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1 Introduction

The foundational work of Markowitz (1952) in modern portfolio theory has learned every

investor that to gauge the performance of portfolio management one must consider risk in

addition to return. This mean-variance (MV) dual objective of maximizing returns and

minimizing risks turns performance evaluation into a controversial task involving trade-offs

related to the risk preferences of the investor. The two-dimensional nature of this nonlinear

quadratic optimization problem allows to display the efficient frontier as a Pareto-optimal

subset of portfolios whereby the expected return can only increase when also the variance

increases.

A large part of modern portfolio theory continues developing variations on these bi-

objective MV optimization problems. A wide offer of alternative risk measures is available in

the portfolio literature: entropy, expected shortfall, mean absolute deviation, semi-variance

and other partial moment measures, Value-at-Risk (VaR) in all its variations, etc. (see, e.g.,

Bacon (2008) and Feibel (2003) for surveys).1

This focus on the first two moments of a random variable’s distribution is only consis-

tent with the von Neumann-Morgenstern axioms of choice underlying expected utility (EU)

theory when: (i) asset processes follow normal distributions, or (ii) investors have quadratic

utility functions. A substantial empirical literature has documented that normality of as-

set returns can be rejected for a variety of financial asset classes in both developed and

emerging financial markets (e.g., Jondeau and Rockinger (2003)). At least since Scott and

Horvath (1980), investors have been attributed a positive preference for skewness as well as a

negative preference for kurtosis to explain financial behavior. Meanwhile, decision-theoretic

arguments exist for what has become known as the broad class of mixed risk-aversion utility

functions that are characterized by a preference for odd moments and an aversion for even

moments (see Eeckhoudt and Schlesinger (2006)). Furthermore, via surveys and experiments

traditional risk preferences like risk aversion, but also higher order risk preferences like pru-

dence and temperance are nowadays better understood (see Trautmann and van de Kuilen

(2018) for a review).

Over time, several alternative portfolio selection criteria based on preferences for higher-

order moments have been developed. But, so far not a single widely accepted criterion

seems to have emerged. It is possible to distinguish between primal and dual approaches

to determine such higher-order moments portfolio frontiers. One example of the primal

1More rarely alternatives are proposed for the expected return: e.g., Benati (2015) focuses on the median
as a location parameter of the distribution of returns.
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approach is found in Lai (1991) who determines mean-variance-skewness (MVS) optimal

portfolios via a Polynomial Goal Programming procedure. The dual approach necessitates

a specification of some indirect higher-moment utility function and yields optimal portfolios

via its parameters reflecting higher-moment preferences (e.g., Harvey, Liechty, Liechty, and

Müller (2010)).

To our knowledge, Sengupta (1989) is the first to introduce an efficiency measure -

borrowed from production theory- into a diversified MV portfolio model. This efficiency

measure relates to the distance function that for a long time has been employed in consumer

theory and especially in production theory (e.g., Cornes (1992)). In consumer theory the

distance function is dual to the expenditure function: it serves to characterize multiple com-

modity and single utility choice sets.2 In production theory the input distance function is

dual to the cost function: it basically serves to characterize multiple input multiple output

production possibility sets (e.g., Hackman (2008)). This has opened up a booming research

field where parametric but particularly nonparametric specifications of production and dual

(e.g., cost) frontiers are specified based on minimal maintained axioms (e.g., constant or

variable returns to scale, convexity or not, etc.). Applied to a plethora of private and public

sectors, these frontier methodologies analyse technical, scale or cost efficiency, economies of

specialization, mergers, etc. (e.g., Färe, Grosskopf, and Lovell (1994)).3

The introduction of an efficiency measure into portfolio theory allows to gauge perfor-

mance over multiple dimensions and it opens up new perspectives. On the one hand, follow-

ing Briec, Kerstens, and Lesourd (2004) who establish duality between a distance function

and MV utility functions, Briec, Kerstens, and Jokung (2007) use a general distance function

(named shortage function) to look for improvements in efficiency in MVS space by looking

for simultaneous expansions in mean return and positive skewness and reductions in risk.

Furthermore, these authors provide a duality result with a MVS utility function.4 Even more

general, for the class of mixed risk-aversion utility functions, Briec and Kerstens (2010) assess

portfolio performance for the general moments case by simultaneously looking for improve-

ments in odd moments and reductions in even moments. In addition, these authors establish

duality with general moment utility functions. On the other hand, within a standard MV

framework, Morey and Morey (1999) develop a multiple time horizon assessment: in par-

ticular, these authors use either a risk contraction or a return expansion efficiency measure

2This distance function has sometimes been employed to make welfare comparisons (e.g., Slesnick (1998)).
3This nonparametric approach to production is sometimes labeled Data Envelopment Analysis (DEA)

because observations are enveloped subject to some minimal set of axioms.
4Briec, Kerstens, and Van de Woestyne (2013) establish a relation between MVS portfolio optimisation

using the shortage function and the far more popular Polynomial Goal Programming method proposed by
Lai (1991).

2



to evaluate MV performance over three time horizons simultaneously (in particular, a 3, 5

and a 10-year time period). This contribution is slightly generalized in Briec and Kerstens

(2009). 5 An empirical application is available in Ren, Zhou, and Xiao (2021).

Empirical applications of this diversified multi-moment approach are found in Adam and

Branda (2020), Branda (2013), Branda and Kopa (2014), Branda (2015), Joro and Na (2006),

Jurczenko, Maillet, and Merlin (2006), Khemchandani and Chandra (2014), Krüger (2020),

Massol and Banal-Estañol (2014), among others. Furthermore, Bacmann and Benedetti

(2009), Boudt, Cornilly, and Verdonck (2020), and Jurczenko and Yanou (2010), among

others, are empirical diversified multi-moment contributions focusing on hedge funds (HF).

To the best of our knowledge, Murthi, Choi, and Desai (1997) is the seminal article that

has been rating mutual funds (MF) by simultaneously trying to maximize the return and

minimizing standard deviation, expense ratio, load, and turnover using a nonparametric

production frontier specification that maintains convexity and constant returns to scale.

Following Farrell (1957) and Charnes, Cooper, and Rhodes (1978), nonparametric production

frontiers are transposed into the financial literature in an effort to provide alternative fund

ratings. Intuitively, nonparametric production frontiers can envelop the observations of any

multi-dimensional choice set and position each of the observations relative to the boundary

of the choice set using some efficiency measure. This has led to a growing literature that has

been applied to a large variety of financial assets (e.g., exchange traded funds, hedge funds,

pension funds, etc.). Furthermore, a wide variety of model specifications are available in

terms of some combination of ordinary moments, lower and/and upper partial moments, as

well as in terms of production frontier specifications (constant or variable returns to scale,

etc.), and the choice of efficiency measure (e.g., reducing variables for which less is better (like

inputs), or expanding variables for which more is better (like outputs), or some combination

of both). This frontier-based MF rating literature has been rather recently surveyed in Basso

and Funari (2016).

Following Heffernan (1990) and Blake (1996), among others, Kerstens, Mounir, and

Van de Woestyne (2011) interpret this funds rating literature as a transposition of the char-

acteristics approach in consumer theory into finance: MF are seen as fee-based financial

products characterized by distributional characteristics of the asset price distribution as

summarized by some combination of moments. Compared to the diversified portfolio mod-

5Note the use of multiple time horizons within a MV framework is not particularly computationally chal-
lenging, but moving from a quadratic convex MV problem to a cubic nonconvex MVS portfolio optimization
problem is computationally harder. Evidently, the same remark applies when one moves from a cubic non-
convex MVS to a quartic nonconvex mean-variance-skewness-kurtosis portfolio optimization problem, or
beyond by including even higher order moments.
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els that require nonlinear programming, these nonparametric production frontier MF rating

models can normally be solved using simple linear programming.

An open question is how the diversified portfolio models relate to the nonparametric

production frontier specifications? Recently, Liu, Zhou, Liu, and Xiao (2015) state that

a convex variable returns to scale nonparametric production frontier specification provides

an inner approximation to the traditional MV diversified portfolio model. This is certainly

correct. One basic idea implicit in their contribution is that nonparametric production

frontier specifications should ideally underestimate the eventual performance of a diversified

portfolio model. In the more general case where we want to explore a nonconvex diversified

MV (e.g., with some integer constraints) or a nonconvex higher moment portfolio model,

then one can argue that the nonconvex nonparametric production frontier specification with

variable returns to scale already advocated by Kerstens, Mounir, and Van de Woestyne

(2011) provides a conservative underestimation of the corresponding nonconvex diversified

portfolio model within some common subspace of moments (see also Germain, Nalpas, and

Vanhems (2011)). By contrast, the more widely used convex nonparametric production

frontier specification may overestimate the corresponding nonconvex diversified portfolio

model within the common subspace of moments. The latter argument seems to have escaped

attention so far: this explains why most nonparametric production frontier MF rating models

with higher moments do impose convexity (for instance, Gregoriou, Sedzro, and Zhu (2005)).

The use of distance functions or efficiency measures in both the diversified portfolio

models and the nonparametric production frontier specifications leads to the question how

these gauges relate to traditional financial performance measures (see, e.g., the surveys in

Bacon (2008), Feibel (2003) and Caporin, Jannin, Lisi, and Maillet (2014)). While relative

performance measures that are variations on returns per unit of risk (e.g., Sharpe ratio) are

useful to handle bi-objective (e.g., MV) optimization problems, they are of little use beyond

two dimensional problems. If finance wants to handle mixed risk-aversion preferences of

investors, then it must consider a multidimensional performance measure. Some performance

measures try to assess the tail risk, like VaR or the Conditional Value-at-Risk (CVaR), but

they most of the time focus on the risk component and do not include the first moment of

the return distribution. One exception is the Omega ratio that we include in our analysis.

Caporin, Jannin, Lisi, and Maillet (2014) classify the distance (shortage) function approach

correctly among the absolute performance measures: these performance measures are based

on rewards when compared to those of a reference portfolio on a portfolio frontier. The choice

for distance (shortage) function brings finance and portfolio analysis in line with consumer

and production analysis where these micro-economic tools have a proven track record in
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representing multidimensional choice sets.6

The major objective of this contribution is to define new distance functions or efficiency

measures that can simultaneously handle both multiple moments and multiple times. To

the best of our knowledge, this basic idea is new and unavailable in the literature. This

performance measure thus aims not only to evaluate to which extent a MF performs well

in the several moments following mixed risk-aversion preferences, but it simultaneously is

assessing to which extent a MF performs well in all these moments over different times.

This is important given the concern in the financial literature that traditional performance

measures may exhibit limited stability over time (e.g., Bodson, Coen, and Hubner (2008),

Menardi and Lisi (2012) and Grau-Carles, Doncel, and Sainz (2019), among others).

This new performance measure is applied to HFs, a fund accessible only to institutional

investors and high net worth individuals. Among MFs, HFs have a unique compensation

structure. The most widespread fee structure is the so-called 2/20, i.e., 2% of assets under

management for annual management fees and 20% of any profits made as a performance

incentive fee. Consequently, HFs are marked by their heterogeneity and unusual (i.e., non-

normal) statistical properties, as compared to more traditional MFs. Indeed, HFs tend to

exhibit some more strongly asymmetric and fat tailed return characteristics compared to

other MFs (see Gregoriou (2003), Darolles and Gourieroux (2010), Eling and Faust (2010),

among others, and especially El Kalak, Azevedo, and Hudson (2016) for a survey). They

are globally viewed as riskier but are also associated with higher rewards. This is why our

empirical study specifically focuses on HFs since these are most likely to be affected by higher

order moments.

The traditional financial performance measures (e.g., Sharpe ratio, Sortino ratio, etc.)

used for HF rating have been subject to some criticism, because they basically follow the

theoretical assumptions of the Capital Asset Pricing Model (CAPM) that the capital market

is efficient and financial asset returns are normally, independently and identically distributed,

among others. When asset returns do not obey the normal distribution, then the mean

and variance no longer suffice to effectively summarize its return distribution. Given the

complexities to assess the performance of HFs using traditional performance measures (e.g.,

see Smith (2017)), we think that our new performance measure may provide a suitable

framework to evaluate both persistence across moments and across times.

In a HF context, the need for multiple moments is apparent in a multitude of non-

6Tammer and Zălinescu (2010) show that the shortage function is linked to the scalarization function that
is used in vector optimization problems, of which multi-objective optimization problem is a special case.
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parametric production frontier studies: examples include, e.g., Gregoriou, Sedzro, and Zhu

(2005), Kumar, Roy, Saranga, and Singal (2010), Germain, Nalpas, and Vanhems (2011),

among others. However, to the best of our knowledge none of these studies appeal to the

characteristics approach as proposed by Kerstens, Mounir, and Van de Woestyne (2011).

Furthermore, all these existing nonparametric production frontier studies are single time:

this contribution is the first to develop a multi-time evaluation framework.

The remainder of this contribution is organized as follows. The next Section 2 introduces

the nonparametric production frontiers that serve to approximate the diversified portfolio

models: we first discuss single-time multi-moment models, then we introduce the new multi-

time multi-moment models. In Section 3, we develop the buy-and-hold backtesting strategy

in detail. Section 4 describes the hedge fund data in detail and comments upon the empirical

results. Finally, Section 5 concludes.

2 Nonparametric Frontier Rating Models: Methodol-

ogy

2.1 Single-Time and Multi-Moment Rating Framework

The nonparametric frontier rating methods gauge the financial performance of MF, and these

evaluations are done mostly using frontier-based models which originate from production

theory. In this section, we only introduce the basic definitions and properties needed for

applications within finance. Assume that there are n MFs under evaluation over a given

time horizon. At time t in this time horizon, the j-th MF (j ∈ {1, . . . , n}) is characterized

by m input-like values xtij (i ∈ {1, . . . ,m}) and s output-like values ytrj (r ∈ {1, . . . , s}).
Input-like variables need to be minimized and output-like variables need to be maximized.

We introduce one widely used production frontier-based model with variable returns to

scale (VRS). Following Briec, Kerstens, and Vanden Eeckaut (2004), a unified algebraic

representation of convex and nonconvex production possibility sets (PPS) under the VRS
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assumption for a sample of n MFs at time t is:

P t
Λ =

{
(xt, yt) ∈ Rm × Rs | ∀i ∈ {1, . . . ,m} : xti ≥

n∑
j=1

λjx
t
ij,

∀r ∈ {1, . . . , s} : ytr ≤
n∑

j=1

λjy
t
rj, λ ∈ Λ

}
, (1)

where:

Λ ≡ ΛC = {λ ∈ Rn |
∑n

j=1 λj = 1 and ∀j ∈ {1, . . . , n} : λj ≥ 0} if convexity is assumed, and

Λ ≡ ΛNC = {λ ∈ Rn |
∑n

j=1 λj = 1 and ∀j ∈ {1, . . . , n} : λj ∈ {0, 1}} if nonconvexity is

assumed.

At time t, if there exists an input-output combination (
∑n

j=1 λjx
t
ij,
∑n

j=1 λjy
t
ij) in the

convex or nonconvex PPS using less inputs and producing more outputs than the observed

MF, then this MF is considered inefficient since it can improve its inputs and/or outputs.

MFs are efficient if no improved input-output combinations can be found. The input-output

combinations of these efficient MFs are all located at the boundary of P t
Λ which is called the

convex or nonconvex VRS nonparametric frontier.

Using the nonparametric PPS defined in (1), the shortage function of any observed MF

at time t is now defined as follows:

Definition 2.1. At time t, let gt = (−gtx, gty) ∈ Rm
− × Rs

+ and gt 6= 0. For any observation

zt = (xt, yt) ∈ Rm × Rs, the shortage function St
Λ at time t in the direction of vector gt is

defined as:

St
Λ(zt; gt) = sup{β ∈ R | zt + βgt ∈ P t

Λ}.

This shortage function simultaneously permits the enhancement of output-like variables

and the reduction of input-like variables. If the shortage function value St
Λ(zto; g

t
o) > 0 for

the input-output combination zto = (xto, y
t
o) of a specific MF at time t, then zto is not located

on the frontier of P t
Λ. Hence, its inputs and/or outputs can be improved to catch up with

the VRS nonparametric frontier. By contrast, if the shortage function value St
Λ(zto; g

t
o) = 0,

then zto is located on the frontier.

Consider a MF with index o ∈ {1, . . . , n} in need of assessment at time t by means of

the shortage function with direction vector gto = (−gtxo, gtyo) ∈ Rm
− ×Rs

+. Combining (1) and

Definition 2.1, the efficiency status of this MF at time t can be determined by solving the
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following model:

max β

s.t.
n∑

j=1

λjx
t
ij ≤ xtio + βgtio, i = 1, . . . ,m,

n∑
j=1

λjy
t
rj ≥ ytro + βgtro, r = 1, . . . , s,

n∑
j=1

λj = 1, β ≥ 0,

∀j = 1, . . . , n :

{
λj ≥ 0, under convexity,

λj ∈ {0, 1}, under nonconvexity.

(2)

Note that Model (2) results in a linear programming (LP) problem under convexity and a

mixed binary integer programming (MBIP) problem under nonconvexity.

The setting defined in the previous section is general and flexible and can thus handle

a large choice of inputs and outputs. We now particularize the above formulation to char-

acterize the efficient frontier in the MVS and the mean-variance-skewness-kurtosis (MVSK)

spaces. Suppose that there are n MFs under evaluation. At time t, let Rt
1, . . . , R

t
n denote

the random returns of the n funds, which are characterized by their expected return E(Rt
j),

variance V (Rt
j), skewness S(Rt

j) and kurtosis K(Rt
j) for j ∈ {1, . . . , n}. Here, the calcula-

tions of variance, skewness and kurtosis are expressed as follows: V (Rt
j) = E[(Rt

j−E(Rt
j))

2],

S(Rt
j) = E[(Rt

j − E(Rt
j))

3], and K(Rt
j) = E[(Rt

j − E(Rt
j))

4]. To obtain a detailed specifica-

tion of the PPS, as defined in (1), we need to classify the different goals of the investor in

terms of either inputs (i.e., objectives to minimize), or outputs (i.e., objectives to maximize).

As discussed in the previous section, the need for multiple moments is apparent to assess

MFs (and most particularly HFs) whose return distributions may exhibit strong asymmetry

and fat tails. Given mixed risk-aversion utility functions, investors express a preference for

odd moments and a dislike for even moments of the distribution of asset returns. There-

fore, when the MVSK framework is considered, we can define the first and second inputs of

MFs as xt1j = V (Rt
j) and xt2j = K(Rt

j), and the first and second outputs as yt1j = E(Rt
j)

and yt2j = S(Rt
j) for j ∈ {1, . . . , n}. Obviously, for the MVS case only the first input is

considered.

For a MF o under evaluation at time t, denote Eo = E(Rt
o), Vo = V (Rt

o), So = S(Rt
o) and

Ko = K(Rt
o). Then both models, either with convexity or nonconvexity, allow to project the
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input-output combination (Vo, Ko, Eo, So) of this MF in such a way that inputs (i.e., variance

and kurtosis) are decreased and outputs (i.e., expected return and skewness) are increased

in the direction gto. The optimal solution β∗ of model (2) measures how many times the

direction vector gto fits in the line segment from the input-output combination of the MF o

to the efficient frontier in the direction of gto.

In model (2) under convexity, the left-hand sides of the constraints are all linear. All

possible linear combinations of inputs and outputs of the observed MFs are used to construct

a convex VRS frontier for evaluation. For the MF o, if β∗ = 0, the corresponding input-

output combination is on the convex frontier and efficient at time t. If β∗ > 0, there exist

input-output combinations yielding a higher or equal return and skewness together with a

lower or equal variance and kurtosis. When nonconvexity is assumed in model (2), evaluation

is done with respect to a nonconvex VRS frontier determined by all efficient MFs (excluding

the convex input-output combinations of these).

2.2 Multi-Time and Multi-Moment Rating Framework

Differing from MF ratings in a single-time framework, MF ratings in a multi-time frame-

work consider performance over a time horizon consisting of multiple discrete time periods.

To develop the nonparametric frontier rating models in this multi-time framework, some

definitions and properties are presented.

Consider n MFs under evaluation. Let T denote the number of consecutive times in

a time horizon of interest. In addition, define a multi-time path of inputs and outputs as

Zj = (xtj, y
t
j)

T
t=1 for MF j, (j = 1, . . . , n), where xtj = (xt1j, . . . , x

t
mj) and ytj = (yt1j, . . . , y

t
sj)

represent m inputs and s outputs at time t, respectively. Assuming VRS for all times

t ∈ {1, . . . , T} and strong free disposability of all inputs and outputs, the multi-time PPS

with convexity and nonconvexity can be defined as:

PT
Λ = P 1

Λ × · · · × P T
Λ ⊂ (Rm × Rs)T ∼= Rm×T × Rs×T , (3)

where P t
Λ, (t = 1, . . . , T ), is the PPS at time t mentioned previously in (1).

The idea is now for each MF to simultaneously expand its multiple outputs and decrease

its multiple inputs over all discrete times in a given time horizon by means of the multi-

time shortage function. To allow a general definition, we first introduce some abbreviating

notations.
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The time dependent direction vector denoted by G = (g1, . . . , gT ) ∈ (Rm
− × Rs

+)T ∼=
Rm×T

− × Rs×T
+ represents a given multi-time direction path, where gt = (−gtx, gty) ∈ Rm

− ×
Rs

+ represents the direction vector at time t ∈ {1, . . . , T}. In addition, we denote Θ =

(β1, . . . , βT ) ∈ RT and Θ ·G = (β1g
1, . . . , βTg

T ) ∈ (Rm×Rs)T ∼= Rm×T ×Rs×T . Considering

the time preference of an investor in a portfolio context, we introduce a time discounting

factor denoted ξ (0 < ξ < 1) to weight the efficiency measures over the time horizon. Then,

the time discounted multi-time shortage function assuming convexity or nonconvexity is

defined as follows:

Definition 2.2. With the notations introduced above, for any observation Z ∈ (Rm×Rs)T ∼=
Rm×T × Rs×T , the time discounted multi-time shortage function ST

Λ in the direction of G is

defined as:

ST
Λ (Z;G) = sup

{ 1

T

T∑
t=1

ξT−tβt | Z + Θ ·G ∈ PT
Λ

}
.

For a given time horizon T , this amounts to looking for the largest arithmetic mean of time

discounted distances over all times in a given time horizon of the input-output combinations

of an observed MF to boundary of PT
Λ. If the time discounted multi-time shortage function

value ST
Λ (Z;G) > 0 for the input-output path Z of the MF being evaluated, then it means

that its inputs and outputs can be reduced and improved simultaneously in one or more time

periods.

Based on Definition 2.2, we are now in the position to determine the nonparametric

frontier rating models in a general formulation. Suppose there are n MFs under evaluation.

Let T denote the number of consecutive times in a time horizon under consideration. In

particular, the multi-time rating methods used in Section 3 focus on 3 distinct time periods:

1, 3 and 5 years. For a given multi-time direction path G = (gt)Tt=1 ∈ Rm×T
− × Rs×T

+ , the

efficiency of the MF o under evaluation can be determined by the time discounted multi-time

10



shortage function value resulting from the following program:

max
1

T

T∑
t=1

ξT−tβt

s.t.
n∑

j=1

λtjx
t
ij ≤ xtio + βtg

t
io, i = 1, . . . ,m,

n∑
j=1

λtjy
t
rj ≥ ytro + βtg

t
ro, r = 1, . . . , s,

n∑
j=1

λtj = 1, βt ≥ 0, t = 1, . . . , T,

∀j = 1, . . . , n :

{
λtj ≥ 0, t = 1, . . . , T, under convexity,

λtj ∈ {0, 1}, t = 1, . . . , T, under nonconvexity.

(4)

In the multi-time framework, we select variance and kurtosis of each time t, (t = 1, . . . , T ),

as inputs and expected return and skewness as outputs, whereas for the MVS case only

variance for each t is considered as inputs. With the help of the time discounted multi-

time shortage function, the observed MF with index o can improve its multiple return and

skewness dimensions and reduce its multiple variance and kurtosis dimensions along a given

direction path G over all time periods. The value of the objective function of model (4)

indicates the amount of (in)efficiency of the MF o representing the multi-time shortage

function. A value greater than zero indicates that the inputs and outputs of the evaluated

MF can be improved in one or more time periods. The path of input-output combinations

is thus situated below the boundary of the multi-time PPS, and thus is inefficient from a

multi-time perspective.

In the following Sections 4 and 5, we employ MF data to compare the proposed multi-time

and multi-moment measures with traditional financial measures, as well as with single-time

MV measures. These comparisons are aimed not only to illustrate the impact of multiple

moments and multiple times on MF performance evaluation, but more importantly to further

explore the potential benefits of the newly proposed performance measures for MF selection

by means of backtesting. We now turn to eplain the backtesting framework in Section 3.
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3 Backtesting Framework

Our main objective in this contribution is to test that the multi-time and multi-moment

performance measures can be expected to perform well for MF ratings and selection. To this

end, a comparative approach based on a backtesting methodology is adopted. Backtesting

refers to executing fictitious investment strategies using historical data to simulate how these

strategies would have performed if they had actually been adopted by MF managers in the

past. It is powerful for evaluating and comparing the performance of different investment

strategies without using real capital. Some examples of a backtesting approach are found

in DeMiguel, Garlappi, and Uppal (2009), Tu and Zhou (2011), Brandouy, Kerstens, and

Van de Woestyne (2015), Zhou, Xiao, Jin, and Liu (2018) and Lin and Li (2020), among

others.

For comparison, there are 15 fund rating methods in total being collected in our work.

On the one hand, we test some traditional financial indicators: Sharpe ratio, Sortino ratio

and Omega ratio. The exact definition for the Sharpe, Sortino and Omega ratios can be

found in Feibel (2003, p. 187 and p. 200) and Eling and Schuhmacher (2007, p. 2635),

respectively. Based on these definitions, these three traditional financial ratios are presented

as follows:

Sharpe =
E(R)− rf
σ(R)

, (5)

Sortino =
E(R)− rf
σ−(R)

, (6)

Omega =
E(R)− L

E[max(L−R, 0)]
+ 1, (7)

where E(R) and rf represent the mean value of a random return R and the risk-free rate,

respectively; σ(R) and σ−(R) denote the standard and lower semi-standard deviations of a

random return R, respectively; L is the loss threshold, in particular, above this threshold

returns are considered gains, while below this treshold these are regarded as losses. Using

the above three ratios, we obtain the financial indexes for the above n MFs (i.e., Sharpej,

Sortinoj and Omegaj, where j = 1, . . . , n) which can be use to measure their performance

at the given time horizon T , and the higher the value, the better the performance. The

risk-free rate R and the loss threshold L are here specified as zero. Furthermore, in line with

the properties of the shortage function used in the nonparametric frontier-based methods,

we define the following traditional finance-based efficiency measures that bound the values
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between zero and unity and that make sure that the zero indicates full efficiency:

Eff(Sharpej) =
max{Sharpej | j = 1, . . . , n} − Sharpej

max{Sharpej | j = 1, . . . , n} −min{Sharpej | j = 1, . . . , n}
, (8)

Eff(Sortinoj) =
max{Sortinoj | j = 1, . . . , n} − Sortinoj

max{Sortinoj | j = 1, . . . , n} −min{Sortinoj | j = 1, . . . , n}
, (9)

Eff(Omegaj) =
max{Omegaj | j = 1, . . . , n} −Omegaj

max{Omegaj | j = 1, . . . , n} −min{Omegaj | j = 1, . . . , n}
. (10)

On the other hand, we include convex and nonconvex nonparametric frontier-based rat-

ings in different frameworks. All these 15 rating methods (3 traditional financial rating

methods plus 12 frontier-based rating methods) are listed in Table 1.

Table 1: List of various rating models compared

Classification Methods

Traditional financial measures

Eff(Sharpe)

Eff(Sortino)

Eff(Omega)

Convex frontier rating methods

Single-time and MV framework

Single-time and MVS framework

Single-time and MVSK framework

Multi-time and MV framework

Multi-time and MVS framework

Multi-time and MVSK framework

Nonconvex frontier rating methods

Single-time and MV framework

Single-time and MVS framework

Single-time and MVSK framework

Multi-time and MV framework

Multi-time and MVS framework

Multi-time and MVSK framework

To simplify names of the frontier-based methods, some notation indicates which frontier

rating method is used for ranking MFs. This can be done in both single-time (ST) and

multiple-time (MT) frameworks, using a convex (subscript ‘c’) or a non-convex (subscript

‘nc’) frontier rating methods, and focusing on the first two (MV), three (MVS), or four

moments (MVSK), respectively. For instance, MTMVSKc refers to the convex frontier model
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with the mean, variance, skewness and kurtosis over multiple times. Note that all the

empirical results concerning these 15 rating methods are reported using these simplified

notations.

We consider a simple buy-and-hold backtesting strategy consisting of buying in each time

the 10, 20 and 30 best performing MFs ranked by rating method, respectively. Our work

now is to empirically test the out-of-sample performance of these 15 buy-and-hold strategies.

Since the Sharpe ratio and other relative performance measures are only suitable for the MV

world, we opt for the shortage function as an absolute performance measure that is capable to

assess the performance of these strategies in multiple dimensions simultaneously (i.e., mean,

variance, skewness and kurtosis). Hence, the 15 buy-and-hold backtesting strategies are

compared based on the MVSK performance of their holding values evaluated by combining

shortage functions with the single-time and multi-moment frontiers (with convexity and

nonconvexity).

Based on the fundamental logic of backtesting summarized so far, we design a backtesting

analysis in detail for the buy-and-hold strategies constructed by the 15 rating methods. Our

backtesting analysis is performed multiple times by rolling the time window. We first collect

a sample of HFs with monthly return data starting from October 2006 till October 2020.

The detailed description of this sample funds is presented in the following section (Section

4). Then, we split the period from the beginning of the sample period to the end of October

2015 in time windows of a given length, where the 5 years before the end of the sample

period are kept apart to test the long-term holding performance of these strategies in the

last backtesting period. Since the longest time period considered in our work is 5 years,

it is appropriate to set the length of the rolling time window at 5 years. Therefore, the

backtesting analysis is developed starting from November 2011, and is repeated 48 times

(each time another month) with the rolling time window of 5 years till October 2015.

Using the first 5 year time window of data (from November 2006 to October 2011)

to obtain the rankings for different rating methods, we determine the first buy-and-hold

backtesting strategies in November 2011. These strategies are held for four holding scenarios:

the end of October 2012 (for 1 year); the end of October 2014 (for 3 years); the end of October

2016 (for 5 years); and until the end of October 2020 (the end of the whole sample period).

The process of the first backtesting is represented in Figure 1.
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Figure 1: Process of the first backtesting window

Then, the time window is shifted with a step of a single month to develop the next

backtesting analysis. For each time window or each backtesting event, the steps can be

detailed as follows:

(1) Adopt the 5-year time window of data to compute the single-time frontier rankings,

as well as the traditional financial rankings. In combination with the other two time

periods (i.e., 1-year and 3-year) of data from this time window, the multi-time frontier

ratings are computed.

(2) Depending on the ranking computed by this time window of data for each rating

method, the 10, 20 or 30 best performing HFs are selected for the backtesting exercise,

and then one holds these selected HFs for 1 year, for 3 years, for 5 years, and till the

end of the whole sample period, respectively.

(3) In each of the above four holding period scenarios, we compute and store the complete

historical track record of the holding value per buy-and-hold backtesting strategy, and

then we calculate the mean, variance, skewness and kurtosis of these holding value

series.

The above steps for backtesting are repeated over 48 time windows in total. For each of

the four holding period scenarios, the performance of these MVSK observations (15 times

48 observations) that are generated by the 15 strategies over 48 backtesting exercises are all

evaluated by the shortage functions in the single-time and multi-moment frameworks (with

convexity and nonconvexity). In particular, we first establish the convex and nonconvex VRS

nonparametric frontiers in the single-time and multi-moment framework for these MVSK
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observations, and then measure their efficiency scores using the shortage functions. Clearly,

each buy-and-hold strategy yields the efficiency scores of 48 MVSK observations. The average

efficiency score and the number of efficient units, as well as the distribution of inefficiency

scores across these 48 observations, are adopted to evaluate the 15 strategies. For the four

holding scenarios, the same pattern is used to compare the 15 strategies based on the different

rating methods.

4 Empirical Backtesting Results

As previously mentioned, the purpose of the empirical analysis is twofold. First, we examine

whether the consideration of multiple moments and multiple times has an impact on both

the efficiencies and the rankings of HFs. Second, we aim to further illustrate the eventual

superiority of the proposed multi-time and multi-moment frontier rating methods by the

backtesting analysis.

4.1 Sample Description

Considering the use of backtesting in the newly proposed multi-time and multi-moment

ratings, the sample data collected requires the availability of continuous data for at least

14 years. Hence, we choose 187 HFs with monthly returns from October 2006 to October

2020 to test the 15 rating methods. The data is all downloaded from Lipper for Investment

Management made available by Hedge Funds database. It needs to be stated that we initially

specify these nonparametric frontier rating methods following the idea of Kerstens, Mounir,

and Van de Woestyne (2011) that higher order moments and cost components are included.

But, since HF cost data is unavailable in this database, our empirical analysis is limited to

focus on the characteristics of the return distributions for these HFs without considering

cost factors. In the following, we make a basic analysis of the monthly return characteristics

of the 187 HF sample over the whole sample period. Table 2 reports descriptive statistics

on the first four moments of the sample.

16



Table 2: Descriptive statistics for all 187 HFs over the whole sample period

Mean Variance Skewness Kurtosis

Min. −0.328 0.633 −621.506 3.866

Q1 0.306 8.764 −43.341 481.584

Median 0.447 14.971 −10.294 1293.516

Mean 0.480 26.810 210.182 34145.995

Q3 0.601 27.018 1.468 4267.635

Max. 1.733 521.156 22732.909 2655540.333

From the descriptive statistics of the monthly returns reported in Table 2, we find that

the series consisting of 187 HFs’skewness present positive mean and negative median, while

the dispersion is quite large. Furthermore, all 187 HFs display positive kurtosis and also

have a high dispersion. It is evident that some HFs do not perform well in terms of skewness

and kurtosis. Therefore, for investors seeking non-negative skewness with small positive kur-

tosis, the multi-moment rating methods can be of great importance to select well-performing

HFs from a large and heterogeneous HF universe. To assess the stability and persistence

of these return characteristics over time, we further report the first four moments of the

sample over three time periods: a 1-year, a 3-year and a 5-year time periods, respectively,

is presented in Table A.1 in Appendix A. Fundamentally, the same results regarding the

return characteristics are available for these three time periods.

4.2 Evaluation Results

For the first aim of the empirical analysis, we compare both the efficiency distributions and

the rankings of the 187 HFs calculated by the 15 rating methods. In the single-time rating

framework, we extract the monthly returns of these samples for the past 5 years to date to

calculate the efficiency and ranking. While in the multi-time rating framework, the monthly

returns for the past 1 year, 3 years and 5 years to date are integrated and applied to evaluate

the performance of these funds.

First, the efficiency distributions computed for the 15 rating methods are compared by

means of nonparametric tests comparing two entire distributions initially developed by Li

(1996) and refined by Fan and Ullah (1999) and most recently by Li, Maasoumi, and Racine

(2009). It tests for the eventual statistical significance of differences between two kernel-based
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estimates of density functions f and g of a random variable x. The null hypothesis maintains

the equality of both density functions almost everywhere: H0 : f(x) = g(x) for all x; while

the alternative hypothesis negates this equality of both density functions: H1 : f(x) 6= g(x)

for some x.7 Table 3 provides Li-test statistics for all rating methods considered in this

contribution: in total, we report 105 relevant rating methods comparisons.

Several observations can be made regarding the results in Table 3. First, it is clear that

the efficiency distributions computed by traditional financial performance measures and those

computed by frontier-based rating methods are significantly different at the 1 % significance

level.

Second, in both convex and nonconvex frontier ratings, the single-time and multi-time

rating methods yield significantly different efficiency distributions. This implies that the

consideration of multiple times has a significant impact on the efficiency distributions.

Third, the effect of adding multiple moments on the efficiency distributions are somewhat

different in single-time and multi-time ratings. For instance, in the case of convexity, adding

skewness and kurtosis jointly has a significant effect on the efficiency distributions at the 1 %

significance level in multi-time ratings. In single-time ratings, adding higher moments does

not contribute in a significant way. Furthermore, the nonconvex frontier rating methods

are more discriminatory in the impact of adding multiple moments. Compared to the above

results in the case of convexity, in the case of nonconvexity, both adding skewness in itself and

adding skewness and kurtosis jointly have significant effects on the efficiency distributions at

1 % significance level in multi-time ratings, and adding these jointly has a significant impact

at 5 % significance level in single-time ratings.

Fourth, for multi-time ratings, imposing convexity always has a significant impact on

the efficiency distributions. The efficiency distributions obtained by convex and nonconvex

frontier ratings in MV, MVS and MVSK cases all yield differences at 1 % significance level,

respectively. For the single-time ratings, the efficiency distributions of the convex and the

nonconvex models are different at the 1 % and 10 % significance level in MVS and MVSK

cases, respectively.

We further determine the Kendall rank correlations to test the degree of concordance

in rankings determined by these performance measures. Table 4 shows the rank correlation

between different HF ratings. In this table, *** indicates that the correlation coefficient

between the rankings is significantly different from zero at 1 % significance level. The

7Matlab code developed by P.J. Kerstens based on Li, Maasoumi, and Racine (2009) is found at:
https://github.com/kepiej/DEAUtils.
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following key findings are revealed from Table 4. First, it is clear that the traditional financial

ratings present a consistently low correlation (around 0.39-0.43) with the multi-time and

multi-moment (MVS & MVSK) frontier ratings, but a high correlation (more than 0.8) with

the single-time MV ratings. Second, turning to the comparisons between frontier ratings

in single-time and multi-time frameworks, the single-time frontier rating and multi-time

frontier rating show a low correlation overall. Third, the MV frontier rating exhibits a lower

correlation with the multi-moment (MVS & MVSK) frontier ratings in multi-time framework

compared in single-time framework. Moreover, the MV frontier rating has a lower correlation

with the MVSK frontier rating compared with the MVS frontier rating. Finally, regarding

comparisons between the rating models with convexity and nonconvexity, both the second

and third findings tend to be more pronounced in the nonconvex case compared to the convex

case.

From these analyses, we can conclude that the multiple moments and multiple times both

separately and jointly have an impact on the HF efficiency and ranking for our data, and

this impact is more significant when the two factors are considered jointly. Furthermore,

nonconvexity may prove to be a more modest hypothesis in the proposed multi-time and

multi-moment ratings since it exhibits a stronger discriminatory power with respect to the

effect of adding multiple moments. This confirms earlier comparative results between the

convex and nonconvex models with higher order moments in the contribution of Kerstens,

Mounir, and Van de Woestyne (2011).

4.3 Backtesting Results

We analyze the backtesting scenarios with a selection of the 10, 20 or 30 best performing

HFs, respectively. As stated previously, the 15 buy-and-hold strategies are compared in

terms of the MVSK performances of their holding value series that are evaluated by the

shortage functions based on the convex and nonconvex VRS frontiers in single-time and

multi-moment frameworks (with convexity and nonconvexity). Table 5 presents an overall

analysis with respect to the performances of the MVSK observations generated per strategy

held until the end of the whole sample period. This table is structured as follows: the

first series of four columns list the results with regard to the 10 best HFs selected for the

backtesting exercise, and the second and third series of four columns present the results for

selecting 20 and 30 best HFs, respectively. Within each selecting (buying) scenario, the first

two columns report the average inefficiency scores and the number of efficient units for each

strategy when evaluated using the convex VRS frontier in single-time and multi-moment
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framework (VRSc), while the last two columns report these results in the nonconvex case

(VRSnc).

Table 5: Performance results for 15 buy-and-hold backtesting strategies: Descriptive statis-
tics of the values of shortage function

Methods

HF(10) HF(20) HF(30)

VRSc VRSnc VRSc VRSnc VRSc VRSnc

Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs. Average #Ef. Obs.

Eff(Sharpe) 0.064 0 0.040 9 0.081 2 0.047 10 0.078 0 0.034 9

Eff(Sortino) 0.063 1 0.034 10 0.084 2 0.055 7 0.077 1 0.037 9

Eff(Omega) 0.064 0 0.031 10 0.084 1 0.059 4 0.077 0 0.040 7

STMVc 0.077 0 0.045 17 0.101 1 0.064 5 0.096 0 0.047 11

STMVSc 0.059 7 0.027 28 0.090 2 0.055 14 0.076 4 0.033 16

STMVSKc 0.044 6 0.014 31 0.070 4 0.039 17 0.059 1 0.031 15

MTMVc 0.061 1 0.020 22 0.075 1 0.038 14 0.078 2 0.032 11

MTMVSc 0.063 4 0.025 22 0.078 2 0.044 14 0.065 2 0.028 16

MTMVSKc 0.041 9 0.008 30 0.065 1 0.033 17 0.053 1 0.020 17

STMVnc 0.068 2 0.031 20 0.100 0 0.062 8 0.090 0 0.038 11

STMVSnc 0.042 5 0.023 16 0.054 4 0.029 19 0.039 5 0.014 25

STMVSKnc 0.042 4 0.026 13 0.040 6 0.022 27 0.035 7 0.012 26

MTMVnc 0.047 3 0.013 26 0.075 0 0.035 18 0.074 0 0.030 15

MTMVSnc 0.034 9 0.010 27 0.049 9 0.024 19 0.039 6 0.013 28

MTMVSKnc 0.039 5 0.012 31 0.047 7 0.021 21 0.032 7 0.009 28

We first analyze the main findings in the context of buying and holding until the end of

the whole sample period, as presented in Table 5. From these results, there are four main

conclusions.

The first key finding is that all the frontier-based strategies outperform the strategies

based on traditional financial indicators, except the strategies constructed by the single-time

MV frontier rating methods. From the average inefficient scores reported in Table 5, it is

easy to see that the average inefficiency scores of all strategies based on the multi-moment

and/or the multi-time frontier ratings are lower than those of Sharpe-, Sortino- and Omega-

driven strategies. This result is valid when buying the 10, 20 and 30 best HFs. Combining

the numbers of efficient units given in Table 5, the frontier-based strategies clearly yield

more efficient units compared to those based on traditional indicators.

The second key result is that the buy-and-hold strategies according to the multi-moment

ratings present superior results compared to those based on the MV ratings. Again, this

result is confirmed when buying the 10, 20 and 30 best HFs. Both in the single-time and

multi-time rating frameworks, we find that the strategies driven by the multi-moment ratings

yield lower average inefficiency scores and a higher number of efficient units over strategies

driven by the MV ratings.

Third, combining the two evaluation indicators of average inefficiency scores and the

number of efficient units, it is found that in the majority of cases the buy-and-hold strate-

gies consisting of the HFs selected by the multi-time rating methods perform better than
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strategies consisting of the HFs selected by the single-time rating methods. This result

remains valid when buying the 10, 20 and 30 best HFs.

A last key finding is that strategies determined by the nonconvex frontier-based ratings

always outperform those determined by the convex frontier-based ratings. Moreover, by

comparing the average inefficiency scores and the number of efficient units between the two

in MVS and MVSK frameworks, it can be seen that when multiple moments are considered,

the strategies based on the nonconvex frontier-based ratings usually display a more significant

advantage. The reason for this finding is that skewness and kurtosis imply nonconvexities

in diversified portfolio optimisation. As stated above, nonconvex production frontier models

used for fund rating underestimate the nonconvex diversified portfolio models, while the

convex production frontier models may tend to overestimate these same nonconvex diversified

portfolio models.

Thus, this backtesting analysis shows that the buy-and-hold strategies constructed by

our proposed multi-moment and multi-time rating methods exhibit superior performance

in most scenarios. We therefore believe that the joint consideration of multi-moments and

multi-times provides additional useful information for HF selection in practice.

As a sensitivity analysis, we test the performance of the 15 buy-and-hold backtesting

strategies held for 1 year, 3 years and 5 years, which can be regarded as their short-, medium-

and long-term holding performance. Table B.1 in Appendix B summarizes the performance

results of the 15 strategies held for these three alternative holding periods. The above four

findings are also evidenced in most cases for these three holding period scenarios. Moreover,

the buy-and-hold backtesting strategies consisting of the best HFs rated by the multi-moment

and multi-time performance measure tend to show a consistent performance over the different

holding periods. We basically conclude that the buy-and-hold strategies driven by the multi-

moment and multi-time ratings exhibit favorable and consistent short-, medium- and long-

term holding performance, somewhat implying that the performance of the best-performing

HFs rated by the proposed multi-moment and multi-time performance measure would be

sustained over time. A more detailed discussion on the sensitivity analysis is provide in

Appendix B.
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Figure 2: Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies

Besides evaluating strategies based on the two summarized indicators reported in Table

5, we further provide the entire distribution of the inefficiency scores per strategy to compare

these intuitively. Figure 2 presents a graphical overview of the performance of all strategies

by integrating the box-plot per strategy held to end in the buying scenarios with 10, 20

and 30 HFs selected. In this figure, the sub-figures (a) to (c) correspond to the performance

results of these three buying scenarios. The box-plots for the performance of strategies based

on the convex VRS frontier are in blue, and those based on the nonconvex VRS frontier are

in red. In these box-plots, the box indicates the interquartile range where the small vertical

lines reporting the location of the median. Their locations closer to the left suggests that the

entire distribution of inefficiency scores for the strategy is at a lower level, which implies that

the strategy has a better performance in backtesting analysis. As we can observe from Figure

2, comparing the performance of these strategies in each buying (backtesting) scenario, the

buy-and-hold strategies constructed by the multi-moment and multi-time frontier rating

methods are superior to strategies constructed by the existing rating methods in most cases.

Equally so, the entire distributions of the inefficiency scores for the 15 strategies held for

1, 3 and 5 years are presented in Figures B.1, B.2 and B.3 in Appendix B, respectively. From

Figures B.1, B.2 and B.3, one can observe that the dominance of the strategies driven by

the multi-moment and multi-time ratings over other strategies remains valid and that this

relation is strengthened as the holding period increases. It is therefore clear that the good

performance of the strategies driven by the proposed frontier-based performance measures
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including multiple moments and multiple times exhibits good stability (see Appendix B for

details).

5 Conclusion

Inspired by recent nonparametric frontier rating methods contributing to assessing MF per-

formance (e.g., Kerstens, Mounir, and Van de Woestyne (2011)), this contribution has aimed

to define a new shortage function or performance measure for rating MFs that can simulta-

neously handle both multiple moments and multiple times. Furthermore, we have explored

the potential benefits of this new performance measure for selecting the best performing MF.

We are now in a position to summarize the main contributions.

First, we establish a series of nonparametric convex and nonconvex frontier rating meth-

ods with multi-moments and multi-times. The proposed rating methods are capable of not

only assessing to which extent a MF performs well in the several moments following mixed

risk-aversion preferences, but it simultaneously measures to which extent a MF performs well

in all these moments in different times as well. These new multi-time and multi-moment

performance measures are suitable for handling mixed risk-aversion preferences of investors

which aim at time persistence.

Second, the proposed rating methods are empirically applied to HFs, given that HFs tend

to exhibit strong asymmetric and long-tail return characteristics compared to other MFs.

Using Li-test and Kendall rank correlation, the multi-time and multi-moment ratings are

compared with traditional financial indicators and basic single-time MV rating methods to

examine the impact of multiple moments and multiple times. From the comparison among

15 various rating methods, we find that in both convex and nonconvex cases, the multiple

moments and multiple times both separately and jointly have an impact on the HF efficiency

and ranking, and this impact is more significant when the two factors are considered jointly.

Furthermore, the nonconvex rating models have stronger discriminatory power with respect

to the effect of adding multiple moments over the convex rating models. This confirms earlier

comparative results between convex and nonconvex models with higher order moments in

Kerstens, Mounir, and Van de Woestyne (2011).

Third, having the impact of the multi-moments and multi-times in mind, we develop

a simple buy-and-hold backtesting strategy to test whether the new ratings perform any

better than more traditional financial ratings and single-time MV ratings in HF selection.
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In most backtesting exercises, the buy-and-hold strategies based on the multi-time and multi-

moment ratings exhibit a superiority over those based on traditional financial ratings and

single-time MV ratings. This superiority is clearly confirmed by comparing the MVSK

performance of holding values with respect to various buy-and-hold backtesting strategies.

The multi-time and multi-moment strategies tend to exhibit more stable and favorable short-

, medium- and long-term holding performance than the other strategies. Equally so, we

focus on the comparison of these multi-time and multi-moment strategies in the convex and

nonconvex cases. The strategies based on the nonconvex frontier ratings usually display a

more significant advantage over the convex frontier ratings probably for reasons of a closer

fit with the nonconvex skewness and kurtosis in diversified portfolio optimisation.

Overall, the proposed multi-time and multi-moment performance measures provide a

novel idea into the important topic of rating and selecting MF. From the basic backtesting

setup in our empirical analysis, further extensive backtesting studies can be developed to

exploit the potential of the new performance measures in constructing fund of funds. This

is one of the main avenues for future research. Another desirable extension is to transfer the

current methodological framework and perform a backtesting analysis in diversified models.

It is worthwhile to compare the performance in MF selection between the backtesting strate-

gies driven by diversified frontier rating methods and those driven by nondiversified frontier

rating methods (i.e., convex and nonconvex frontier rating methods).
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Appendices: Supplementary Material

A Sample Description: Further Details

The descriptive statistics on the first four moments of the 187 HF sample over 1-year time

period (sample period: Nov 2019 to Oct 2020), 3-year time period (sample period: Nov 2017

to Oct 2020) and 5-year time period (sample period: Nov 2015 to Oct 2020) are provided in

Table A.1.

Table A.1: Descriptive statistics for all 187 HFs over 1-, 3- and 5-year time periods

1 year monthly return: From Nov 2019 to Oct 2020

Mean Variance Skewness Kurtosis

Min. −3.913 0.241 −4765.126 0.305

Q1 −0.467 8.580 −135.113 259.251

Median 0.356 18.270 −12.409 1277.641

Mean 0.423 45.237 414.608 71518.803

Q3 0.930 45.155 14.606 6685.385

Max. 10.857 937.351 60038.381 5381641.258

3 year monthly return: From Nov 2017 to Oct 2020

Mean Variance Skewness Kurtosis

Min. −2.836 0.258 −1820.695 0.217

Q1 −0.134 7.925 −65.187 344.122

Median 0.175 14.259 −17.723 945.365

Mean 0.248 27.364 240.996 36348.550

Q3 0.463 28.983 2.409 3974.036

Max. 4.623 533.743 30000.036 2865464.753

5 year monthly return: From Nov 2015 to Oct 2020

Mean Variance Skewness Kurtosis

Min. −1.618 0.228 −1142.152 0.196

Q1 −0.005 7.290 −45.376 275.106

Median 0.254 12.959 −12.149 715.167

Mean 0.345 26.036 243.423 39749.791

Q3 0.609 25.073 0.299 3002.459

Max. 3.943 705.232 27466.851 3289535.317
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As observed from column 4 in Table A.1, we find that for each time, the series composed

by the skewness of 187 HFs shows positive mean and negative median, as well as a large

dispersion. From column 5, it can be seen that all 187 HFs have positive kurtosis in each

time, and also exhibit a high dispersion. These results are in line with the ones reported in

the main body of the text. This partly indicates that the stability and persistence of these

return characteristics for the HF sample is maintained over different times. In addition,

there are certain differences among the 1-year, 3-year and 5-year MVSK of this HF sample.

To some extent, the addition of multiple moments and multiple times may provide a more

accurate picture to describe HF’s return characteristics compared to only considering the

mean and variance at a single time.

B Backtesting Results: Sensitivity Analysis

To develop a sensitivity analysis with respect of the holding period, this Appendix focuses on

testing the short-, medium- and long-term holding performance of the buy-and-hold back-

testing strategies based on the proposed multi-moment and multi-time rating methods. The

performance of strategies held for only 1 year is regarded as a short-term holding perfor-

mance, for 3 years as a medium-term holding performance, and for 5 years as a long-term

holding performance. For each of the three holding scenarios, the 15 strategies are compared

in terms of the MVSK performances of their holding values that are always evaluated by

the shortage function based on the convex and nonconvex VRS frontiers in single-time and

multi-moment framework. Table B.1 reports the summarized results with respect to the

performance per buy-and-hold backtesting strategy held for 1, 3 and 5 years.

Table B.1 is organized as follows: the three series consisting of four columns list the

performance results for holding the selected HFs over 1, 3 and 5 years, respectively. Within

each holding period scenario, the first two columns report the average inefficiency scores and

the number of efficient units for each method when evaluated using the convex VRS frontier

in single-time and multi-moment framework (VRSc), while the last two columns report these

results in the nonconvex case (VRSnc). Horizontally, each block of rows contains the results

of the selection of the 10, 20 or 30 best performing HFs, respectively.

We now analyze the results on the three holding scenarios presented in Table B.1, follow-

ing the same basic logic of analysing the 15 strategies in the main text. Thus, the performance

of strategies generated by two family of ratings (frontier vs. finance) is compared first, and

then the comparison between the frontier families of ratings is developed separately (i.e.,
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multi-moments vs. MV; multi-times vs. single time; convexity vs. nonconvexity).

We first discuss the short-term holding performance of the 15 buy-and-hold strategies,

as shown in columns 2-6 of Table B.1. First, it can be observed that minor difference

on the short-term holding performance is observed between the strategies depending on

the multi-time frontier ratings and those depending on traditional financial ratings, and

both their performances are superior over other frontier-based strategies. Second, in most

cases, the strategies based on the multi-moment ratings do not show superiority compared

to those based on the MV ratings when these strategies are held for only 1 year. This

result is somewhat at odds with the one reported in the main text. Third, combining

average inefficiency scores and the number of efficient units, the strategies constructed in the

multi-time rating framework perform better over those in the single-time rating framework

under the 1-year holding scenario. Finally, in terms of short-term holding performance, the

strategies determined by the nonconvex frontier-based ratings outperform those determined

by the convex frontier-based ratings in the majority of cases. The latter finding is in line

with the one shown in the main text. It needs to be mentioned that some of the findings

may be somewhat unstable with respect to the 1-year holding period due to the limited data

for testing the short-term holding performance of the 15 buy-and-hold strategies.

Looking at columns 7-10 of Table B.1 for the medium-term holding performance of the

15 strategies, one can draw the following observations. The frontier-based strategies with

consideration of multi-moments and multi-times (separately or jointly) largely outperform

the finance-based strategies. It is easy to observe that the strategies driven by the multi-

moment and multi-time frontier ratings generally yield lower average inefficiency scores and

more efficient units compared to Sharpe-, Sortino- and Omega-driven strategies. Turning to

the comparisons between various frontier-based rating methods, the buy-and-hold strategies

based on the multi-moment ratings (MVS & MVSK) perform better than those based on

the basic MV ratings. This is confirmed in both single-time and multi-time rating frame-

works. Moreover, consistent with the finding on considering multiple times in the 1-year

holding scenario (see the third finding), the multi-time frontier-based strategies outperform

the single-time frontier-based strategies in most cases in the 3-year holding scenario. Again,

when comparing convex and nonconvex frontier-based strategies in the medium-term holding

scenario, the same coherent finding emerges as in the short-term holding scenario (see the

final finding analyzed in the 1-year holding context).

Following up the results regarding the 5-year holding scenario as reported in columns

11-14 of Table B.1, the above four findings emerging in the 3-year holding period are also

evidenced in this holding scenario. These results in the medium- and long-term holding
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scenarios are rather in line with the ones reported in the main body. We basically conclude

that the buy-and-hold backtesting strategies based on the proposed multi-time and multi-

moment models show a superior performance in different holding period scenarios.

Apart from comparing the performance of the 15 buy-and-hold strategies vertically for

each of three holding scenarios, we have also run a horizontal analysis on the consistency

and stability of the performance per strategy over different holding periods. Looking at the

evolution of the average inefficiency scores and the number of efficient units per strategy

held for 1, 3 and 5 years allows to infer two new and interesting observations. First, the

strategies consisting of the best HFs selected by financial indicators and basic MV frontier

rating methods tend to exhibit worse performance in medium- and long-term holding periods

compared to their performances in a short-term holding period. By contrast, the strategies

with the consideration of multiple moments and multiple times usually exhibit favorable

and consistent short-, medium- and long-term holding performance. Second, focusing on

the MVS and MVSK settings in the multi-moment rating framework, it can be noticed that

compared to the strategies based on the multi-time ratings adding skewness only, the ones

based on the ratings adding both skewness and kurtosis show better and more consistent

short-, medium-, and long-term holding performance. This finding reveals the necessity for

the addition of kurtosis in HF rating and selection. Indeed, including the kurtosis reduces the

disturbance of certain extreme values to the fund ratings, and therefore the funds selected

tend to present both better and more stable returns. These results somewhat suggest that

the performance persistence of the best-performing HFs rated by the multi-moment and

multi-time performance measure is well maintained over time.
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Figure B.1: Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies

held for 1 year

Figure B.2: Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies

held for 3 years
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Figure B.3: Distributions of inefficiency scores for 15 buy-and-hold backtesting strategies

held for 5 years

To compare the 15 buy-and-hold strategies intuitively, Figures B.1, B.2 and B.3 offer

box-plots to describe the entire distributions of the inefficiency scores per strategy held for

1, 3 and 5 years, respectively. In each figure, the sub-figures (a) to (c) correspond to the

performance results of the buying scenarios with 10, 20 and 30 best HFs selected, whereby

the performance of strategies based on the convex VRS frontier are depicted in blue, and

those based on the nonconvex VRS frontier are displayed in red. As introduced in the main

text, the box of these box-plots indicates the interquartile range where the small vertical line

reports the location of the median. Straightforwardly, the location of the median closer to the

left indicates that the entire distribution of inefficiency scores for one strategy is somewhat

skewed to the left, which signals that the strategy performs better in the backtesting analysis

because the probability mass of the inefficiency is closer to zero. Two major observations

can be made with regard to these results in Figures B.1, B.2 and B.3. First, although

the buy-and-hold strategies constructed by the multi-moment and multi-time frontier rating

methods do not exhibit a significant superiority in the 1-year holding scenario, they establish

a clear dominance over the other strategies in both the 3- and 5-year holding scenarios (see

sub-figures (a) and (b) of Figures B.1, B.2 and B.3). Second, concentrating on Figures B.1,

B.2 and B.3 individually, the good performance of the buy-and-hold strategies depending on

the multi-moment and multi-time ratings tends to be consistent and stable over time.
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