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Abstract

We analyse the role of new weak and strong commensurability conditions on effi-
ciency measures and especially on productivity measurement. If strong commensurabil-
ity fails, then a productivity index (indicator) may exhibit a homogeneity bias yielding
inconsistent and contradictory results. In particular, we show that the Luenberger
productivity indicator (LPI) is sensitive to proportional changes in the input-output
quantities, while the Malmquist productivity index is not affected by such changes.
This is due to the homogeneity degree of the directional distance function under con-
stant returns to scale. In particular, the directional distance function only satisfies
the weak commensurability axiom in general. However, if the directional distance
function is a diagonally homogeneous function of the technology, then the directional
distance function satisfies strong commensurability. This explains why the direction
of an arithmetic mean of the observed data works well. Numerical examples and an
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1 Introduction

The purpose of this contribution is to point out some particular properties of a recent gener-

alization of Shephard (1970) distance function, known as the directional distance function.

Distance functions are employed in consumption and production theory. Luenberger (1992

a,b) introduces the benefit function as a directional representation of preferences, which gen-

eralizes Shephard’s (1970) input distance function defined in terms of the utility function.

Luenberger (1995) introduces the shortage function as a transposition of the benefit function

in a production context. Chambers, Chung and Färe (1996) relabel this same function as

a directional distance function and since then it is commonly known by this name. The

directional distance function generalizes existing distance functions by accounting for both

input reductions and output expansions and it is dual to the profit function (see Chambers,

Chung and Färe (1998) for details). Furthermore, the directional distance function offers

flexibility due to the variety of direction vectors it allows for (see, e.g., Chambers, Färe and

Grosskopf (1996)). Chambers, Chung and Färe (1996) analyze the benefit function as well

as the directional distance function in detail and extend the composition rules of McFadden

(1978) to these new concepts.

These distance functions have been extensively used in the economic literature to mea-

sure productivity. Based upon Shephardian distance functions as general representations

of technology, discrete-time Malmquist input- and output-oriented productivity indexes -

introduced by Caves, Christensen and Diewert (1982)- have been made empirically tractable

by Färe et al. (1995). Meanwhile, more general primal productivity indicators have been

proposed. Chambers and Pope (1996) define a Luenberger productivity indicator in terms

of differences between directional distance functions (see also Chambers (2002)). Note that

traditional “indexes” denote productivity measures based on ratios, while “indicators” use

differences (see Diewert (2005) for a detailed discussion).

Russell (1988) introduces an important property that any technical efficiency measure

should satisfy: the commensurability condition. This means that an efficiency measure
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should be invariant with respect to any change in the units of measurement. This condition

is very natural and most of the existing technical efficiency measures (or distance functions)

satisfy it. This is the case for all the Shephardian measures as well as the Färe and Lovell

(1978) measure, perhaps the first non-radial measure in the literature.

Many of the new efficiency measures proposed in the literature involve some parameters

in their definitions. This is the case of the measures proposed by Chambers, Chung and Färe

(1996), Chavas and Cox (1999), Mehdiloozad, Sahoo and Roshdi (2014), and Briec (1999),

among others. Therefore, the notion of commensurability proposed by Russell (1988) must be

modified to take into account these generalized structures. A first purpose of this contribution

is then to generalise the commensurability notion to account for efficiency measures involving

some parameters.

The second purpose of this contribution is to show that that there may exist some prob-

lems for measuring productivity with a measure that fails to satisfy the commensurability

property independently of the parameters it is depending on. For instance, the Luenberger

productivity indicator that is related to the axiomatic properties of the directional distance

function may yield some irrelevant and contradictory results depending on the direction

that is chosen. Briec, Dervaux and Leleu (2003) show that the directional distance function

satisfies a special version of the commensurability condition when the direction g is “pre-

assigned”. Hence, the Russell (1988) commensurability condition cannot be applied to the

directional distance function. To overcome this problem, we introduce a slight modification

of the commensurability condition and we distinguish between two notions called weak and

strong commensurability, respectively. Strong commensurability extends the original Rus-

sell (1988) commensurability notion to the case where distance functions involve specific

parameters. It is shown that the directional distance function satisfies the former but fails

to satisfy the latter. However, most of the existing efficiency measures do satisfy the strong

version of the commensurability condition.

We apply the formalism suggested by Russell (1988) that associates an efficiency score
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to any pair of production vector and production technology. In general, a distance function

(efficiency measure) is defined given a production technology. If the direction is a diagonally

homogeneous function depending on the technology, then a slightly modified formulation

of the directional distance function satisfies the strong commensurability condition. This

explains why it is useful to consider the direction of an arithmetic mean of the observed data

in empirical studies, as already suggested in Chambers, Färe and Grosskopf (1996: p. 185

and 190).

More importantly, under a constant returns to scale assumption, an efficiency measure

that does not satisfy the strong commensurability axiom cannot be homogenous of degree 0.

In such a case, one can show the existence of a productivity bias when a firm is proportionally

re-scaled. In particular, the directional distance function is homogenous of degree 1. This

property has some important implications concerning the Luenberger productivity indicator

when the direction g is pre-assigned. In such a case, the Luenberger productivity indicator

may yield some contradictory results, while the Malmquist productivity index provides very

intuitive results in any case. However, one should stress the fact that these properties are

intimately related to the returns to scale structure of the production technology. If the

production set satisfies a graph translation homotheticity property, then the Luenberger

productivity indicator does not exhibit any bias when a firm is translated.

Our empirical study shows that when the direction is proportional under a constant

returns to scale assumption, then the results are consistent with those obtained in the

Malmquist productivity index case. Some irrelevant and contradictory results appear when

the direction is fixed independently of the technology. Interestingly, when the direction is

fixed as the arithmetic mean of all the observed data, then the results are comparable to

those obtained in the proportional case, with some minor differences. This confirms the

interest of the latter specification as already proposed by Chambers, Färe and Grosskopf

(1996).

To develop these arguments, this contribution is structured as follows. Section 2 develops
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the basic definitions of the technology and the various distance functions and efficiency

measures. It provides two definitions of the commensurability property refining the axiom

proposed by Russell (1988). Section 3 analyzes the implication of the commensurability

condition on the consistency of productivity measurement. This we do by introducing a

suitable notion of homogeneity bias. Section 3 provides a numerical example reporting

some contradiction and irrelevant results. A final section proposes an empirical application

comparing the result in the proportional and directional cases. We end with a concluding

section 5.

2 Technology and Efficiency Measures: Definitions

2.1 Technology: Definition and Assumptions

A production technology describes how inputs x = (x1, ..., xm) ∈ Rm
+ are transformed into

outputs y = (y1, ..., yn) ∈ Rn
+. The production possibility set T is the set of all feasible

inputs and outputs vectors and it is defined as follows:

T =
{

(x, y) ∈ Rm+n
+ : x can produce y

}
. (2.1)

We suppose that the technology satisfies a series of usual assumptions or axioms:

(A.1) (0, 0) ∈ T, (0, y) ∈ T ⇒ y = 0 (i.e., no free lunch);

(A.2) For all x ∈ Rm
+ the subset A(x) = {(u, y) ∈ T : u ≤ x} of dominating observations is

bounded (i.e., infinite outputs cannot be obtained from a finite input vector);

(A.3) T is closed (i.e., closedness); and

(A.4) ∀(x, y) ∈ T , (u, v) ∈ Rm+n
+ and (x,−y) ≤ (u,−v) ⇒ (u, v) ∈ T (i.e., strong input and

output disposability).

(A.5) ∀(x, y) ∈ T , and all λ > 0 (λx, λy) ∈ T (i.e., constant returns to scale assumption).
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The reader can consult Färe, Grosskopf and Lovell (1994) for further comments on these

axioms.

2.2 Radial and Directional Efficiency Measures

Distance functions fully characterise technology and for these reason have become standard

tools for estimating efficiency and productivity relative to production frontiers. Let T be

the class of all the production technologies satisfying the axioms (A.1)− (A.4).

The Farrell (1957) radial input efficiency measure Ei is the inverse of the Shephard input

distance function. It is the map Ein : Rm+n
+ × T −→ R+ ∪ {∞} defined as

Ein(x, y, T ) = inf
λ
{λ > 0 : (λx, y) ∈ T}. (2.2)

The Farrell (1957) radial output efficiency measure Eout : Rm+n
+ ×T −→ R+ ∪{∞} searches

for the maximum expansion of an output vector by a scalar θ to the production frontier, i.e.:

Ein(x, y, T ) = sup
θ
{θ > 0 : (x, θy) ∈ T}. (2.3)

The directional distance function is a map
−→
D : Rm+n

+ ×Rm+n
+ ×T −→ R∪{∞,∞} defined

by:

−→
D (x, y, h, k, T ) = sup

δ∈R
{δ : (x− δh, y + δk) ∈ T}. (2.4)

It looks for a simultaneous input and output variation in the direction of a pre-assigned vec-

tor g = (h, k) ∈ Rm+n
+ compatible with the technology (see Chambers, Färe and Grosskopf

(1996)). The directional distance function is a special case of the shortage function (Luen-

berger (1992)). It is also closely related to the translation function as developed in Blackorby

and Donaldson (1980). Both functions measure the distance in a pre-assigned direction to

the boundary of technology.

Färe, Grosskopf and Margaritis (2008: p. 533-534) list a variety of choices for the direc-
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tion vector. This question on the choice of direction vector has led to a rather substantial

amount of literature proposing a variety of directions and also trying to determine some op-

timal type of direction vector in an endogenous way (see, for instance, Atkinson and Tsionas

(2016), Daraio and Simar (2016), Layer et al. (2020) for representative examples). It is clear

that the choice of direction vector affects the value of the directional distance function as

well as its relative ranking: see, e.g., Kerstens, Mounir and Van de Woestyne (2012) for an

empirical illustration.

Finally, the proportional distance function is introduced by Briec (1997). In the following

we consider the Hadamard product defined for all γ, z ∈ Rd by

γ � z = (γ1z1, · · · , γdzd).

The proportional distance function is the map D∝ : Rm+n
+ × [0, 1]m+n×T −→ R∪{−∞,∞}

defined by

D∝(x, y, α, β, T ) = sup
δ∈R
{δ : (x− α� x, y + β � y) ∈ T}. (2.5)

A special case corresponds to the situation where inputs and outputs are equiproportionaly

modified. This implies that α = 11m and β = 11n. In such a case, we have:

D∝T (x, y, T ) := D∝T (x, y; 11m, 11n) = max
{
δ :
(
(1− δ)x, (1 + δ)y

)
∈ T

}
. (2.6)

It is generally stated in the literature that this proportional distance function (2.5) is

a special case of of the directional distance function (2.4) taking the direction g = (−α �

x, β � y). Thus, we have:

−→
D(x, y;−α� x, β � y, T ) = D∝(x, y, α, β, T ). (2.7)

However, note that in such a case g is not pre-assigned since it depends on x and y (see

Russell and Schworm (2011: p. 146) for details).
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In the following we establish that while the directional distance function (2.4) is homoge-

nous of degree 1 under a constant returns to scale assumption, the proportional distance

function (2.5) is homogenous of degree 0. The equiproportionate case (α = 11m and β = 11n)

is established by Boussemart et al. (2003) who show relationships between the radial and

the proportional measures. This confirms that these distance functions are slightly different.

Briec, Dervaux and Leleu (2003: Prop. 1) establish that under a constant returns to

scale assumption, the directional distance function is homogeneous of degree 1. Thus, if the

technology satisfies a constant returns to scale assumption, then:

−→
D(λx, λy, g, T ) = λ

−→
D(x, y, g, T ) ∀λ ≥ 0. (2.8)

This result means that proportionally multiplying inputs and outputs by a scalar implies

an equivalent proportional multiplication of the directional distance function. It is shown

further that this property has some important implications for the Luenberger productivity

indicator.

An overview of the axiomatic approach to input efficiency measures is found in Russell

and Schworm (2009). A survey of efficiency measures in the graph of technology or in the

full 〈input, output〉 space, like the directional and proportional distance functions, is found

in Russell and Schworm (2011).

Note that in the remainder of this contribution, we use the simplified notations: z =

(x, y), g = (h, k) and γ = (α, β).

2.3 Weak and Strong Commensurability of Efficiency Measures

This subsection revisits the commensurability condition proposed by Russell (1988: p. 21).1

In particular, we propose a new distinction between two notions of strong and weak com-

mensurability. This distinctions is necessary since the introductions of efficiency measures

1The surveys of Russell and Schworm (2009, 2011) mention the commensurability condition, but provide
limited analysis.
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depending on some parameters. This is obviously the case of both the directional and pro-

portional distance functions.

We first consider a set of parameters Θ ⊂ Rd.

Definition 2.1 Let S be a collection of subsets of Rd and let Θ be a subset of Rd. Let

f : Rd ×Θ× S −→ R ∪ {−∞,+∞}. We say that f satisfies:

(a) A strong commensurability condition on S if for all d × d positive diagonal matrices L

we have:

f(Lz, θ, LS) = f(z, θ, S).

(b) A weak commensurability condition on S if for all d× d positive diagonal matrices L we

have:

f(Lz, Lθ, LS) = f(z, Lθ, LS).

In the first case, one can see that the map f is invariant with respect to any change in

the units of measurement and independent of the parameter θ. This definition extends

the commensurability condition of Russell (1988) to the broad class of efficiency measures

involving additional parameters. This is not true in the second case, where solely the units

of measurement of the parameter change.

In the following, we show that the directional distance function satisfies the weak axiom

of commensurability, but fails to satisfy the strong axiom. Both the radial efficiency measure

and the proportional distance function do satisfy the strong commensurability axiom. It is

also shown that the proportional distance function is homogenous of degree 0. Recall that

the directional distance function is homogenous of degree 1.

In the next statement, we prove that the strong commensurability axiom implies homo-

geneity of degree 0 under a constant returns to scale assumption on technology.

Proposition 2.2 Let C be the collection of all the conical subsets of Rd. If f : Rm+n ×Θ×

C −→ R satisfies the strong commensurability condition, then it is homogenous of of degree

0 in its first argument.
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Proof See Appendix A.

Proposition 2.3 The proportional distance function (2.5) satisfies the strong commensu-

rability axiom. The directional distance function (2.4) satisfies the weak commensurability

axiom.

Proof See Appendix A.

Proposition 2.2 implies that a map that is not homogenous of degree 0 under a constant

returns to scale technology does not satisfy the strong commensurability condition.

Proposition 2.4 The directional distance function (2.4) does not satisfy the strong com-

mensurability axiom under constant returns to scale (A.5).

Proof See Appendix A.

Proposition 2.5 If the production technology satisfies a constant returns to scale assump-

tion (A.5), then the proportional distance function (2.5) is homogenous of degree 0.

Proof See Appendix A.

In the following, we suggest a slight change in the traditional definition of the directional

distance function. Let g : T −→ Rm+n
+ be a vector valued map defined as: g : T 7→(

h(T ), k(T )
)
. Let F be the set of all the maps defined from T to Rm+n

+ . The map
−→
D ] :

Rm+n
+ ×F × T defined as:

−→
D ](x, y; g, T ) = sup

{
δ :
(
x− δh(T ), y + δk(T )

)
∈ T

}
(2.9)
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is called the adjusted directional distance function. Equivalently, we have:

−→
D ](x, y; g, T ) =

−→
D(x, y; g(T ), T ) (2.10)

Notice that this definition does not involve any fixed parameter: g is just assumed to be a

functional defined over T .

In the following, it is shown that one can provide a sufficient condition for the strong

commensurability of
−→
D ](x, y; g, T ). This is done by defining a suitable notion of a diagonally

homogenous map. A map g : T −→ Rm+n
+ is diagonally homogenous if for all definite positive

diagonal matrix g(LT ) = Lg(T ). We come now to the following sufficient condition.

Proposition 2.6 If g is diagonally homogenous, then the adjusted directional distance func-

tion is strongly commensurable.

Proof See Appendix A.

It is not clear that the diagonal homogeneity of g is a necessary condition for strong com-

mensurability. For example, the proportional distance function is strongly commensurable

though the direction is not fixed. This condition, however, provides a technical argument

to the specification proposed by Chambers, Färe and Grosskopf (1996) in a nonparametric

context. Suppose that A = {(x1, y1), (x2, y2), ..., (x`, y`)} is a set of ` observed production

vectors. From the non-parametric specification proposed by Charnes, Cooper and Rhodes

(1978) a constant returns to scale production technology can be reconstructed from the

observed data as follows:

TA =
{

(x, y) ∈ Rm+n
+ : x ≥

∑
k∈[`]

tkxk, y ≤
∑
k∈[`]

tkyk, t ∈ R`
+

}
. (2.11)

Taking the direction

g =
(1

`

∑
k∈[`]

xk,
1

`

∑
k∈[`]

yk

)
, (2.12)
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the directional distance function is independent of any change in the units of measurements.

This property can be related to Proposition 2.6. Let us denote P = 〈Rm+n
+ 〉 the set of all

the finite parts of Rm+n
+ . Let us consider the collection of production technologies:

Tc =
{
TA : A ∈ P〉

}
(2.13)

Actually, note that two distinct data sets may yield the same technology. To overcome

such a problem, let us introduce the equivalence relation A ∼ A′ ⇐⇒ TA = TA′ and

let P̃ = P\ ∼ the set of the corresponding equivalence classes, that is the quotient set.

Let Ψ : Tc −→ P̃ which associates to any T ∈ Tc some Ã ∈ P such that TA = T . By

construction, for all positive diagonal matrices L, we have TLA = LTA and this implies that

Ψ(LTA) = Ψ(TLA) = LÃ = LΨ(TA). It follows that Ψ(LT ) = LΨ(T ). Now, let us consider

the map m] : P̃ −→ Rm+n
+ that associates to any equivalence class the arithmetic mean of

some arbitrary element of this equivalence class. Namely, m](̃A) = 1
|A]|
∑

a∈A] a where for any

Ã, A] is an arbitrary element of Ã. We retrieve the approach proposed by Chambers, Färe

and Grosskopf (1996) and Färe, Grosskopf and Margaritis (2008) by defining the function

g : Tc −→ Rn
+ as:

g(T ) = m]
(
Ψ(T )

)
. (2.14)

Since Ψ(LT ) = LΨ(T ) and m](LΨ(T )) = Lm](Ψ(T )), we deduce that g(LT ) = Lg(T ).

Suppose that A is a subset of Rm+n
++ , one could assume that the direction is a generalized

mean of the observed production vectors with for all (i, j) ∈ [m]× [n]

hi =
(∑
k∈`

xk,i
αi
) 1
αi and kj =

(∑
k∈`

yk,j
βj
) 1
βj (2.15)

and αi, βj 6= 0 for all i, j. For example, if αi, βj −→ ∞ and αi, βj −→ −∞, then we have

the limit case:

g =
( ∨
k∈[`]

xk,
∨
k∈[`]

yk
)

and g =
( ∧
k∈[`]

xk,
∧
k∈[`]

yk
)
, (2.16)
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where ∨ and ∧ are the sup and inf lattice operator, respectively. Note that these results

do no contradict Proposition 2.4. In Proposition 2.4 and 2.2, the parameters (direction) are

assumed to be independent of T .

3 Productivity Indices and Indicators: Implications of

Commensurability

Recently, quite a bit of attention has been devoted to so-called theoretical productivity in-

dices (see Russell (2018)). A theoretical productivity index is defined on the assumption that

the technology is known and non-stochastic, but unspecified and thus most often approxi-

mated by a nonparametric specification of technology using some form of efficiency measure.

The foundational concepts are on the one hand the Malmquist productivity index (Caves,

Christensen and Diewert (1982)) and on the other hand the Hicks-Moorsteen productivity

index (Bjurek (1996)). While the Malmquist productivity index is fundamentally a measure

of the shift of the production frontier, the Hicks-Moorsteen productivity index is a ratio of

an aggregate output index over an aggregate input index. Thus, the Malmquist productiv-

ity index measures local technical change (i.e., the local shifts in the production frontier),

while the Hicks-Moorsteen productivity index has a Total factor Productivity (TFP) inter-

pretation. Kerstens and Van de Woestyne (2014) empirically illustrate that the Malmquist

productivity index offers a poor approximation to the Hicks-Moorsteen TFP index in terms

of the resulting distributions and that these problems persist under constant as well as under

variable returns to scale.

Chambers, Färe and Grosskopf (1996) introduce the Luenberger productivity indicator

as a difference-based indicator of directional distance functions (see Chambers (2002)). This

generalizes the Malmquist productivity index that is most often either input- or output-

oriented in the graph orientation. Briec and Kerstens (2004) define a Luenberger-Hicks-

Moorsteen TFP indicator using input- or output-oriented directional distance functions.
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Luenberger productivity indicators and Luenberger-Hicks-Moorsteen productivity indicators

are also empirically quite different under constant as well as under variable returns to scale

(see Kerstens, Shen, and Van de Woestyne (2018)).

Notice that, while these productivity indices and indicators do not require constant re-

turns to scale specifications of technologies, the large majority of empirical applications still

imposes such a restrictive assumption.2

3.1 Productivity Indices and Indicators: Definitions

At each time period let us denote Tt the production technology at the time period t and

suppose that Tt satisfies axioms (A.1) − (A.4). Productivity indices and indicators aim

to evaluate productivity changes between discrete time periods and can be decomposed to

analyse the origins in the productivity changes.

The Malmquist productivity index –introduced by Caves, Christensen and Diewert (1982)–

can be based on the radial output measure (2.3). In particular, Caves, Christensen and

Diewert (1982) suggest using a geometric mean between a period t Malmquist productivity

index Mout
t (zt, zt+1, Tt):

Mout
t (zt, zt+1, Tt) =

Eout(zt, Tt)

Eout(zt+1, Tt)
(3.1)

and a period t+ 1 Malmquist productivity index Mout
t+1(zt, zt+1, Tt+1):

Mout
t+1(zt, zt+1, Tt+1) =

Eout(zt, Tt+1)

Eout(zt+1, Tt+1)
. (3.2)

Similarly, Färe et al. (1995) define the output-oriented Malmquist productivity index as the

2We provide some qualitative evidence for this claim. A Google Scholar search on 2 December 2020
yields about 829 results for the search term “Luenberger productivity indicator”. This same search term in
conjunction with the search term “constant returns to scale” obtains 375 hits, while this same search term
in conjunction with the search term “variable returns to scale” leads to 329 results.
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geometric mean of (3.1) and (3.2) as follows:

Mout(zt, zt+1, Tt, Tt+1) =

[
Eout(zt+1, Tt)

Eout(zt, Tt)

Eout(zt+1, Tt+1)

Eout(zt, Tt+1)

]1/2
. (3.3)

This productivity index allows to analyze productivity changes between different periods

and it can be multiplicatively decomposed into efficiency changes (EC) and technological

changes (TC):

EC =
Eout(xt, yt, Tt)

Eout(xt+1, yt+1, Tt+1)
, (3.4)

and

TC =
(Eout(zt+1, Tt+1)

Eout(zt+1, Tt)

Eout(zt, Tt+1)

Eout(zt, Tt)

) 1
2
, (3.5)

where EC represents the variation in efficiency between two periods and concerns the relative

efficiency in the management of input and output quantities over time, while TC captures

technological changes (i.e., productivity growth not explained by changes in input and output

quantities).

The Luenberger productivity indicator based on the directional distance function (2.4)

is defined as follows:

L(zt, zt+1, g, Tt, Tt+1) =
1

2

[−→
D(zt, g, Tt+1)−

−→
D(zt+1, g, Tt+1)

+
−→
D(zt, g, Tt)−

−→
D(zt+1, g, Tt)

]
. (3.6)

This Luenberger productivity indicator can be additively decomposed into efficiency changes

(EC) and technological changes (TC):

ECt =
−→
D(zt, g, Tt)−

−→
D(zt+1, g, Tt+1) (3.7)
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and

TCt =
1

2

[−→
D(zt+1, g, Tt+1)−

−→
D(zt+1, g, Tt) +

−→
D(zt, g, Tt+1)−

−→
D(zt, g, Tt)

]
. (3.8)

where the interpretation follows the one provided for the Malmquist productivity index (3.3).

Paralleling this definition, Boussemart et al. (2003) define a proportional Luenberger

indicator based on the proportional directional distance function (2.5) as:

L∝(zt, zt+1, γ) =
1

2

[
D∝(zt, γ, Tt+1)−D∝(zt+1, γ, Tt+1)

+D(zt, γ, Tt)−D∝(zt+1, γ, Tt)
]
. (3.9)

The decomposition defined in (3.7) and (3.8) is applicable to this proportional case as well.

Note that recently Pastor, Lovell and Aparicio (2020) manage to transgress the distinction

between technology and TFP indices outlined above. These authors define a new graph

oriented inefficiency measure based on the proportional distance function under constant

returns to scale and use it to define a new Malmquist productivity index that has a TFP

interpretation.

3.2 Productivity Indices and Indicators: Homogeneity Bias

This subsection analyzes the impact of the commensurability condition on productivity mea-

surement. We define a suitable notion of homogeneity bias for productivity indices and in-

dicators. We also establish a relation between such a notion and the commensurability of

the efficiency measure upon which a productivity index or indicator is based.

Definition 3.1 Let Θ be a subset of Rd. Let φ : Rd × Rd ×Θ× T × T −→ R ∪ {−∞,∞}.

Let Tt, Tt+1 ∈ T . For all, (zt, zt+1, θ) ∈ Tt × Tt+1 ×Θ and all λ > 0:

Bt(zt, zt+1, φ, θ, λ) = φ(zt, zt+1, θ, Tt, Tt+1)− φ(λzt, zt+1, θ, Tt, Tt+1)

15



is called the homogeneity bias of φ in period t;

Bt+1(zt, zt+1, φ, θ, λ) = φ(zt, zt+1, θ, Tt, Tt+1)− φ(zt, λzt+1, θ, Tt, Tt+1)

is called the homogeneity bias of φ in period t+ 1.

The homogeneity bias measures the change of a productivity index or indicator when a

firm is proportionally re-scaled at the time periods t and t+1. Since productivity is essentially

based upon the ratio between the outputs and the inputs involved in the production process,

one could expect that a productivity index or indicator should be invariant with respect to

such a re-scaling when the technology satisfies a constant returns to scale assumption.

In the case of the Luenberger productivity indicator based on the directional distance

function (2.4) the homogeneity bias in t is then defined as:

Bt(zt, zt+1, L, g, λ) = L(zt, zt+1, g, , Tt, Tt+1)− L(λzt, zt+1, g, , Tt, Tt+1); (3.10)

and the same homogeneity bias at the time period t+ 1 is defined as:

Bt+1(zt, zt+1, L, g, λ) = L(zt, zt+1, g, , Tt, Tt+1)− L(zt, λzt+1, g, , Tt, Tt+1). (3.11)

In the case of the proportional Luenberger productivity indicator based on the propor-

tional directional distance function (2.5) we have the homogeneity bias in t:

Bt(zt, zt+1, L
∝, γ) = L∝(zt, zt+1, γ, Tt, Tt+1)− L∝(λzt, zt+1, γ, Tt, Tt+1) (3.12)

and the homogeneity bias in t+ 1:

Bt+1(zt, zt+1, L
∝, γ) = L∝(zt, zt+1, γ, Tt, Tt+1)− L∝(zt, λzt+1, γ, Tt, Tt+1). (3.13)

Finally, the output-oriented Malmquist productivity index is independent of any param-
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eter. Hence, for all θ ∈ Rd, we have the homogeneity bias in t:

Bt(zt, zt+1,M
out, θ, λ) = Mout(zt, zt+1, Tt, Tt+1)−Mout(λzt, zt+1Tt, Tt+1), (3.14)

and the homogeneity bias in t+ 1:

Bt+1(zt, zt+1,M
out, θ, λ) = Mout(zt, zt+1, Tt, Tt+1)−Mout(zt, λzt+1Tt, Tt+1). (3.15)

The next result shows that given any efficiency measure satisfying the strong commen-

surability axiom, the corresponding productivity index or indicator has a null homogeneity

bias.

Proposition 3.2 Let Θ be a subset of Rd. Let φ : Rd×Rd×Θ×T ×T −→ R∪{−∞,∞}.

Let Tt, Tt+1 ∈ T and assume that Tt and Tt+1 satisfy a constant returns to scale assumption.

If φ satisfies the strong commensurability condition, then for all (zt, zt+1, θ) ∈ Tt × Tt+1 ×Θ

and all λ > 0,

Bt(zt, zt+1, φ, θ, λ) = Bt+1(zt, zt+1, φ, θ, λ) = 0.

Proof See Appendix A.

In the following, let:

Bt,t+1(zt, zt+1, φ) = Bt(zt, zt+1, φ) +Bt+1(zt, zt+1, φ). (3.16)

denote the sum of the homogeneity bias in time period t and in time period t + 1. The

next result shows that the homogeneity bias of the proportional Luenberger productivity

indicator (3.9) and Malmquist productivity index (3.3) are null, though this is not the case

for the Luenberger indicator (3.6) based on the directional distance function for which an

explicit form of the bias can be provided.
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Corollary 3.3 Suppose that at each time period Tt and Tt+1 satisfy (A.1) − (A.4) and a

constant returns to scale assumption (A.5). For all (zt, zt+1) ∈ Tt × Tt+1 we have:

(a) Bt(zt, z+1,M
out, θ, λ) = Bt+1(zt, z+1,M

out, θ, λ) = 0;

(b) Bt(zt, z+1, L
∝, γ, λ) = Bt+1(zt, z+1, L

∝, α, β, λ) = 0;

(c) We have the identities:

Bt(zt, zt+1, g, λ) =
1− λ

2

[−→
D t+1(zt; g) +

−→
D t(zt; g)

]
.

Bt+1(zt, zt+1, g, λ) =
λ− 1

2

[−→
D(zt+1, g, Tt+1) +

−→
D(zt+1, g, Tt)

]
.

and

Bt,t+1(zt, zt+1, g, λ) =
1− λ

2
L(zt, zt+1; g, Tt, Tt+1).

Proof See Appendix A.

Under a constant returns to scale assumption on technology, the Malmquist productivity

index and the proportional Luenberger productivity indicator are not affected by a propor-

tional modification of one of the observations. However, this is not true in the case of the

Luenberger productivity indicator based on the directional distance function. Remark that

Chambers, Färe and Grosskopf (1996: p. 184) in their seminal article do impose a constant

returns to scale assumption on technology.

3.3 Translation Homothetic Bias

In this subsection, it is shown that the things are very different when one assume a graph

translation homothetic property of the technology. First, notice that it is difficult to define

the commensurability axiom from an additive viewpoint. This is due to the fact that the

key axioms (A.1)− (A.4) are not preserved via a translation of the technology. However, it

is interesting to analyze the impact of the graph translation homotheticity on the structure

of the Luenberger productivity indicator (3.6).
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We point to the fact that if the technology is graph translation homothetic, then the Lu-

enberger productivity indicator with a fixed direction does not suffer from the shortcomings

due to its additive structure. A production technology T is translation homothetic in the

direction of g if for all z ∈ T and all δ ∈ R such that z + δg ∈ Rm+n
+ , we have z + δg ∈ T .

It was shown by Briec and Kerstens (2004) that under an assumption of graph translation

homotheticity:

D(z + δg, T ) = D(z, T ). (3.17)

This means that the directional distance function is translation invariant.

Paralleling our earlier definition we define the translation homothetic bias as follows.

Definition 3.4 Let Θ be a subset of Rd. Let φ : Rd × Rd ×Θ× T × T −→ R ∪ {−∞,∞}.

Let Tt, Tt+1 ∈ T . For all, (zt, zt+1, θ) ∈ Tt × Tt+1 ×Θ and all λ > 0:

TBt(zt, zt+1, φ, θ, δ) = φ(zt, zt+1, θ, Tt, Tt+1)− φ(zt + δg, zt+1, θ, Tt, Tt+1)

is called the translation homothetic bias of φ in period t;

TBt+1(zt, zt+1, φ, θ, δ) = φ(zt, zt+1, θ, Tt, Tt+1)− φ(zt, zt+1 + δg, θ, Tt, Tt+1)

is called the translation homothetic bias of φ in period t+ 1.

In the case of the Luenberger productivity indicator (3.6) the translation homothetic bias

in t is then defined as:

TBt(zt, zt+1, L, g, δ) = L(zt, zt+1, g, , Tt, Tt+1)− L(zt + δg, zt+1, g, Tt, Tt+1); (3.18)

at the time period t+ 1

TBt+1(zt, zt+1, L, g, δ) = L(zt, zt+1, g, , Tt, Tt+1)− L(zt, zt+1 + δg, g, Tt, Tt+1). (3.19)
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It follows that if the production technology is graph translation homothetic at both the

time periods t and t+ 1, then:

TBt(zt, zt+1, L, g, δ) = TBt+1(zt, zt+1, L, g, δ) = 0. (3.20)

This means that the translation homotheticity bias is zero.

4 Numerical Examples

In the following we compare the output-oriented Malmquist productivity index and the

Luenberger productivity indicator. To do so we introduce a numerical example and we show

that the Luenberger productivity indicator can yield inconsistent results because of the

structure of the directional distance function under a constant returns to scale assumption.

4.1 Output-Oriented Measures

We suppose that the technology is two-dimensional and that T0 = {(x, y) : y ≤ x} and

T1 = {(x, y) : y ≤ 2x}, which implies a CRS assumption at each time period. Moreover, we

assume that: z0 = (x0, y0) = (1, 4
5
) and z1 = (x1, y1) = (1, 5

4
).

Let us compute the radial output-oriented efficiency measure at each time period:

(i) Eout(z1, T0) = sup{θ : (1, θ 5
4
) ∈ T0} = sup{θ : θ 5

4
≤ 1}. Clearly, we have 5

4
θ? = 1 and

Eout(z1, T1) = θ? = 4
5
;

(ii) Eout(z0, T0) = sup{θ : θ 4
5
≤ 1}, hence Eout(z0, T0) = θ? = 5

4
;

(iii) Eout(z1, T1) = sup{θ : θ 5
4
≤ 2}. Clearly, we have 5

4
θ? = 2 and Eout(z1, T1) = θ? = 8

5
;

(iv) Eout(z0, T1) = sup{θ : θ 4
5
≤ 2}, hence Eout(z1, T1) = θ? = 5

2
.

Inserting these results leads to the following output-oriented Malmquist productivity

index (3.3):

Mout(z0, z1, T0, T1) =
(5

4
.
5

4
.
5

8
.
2

5

) 1
2

= 1.56 (4.1)
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This result indicates a productivity gain between t = 0 and t = 1, since indeed the Malmquist

productivity index is > 1.

Now we suppose that λ = 10. It follows that we consider the production vector at t = 1

defined as:

z′1 = 10(x1, y1) = (10,
25

2
).

Although in the first and the second case the observation do not use the same level of inputs

and outputs, these observations have the same efficiency scores. Thus, the productivity index

should yield the same result. This is indeed the case for the Malmquist productivity index,

since it is invariant with respect to a proportional change of the second observation.

E(z′1, T0) =
4

5
, E(z0, T0) =

5

4
, E(z′1, T1) =

8

5
, E(z0, T1) =

5

2

Hence, inserting these results we also obtain:

Mout(z0, 10z1, T0, T1) =
(5

4
.
5

4
.
5

2
.
5

8
)
1
2 = 1.56.

Thus, a proportional multiplication of z1 by 10 does not affect the output-oriented Malmquist

productivity index. This is normal because the productivity does not change.

But, for the Luenberger productivity indicator (3.6) such proportional change in input

and output quantities does affect the indicator, thereby introducing a bias. Recall that as in

the Malmquist productivity index case, the production vectors are z0 = (1, 4
5
) and z1 = (1, 5

4
).

Let us now consider the Luenberger productivity indicator with the direction of g = (0, 1).

This is an output-oriented Luenberger productivity indicator which allows to be compared

with the output-oriented Malmquist productivity index:

(i)
−→
D(x0, yt, 0, 1, T1) = sup{δ : (1, 4

5
+ δ) ∈ T1} which implies that 4

5
+ δ? = 2 and

−→
D(x0, y0, 0, 1, T1) = δ? = 6

5
;

(ii)
−→
D(x1, y1, 0, 1, T1) = sup{δ : (1, 5

4
+ δ) ∈ T1}. Hence,

−→
D(x1, y1, 0, 1, T1) = 3

4
;

(iii)
−→
D(x0, y0, 0, 1, T0) = sup{δ : (1, 4

5
+δ) ∈ Tt}. Hence, 4

5
+δ = 1 and

−→
D(x0, y0, 0, 1, T0) = 1

5
;
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(iv)
−→
D(x1, y1, 0, 1, T0) = sup{δ : (1, 5

4
+ δ) ∈ T0}. Hence,

−→
D(x1, y1, 0, 1, T0) = −1

4
.

Inserting these results leads to the following output-oriented Luenberger productivity

indicator:

Lout(z0, z1, 0, 1, T0, T1) =
1

2

[6

5
− 3

4
+

1

5
+

1

4

]
=

1

2
.

9

10
= 0.45 (4.2)

Since this indicator is larger than zero, this suggests a productivity gain between periods

t = 0 and t = 1.

Now in the second case, the observation is again characterized by the following condi-

tions: z0 = (x0, y0) = (1, 4
5
) and z′1 = 10(x1, y1) = (10, 25

2
).

Again, we compute the output-oriented directional distance function at each time period:

(i)
−→
D(x0, y0, 0, 1, T1) = sup{δ : (1, 4

5
+ δ) ∈ T1} which implies that 4

5
+ δ = 2 and δ = 6

5
;

(ii)
−→
D(x1, y1, 0, 1, T1) = sup{δ : (10, 25

2
+δ) ∈ Tt+1} which implies that 25

2
+δ = 20 so δ = 15

2
;

(iii)
−→
D(x0, y0, 0, 1, T0) = sup{δ : (1, 4

5
+ δ) ∈ Tt} which implies that 4

5
+ δ = 1 and therefore

δ = 1
5
;

(iv)
−→
D(x1, y1, 0, 1, T0) = sup{δ : (10, 25

2
+ δ) ∈ Tt} Thus, 25

2
+ δ = 10 so δ = −5

2
.

Collecting again these results leads now to the following output-oriented Luenberger

productivity indicator result:

L(z0, 10z1, g, T0, T1) =
1

2

[6

5
− 15

2
+

1

5
+

5

2

]
=

1

2
.(
−18

5
) = −1.8 (4.3)

Remark that the output-oriented Luenberger productivity indicator is now negative

(−1.8) while it was initially positive (0.45). Thus, the Luenberger productivity indicator

initially suggests a productivity gain, while it now indicates a productivity loss. However,

this is a contradiction: in both cases the observation should have the same productivity.

Therefore, the Luenberger productivity indicator is very sensitive to proportional changes in

quantities and it does not allow to estimate changes in efficiency.
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4.2 Graph-Oriented Measures

The following Figure 1 illustrates the idea behind the homogeneity bias. When a production

vector is proportionally expanded the directional distance function is increasing. Hence, the

Luenberger productivity indicator may be significantly modified.

y = 2x

y = x

y

0 50/4

qq

qq
}

T1

10z1

T0

z0

z1

66

- x

Figure 1: Homogeneity Bias

Consider the production vectors z0 = (1, 3
4
) and z1 = (1, 5

4
).

Let us compute the Luenberger productivity indicator based on the proportional distance

function (3.9) as introduced by Boussemart et al. (2003). We consider the case where α = 11m

and β = 11n. At each time periods t, s we have

D∝(xt, yt, Ts) = max
δ
{δ : ((1− δ)xt, (1 + δ)yt) ∈ Ts} (4.4)
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Under a constant returns to scale assumption, we have the relation:

D∝(xt, yt, Ts) =
Eout(xt, yt, Ts)− 1

Eout(xt, yt, Ts) + 1
(4.5)

Boussemart et al. (2003) define the Luenberger productivity indicator based on the propor-

tional distance function as follows:

L∝(xt, yt, xt+1, yt+1, Tt, Tt + 1) =
1

2
[D∝(xt, yt, Tt)−D∝(xt+1, yt+1, Tt)

+D∝(xt, yt, Tt+1)−D∝(xt+1, yt+1, Tt+1)] (4.6)

Since the proportional distance function is homogenous of degree 0, we obviously have

for all λ > 0:

L∝(xt, yt, xt+1, yt+1, Tt, Tt+1) = L∝(xt, yt, λxt+1, λyt+1, Tt, Tt+1). (4.7)

Moreover, from Boussemart et al. (2003), we also have under a constant returns to scale

assumption, the second order approximation:

L∝(xt, yt, xt+1, yt+1, Tt, Tt+1) ≈
1

2
ln
(
Mout(xt, yt, xt+1, yt+1, Tt, Tt+1)

)
(4.8)

Assuming that z0 = (1, 4
5
), z1 = (1, 5

4
), one can compute the proportional distance func-

tions at each time period as follows:

(i) D∝(x0, y0, T1) = max{δ : (1− δ, 4
5

+ 4
5
δ) ∈ T1}. Hence, we should have 4

5
+ 4

5
δ = 2(1− δ)

and δ = 3
7
;

(ii) D∝(x1, y1, T1) = max{δ : (1− δ, 5
4

+ 5
4
δ) ∈ T1} so 5

4
+ 5

4
δ = 2(1− δ) and δ = 3

13
;

(iii) D∝(x0, y0, T0) = max{δ : (1− δ, 4
5

+ 4
5
δ) ∈ T0}. Thus, 4

5
+ 4

5
δ = 1− δ and δ = 1

7
;

(iv)D∝(x1, y1, T0) = max{δ : (1− δ, 5
4

+ δ) ∈ T0}. Hence, we deduce δ = −1
9

Inserting these results yields the following proportional Luenberger productivity indica-
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tor:

L∝(z0, z1, T0, T1) =
1

2

[ 5

11
− 3

13
+

1

7
+

1

9

]
= 0.238 (4.9)

Suppose now that z1 = (10, 25
2

), since the proportional distance function is homogenous

of degree 0, we have:

L∝(z0, z1, T0, T1) = L∝(z0, 10z1) = 0.238 (4.10)

Therefore, the productivity change is the same. The results are parallel to those obtained

using the output-oriented Malmquist productivity index.

Let us now compute the Luenberger productivity indicator based on the directional dis-

tance function (3.6) as follows:

(i)
−→
D(x0, y0, 1, 1, T1) = sup{δ : (1− δ, 3

4
+ δ) ∈ T1}. Thus so 3

4
+ δ = 2(1− δ) and δ = 5

12
;

(ii)
−→
D(x1, y1, 1, 1, T1) = sup{δ : (1− δ, 5

4
+ δ) ∈ T1} thus δ = 3

12
;

(iii)
−→
D(x0, y0, 1, 1, T0) = sup{δ : (1− δ, 3

4
+ δ) ∈ T0} so 3

4
+ δ = 1− δ and δ = 1

8
;

(iv)
−→
D(x1, y1, 1, 1, T0) = sup{δ : (1− δ, 5

4
+ δ) ∈ T0}, thus δ = −1

8
.

Inserting these results into the Luenberger productivity indicator yields:

L(z0, z1, g, T0, T1) =
1

2

[ 5

12
− 3

12
+

1

8
+

1

8

]
=

1

2
(

5

12
) = 0.21 (4.11)

Thus, this indicator being larger than > 0 suggests a productivity gain between periods t = 0

and t = 1.

Now in the second case the production vectors become z0 = (x0, y0) = (1, 3
4
) and z′1 =

10(x1, y1) = (10, 25
2

).

The directional distance functions in each time period are now:

(i)
−→
D(x0, y0, h, k, T1) = 5

12
;

(ii)
−→
D (x1, y1, h, k, T1) = sup{δ : (10− δ, 25

2
+ δ) ∈ T 1} so 25

2
+ δ = 2(10− δ) and δ = 15

6
;

(iii)
−→
D(x0, y0, h, k, T0) = 1

8
;

(iv)
−→
D(x1, y1, h, k, T0) = sup{δ : (10− δ, 25

2
+ δ) ∈ T 0} so δ = −5

4
.
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Collecting these results leads to the following Luenberger productivity indicator:

L(z0, 10z1, g, T0, T1) =
1

2

[ 5

12
− 15

6
+

1

8
+

5

4

]
=

1

2
(−17

24
) = −0.35 (4.12)

Since the indicator is now negative, it suggests a productivity loss between periods t = 0

and t = 1.

Again, one can remark contradictory results between these two cases. The Luenberger

productivity indicator based on the directional distance function fails to measure productivity

changes properly. This is due to the homogeneity degree of the directional distance function.

These numerical results are summarized in Table 1.

Table 1: Malmquist Index and Luenberger Indicator: Numerical Examples
Case 1 Productivity Case 2 Productivity

Output case zt = (1, 4
5
) zt = (1, 4

5
)

zt+1 = (1, 5
4
) zt+1 = (10, 50

4
)

Malmquist M o = 1.56 > 1 + M o = 1.56 > 1 +

Luenberger L = 0.45 > 0 + L = −1.8 < 0 −

Graph case zt = (1, 3
4
) zt = (1, 3

4
)

zt+1 = (1, 5
4
) zt+1 = (1, 50

4
)

Proportional L∝ = 0.238 > 0 + L∝ = 0.105 > 0 +

Luenberger L = 0.21 > 0 + L = −0.35 < 0 −

5 Empirical Illustration

As an empirical illustration, we propose to focus on the schooling productivity of European

countries using the PISA-OECD and Eurostat data. Indeed, PISA (Programme for Interna-

tional Student Assessment) is an OECD program that aims to evaluate the performances of

educational systems of OECD member countries. Since 2000 and every three years, surveys

are conducted to evaluate 15-year-olds’ ability to use their reading, mathematics, and sci-
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ence knowledge in 36 OECD member countries and partner countries. In parallel, Eurostat

collects and harmonizes published data from national statistics institutes of European Union

countries for various themes like education.

To analyze schooling productivity, we consider as outputs the PISA reading scores, math-

ematics scores, and science scores in 2018 and 2009 of 15-year-olds’ pupils to measure school-

ing productivity over almost one decade. Following Agasisti, Munda and Hippe (2019), as

inputs we select three types of resources: student/teacher ratio, government expenditure

per student, and total public expenditure on education as percent of GDP. Furthermore,

we distinguish those inputs for primary and secondary education levels and consider those

resources during the schooling of pupils, i.e., for primary education in 2003 and 2012 so

theoretically when pupils are 9-year-olds’ and for secondary education in 2007 and 2016 so

theoretically when pupils are 13-years-olds’. The reader can consult Table 2 for more details

on these data. A sample of 21 European Union countries is collected. The original data can

be found in Table B.1 in Appendix B.

We compute on these data four productivity indices and indicators: (i) the output-

oriented Malmquist index (3.3), (ii) the input-oriented Luenberger indicator based on the

proportional distance function (3.9), (iii) the input-oriented Luenberger indicator based on

directional distance function (3.6) with input direction: (0.01, 0.01, 1000, 1000, 0.1, 0.1),

and (iv) the input-oriented Luenberger indicator based on directional distance function (3.6)

with as input direction the means in the sample (0.073, 0.096, 4609.34, 6211.84, 1.254, 2.039).

The results and the rankings obtained for each index and indicator are presented in Table

3. In the top row, these four productivity indices and indicators are labeled “Malmquist”,

“Luenberger Prop.”, “Luenberger Dir.” and “Luenberger Mean”, respectively.

Note that in this empirical illustration we opt for input-oriented Luenberger productivity

indicators rather than graph-oriented ones. This methodological choice avoids any complica-

tions due to infeasibilities (see Briec and Kerstens (2009a)) and due to the need for positivity

constraints on the projection of the outputs (see Briec and Kerstens (2009b)).
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Table 2: Description of Inputs and Outputs
Variable Label Time Period 0 Time Period 1
Output 1 Reading scores 2009 2018
Output 2 Mathematic scores 2009 2018
Output 3 Science scores 2009 2018
Input 1 student/teacher ratio (inverse)

for primary education
2003 (except:
Estonia 2001)

2012 (except:
Greece 2013)

Input 2 student/teacher ratio (inverse)
for secondary education

2007 2016 (except:
Norway 2017)

Input 3 Government expenditure per
student (based on FTE) for
primary education (PPS)

2003 (except:
Estonia 2005;
Greece 2005;
Hungary 2004)

2012 (except:
Belgium 2011;
Norway 2011)

Input 4 Government expenditure per
student (based on FTE) for
secondary education (PPS)

2007 (except:
Hungary 2006)

2016

Input 5 Total public expenditure on
primary, lower and upper sec-
ondary education as % of GDP
for primary education

2003 2012 (except:
Slovakia 2011)

Input 6 Total public expenditure on
primary, lower and upper sec-
ondary education as % of GDP
for secondary education

2007 (except:
Greece 2005)

2016

Our results show similar sign interpretation and ranking for the Malmquist productivity

index and for the proportional Luenberger indicator. But, for the Luenberger indicator

based on the directional distance function, the results are different. Indeed, the ranking

is seriously modified. Some countries are better ranked with the directional Luenberger

indicator (Czechia (+8); Lithuania (+4), Poland (+4)), while some other countries are worse

ranked (Norway (-7), Portugal (-6), Austria (-4), Slovenia (-4)). We also notice that the sign

interpretation of the productivity indices and indicators is even inverted for Austria. Indeed,

the Malmquist index and the proportional Luenberger indicator highlight that Austria has

increased its schooling productivity between 2009 and 2018 by 3.8 %, whereas the directional

Luenberger indicator reveals a productivity decrease for this same period of time. Finally,

using inputs means as direction for the directional Luenberger indicator somewhat limits

this issue. This confirms the idea that the choice of a direction as the mean of the observed

data also yields relevant results. Therefore, the strong commensurability, inherited from

28



the diagonal homogeneity of the direction, has a significant impact on the evaluation of

productivity changes as shown in Proposition 2.2. The results indeed become closer to the

Malmquist productivity index and the proportional Luenberger productivity indicator. This

confirms that the choice of the direction as an arithmetic means of the observed production

vectors yields more relevant results.

Table 3: Productivity Scores and Ranking
Country Malmquist Rank Luenberger

Prop.
Rank Luenberger

Dir.
Rank Luenberger

Mean
Rank

Italy 1,117 1 0,055 1 1,114 1 0,059 1
Sweden 1,111 2 0,052 2 0,492 3 0,055 2
Estonia 1,081 3 0,039 3 0,675 2 0,037 3
Austria 1,039 4 0,019 4 -0,278 8 0,027 4
Portugal 1,001 5 0,000 5 -0,419 11 -0,006 6
Netherlands 0,998 6 -0,001 6 -0,045 4 -0,003 5
UK 0,977 7 -0,012 7 -0,127 5 -0,011 7
France 0,959 8 -0,021 9 -0,213 7 -0,018 8
Norway 0,959 9 -0,020 8 -0,721 15 -0,024 10
Hungary 0,934 10 -0,034 10 -0,378 9 -0,020 9
Germany 0,932 11 -0,035 11 -0,399 10 -0,032 11
Greece 0,923 12 -0,040 12 -0,503 12 -0,033 12
Belgium 0,914 13 -0,043 13 -0,696 14 -0,053 14
Czechia 0,889 14 -0,058 14 -0,174 6 -0,034 13
Slovenia 0,875 15 -0,067 15 -1,270 20 -0,054 15
Latvia 0,845 16 -0,084 16 -0,836 17 -0,066 17
Poland 0,828 17 -0,093 17 -0,528 13 -0,062 16
Slovakia 0,786 18 -0,119 18 -0,958 18 -0,080 18
Finland 0,781 19 -0,123 19 -1,551 21 -0,130 21
Lithuania 0,715 20 -0,162 20 -0,754 16 -0,093 19
Bulgaria 0,686 21 -0,181 21 -1,053 19 -0,099 20
Average 0,921 -0,044 -0,411 -0,031

6 Conclusion

This paper has verified in detail some examples in which it is shown that the Luenberger

productivity indicator based upon the directional distance function may not be a relevant

productivity indicator. We have refined the notion of commensurability and have shown

that it plays a crucial role. A distance function that is not strongly commensurable is not

homogenous of degree 0 under a constant returns to scale assumption. Therefore, it may

yield wrong evaluations to measure productivity. The simplest alternative to avoid these
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problems is to employ the Luenberger productivity indicator based upon the proportional

distance function.
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Appendices: Supplementary Material

A Proofs of Propositions and Corollaries

Proof of Proposition 2.2:

Let us consider the positive diagonal matrix L of dimension n + m whose components are

all identical and equal to λ > 0. Since the map f satisfies the strong commensurability we

have for all z ∈ Rd and all C ∈ C, f(Lz, θ, LC) = f(z, θ, C) = f(λz, θ, λC). Since C is a

cone, λC = C. Hence f(z, θ, C) = f(λz, θ, C) which proves the homogeneity of degree 0 in

the first argument.2

Proof of Proposition 2.3:

These results are established in Briec (1997: p. 103) and in Briec, Dervaux and Leleu (2003:

p. 249-250), respectively. 2

Proof of Proposition 2.4:

Let us consider the m + n-dimensional diagonal matrix L whose components are all iden-

tical and equal to λ > 0. Assume that the technology satisfies a constant returns to scale

assumption (A.5). In such a case LT = T . However, since the directional distance function

is homogenous of degree 1, hence it is not homogenous of degree 0. From Proposition 2.2 it

follows that it does not satisfy the strong commensurability condition. 2

Proof of Proposition 2.5:

A production technology satisfying (A.1)− (A.5) is a cone. Since the proportional distance

function (2.5) satisfies the commensurability condition, the result is immediate from Propo-

sition 2.2. 2

Proof of Proposition 2.6:
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Suppose that g is diagonally homogenous. Let L be a definite positive diagonal matrix.

Suppose that

L =

M 0

0 N


where M and N are respectively two m ×m and n × n diagonal matrices. By hypothesis,

we have h(LT ) = Mh(T ) and k(LT ) = Nk(T ). We have

−→
D ]
(
Lz; g, L(T )

)
= sup

{
δ :
(
Mx− δh(LT ), Ny + δk(LT )

)
∈ LT

}
= sup

{
δ :
(
Mx− δMh(T ), Ny + δNk(T )

)
∈ LT

}
=
−→
D
(
Lz;Lg(T ), L(T )

)
.

Since the directional distance distance function is weakly commensurable, we have:

−→
D
(
Lz;Lg(T ), L(T )

)
=
−→
D(z; g(T ), T ).

It follows that:

−→
D ]
(
Lz, g, L(T )

)
=
−→
D ](z, g, T ).

which proves the strong commensurability of
−→
D ]. 2

Proof of Proposition 3.2:

Let N =

λId 0

0 Id

 be a d× d be a positive diagonal matrix where Id is the d-dimensional

identity matrix and λ > 0. If φ is strongly commensurable then

φ(λIdIdzt, zt+1, θ, λTt, Tt+1) = φ(λzt, zt+1, θ, λTt, Tt+1) = φ(zt, zt+1, θ, λTt, Tt+1).

Since Tt satisfies a constant returns to scale assumption, we have Tt = λTt. It follows that
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Bt(zt, zt+1, φ, θ, λ) = 0. The proof is similar in period t+ 1. 2

Proof of Corollary 3.3:

(a) and (b) are immediate since the radial output measure (2.3) and the proportional distance

function (2.5) satisfy the strong commensurability condition (Proposition 2.3). At the time

period t, we have

Bt(zt, zt+1, L, g, λ)

=
1

2

[−→
D(zt, g, Tt+1)−

−→
D(zt+1, g, Tt+1) +

−→
D(zt, g, Tt)−

−→
D(zt+1, g, Tt)

− λ
−→
D(zt, g, Tt+1) +

−→
D(zt+1, g, Tt+1)− λ

−→
D(z,g, Tt) +

−→
D(zt+1, g, Tt)

]
.

This implies that the bias is:

Bt(zt, zt+1, g, λ) =
1− λ

2

[−→
D(zt, g, Tt+1) +

−→
D(zt, g, Tt)

]
.

At the time period t+ 1 we have

Bt+1(zt, zt+1, g, λ)

=
1

2

[−→
D(zt, g, Tt+1)−

−→
D(zt+1, g, Tt+1) +

−→
D(zt, g, Tt)−

−→
D(zt+1, g, Tt)

−
−→
D(zt, gt+1) + λ

−→
D(zt+1, g, Tt+1)−

−→
D(zt, g, Tt) + λ

−→
D(zt+1, g, Tt)

]
.

It follows that:

Bt+1(zt, zt+1, g, λ) =
λ− 1

2

[−→
D(zt+1, g, Tt+1) +

−→
D(zt+1, g, Tt)

]
.

The last statement is immediate. 2
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B Empirical Data

To allow for replication of our empirical results in the main body of the text, we provide the

small data set that we have employed in developing our empirical illustration.

Table B.1: Data on Inputs and Outputs
Country Year Outp 1 Outp 2 Outp 3 Inp 1 Inp 2 Inp 3 Inp 4 Inp 5 Inp 6
Belgium 2009 506 515 507 0,076 0,109 5217,9 7477,3 1,45 2,58
Belgium 2018 493 508 499 0,080 0,111 6981,2 9543,5 1,56 2,69
Bulgaria 2009 429 428 439 0,058 0,083 1223,5 1825,1 0,78 1,73
Bulgaria 2018 420 436 424 0,057 0,078 2315,5 3609,6 0,69 1,51
Czechia 2009 478 493 500 0,055 0,081 1983,1 4442 0,68 1,96
Czechia 2018 490 499 497 0,053 0,083 3447 5978,2 0,75 1,62
Germany 2009 497 513 520 0,053 0,066 4034,1 6590,8 0,67 2,25
Germany 2018 498 500 503 0,063 0,076 5700 7855,7 0,63 2,13
Estonia 2009 501 512 528 0,068 0,088 2679,6 4122,3 1,39 2,19
Estonia 2018 523 523 530 0,076 0,099 4432,8 4848,6 1,27 1,44
Greece 2009 483 466 470 0,083 0,130 2905,8 4788,8 1,01 1,45
Greece 2018 457 451 452 0,105 0,130 3641,8 4662,2 1,1 1,42
France 2009 496 497 498 0,052 0,070 4280,6 7896,7 1,19 2,56
France 2018 493 495 493 0,053 0,069 4982,7 7290,7 1,13 2,39
Italy 2009 486 483 489 0,092 0,105 5884,7 6500 1,21 1,97
Italy 2018 476 487 468 0,083 0,092 5622,3 6271 0,98 1,74
Latvia 2009 484 482 494 0,063 0,105 2038,4 3501,5 0,96 2,14
Latvia 2018 479 496 487 0,091 0,128 5316,4 4645,4 1,86 1,65
Lituania 2009 468 477 491 0,082 0,125 1414,4 2920,2 0,76 2,4
Lituania 2018 476 481 482 0,099 0,137 3671,8 3985,1 0,74 1,68
Hungary 2009 494 490 503 0,094 0,098 3129,2 3387,7 1 2,33
Hungary 2018 476 481 481 0,093 0,097 3270,9 4004 0,75 2,17
Netherlands 2009 508 526 522 0,063 0,064 5011,5 8507,1 1,48 2,16
Netherlands 2018 485 519 503 0,048 0,062 6073,8 8988 1,4 2,21
Austria 2009 470 496 494 0,069 0,097 6103,5 8809,8 1,09 2,49
Austria 2018 484 499 490 0,083 0,116 7494,6 11681,9 0,88 2,2
Poland 2009 500 495 508 0,084 0,081 2379,6 2801,4 1,79 1,89
Poland 2018 512 516 511 0,091 0,104 4652,5 4899,9 1,5 1,47
Portugal 2009 489 487 493 0,088 0,127 3583,5 5469 1,63 2,02
Portugal 2018 492 492 492 0,084 0,102 4185,1 6992,4 1,44 2,11
Slovenia 2009 483 501 512 0,078 0,105 5563,5 4891,7 2,56 1,16
Slovenia 2018 495 509 507 0,063 0,164 6525,5 6925,8 1,6 1,66
Slovakia 2009 477 497 490 0,052 0,072 1734,2 2690,7 0,64 1,69
Slovakia 2018 458 486 464 0,060 0,081 3721,1 4408,8 0,77 1,69
Finland 2009 536 541 554 0,060 0,101 4322,8 6484,8 1,39 2,51
Finland 2018 520 507 522 0,074 0,111 6324,7 10893,9 1,37 2,55
Sweden 2009 497 494 495 0,081 0,087 6124,1 7561,6 1,99 2,58
Sweden 2018 506 502 499 0,085 0,081 7945,1 8906,5 1,75 2,15
UK 2009 494 492 514 0,050 0,060 4819,4 7443 1,33 2,4
UK 2018 504 502 505 0,047 0,068 6635,4 6664,2 1,83 2,05
Norway 2009 503 498 500 0,085 0,098 6847,1 9798,8 2,01 2,33
Norway 2018 499 501 490 0,097 0,106 9371,6 9931,6 1,66 2,31
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