y
t, λ̄) ≤ 1. Also, for λ̄ < 1, since 1 ≤ ADF t

o(xtf , y
t, λ̄) ≤ DF t

o(xt, yt), no-

tice that 1 ≤ APCU t
o(x

t, xtf , y
t, λ̄).

One can again distinguish between a so-called biased attainable plant capacity measure

ADF t
o(xtf , y

t, λ̄) and an unbiased attainable plant capacity measure APCU t
o(x

t, xtf , y
t, λ̄),

whereby the latter is cleaned from any eventual inefficiency. This leads to the following

output-oriented decomposition:

DF t
o(xt, yt) = ADF t

o(xtf , y
t, λ̄) · APCU t

o(x
t, xtf , y

t, λ̄). (20)

Therefore, the traditional output-oriented efficiency measure DF t
o(xt, yt) can be decomposed

into a biased attainable plant capacity measure ADF t
o(xtf , y

t, λ̄) and an unbiased attainable

plant capacity measure APCU t
o(x

t, xtf , y
t, λ̄). Furthermore, Kerstens, Sadeghi, and Van de

Woestyne (2019) note that if expert opinion cannot determine a plausible value, then it may

be better to opt for the next input-oriented plant capacity measure that does not suffer from

the attainability issue.

Cesaroni, Kerstens, and Van de Woestyne (2017) define a new input-oriented plant ca-

pacity measure using a pair of input-oriented efficiency measures. The input-oriented plant

capacity utilization (PCUi) in each period t is defined as:

PCU t
i (x

t, xtf , y
t) =

DF t
i (xtf , x

t
v, y

t)

DF t
i (xtf , x

t
v, 0)

, (21)

where DF t
i (xtf , x

t
v, y

t) and DF t
i (xtf , x

t
v, 0) are both sub-vector input efficiency measures reduc-

ing only the variable inputs relative to the technology, whereby the latter efficiency measure

is evaluated at a zero output level.
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Since 0 < DF t
i (xtf , x

t
v, 0) ≤ DF t

i (xtf , x
t
v, y

t), notice that PCU t
i (x

t, xtf , y
t) ≥ 1. Thus,

input-oriented plant capacity utilization has a lower limit of unity. This input-oriented plant

capacity utilisation compares the minimum amount of variable inputs for given amounts of

outputs with the minimum amount of variable inputs with output levels where production is

initiated, whence it is larger than unity. It answers the question how the amount of variable

inputs compatible with the initialisation of production must be scaled up to produce the

current amount of outputs. Similar to the previous case, one can distinguish between a so-

called biased plant capacity measure DF t
i (xtf , x

t
v, 0) and an unbiased plant capacity measure

PCU t
i (x

t, xtf , y
t), the latter being cleaned of any prevailing inefficiency. This leads to the

following input-oriented decomposition:

DF t
i (xtf , x

t
v, y

t) = DF t
i (xtf , x

t
v, 0) · PCU t

i (x
t, xtf , y

t). (22)

Thus, the traditional sub-vector input-oriented efficiency measure DF t
i (xtf , x

t
v, y

t) is decom-

posed into a biased plant capacity measure DF t
i (xtf , x

t
v, 0) and an unbiased plant capacity

measure PCU t
i (x

t, xtf , y
t).

It is important to notice that output- and input-oriented plant capacity notions differ

with respect to the concept of attainability. The more recent input-oriented plant capacity

notion is always attainable in that one can always reduce the amount of variable inputs such

that one reaches an input set with zero output level. Indeed, due to the axiom of inaction

it is normally possible to reduce variable inputs to reach zero production levels. Inaction

simply means that one can halt production. Producing a zero output need not imply that

no inputs are used. An example of zero production with positive amounts of variable inputs

are maintenance activities in large industrial plants that bring production to a halt.

2.4 Integration of Plant Capacity Utilisation and Malmquist Pro-

ductivity Indices

Following De Borger and Kerstens (2000), starting from the basic decomposition of the

output-oriented Malmquist productivity index (10) into technical efficiency change and tech-

nical change one can isolate changes in capacity utilisation from technical efficiency change

in the first component. In particular, incorporating (10) and (17) we can straightforwardly

decompose the technical efficiency change component of the Malmquist productivity index

12



M t,t+1
o (xt, yt, xt+1, yt+1) to obtain:

M t,t+1
o (xt, yt, xt+1, yt+1) =

DF t
o(xtf , y

t)

DF t+1
o (xt+1

f , yt+1)︸ ︷︷ ︸
(i)

·
PCU t

o(x
t, xtf , y

t)

PCU t+1
o (xt+1, xt+1

f , yt+1)︸ ︷︷ ︸
(ii)

√
DF t+1

o (xt+1, yt+1)

DF t
o(xt+1, yt+1)

· DF
t+1
o (xt, yt)

DF t
o(xt, yt)︸ ︷︷ ︸

(iii)

.

(23)

This expression (23) shows that productivity changes are the combined results of three

separate phenomena. The first component (i) measures the change in technical efficiency

assuming a constant degree of capacity utilization. Specifically, it evaluates the change in

technical efficiency relative to a full capacity output technology between periods t and t+ 1.

The second component (ii) captures the change in the degree of plant capacity utilisation

between t and t + 1 while holding the level of technical efficiency constant. The third com-

ponent (iii) is the same as in (10) and reflects pure technical change. When any of the

components is larger (smaller) than unity, this indicates an improvement (deterioration) in

the corresponding component, except for the component indicating changes in plant capacity

utilization. For the latter, a number smaller (larger) than unity indicates an improvement

(deterioration). In other words, this decomposition of the Malmquist productivity index

provides a straightforward procedure for relating productivity growth to the dynamics of

capacity utilization.

Similarly, we can now present a new decomposition of the technical efficiency

change component of the attainable output-oriented Malmquist productivity index

M t,t+1
i (xtf , x

t
v, y

t, xt+1
f , xt+1

v , yt+1) at level λ̄. By incorporating (10) and (20) as follows:

M t,t+1
o (xt, yt, xt+1, yt+1) =

ADF t
o(xtf , y

t, λ̄)

ADF t+1
o (xt+1

f , yt+1, λ̄)︸ ︷︷ ︸
(i)

·
APCU t

o(x
t, xtf , y

t, λ̄)

APCU t+1
o (xt+1, xt+1

f , yt+1, λ̄)︸ ︷︷ ︸
(ii)

√
DF t+1

o (xt+1, yt+1)

DF t
o(xt+1, yt+1)

· DF
t+1
o (xt, yt)

DF t
o(xt, yt)︸ ︷︷ ︸

(iii)

.

(24)

This expression (24) shows that productivity changes are the combined results of three

separate statements. The first part (i) measures the change in technical efficiency assuming

a constant degree of attainable capacity utilization. Specifically, it evaluates the change in

technical efficiency relative to a full attainable capacity output technology between periods

t and t + 1. The second component (ii) captures the change in the degree of attainable

plant capacity utilisation between t and t + 1 while holding the level of technical efficiency
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constant. The third component (iii) is the same as in (10) and (23), and reflects pure technical

change. When any of these components is larger (smaller) than unity, this indicates an

improvement (deterioration) in the corresponding component, except for the component

indicating changes in plant capacity utilization. For the latter, a number smaller (larger) than

unity indicates an improvement (deterioration). In other words, this decomposition of the

Malmquist productivity index provides a straightforward procedure for relating productivity

growth to the dynamics of capacity utilization.

By analogy, we can now present a new decomposition of the technical efficiency change

component of the input-oriented Malmquist productivity indexM t,t+1
i (xtf , x

t
v, y

t, xt+1
f , xt+1

v , yt+1).

By incorporating (15) and (22), one obtains:

M t,t+1
i (xtf , x

t
v, y

t, xt+1
f , xt+1

v , yt+1) =

DF t
i (xtf , x

t
v, 0)

DF t+1
i (xt+1

f , xt+1
v , 0)︸ ︷︷ ︸

(i)

·
PCU t

i (x
t, xtf , y

t)

PCU t+1
i (xt+1, xt+1

f , yt+1)︸ ︷︷ ︸
(ii)

√
DF t+1

i (xt+1
f , xt+1

v , yt+1)

DF t
i (xt+1

f , xt+1
v , yt+1)

·
DF t+1

i (xtf , x
t
v, y

t)

DF t
i (xtf , x

t
v, y

t)︸ ︷︷ ︸
(iii)

.

(25)

This expression (25) shows that productivity changes are the combined results of three

separate phenomena. The first component (i) measures the change in technical efficiency

assuming a constant degree of capacity utilization. Specifically, it evaluates the change in

technical efficiency relative to a full capacity input technology between periods t and t + 1.

The second component (ii) captures the change in the degree of input-oriented plant capac-

ity utilisation between t and t + 1 while holding the level of technical efficiency constant.

The third component (iii) is the same as in (15) and reflects pure technical change. When

any of these components is smaller (larger) than unity, this indicates an improvement (de-

terioration) in the corresponding component, except for the component indicating changes

in plant capacity utilization. For the latter, a number larger (smaller) than unity indicates

an improvement (deterioration). In other words, this decomposition of the Malmquist pro-

ductivity index provides a straightforward procedure for relating productivity growth to the

dynamics of capacity utilization.

Note that for all three Malmquist index decompositions (23), (24), and (25) there is

always the possibility that the frontier change component is infeasible. The incidence of

infeasibilities is determined by the empirical data configurations (see Kerstens and Van de

Woestyne (2014) for more details).
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3 Efficiency and Productivity in Tourism: A Succinct

Review

Tourism has become a major part of some countries economic activities. The notion of pro-

ductivity is complex and multi-faceted to apply in the tourism sector with its mixture of

complementary private and public sector activities (see, e.g., Ritchie and Crouch (2003) for

a review). There is a rather substantial literature using traditional average practice spec-

ifications of technology and limiting itself to partial productivity indicators (for example,

McMahon (1994)). Furthermore, a wide range of methodologies has been used to gauge pro-

ductivity changes. The work by Blake, Sinclair, and Soria (2006) is one example that uses

computable general equilibrium models to evaluate productivity change.

A lot of recent studies have opted for studying the efficiency and productivity based on

best practice frontier technology specifications. While it is fair to say that the deterministic,

nonparametric frontier methods (often denoted as Data Envelopment Analysis models) seem

to be most popular in the tourism field at large, also stochastic frontier analysis is being

used on a regular basis (e.g., Anderson, Fish, Xia, and Michello (1999)), and even Bayesian

approaches are occasionally employed (for instance, Assaf and Tsionas (2018)). Furthermore,

for each of these basic frontier methods, a plethora of methodological refinements is available:

for instance, the basic deterministic, nonparametric frontier methods have been extended into

a metafrontier to envelop groups of frontiers in, e.g., Huang, Ting, Lin, and Lin (2013).

Most existing published efficiency studies in tourism have focused on privately owned

facilities. Popular themes of study have been the efficiency of hotels (e.g., Barros, Peypoch,

and Solonandrasana (2009)), restaurants (for instance, Banker and Morey (1986)), and travel

agencies (e.g., Sellers-Rubio and Nicolau-Gonzálbez (2009)), among others. Alternatively,

some efficiency studies have attempted to evaluate the performance of public sector tourism

infrastructures like museums (e.g., Mairesse and Vanden Eeckaut (2002)), national parks (for

instance, Bosetti and Locatelli (2006)), or theaters (e.g., Last and Wetzel (2010)).

There are also proposals to analyse the efficiency and productivity in the tourism sector at

an aggregate level (e.g., Peypoch and Solonandrasana (2008)). Furthermore, one can mention

some other isolated attempts to judge certain aspects of tourism policies at the macro level.

For example, Botti, Goncalves, and Ratsimbanierana (2012) develop a mean-variance portfo-

lio approach to help destination management organizations minimize variance and maximize

return of inbound tourism. In a similar vein, Botti, Peypoch, Robinot, Solonadrasana, and

Barros (2009) analyse the tourism destination competitiveness of French regions. For in-
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stance, Wober and Fesenmaier (2004) assess the efficiency of advertising budgets of state

tourism offices in the United States. As a final example, Cracolici, Nijkamp, and Rietveld

(2008) evaluate 103 Italian regions for the single year 2001: the single output bed-nights

relative to population is related to proxies for cultural and historical capital, human capital,

and labour inputs.

Focusing on the hotel industry, perhaps the seminal article is Morey and Dittman (1995)

who evaluate the performance of 54 hotels of a national chain in the USA. Since this classic

article a wide variety of efficiency assessments have been made for hotels and hotel chains

in a number of countries. Examples of more recent applications at the national or regional

level include: Huang, Mesak, Hsu, and Qu (2012) for China; Zhang, Botti, and Petit (2016)

for France; Bosetti, Cassinelli, and Lanza (2007) for Italy; Barros (2005) for Portugal; Assaf

and Cvelbar (2011) for Slovenia; Devesa and Peñalver (2013) for Spain; Hathroubi, Peypoch,

and Robinot (2014) for Tunesia; Anderson, Fish, Xia, and Michello (1999) for the US; among

others.

Reviewing the literature, there are a rather limited number of studies focusing on a dy-

namic productivity analysis of hotels over a minimal time period. Since these studies are rel-

evant for our own study, we succinctly summarise key research findings. Sun, Zhang, Zhang,

Ma, and Zhang (2015) evaluate an output-oriented MPI to Chinese regions from 2001 to

2009 and find positive productivity change driven by technological change and some regional

heterogeneity. Barros, Peypoch, and Solonandrasana (2009) apply a Luenberger productivity

indicator to 15 Portugese hotels for the 1998-2004 period and find an positive average pro-

ductivity change that is mainly due to technological change. obtain, among others, a weak

positive productivity change which is mainly driven by positive technological change.

4 Data and Specification

Tourism industry has grown rapidly in recent years. It has even become one of the most

crucial sectors in China. With the booming of tourism, a fierce competition has been imposed

on the hospitality industry. Also, substantial investment have been made in the industry. For

instance, total assets have increased from 653 billion RMB in 2008 to 1 215 billion RMB in

2016. However, the profit versus total asset rate has dropped from 20.75% to 17.35% between

2008 and 2016. Thus, operational efficiency seems to have become a major concern for the

Chinese accommodation industry.

16



In the tourism literature, there is still some argument about whether star-rated hotels

can be regarded as representative of the hospitality industry (see Núñez-Serrano, Turrión,

and Velázquez (2014)). Hence, in this paper our models are applied to the Chinese accommo-

dation industry above a minimal designed size, since this is the most comprehensive range of

data we can find.4 In what follows, we first discuss the specification of the inputs and outputs

in the technology in more detail. Subsequently, we present some descriptive statistics for our

sample.

4.1 Specification: Choice of Inputs and Outputs

One characteristic of the accommodation industry is the multitude of activities. The majority

of hotels provides not only accommodation, but also other supplementary services, such as

catering and entertainment. In our study, we consider that hotels propose three main services:

(i) accommodation activity (rooms), (ii) food and beverage services (meals), and (iii) other

services such as entertainment. Then, following past studies the revenues generated from each

of these three activities are used to reflect the hotels profitability (e.g., Hu, Chiu, Shieh, and

Huang (2010)). As for the inputs, in total four variables are considered. We consider three

variable inputs: (i) the number of employees represents the indispensable core asset that

make the hotels capable to offer all three services; (ii) current assets are used to represent

the hotels capacity to support its daily operation; and (iii) main business costs describe the

hotels main expenses on its business activities. In addition, we consider a single fixed input:

(iv) total fixed asset are used to reflect the hotels support to its development and future

extension.

4.2 Descriptive Statistics

To ensure the homogeneity of the hotel technology in this study, we have selected a sample

of 31 provinces in mainland China with a period spanning from 2008 to 2016. As such, this

represents a unique opportunity to evaluate the whole Chinese accommodation industry over

a rather long period of time. To obtain the data for our inputs and outputs, we make use of

a commercial database: the Wind Database. We have four inputs: (i) number of employees

(in 10 000 persons); (ii) current assets (in CNY 100 million); (iii) main business cost (in

CNY 100 million); and (iv) fixed assets (in CNY 100 million). Obviously, the first tree assets

4According to the National Bureau of Statistics of China, the scope of statistics is the star-rated hotels
and the accommodation industry activity units with annual operating income above at least 2 million yuan.
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are variable inputs, while the fourth input is fixed. We also have three outputs: (v) revenues

from meals (in CNY 100 million); (vi) revenues from rooms (in CNY 100 million); and (vii)

other revenues (in CNY 100 million). As an initial step, some descriptive statistics for inputs

and outputs are presented in Table 1 to contextualize our analysis. One observes a rather

wide range of variation, which is not uncommon for this aggregate level of analysis.

Table 1: Descriptive statistics for Chinese hotels (2008-2016)

Trimmed meana Min. Max.

I1: No. of Employees (10 000 persons) variable input 5.879754 0.4202 30.6915

I2: Current Assets (CNY 100 million) variable input 84.70244 2.2 667.0269

I3: Main Business Cost (CNY 100 million) variable input 34.42739 1 202.1725

I4: Fixed Assets (CNY 100 million) fixed input 124.8953 11.7 696.8

O1: Revenues from Meals (CNY 100 million) output 36.32575 0.8 187.1

O2: Revenues from Rooms (CNY 100 million) output 43.35068 1.3 271.9885

O3: Other Revenues (CNY 100 million) output 10.54255 0.4 91.6624

Note: a10% trimming level.

To depict the evolution of the trimmed mean in Table 1 of all inputs and outputs over

the different years, we use Figures 1a and 1b that trace the inputs and outputs , respectively.

Note that since the first input, i.e., number of employees (No. of Employees), is reported in

terms of 10000 persons, it is plotted against the secondary axis on the right-hand side in

Figure 1a.

(a) Inputs (b) Outputs

Figure 1: Inputs and outputs changes over different periods.

Figure 1a depicts the average evolution of the inputs. Clearly, two input variables have

increased substantially and in a monotonous way: the number of current assets and main costs

have increased by 152% and 92.92% respectively. However, for the number of employees we

notice that after an initial increase there is a substantial 6.8% drop. While for the fixed-assets,
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there is a one year substantial drop and then a continuous increase that almost compensates

this initial drop. This reduction in overall fixed assets is due to a shift in investments towards

high-end hotels in major tourism provinces such as Beijing, Guangdong, Jiangsu, Shanghai,

Shandong and Zhejiang.5 All these numbers show that the Chinese accommodation industry

has tried to rationalize its input usage, revealing that operational efficiency is clearly an

objective for the policy makers involved.

Figure 1b shows the evolution of the three outputs over time. First, we observe that all

three time series increase almost monotonously. Second, it is clearly visible that the shares

of the room services and other services become relatively speaking more important. In fact,

the revenue share of meals decreases slightly.

5 Empirical Results

5.1 Results for Output-Oriented Malmquist Productivity Index

Table 2 reports the basic descriptive statistics for the components of the output-oriented

MPI (23) from 2008 to 2016. In this table, the first eight columns list the results under C,

while the last eight columns report the results under NC. The rows of Table 2 include four

parts. In each part, the first line lists the number of feasible observations for the components

of the output-oriented Malmquist productivity index, while the next four lines list descriptive

statistics: geometric mean, standard deviation, minimum and maximum. Note that the use

of a geometric mean ensures that the multiplicative decomposition holds true exactly. Part

(i) reports basic descriptive statistics for the first component of (23), i.e., the component
DF t

o(xt
f ,y

t)

DF t+1
o (xt+1

f ,yt+1)
which shows the change in technical efficiency (or rather, the change in the

degree of biased plant capacity utilisation) between periods t and t + 1. To facilitate com-

parison between Part (ii) and other parts, we report the basic descriptive statistics for the

inverse of the second component of (23), i.e.,
PCUt+1

o (xt+1,xt+1
f ,yt+1)

PCUt
o(xt,xt

f ,y
t)

that shows the change in

the degree of unbiased plant capacity utilisation between periods t + 1 and t. Finally, part

(iii) shows the third component of (23) that is related to the shift of the production frontier.

Finally, the last part states the output-oriented MPI (23) as the product of its components.

Thus, all components can be interpreted in the same way: a component larger than unity

indicates growth, while a component smaller than unity indicates decline.

5According to the China National Bureau of Statistics, the fixed assets for star-rated hotels has increased
25.45% during the period 2008-2015.
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Table 2: Descriptive statistics for the output-oriented MPI and its components

Convex Nonconvex

2008 2009 2010 2011 2012 2013 2014 2015 2008 2009 2010 2011 2012 2013 2014 2015

2009 2010 2011 2012 2013 2014 2015 2016 2009 2010 2011 2012 2013 2014 2015 2016

Part (i)

Geometric mean 0.980 1.025 0.983 1.041 0.978 0.933 0.974 0.999 1.018 1.008 0.998 0.992 1.012 0.987 0.980 0.976

St. Dev. 0.169 0.086 0.090 0.128 0.116 0.128 0.111 0.131 0.119 0.046 0.050 0.078 0.076 0.072 0.074 0.118

Min 0.639 0.875 0.798 0.809 0.661 0.663 0.743 0.782 0.717 0.893 0.860 0.725 0.916 0.738 0.745 0.681

Max 1.566 1.253 1.237 1.353 1.175 1.426 1.248 1.385 1.440 1.201 1.167 1.212 1.294 1.191 1.232 1.291

Part (ii) (inverse)

Geometric mean 0.982 1.032 0.981 1.041 0.992 0.927 0.970 1.000 1.018 1.008 0.998 0.992 1.012 0.987 0.980 0.976

St. Dev. 0.164 0.093 0.086 0.122 0.105 0.101 0.109 0.126 0.119 0.046 0.050 0.078 0.076 0.072 0.074 0.118

Min 0.655 0.880 0.813 0.809 0.681 0.663 0.728 0.782 0.717 0.893 0.860 0.725 0.916 0.738 0.745 0.681

Max 1.566 1.345 1.198 1.328 1.212 1.243 1.248 1.385 1.440 1.201 1.167 1.212 1.294 1.191 1.232 1.291

Part (iii)

# Infeasible 3 2 2 2 2 2 2 3 3 2 2 3 3 2 2 3

Geometric mean 1.122 1.057 1.020 1.030 0.887 0.977 0.995 1.008 1.166 0.880 1.002 0.953 0.808 0.995 1.009 1.004

St. Dev. 0.077 0.077 0.060 0.113 0.071 0.043 0.045 0.039 0.151 0.165 0.158 0.245 0.152 0.239 0.219 0.144

Min 0.920 0.898 0.881 0.899 0.622 0.878 0.937 0.920 0.999 0.491 0.650 0.621 0.499 0.811 0.522 0.441

Max 1.325 1.243 1.113 1.525 0.997 1.053 1.155 1.094 1.558 1.170 1.226 1.749 1.026 2.163 1.964 1.303

MPI

# Infeasible 3 2 2 2 2 2 2 3 3 2 2 3 3 2 2 3

Geometric mean 1.120 1.049 1.022 1.030 0.873 0.984 1.000 1.006 1.166 0.880 1.002 0.953 0.808 0.995 1.009 1.004

St. Dev. 0.079 0.082 0.066 0.124 0.092 0.068 0.051 0.054 0.151 0.165 0.158 0.245 0.152 0.239 0.219 0.144

Min 0.914 0.898 0.872 0.840 0.622 0.799 0.876 0.914 0.999 0.491 0.650 0.621 0.499 0.811 0.522 0.441

Max 1.325 1.243 1.113 1.525 1.057 1.186 1.155 1.154 1.558 1.170 1.226 1.749 1.026 2.163 1.964 1.303

Analysing the results in Table 2, we can infer the following conclusions. First, on average

the change in the degree of biased plant capacity utilisation (part (i)) is rather close to the

degree of unbiased plant capacity utilisation (part (ii)) for all periods under C. These two

components turn out to be identical under NC. This is due to the fact that the numerator

of plant capacity utilisation is always unity for all observations under NC: DF t
o(xt, yt) = 1.

Given that the biased plant capacity utilisation measures DF t
o(xtf , y

t) ≤ 1 are always smaller

than unity, this leads to this particular result. Second, under C for the periods 2009− 2010

and 2011−2012 the degree of biased and unbiased plant capacity utilisation improve. Under

NC both the degree of biased and unbiased plant capacity utilisation improve in periods

2008−2009, 2009−2010 and 2012−2013. Third, for the average of the frontier change (part

(iii)), we obtain a minimum amount in period 2012 − 2013 and a maximum amount in the

period 2008 − 2009 under both C and NC. Also, the average of part (iii) is larger than the

averages of parts 1 and 2 for all periods, except for periods 2011 − 2012 and 2012 − 2013

under both C and NC and for period 2009− 2010 under NC only.

Note that there are a few computational infeasibilities for the frontier change component:

this problem is identical for C and NC, except for the years 2011 − 2012 and 2012 − 2013

where there is one more infeasibility under NC.

Table 3 reports the Spearman rank correlation coefficients for components of the output-

oriented MPI (23). This table is structured as follows. First, components on the diagonal

(in bold) depict the rank correlation between the C and NC cases. Second, the components
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under the diagonal show the rank correlation between NC components, and the components

above the diagonal show the rank correlation between the C components.

Table 3: Spearman rank correlations for the output-oriented MPI (23) and its components

Part (i) Part (ii)(inverse) Part (iii) MPI

Part (i)
Correlation Coefficient 0.290** 0.950** 0.220** 0.294**

N 248 248 230 230

Part (ii)(inverse)
Correlation Coefficient 1.000** 0.283** 0.201** 0.185**

N 248 248 230 230

Part (iii)
Correlation Coefficient 0.019 0.019 0.518** 0.906**

N 228 228 228 230

MPI
Correlation Coefficient 0.019 0.019 1.000** 0.489**

N 228 228 228 228

The following three conclusions emerge from studying Table 3. First, for the C results,

one can observe that part (iii) and MPI have a very high rank correlation and part (i) and

inverse of part (ii) have the highest rank correlation among all components of the output-

oriented MPI. Second, for the NC results, part (iii) and MPI have a unity rank correlation

while also part (i) and inverse of part (ii) have a unity rank correlation. Third, comparing C

and NC results, the highest rank correlations are for MPI compared to part (iii), while parts

1 and 2 correlate weakly.

5.2 Results for Input-Oriented Malmquist Productivity Index

Table 4 is structured in a way similar to Table 2. This table reports the basic descriptive

statistics for components of the input-oriented MPI (25) from 2008 to 2016. Analogously

to subsection 5.1 , all components can now be interpreted in the same way: a component

smaller than unity indicates growth, while a component larger than unity indicates decline.

Analysing the results in Table 4, one can draw the following conclusions. First, on average

the change in the degree of biased plant capacity utilisation (part (i)) is almost close to

the degree of unbiased plant capacity utilisation (part (ii)) for all periods under C while

they are identical under NC. This is due to the fact that the numerator of input-oriented

plant capacity utilisation is always unity for all observations under NC: DF t
i (xtf , x

t
v, y

t) = 1.

Given that the biased input-oriented plant capacity utilisation measures DF t
i (xtf , x

t
v, 0) ≤

1 are always smaller than unity, this leads to this particular result. Second, only for the

periods 2009−2010 and 2012−2013 the biased and unbiased capacity utilisation indices are

larger than unity, indicating an improvement, while for all other periods these deteriorate

under both C and NC. Third, the average frontier change (part (iii)) is minimal in period

2009− 2010, improves till period 2012− 2013, and then decreases. Also, the average frontier
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Table 4: Descriptive statistics for the input-oriented MPI (25) and its components

Convex Nonconvex

2008 2009 2010 2011 2012 2013 2014 2015 2008 2009 2010 2011 2012 2013 2014 2015

2009 2010 2011 2012 2013 2014 2015 2016 2009 2010 2011 2012 2013 2014 2015 2016

Part (i)

Geometric mean 0.963 1.106 0.959 0.880 1.045 0.945 0.947 0.927 0.963 1.096 0.968 0.880 1.045 0.940 0.949 0.930

St. Dev. 0.123 0.101 0.116 0.147 0.366 0.045 0.069 0.072 0.123 0.123 0.140 0.147 0.366 0.061 0.066 0.072

Min 0.839 0.869 0.776 0.313 0.891 0.844 0.747 0.783 0.839 0.654 0.776 0.313 0.891 0.698 0.747 0.783

Max 1.528 1.300 1.309 1.239 3.028 1.044 1.048 1.221 1.528 1.300 1.416 1.239 3.028 1.044 1.048 1.221

Part (ii) (inverse)

Geometric mean 0.955 1.102 0.960 0.874 1.034 0.953 0.954 0.923 0.963 1.096 0.968 0.880 1.045 0.940 0.949 0.930

St. Dev. 0.127 0.108 0.120 0.156 0.376 0.062 0.076 0.085 0.123 0.123 0.140 0.147 0.366 0.061 0.066 0.072

Min 0.709 0.879 0.766 0.313 0.779 0.817 0.733 0.743 0.839 0.654 0.776 0.313 0.891 0.698 0.747 0.783

Max 1.480 1.460 1.309 1.257 3.028 1.066 1.079 1.221 1.528 1.300 1.416 1.239 3.028 1.044 1.048 1.221

Part (iii)

# Infeasible 26 12 11 13 13 10 7 7 30 29 29 29 28 29 28 25

Geometric mean 0.987 0.963 0.977 0.986 1.183 1.055 1.017 1.000 1.078 0.853 1.003 1.016 1.061 1.055 1.076 1.036

St. Dev. 0.070 0.082 0.057 0.118 0.148 0.095 0.082 0.081 0.000 0.268 0.066 0.110 0.047 0.090 0.110 0.056

Min 0.899 0.775 0.847 0.636 1.009 0.953 0.745 0.821 1.078 0.685 0.957 0.941 1.012 0.993 0.973 0.964

Max 1.086 1.103 1.120 1.199 1.702 1.392 1.180 1.237 1.078 1.064 1.051 1.097 1.106 1.120 1.193 1.115

MPI

# Infeasible 26 12 11 13 13 10 7 7 30 29 29 29 28 29 28 25

Geometric mean 0.984 0.969 0.976 0.987 1.208 1.050 1.007 1.006 1.078 0.853 1.003 1.016 1.061 1.055 1.076 1.036

St. Dev. 0.069 0.092 0.067 0.134 0.177 0.111 0.091 0.090 0.000 0.268 0.066 0.110 0.047 0.090 0.110 0.056

Min 0.899 0.800 0.864 0.636 0.910 0.911 0.745 0.821 1.078 0.685 0.957 0.941 1.012 0.993 0.973 0.964

Max 1.092 1.106 1.136 1.208 1.702 1.392 1.181 1.237 1.078 1.064 1.051 1.097 1.106 1.120 1.193 1.115

change is larger than the average changes in parts 1 and 2 for all periods, except for periods

2009− 2010 under C and NC.

Note that under NC the number of computational infeasibilities for the frontier change

is much higher than under C. While the NC frontier technology leads to a closer fit with

the data and results in a more precise measurement of local technical change, this precision

comes at the cost of an increased possibility of infeasibilities (see also Kerstens and Van de

Woestyne (2014)).

Table 5 reports the Spearman rank correlation coefficients for component of the input-

oriented MPI (25). This table is structured in a similar way to Table 3. First, components

on the diagonal (in bold) depict the rank correlation between the C and NC cases. Second,

the components under the diagonal show the rank correlation between NC components, and

the components above the diagonal show the rank correlation between the C components.

Table 5: Spearman rank correlations for the input-oriented MPI (25) and its components

Part (i) Part (ii) (inverse) Part (iii) MPI

Part (i)
Correlation Coefficient 0.179* 0.901** 0.238** 0.179*

N 149 248 149 149

Part (ii) (inverse)
Correlation Coefficient 1.000** 0.892** 0.158 0.086

N 248 248 149 149

Part (iii)
Correlation Coefficient -0.096 0.096 0.442* 0.819**

N 21 21 21 149

MPI
Correlation Coefficient -0.096 0.096 1.000** 0.181

N 21 21 21 21
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The following three conclusions emerge from studying Table 5. First, for the C results,

one can observe that part (iii) and MPI have a very high rank correlation and part (i) and

inverse of part (ii) have the highest rank correlation among all components of the input-

oriented MPI. Second, for the NC results, part (iii) and the input-oriented MPI have a unity

rank correlation while also part (i) and inverse of part (ii) have a unity rank correlation.

Third, comparing C and NC results, the highest rank correlations are for Part (ii) followed

by part (iii) and then the other components.

5.3 Comparing Output- and Input-Oriented Malmquist Produc-

tivity Indices

To compare output- and input-oriented Malmquist productivity indices, one can deduce the

following conclusions. First, the output-oriented MPI moves inverse to the input-oriented

MPI in all periods except for the two last ones under C. Thus, there is agreement on the

same pattern of growth and decline, except for the two last periods under C. This inverse

relationship is somewhat mitigated under NC: only in the 3 periods 2011− 2012 till 2013−
2014 this inverse relation holds true. Thus, there is less agreement on patterns of growth and

decline under NC. Thus, overall output- and input-oriented MPI do not necessarily measure

the same things. Second, the frontier change component (part (iii)) moves in an inverse way

when comparing both MPI indices under C for almost all periods except the last one, while

it moves in an inverse way only for the periods 2011−2012 till 2013−2014 under NC. Thus,

there is less agreement on patterns of frontier change under NC. Overall, output- and input-

oriented frontier change do not necessarily measure the same things all the time. Third, the

plant capacity utilisation change (part (ii)) moves in an inverse way when comparing both

MPI indices under C for the periods 2011 − 2012 and 2012 − 2013; while it moves in an

inverse way only for the periods 2008 − 2009 under NC. Thus, there is less agreement on

patterns of plant capacity utilisation change under NC. Thus, output- and input-oriented

plant capacity utilisation change are not necessarily measuring things exactly the same all

the time.

Table 6 reports the Spearman rank correlation coefficients among the components of the

output- and input-oriented MPI under C and NC separately. To calculate this Spearman

rank correlation coefficients, we ensure that all components of the input-oriented MPI (15)

and output-oriented MPI (10) have the same interpretation. Therefore, we invert the second

part of the output-oriented MPI (10) such that all output-oriented components have the same

interpretation. Furthermore, we invert the input-oriented MPI (15) as well as its first and
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Table 6: Spearman rank correlations among components of the output- and input-oriented
MPI (23) and (25)

Part (i) Part (ii) Part (iii) MPI

Convex
Correlation Coefficient -0.113 -0.088 0.945** 0.952**

N 248 248 141 141

Non convex
Correlation Coefficient -0.092 -0.092 0.044 0.044

N 248 248 20 20

third components such that these are in line with the second component. Thus, all output-

and input-oriented MPI and components now are interpreted as follows: when any of these

components is larger (smaller) than unity, this indicates an improvement (deterioration) in

the corresponding component.

The following two conclusions emerge from studying Table 6. First, for the C results,

one can observe that the highest rank correlations are for output- and input-oriented MPI

followed by part (iii). Second, for the NC results, all components of the output- and input-

oriented MPI experience very low rank correlations.

6 Conclusions

Starting from the seminal theoretical proposal to include an output-oriented plant capacity

utilisation measure within an output-oriented MPI (De Borger and Kerstens (2000)), this

contribution has made two new proposals: the first is to include an attainable output-oriented

plant capacity utilisation measure within the output-oriented MPI, and the second is to

integrate a recent input-oriented plant capacity utilisation measure within the input-oriented

MPI.

Our empirical application on a balanced panel of Chinese hotels has served to empir-

ically illustrate the above extended decompositions of the MPI. The final comparison of

output- and input-oriented MPI has shown that there is some overall agreement on the same

patterns of growth and decline, but that there also exist some substantial exceptions The

same conclusions were found for the frontier change component (part (iii)), and for the plant

capacity utilisation change (part (ii)). Overall, output- and input-oriented MPI as well as

their decomposition partially measure similar things, but these MPI and components also

measure things differently in their own right.

Avenues for eventual future research include the following. First, one could try to combine
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a graph-based Malmquist productivity index (see Zof́ıo and Lovell (2001)) with a graph-based

plant capacity notion (see Kerstens, Sadeghi, and Van de Woestyne (2020)). Furthermore,

it may be attractive to try to develop suitable plant capacity indicators that could be used

to extend the existing decompositions of the Luenberger productivity indicator.
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Färe, R., S. Grosskopf, and P. Roos (1996): “On Two Definitions of Productivity,”

Economics Letters, 53(3), 269–274.
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