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Abstract

A generalized game is a situation in which interaction between agents occurs not only through

their objective function but also through their strategy sets; the strategy set of each agent

depends upon the decision of the other agents and is called the individual constraint. As opposed

to generalized games with exogenous shared constraint literature pioneered by [Rosen, 1965], we

take the individual constraints as the basic premises and derive the shared constraint generated

from the individual ones, a set K. For a pro�le of strategies to be a Nash equilibrium of the

game with individual constraints, it must lie in K. But if, given what the others do, each agent

agrees to restrict her choice in K, something that we call an endogenous shared constraint,

this mutual restraint may generate new Nash equilibria. It is the main result of this paper

to show that the set of Nash equilibria in endogenous shared constraint contains the set of

Nash equilibria in individual constraints. In particular, when there is no Nash equilibrium in

individual constraints, there may still exist a Nash equilibrium in endogenous shared constraint

and we give two economic applications of this to collective action problems (carbon emission

and public good problems).
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1 Introduction

It has long been recognized in Economics, Political sciences, International relations and more

generally in Social sciences that Game theory is a useful tool to understand (and/or to pre-

dict) the outcome of a particular economic or social interaction between a set of agents (see

[Fudenberg and Tirole, 1991], [Brams, 2011], [Schelling, 1980], [Moulin, 1986] for classical textbooks).

A striking feature of most (not to say all) applied game theoretical models is that interaction be-

tween agents only takes place through the objective functions (utility or cost function). Given what

the others choose, the aim of a given agent is to optimize her objective function by choosing the

optimal strategy in a given set assumed to be invariant with respect to the choice of the other

agents.

When each agent explicitly faces for instance a common binding constraint, the decision of a

given agent may not only impact the objective function of the other agents but also their strategy

set. Consider the well-known example of international environmental agreements (such as the

Kyoto protocol) in which the total volume of emissions of greenhouse gas must be lower than

a given threshold e. From the point of view of a given country i, given the sum of emissions of

greenhouse gas of the other countries e−i, its total emission ei explicitly depends upon the emissions

of the other since the strategy set of country i is equal to Si(e−i) = [0, e − e−i]. Within such

a simple and natural framework with a collective binding constraint, interaction between agents

may not only take place through the objective function but also through their strategy set (see

[Breton et al., 2006] and [Tidball and Zaccour, 2005] for early economic applications). Games in

which the interaction takes place not only through the utility function (or cost function) but also

through the strategy sets are called generalized games or Generalized Nash Equilibrium Problem

(GNEP for short) (see [Facchinei and Kanzow, 2007], [Fischer et al., 2014]). Throughout this paper,

we may call interchangeably GNEPs and generalized games.

Generalized games (GNEPs) are not recent and have received considerable attention in oper-

ational research. For instance, in their well-known survey, [Facchinei and Kanzow, 2007] o�er a

historical overview of GNEPs dating back to the seminal paper of [Arrow and Debreu, 1954] and

[Nash, 1950] and [Nash, 1951] and they provide interesting examples of applications of such games

in telecommunication or in environmental pollution. In the applied maths literature more generally,

there has been an abundant number of articles on GNEPs in recent years either proposing new meth-

ods, existence results or numerical algorithms to �nd a Nash equilibrium (e.g., [Facchinei et al., 2009],

[Aussel and Dutta, 2008], [Fischer et al., 2014]). However, to the best of our knowledge, there

has been only few papers trying to apply GNEPs in Economics (but see [Breton et al., 2006],

[Elfoutayeni et al., 2012], [Le Cadre et al., 2020], see [Kulkarni, 2017] for a short review).

A generalized game with individual constraints can be naturally de�ned as a game in which each

agent has to satisfy her own individual constraint, that is, each agent i is required to pick a strategy

xi in a set which is (possibly) dependent on the strategies picked by the other agents. In this sense,

classical games but also GNEPs can be seen as generalized games with individual constraints.
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A generalized game with shared constraint is a speci�c category of games with individual con-

straints and has been introduced for the �rst time in [Rosen, 1965] although the term shared con-

straint does not appear1. In his seminal paper, [Rosen, 1965] pioneered such games and proves an

existence result about concave games. Remarkably, Rosen's result is true not only on E de�ned as

the classical Cartesian product of strategy sets but also on any closed and bounded convex subset

X ⊂ E. Later on in the literature, X has been called the shared constraint set. Such a game is called

generalized game with shared constraint in the sense that all the agents share the same constraint,

that is, the pro�le of strategies x := (x1, ..., xn) must always remain in the shared constraint set X:

given x−i, each agent i is required to pick a strategy xi ∈ Ei such that x := (xi, x−i) ∈ X.

The striking feature of the shared constrained approach developed in [Rosen, 1965] and the

subsequent literature is that this shared constraint set X is exogenously given and bears no rela-

tionship with any possible individual constraints. In [Rosen, 1965], the author never makes use of

the notion of an individual constraint. Later on, initiated by [Bensoussan, 1974], [Harker, 1984] and

[Harker, 1991] introduced a variational formulation of the equilibrium of a generalized game with

shared constraint and the literature on GNEPs now formulate the equilibrium as a (quasi) variational

inequality. In its most basic version (see [Fischer et al., 2014] or [Facchinei and Kanzow, 2007] for

excellent review papers), the variational formulation involves the partial derivative of the objective

function of each agent with respect to her own strategy, which means that the underlying functions

(objective function/constraints function) have to be di�erentiable.

It is the aim of this (methodological) paper to show the fruitfulness of such generalized games

in the Economics of binding constraints. We re-consider GNEPs with shared constraints and in

particular we shed light on the relationships between the individual constraints on the one hand

and the shared constraints on the other hand. Instead of considering a shared constraint set which

is exogenously given and imposed to the set of agents, as in the literature on GNEPs, we consider

these individual constraints as the basic premises of the game and derive an endogenous shared

constraint set generated precisely by these individual constraints. The building of such a shared

constraint set from basic individual constraints is the core of our article and main result. From a

pure economic point of view, the existing literature on generalized games with shared constraints has

two limitations. First, as said, the shared constraint is in general postulated and not generated from

the individual constraints2. Second, by formulating the equilibrium of the game as a variational

inequality, the characterization of the equilibrium excludes the simplest games in which the strategy

set of each agent is a �nite set (e.g., the 2-2 games).

We prove in this paper the following interesting result for which the economic applications are

numerous: the set of Nash equilibria of a generalized game with individual constraints is included

1Historically, generalized games were �rst introduced by [Debreu, 1952]. In [Harker, 1991] or in [Krawczyk, 2007],

the authors note that a number of di�erent names appeared in the literature to de�ne these generalized games,

abstract economy, social equilibria games, pseudo-Nash equilibria games or normalized equilibria ([Rosen, 1965]).
2For instance, in [Tidball and Zaccour, 2005], they consider a game with individual constraints, but, as we shall

see, the shared constraint is not derived from the individual constraints.
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in the set of Nash equilibria of the generalized game with shared constraint generated from these

individual constraints. This result, whose proof turns out to be simple, has two basic important

consequences.

1. There are situations in which there is no Nash equilibrium in a game with individual con-

straints while such Nash equilibria exist in the game with shared constraint generated from

the individual ones.

2. If there is no Nash equilibrium in shared constraint, then, no Nash equilibrium in the game

with individual constraints can exist (the converse is however not true).

From an economic point of view, our result requires some binding agreements; given what the others

do, each agent i agrees to pick a strategy not in her basic set of strategy (individual constraint) but

in the shared constraint set that results from these individual constraints. Within our generalized

game, sharing the constraint means in general that, given what the others do, compared with the

primitive individual constraints Xi, each agent will now have to choose a strategy in a smaller set,

that is, in Ki ⊂ Xi. Some strategies that were available in the game with individual (primitive) con-

straints are not anymore available in the game with shared constraint. Put it di�erently, introducing

a shared constraint is equivalent to introduce restrictions and this kind of restriction exactly �ts the

notion of mutual restraint discussed in the well-known book of [Barrett, 2007] entitled Why coop-

erate?. Contrary to what the basic intuition could suggest, this form of mutual restraint typically

generates more Nash equilibria and not less.

It is clear that this binding agreement requires some form of cooperation between the agents.

In his well-known textbook, [Moulin, 1995] considers three modes of cooperation between a set of

agents, direct agreements, decentralized behavior and justice. In this paper, while not explicitly

modeled, the mode of cooperation considered is the �rst one, direct agreements, and can be thought

(from a game theoretical point of view) of as the result of preplay communication3. These direct

binding agreements are particularly important when there is no Nash equilibrium in the game with

individual constraints while (at least) one equilibrium exists in the game with shared constraint.

We illustrate this idea in the second part of the paper to collective action problems, an externality-

pollution and a public good problem. In each model, we show situation in which there is no Nash

equilibrium in individual constraints while there may be (at least) one Nash equilibrium in shared

constraint.

The remainder of the paper is structured as follows. In Section 2, we remind the de�nitions

of generalized games as well as the corresponding notions of Nash equilibria. We then de�ne the

notion of generalized game with shared constraint generated from a game with individual constraints,

something we call endogenous shared constraint and we establish the main �nding of our paper,

3As observed in [Moulin, 1995], transaction cost is a drawback to this direct agreement mode. If this preplay

communication is long and di�cult, the transaction cost will be high. This problem of commitment is also discussed

in the well-known book of [Ostrom, 1990]
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which states that the Nash equilibria of a generalized game with individual constraints are included

in the set of Nash equilibria of the generalized game with endogenous shared constraint. In Section

3, we o�er two di�erent collective action problem models which illuminates our main result when

no Nash equilibrium exists in individual constraints. The �rst model is a public good problem

while the second one is an environment control problem and we show the economic usefulness of the

introduction of an endogenous shared constraint in these problems. Section 4 concludes the paper.

2 Games with individual and shared constraints

2.1 Generalized games with individual constraints

We consider a game with N ≥ 2 agents (or players) and we denote J = {1, ..., N} the set of players.
The decision (or control) variable of each player i ∈ J is denoted by xi ∈ Ei, where Ei is a subset

of Rni called the strategy set. Let E =
∏N
i=1Ei = E1 × . . . × EN and denote by x ∈ E the

vector formed by all these decision variables (strategies) which has dimension n :=
∑N

i=1 ni so that

E ⊂ Rn. As usual in game theory, we denote by x−i ∈ E−i the vector formed by all the players'

decision variables except those of player i. To emphasize the i-the player's strategy, we sometimes

write (xi, x−i) ∈ Ei × E−i instead of x ∈ E. Each player i has an objective function θi : Rn → R
that depends on both his own decision variables xi as well as on the decision variables x−i of all

other players. We denote the objective function of player i by θi(xi, x−i). For a given x−i ∈ E−i
and depending upon the game, the aim of agent i may be to maximize or to minimize its objective

function θi(xi, x−i). In general, when this objective function is a utility (or a payo�) function, it

is the aim of the agent to maximize it while when it is a cost (or a loss) function, it is the aim of

the agent to minimize it. Throughout the article, unless otherwise speci�ed, we will assume that

the objective function is a cost function so that each agent i, given the other players' strategies

x−i, is seeking a strategy xi to minimize θi(xi, x−i) = θi(x ). Throughout the paper, we may use

interchangeably the terms decision, decision variable and strategy and we only consider the case of

pure strategy, that is, the situation in which each agent chooses a strategy with probability one.

In a generalized game, each player i ∈ J must pick a strategy xi ∈ Xi(x−i) ⊆ Ei where the

set Xi(x−i) explicitly depends upon the rival players' strategies. As in classical games in which

the strategy set Ei of each agent i is given, in generalized games, the strategy set that we call

the individual constraint function Xi(x−i) (or simply the individual constraint) is also exogenously

given. To de�ne in full generality the individual constraint which depends upon the decision of

others, let Xi be de�ned as follows:

Xi : E−i → P(Ei) i = 1, 2, ..., N (1)

where P(Ei) is the power set of Ei. It is usual to call Xi a point-to-set map (ot a set-valued map)

since it associates a subset of Ei to each point of E−i. This means that for a given point x−i ∈ E−i,
the strategy set also called the individual constraint of agent i is equal to Xi(x−i) ⊆ Ei, a subset of
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Ei such as an interval. At a more abstract mathematical level, Xi(x−i) may be a �nite or countable

union of intervals if we think of Xi(x−i) as a Borel set. While interesting, this kind of mathematical

generality is not our focus. We want instead to focus on the economic foundation of generalized

games. At an economic level, in a strategic interaction with two agents, given the choice x2 of agent

2, agent 1 may have to choose x1 in E1 subject to a constraint of the form g1(x1, x2) = x1+bx2 ≤ r1.
Put it di�erently, the strategy set of agent 1 explicitly depends upon the choice of agent 2. Let us

consider two economic examples of such a situation that will be considered in detail in section 3.

• In an environmental problem with externalities, agent 1 (i.e., country 1) may be constrained

to choose its emission of greenhouse gas x1 subject to a constraint of the form g1(x1, x2) =

x1+b2x2 ≤ r1 where r1 is the maximum emission of country 1 and b2x2 is the impact emission

of country 2 on country 1.

• In a public good problem, following [Guttman, 1978], each agent i ∈ {1, 2} may have to choose

a �at contribution x1 plus a matching rate bx2 (which is a function of the �at contribution of

agent 2 where b ∈ (0, 1]) so that g1(x1, x2) = x1 + bx2 ≤ r1 is the budget constraint of agent

1. A similar budget constraint holds for agent 2.

When thinking about collective action problems, there are various situations in which the deci-

sion of a given agent has an impact on the constraint of another agent.

De�nition 1 The 4-uplet (J,E, (θi)i∈J , (Xi)i∈J) is called a generalized game with individual con-

straints.

It should be clear "classical games" encountered in Economics appear as a particular generalized

games with individual constraints. When, for each i ∈ J , Xi is invariant with respect to the choice

of the other agents, we are back to a classical game in which the interaction only takes place through

the objective functions. In such a case, Xi reduces to Ei.

2.2 Generalized games with shared constraints: endogenous versus exogenous

shared constraint

In a generalized game, it may be the case that for some x−i, the strategy set of agent i is simply

empty, that is, Xi(x−i) = ∅, which means that the objective function is unde�ned so that the

equilibrium can not exist. Such an empty set problem never occurs in classical games since the

strategy set of each agent i is invariant with respect to x−i. When x ∈ E is such that xi ∈ Xi(x−i)

for each agent i ∈ J , we say that the pro�le of strategies x is admissible, which means that it is a

candidate point to be an equilibrium of the generalized game.

De�nition 2 For a given generalized game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J), let

K be the subset of E de�ned as follows.

K = {x ∈ E, ∀i ∈ J, xi ∈ Xi(x−i)} (2)

K is called the set of admissible strategies of the generalized game with individual constraints.
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The set K represents the set of pro�les of strategies x for which the generalized game with

individual constraints is de�ned for all agents. If x does not belong to K, it can not be a Nash

equilibrium of the generalized game. Throughout the paper, for the sake of interest, we assume that

K is not empty.

As in classical games, each agent i, given the other players' strategies x−i, is seeking a strategy

xi to optimize θi(xi, x−i) subject to the constraint xi ∈ Xi(x−i). A generalized Nash equilibrium

problem (GNEP) is therefore the given of N constrained optimization problems, that is, for each

i ∈ J , given x−i, agent i optimizes θi(xi, x−i) subject to xi ∈ Xi(x−i). A Nash equilibrium

x ∗ = (x∗1, ..., x
∗
N ) ∈ K of the generalized game thus is such that no agent i wants to unilaterally

deviate from her part of the equilibrium pro�le x ∗ but also such that the constraint of each agent

i ∈ J is satis�ed, i.e., x ∗ ∈ K. The following de�nition makes clear this constraint.

De�nition 3 The pro�le of strategies x∗ ∈ E is a Nash equilibrium of the generalized game with

individual constraints (J,E, (θi)i∈J , (Xi)i∈J) if, for each i ∈ J and each xi ∈ Ei such that xi ∈
Xi(x

∗
−i), it holds true that θi(x

∗
i , x
∗
−i) ≤ θi(xi, x∗−i).

From the above discussion, a necessary but not su�cient condition on the pro�le of strategies

x to be a Nash equilibrium is that x ∈ K. Since K is assumed to be not empty, it makes economic

sense to require from each agent that given what the other agents are choosing, i.e., x−i, agent i

should pick a strategy xi such that the pro�le x = (xi, x−i) lies in K. Given x−i, let Ki(x−i) be

the set of strategies of agent i de�ned as follows

Ki(x−i) = {xi ∈ Xi(x−i) : x ∈ K} (3)

We are now in a position to de�ne a generalized game with endogenous shared constraint, that is,

a generalized game in which the shared constraint is generated from the individual constraints.

De�nition 4 The 4-uplet (J,E, (θi)i∈J , (Ki)i∈J) is called a generalized game with shared constraint

generated from the game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J). We call such a game a

game with endogenous shared constraint.

We are now in a position to give the de�nition of a Nash equilibrium in a game with endogenous

shared constraint (J,E, (θi)i∈J , (Ki)i∈J). The following de�nition is similar to the one given for a

generalized with individual constraints except that each agent i is required to choose a strategy in

Ki(x−i) rather than in Xi(x−i).

De�nition 5 The pro�le of strategies x∗ ∈ E is a Nash equilibrium for the generalized game with

endogenous shared constraint (J,E, (θi)i∈J , (Ki)i∈J) if for each i ∈ J and each xi ∈ Ei such that

xi ∈ Ki(x
∗
−i), we have θi(x

∗
i , x
∗
−i) ≤ θi(xi, x∗−i).

To see the di�erence between a game with individual constraints and a game with endogenous

shared constraint, assume that Xi(x−i) := {xi ∈ Ei : gi(x ) ≤ 0} is the strategy set (or constraint)

of each agent i. The admissible set K (see equation (2)) can be rewritten as K = {x ∈ E, ∀i ∈
J, gi(x ) ≤ 0} so that Ki(x−i) := {xi ∈ Ei : ∀j ∈ J, gj(x ) ≤ 0}.
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• In the game with individual constraint, given x−i, each agent optimizes its objective function

with respect to xi subject to its own individual constraint gi(x ) ≤ 0, that is, xi ∈ Xi(x−i).

• In the game with shared constraint generated from the individual ones, given x−i, each agent

optimizes its objective function with respect to xi subject to g1(x ) ≤ 0, g2(x ) ≤ 0,..., gN (x ) ≤
0, that is, xi ∈ Ki(x−i). Given x−i, when each agent i chooses a strategy xi, she takes not

only into account its own constraint but also the constraints of all the other agents so that

(xi, x−i) lies in K.

It should be clear in a game with endogenous shared constraint, the set of strategies of each

agent i may be reduced compared to the game with individual constraints, that is,

Ki(x−i) ⊆ Xi(x−i) ∀i ∈ J (4)

In general, the inclusion may be strict for some agents, that is, as long as Xi(x−i) is not empty,

Ki(x−i) ⊂ Xi(x−i). In what follows, to emphasize that the set K is the shared constraint, we may

denote the game (J,E, (θi)i∈J , (Ki)i∈J) as (J,E, (θi)i∈J ,K).

Remark 1 Within our approach, we take the set Xi(x−i) (the individual constraints) as the basic

premises and we derive the set K (the endogenous shared constraint) from these individual con-

straints. This is in sharp contrast with the literature on generalized games in which the shared

constraint is exogenous. Following [Rosen, 1965], authors typically start with a classical game for

which E =
∏N
i=1Ei and what they call the shared constraint is an exogenous (mathematically con-

venient) prescribed set X ⊂ E, that is, the pro�le of strategies x must be located in X, see e.g.,

[Fischer et al., 2014] or [Kulkarni, 2017] for nice review papers.

In the literature on generalized games, the exogenous shared constraintX (i.e., such thatX ⊂ E)
thus appears as the basic premise. Given this exogenous shared constraint X, knowing x−i, each

agent i thus is required to choose a strategy xi in X, and this means that her strategy set now

is de�ned as Xi(x−i) = {xi ∈ Ei : (xi, x−i) ∈ X}. As opposed to the approach followed in

this paper, the individual constraints Xi(x−i) are derived from the exogenous shared constraint.

Let (J,E, (θi)i∈J , X) be a generalized game with an exogenous shared constraint. The following

well-known result about the existence of Nash equilibria for concave n-person games is due to

[Rosen, 1965]. Using our terminology, the following result is an existence result for a game with an

exogenous shared constraint X.

Theorem 1 ([Rosen, 1965]) Let (J,E, (θi)i∈J , X) be a game with an exogenous shared constraint

where θi is a payo� function. If the set X is convex, closed and bounded and if each player's payo�

function θi(xi, x−i), i ∈ J is continuous and concave in xi, then, the generalized game has at least

one Nash equilibrium.

[Rosen, 1965] considers the simple example of a 2-person game in which X is a compact convex

subset of the unit square such as an ellipse. This thus means that given the choice of agent 1,
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agent 2 has to choose a number between zero and one such that the couple of numbers chosen

must be located in the ellipse. In many other papers, the authors consider the X de�ned as

X = {x ∈ E | G(x) ≤ 0}, where G : Rn → R is a component-wise convex function called the shared

constraint function, an assumption convenient for the mathematical analysis of the generalized game

(see [Facchinei and Kanzow, 2010] or [Fischer et al., 2014] for review papers). An attractive feature

of these games with shared constraint is that they are analytically convenient. Under particular

assumptions on X and on the objective functions θi, i ∈ J , it is often possible to use a �xed-point

theorem (Kakutani, Tarski...) to prove the existence of Nash equilibrium.

2.3 Shared constraint and binding agreements

As discussed in the introduction of this paper, sharing the constraints requires a particular form

of cooperation between agents called direct agreements in [Moulin, 1995]. Within our generalized

game framework, given what the others do, each agent must agree to restrict their choice in the

shared constraint K, that is, given x−i, each agent i must pick a strategy xi in Ki(x−i) rather than

in Xi(x−i) where Ki(x−i) is typically included in Xi(x−i). Given x−i, it might be the case that the

best response of a given agent i lies in Xi(x−i) and not in Ki(x−i). As a result, this self-restriction

to the set of strategies Ki(x−i) rather than Xi(x−i) requires some binding agreements that are

however not explicitly modeled here. These binding agreement problem is identical to the problem

of credible commitment discussed in the well-known book of [Ostrom, 1990] in which she notes that

one (frequent theoretical) solution to this problem is coercion. Roughly speaking, one can make a

(perhaps disputable) distinction between two types of coercion, external or internal.

• external (or exogenous) coercion corresponds to the situation in which each agent must comply

with law or regulation and this means that there is an external enforcer to use the terminology

of ([Ostrom, 1990]). In such a situation, an agent who does not comply with the law or

regulation can be sanctioned (i.e., �ned) by the external enforcer.

• Internal (or endogenous ) coercion corresponds to the situation in which a group of agents

(employees, �rms, countries or even the overall society itself) must reach an agreement without

any external enforcer. This clearly means that such an agreement is based on voluntarism

since an agent who breach the (contractual) agreement can not be �ned.

Internal coercion thus is an agreement based on self-restriction (i.e., something that must (or

must not) be done) which turns out to be very similar to the notion of mutual restraint discussed

in [Barrett, 2007] (see chapter �ve). In [Barrett, 2007], the author explicitly considers the case in

which agents are countries that seek to supply global public goods such as nuclear non-proliferation

or climate change mitigation (e.g., limit carbon emission). For instance, when one considers a set

of countries that try to reduce their individual pollution, mutual restraint can be reached through

international treaties and these treaties can be thought of as an example of an internal coercion4.

4In this chapter �ve devoted to mutual restraint, [Barrett, 2007] focuses on the prevention on the possible use
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Given x−i, the restriction of each agent i to the set Ki(x−i) can be seen as a possible formalization

of the notion of mutual restraint discussed in [Barrett, 2007].

In what follows, we thus make the implicit assumption that agents succeeded to reach binding

agreements so each agent (on a voluntary basis given x−i) agrees to be restricted to Ki(x−i). As we

shall see, when no equilibrium exists in the game with individual constraints, this mutual restraint

might be the unique solution to reach an equilibrium situation. In the last section of this paper, we

shall o�er two di�erent models of collective actions in which the equilibrium only exists (depending

upon parameters) in shared constraint.

2.4 Main result

As we shall now see, a striking feature of a game with endogenous shared constraint, compared with

the game with individual constraints, is that it may possess additional Nash equilibria. We already

know that for a pro�le x to be a Nash equilibrium, x must be in K. But if each agent i, given x−i,

agrees to choose xi such that x = (xi, x−i) is in K (i.e., xi ∈ Ki(x−i)), contrary to the intuition,

the set of Nash equilibria may be larger. This is the basic statement of the following result

Proposition 1 The set of Nash equilibria of a game with individual constraints is included in the set

of the Nash equilibria of the game with shared constraint generated from the individual constraints,

that is, if x∗ = (x∗1, ..., x
∗
N ) ∈ K is a Nash equilibrium for the game with individual constraints, it is

also a Nash equilibrium for its generated game with shared constraint but the converse is not true.

Proof. See the appendix.

To see that the converse is not true, consider the following example of a game in an endogenous

shared constraint. Let J = {1, 2} and let E1 = E2 = [0, 1] so that E = [0, 1] × [0, 1] is basic the

strategy space. Assume as before that the objective function of each player is a cost function to be

minimized. The cost functions are respectively θ1(x1, x2) = x1 + x2 and θ2(x1, x2) = x2 − x1 for

agent 1 and 2. Assume now that the individual constraint for agent 1 is g1(x1, x2) = x1 + x2 ≤ 1

while it is equal to g2(x1, x2) = x1 + x2 ≥ 1
2 for agent 2. In this example, the set K is de�ned as

K =

{
(x1, x2) ∈ [0, 1]2 : x1 + x2 ≤ 1 and x1 + x2 ≥

1

2

}
(5)

It is not di�cult to see that K is a compact and convex set (see Fig. 1) and that the pro�le of

strategies (0, 12) ∈ K is a Nash equilibrium of the game with individual constraints. Consider now

the pro�le of strategies (12 , 0) ∈ K.

of nuclear weapons (e.g., by an unstable government of some country) and notes that in order "to prevent nuclear

weapons from spreading, the security of non-nuclear states must somehow be assured". The way to implement such

a nuclear non-proliferation commitment must be done through binding agreements, that is, through a treaty such as

the North Atlantic Treaty Organization (NATO). Interestingly, All NATO decisions are made by consensus (after

discussion and consultation among member countries) and a "decision reached by consensus is an agreement reached

by common consent". See https://www.nato.int/nato-welcome and note that there are currently 30 member states.
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K

(1
2

, 0) is also an equilibrium of the 

game with shared constraint

(0 , 1
2

) is the unique equilibrium of the 

game with individual constraint

Figure 1: One equilibrium in individual constraints, two equilibria in shared constraint

• In the game with individual constraints, (12 , 0) ∈ K is not a Nash equilibrium. To see this,

it su�ces to note that when x2 = 0, the best response of agent 1 is 0 and the constraint of

agent 1 is ful�lled since g1(x1, x2) = x1 + x2 ≤ 1. Since 1
2 is not the best response, (12 , 0) ∈ K

thus is not an Nash equilibrium.

• In the game with shared constraint, (12 , 0) ∈ K is a Nash equilibrium. To see this, note that

if x1 =
1
2 , then, the best response of agent 2 is 0. This choice of 0 minimizes the cost of agent

2 and satis�es the constraint of agent 2 since 1
2 + 0 ≥ 1

2 but also the constraint of agent 1

since 1
2 + 0 ≤ 1. If x2 = 0, the best response of agent 1 is now to choose 1

2 because agent 1

takes into account the constraint of agent 2, i.e., g2(x1, x2) = x1 + x2 ≥ 1
2 . As opposed to

the game with individual constraints, agent 1 can not choose 0. As a result, (12 , 0) is an Nash

equilibrium for the game with endogenous shared constraint.

Contrary to the basic intuition one may have, proposition 1 says that adding more constraints

in a game, that is, requiring from each agent i to choose a strategy in Ki(x−i) ⊂ Xi(x−i), may

actually expand the set of Nash equilibria and not the opposite. Proposition 1 thus yields the two

following basic insights.

1. There may be situations in which there is no Nash equilibrium in the game with individ-

ual constraints while there exists a Nash equilibrium in the game with endogenous shared

constraint (generated from the individual ones).

2. If no Nash equilibrium exists in the game with endogenous shared constraint, no Nash equi-

librium exists in the game with individual constraints (the converse is however not true).

While proposition 1 is elementary to prove from a mathematical point of view, it is interesting

to note that it does not require the underlying functions to be di�erentiable, as opposed to the
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variational formulation of the Nash equilibrium in generalized games5. Proposition 1 thus can also

be applied to generalized games in which the set of strategies of each agent is �nite, for which the

objective function needs not be a continuous function. In classical game theory�games for which the

set of strategies E can be written as the "full" Cartesian product of individual strategy set Ei�there

is a fairly important body of literature6, initiated by [Dasgupta and Maskin, 1986], that prove the

existence of a Nash equilibrium (in pure strategy) in discontinuous games. In this paper, we take

an alternative road map and we submit the idea that when a Nash equilibrium does not exist in a

game with individual constraints, its existence can be obtained simply by sharing the constraints

rather than weakening the assumptions on the objective functions. Let us provide such an example.

Let J = {1, 2, ..., N} be the set of agents. For each i ∈ J , the strategy set of agent i is Ei = [0, 1]

so that E = [0, 1]N . Assume moreover that the characteristics of the agents are as follows.

1. Each agent i ∈ J has a cost function (to be minimized) equal to θi(xi) = xi.

2. Each agent i ∈ J has the following constraint function.

• If xj ≥ 0.9 for every j ∈ J \ {i}, then, Xi(x−i) = [12 , 1].

• If xj < 0.9 for at least one j ∈ J \ {i}, then, Xi(x−i) = ∅.

This game thus di�ers from classical ones encountered in economic theory in that the interac-

tion only occurs through the set of strategies but not through the objective functions. From the

speci�cation of the game, if a given agent i, with i 6= j chooses a number xi ≥ 0.9, the cost of

agent i is simply equal to the number xi chosen. If there is one agent j who chooses a number

xj < 0.9, with i 6= j then, the set of strategies of a given agent is empty and the objective function

thus is unde�ned7. Before discussing the outcome of the game with individual constraints, let us

consider the game with shared constraint generated from the individual constraints. In this game

with shared constraint, the set of strategies of each agent i ∈ J is equal to Ki(x−i) = [0.9, 1] (see

equation 3) so that K is not empty and equal to

K =
∏
i

Ki(x−i) = [0.9, 1]N

Since agents minimize a cost function, the pro�le of strategies x ∗ = (0.9, ..., 0.9) thus is the unique

Nash equilibrium of the game with shared constraint (J,E, (θi)i∈J , (Ki)i∈J). Therefore, from propo-

sition 1, if the game with individual constraints (J,E, (θi)i∈J , (Xi)i∈J) has a Nash equilibrium, it

5It should also be pointed out that the solutions of a variational inequality do not necessarily coincide with the

Nash equilibrium of the generalized game, that is, a Nash equilibrium needs not be the solution of a variational

inequality, see e.g., [Fischer et al., 2014], theorem 2.2 p. 525.
6We refer the reader to the introductory paper by [Reny, 2016] in the 2016-symposium of Economic Theory
7One can think of this abstract game theoretic framework to represent a tax competition problem in a �scal

union (see for instance [Zodrow, 2003]). State members may be committed to choose a tax rate greater than a given

threshold. However, if one member state breaches the commitment, the problem becomes unde�ned for the other

member states in that their strategy set is empty.
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must necessarily be x ∗ = (0.9, ..., 0.9). But x ∗ = (0.9, ..., 0.9) is not a Nash equilibrium of the

game with individual constraints. If x−i = (0.9, ..., 0.9), the best response of agent i is 0.5 and

not 0.9, which means that x ∗ = (0.9, ..., 0.9) is not a Nash equilibrium of the game with individual

constraints. When one agents picks a number lower than 0.9, the objective functions are unde�ned

for the other agents and this means that there is no Nash equilibrium in such a game with individual

constraints.

2.5 A Classi�cation of games

In table 1, we o�er a fruitful classi�cation of games, encountered in Economics and Operations

Research literature, through the way interaction is introduced.

In a generalized game, (see table 1), interaction occurs not only through the objective function

but also through the strategy sets, that is, the objective function of a given agent i ∈ J depends

upon the decisions of the other players, i.e., θi(xi, x−i) but the set of strategy of each agent i also

depends upon the decisions of the other agents, that is, each agent i must choose xi ∈ Xi(x−i)

where Xi(x−i) is a subset of Ei. While not in the table, one can also distinguish generalized games

with an exogenous shared constraint from generalized games with endogenous shared constraint,

the subject of this paper.

In what we call a semi-generalized game, (see table 1), interaction may occur through the

strategy sets or through the objective function but not both. When interaction occurs through the

objective function but not through the strategy sets, we naturally call such a situation a classical

game since it is the typical one encountered in most economic textbooks and papers in economic

theory (see e.g. classic textbooks [Fudenberg and Tirole, 1991], [Moulin, 1986], [Myerson, 2013],

[Osborne and Rubinstein, 1994]). When interaction occurs through the strategy set but not through

the objective function, we call such a situation a non-classical game since, although fairly natural

when one thinks to collective action problems, their application in the Economic literature is still

limited. In the future, these kinf of generalized games could be widely applied. To the best of our

knowledge, this type of game appeared for the �rst time in [Braouezec and Wagalath, 2019] in a

(stress-test) regulatory framework although the authors do not mention that the underlying game

they consider is an example of a generalized game. Finally, when there is no interaction at all, that

is, when the objective function only depends upon the decision variable of agent i, that is θi(xi)

and when Ei is exogenously given (e.g., it is a compact set), this gives rise a non-strategic decision

problem, the �eld of decision-theory (as opposed to game theory).

3 Applications to collective action problems

We shall now discuss two interesting applications of games with endogenous shared constraint, one

applied to an environmental problem and another applied to a public good problem. A striking

feature of these two economic applications is that a Nash equilibrium may not exist in individual

constraints while it always exists in endogenous shared constraint. The �rst example is applied to an
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Types of interaction in games

hhhhhhhhhhhhhhhhhhhhObjective function

Strategy set
Yes No

Yes Generalized game Semi-generalized game

No Semi-generalized game Non-strategic decision problem

Table 1: Dependence through the objective function and/or through the strategy sets

environmental problem (it is indeed formulated as a non-classical game) and the general existence

result follows from the fundamental theorem of [Rosen, 1965] (see theorem 1 in this paper). In

the second example, applied to the �nancing problem of a public good, we consider a generalized

game and show that when the dispersion of the optimal contribution of each agent is too large, no

Nash equilibrium exists in individual constraints while a Nash equilibrium (indeed many) exists in

endogenous shared constraint. From a mathematical point of view, to ease the analysis, we shall

focus on the case in which the individual constraints are uni-dimensional.

3.1 Limiting global warming

Given the critical nature of the subject, the limitation of global warming of the earth, there is

a large (game theoretical based) literature on the subject (see e.g., [Hoel and Schneider, 1997],

[Carraro and Siniscalco, 1993], [Barrett, 2001]). We refer the reader to [Missfeldt, 1999], which is a

survey of game theoretic models of trans-boundary pollution but note that this review paper do not

mention generalized games. We found only few papers on the subject, [Tidball and Zaccour, 2005]

and [Krawczyk, 2005] that analyze the pollution problem as a generalized game. In these models,

the choice variable of a given country xi is typically its pollution level (i.e., measured by the volume

of emission of greenhouse gas) which, in the simplest case, is modeled as a linear function of its

production. Such an environmental problem is interesting but challenging because the production of

a given country typically generates negative externalities (i.e., pollution) to all the other countries.

In [Tidball and Zaccour, 2005], as seen earlier, they consider a model where each country seeks

to maximize a pro�t function of the type wi(x1, ..., xn) = fi(xi)−di(x1+ ...+xn), where xi represent
the emissions of country i and are assumed to be proportional to the production of country i, fi(xi)

is a non-negative, twice-di�erentiable, concave and increasing function and the damage cost due to

all the countries is denoted by a convex twice-di�erentiable increasing cost function di(x1+ ...+xn).

They consider three types of problems which correspond to three types of constraint:

• A Generalized Nash equilibrium problem with individual constraints where each agent is seeking

to maximize wi(x1, ..., xn) = fi(xi)− di(x1 + ...+ xn) subject to the constraint xi ≤ Ei with

Ei an exogenous given upper bound on emissions.

• A cooperative scenario, where agents agree to jointly maximize the sum of their pro�t function:

maxx1,...,xn
∑n

i=1 fi(xi)− di(x1 + x2 + ...+ xn) subject to
∑n

i=1 xi ≤
∑n

i=1Ei.
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• A Generalized Nash equilibrium problem with an exogenous shared constraint where each agent

is seeking to maximize wi(x1, ..., xn) = fi(xi)− di(x1+x2+ ...+xn) subject to the constraint∑n
i=1 xi ≤

∑n
i=1Ei.

The purpose of [Tidball and Zaccour, 2005] is to characterize and compare the solutions of these

three di�erent scenarios. They show that the Nash equilibrium in individual constraints may be

better than the Nash equilibrium with (exogenous) shared constraint. In their framework, the

shared constraint is actually not generated from the individual constraints8

In the same vein, [Krawczyk, 2005] proposes another model where three players j = 1, 2, 3 located

along a river are engaged in an economic activity at a chosen level xj and their joint production

externalities must satisfy environmental constraints set by a local authority. It is assumed that

playerj has a level of pollution ejxj , where ej is the emission coe�cient of player j. The pollution is

expelled into the river and reaches a monitoring station in the amount of
∑3

j=1 δjlejxj where δjl is

the decay-and-transportation coe�cient from player j to location l, and it is assumed that there are

two monitoring stations, l = 1, 2, and the local authority has set maximum pollutant concentration

levels Kl. It gives the following Generalized Nash equilibrium problem with shared constraint: each

player j is supposed to maximize its net pro�t φj(x ) = d1 − d2(x1 + x2 + x3) − (c1j + c2jxj)xj

(where d1, d2, c1jc2j are given constants) under the shared constraint
∑3

j=1 δjlejxj ≤ Kl, l = 1, 2.

[Krawczyk, 2005] proves existence of a unique Nash equilibrium under reasonable assumptions and

exhibits an algorithms that converges towards the solution.

Inspired by [Tidball and Zaccour, 2005] and [Krawczyk, 2005], we now introduce a new environ-

mental model formulated in terms of generalized with individual constraints and with endegenous

shared constraint.

Consider the following model with N ≥ 2 countries/economies. Let xi ∈ R+ be the quan-

tity of non-renewable energy (i.e., fossil energy) chosen by country i where the carbon emissions

Ci by country i ∈ {1, 2, ..., N} are proportional to xi (similar to [Tidball and Zaccour, 2005] and

[Krawczyk, 2005]), that is Ci = ci × xi, where ci > 0 (and note that E = RN+ ). Let fi(xi) be the

pro�t function of country i as a function of xi where fi is an increasing concave function. On this

aspect, we di�er from [Tidball and Zaccour, 2005] and [Krawczyk, 2005] since we assume that the

payo� function of a country only depends on xi, the quantity of non-renewable energy chosen by

i while the constraint depends upon x = (x1, x2, ..., xN ). More speci�cally, we assume that each

country i has to satisfy an individual linear constraint of the form:

gi(x ) := aii × ci × xi +
∑
j 6=i

aji × cj × xj ≤ Si (6)

8The individual constraint of country i does not depend upon the choices of the other countries, for each i ∈ J ,

Xi(x−i) = [0, Ei] no matter what x−i is. It thus follows that K =
∏

i∈J Xi while the shared constraint is given by the

set S := {x ∈ K :
∑

i∈J xi ≤
∑

i∈J Ei}. The game with shared constraint proposed by [Tidball and Zaccour, 2005]

thus is not generated from the game with individual constraints since x can be in S but not in K. To see this within

a numerical example, assume that N = 2 and that x1 = 3 and x2 = 2 so that X1 = [0, 3] while X2 = [0, 2]. The point

(2, 3) /∈ X1 ×X2 while (2, 3) ∈ S.
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where aji is a coe�cient measuring how the use of fossil fuels by country j is impacting the envi-

ronment of country i and Si is a threshold determined for each country i. The constraint Si may

come from a regulatory institution. Note that in case in which j = i, the coe�cient aii measures

how the use of fossil fuels by country i is impacting its own environment. Given x−i, the aim of

country i is to maximize fi(xi) subject to gi(xi, x−i) ≤ Si and note that, using our classi�cation of

games, such a strategic interaction is an example of a non-classical game.

The aim is now to study the possible existence of a Nash equilibrium for this game with individual

constraints and its generated game with (endogenous) shared constraint. As seen earlier, it may

indeed be the case that there is no Nash equilibrium for the game with individual constraints. To

see this, assume that N = 2. Consider country 1 and assume that a11 = c1 = 1 and that a21 = 0

so that its constraint is given by x1 ≤ S1. Consider now country 2 and assume that a22 = c2 = 1

and assume now that a12 = 1. From equation (6), it thus follows that the constraint of country 2 is

given by x2 + x1 ≤ S2. Assume now that S1 > S2 and that this generalized game with individual

constraints has at least a Nash equilibrium (x∗1, x
∗
2). Such an equilibrium must satisfy x∗1 = S1. But

in such a case, no matter what x2 ≥ 0 is, the constraint of country 2 is never satis�ed which means

that there is no Nash equilibrium in individual constraints.

We shall now derive a more general result about the (non) existence of a Nash equilibrium in this

environmental game theoretical model with individual constraints. From the individual constraint

given by equation (6), for a pro�le of strategy x ∈ RN+ to be Nash equilibrium, the constraints

must be satis�ed, that is, x ∈ RN+ must be such that gi(x ) ≤ Si for i = 1, 2, ..., N . From the

monotonicity of the pro�t function of each country i, the constraint of each country will be binding

at equilibrium x∗ = (x∗1, ..., x
∗
N ), which means that for i = 1, 2, ..., N , gi(x

∗) = Si. The problem

reduces to the analysis of a linear system of the form ATXc = S where A is the matrix of the

coe�cient (aij)i,j=1,2,...,N (T indicates the transpose), Xc = (c1x1, .., cNxN ) ∈ RN+ and S is the

vector formed by Si, i = 1, 2, ..., N . If x ∗ = (x∗1, ...., x
∗
N ) is a Nash equilibrium for this game with

individual constraints, it must satisfy the linear system ATXc = S , that is:


a11 a12 ... a1N

a22 a22 ... a2N

... ... ... ...

aN1 aN2 ... aNN


T 

c1x
∗
1

c2x
∗
2

...

cNx
∗
N

 =


S1

S2

...

SN

 (7)

where x ∗ ∈ RN+ .

The next result exhibits conditions under which there is no Nash equilibrium in individual

constraints. In particular, when the above linear system has no solution in RN+ , then, no Nash

equilibrium of the game with individual constraints can exist. However, in such a case in which the

linear system has no solution, a Nash equilibrium of the game with endogenous shared constraint

still exists.
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Proposition 2 The game with individual constraints has (at least) one Nash equilibrium x∗ if and

only if the linear system as de�ned in equation (7) admits at least one solution X∗c ∈ RN+ . If

the linear system given by equation (7) admits no solution in RN+ , then, the game with individual

constraints has no Nash equilibrium.

Proof. See the appendix.

In appendix, we give a complete characterization of the existence or not of Nash equilibria for

the game with individual constraints. It is interesting at this stage to compare our framework

with the one o�ered in [Tidball and Zaccour, 2005] and [Krawczyk, 2005]. Within our approach,

as opposed to the two mentioned papers, a Nash equilibrium does not always exist in individual

constraints. However, as we shall see, a Nash equilibrium in shared constraint always exists. In

[Tidball and Zaccour, 2005], they show that Nash equilibria in individual constraints may be better

in some sense than the ones in shared constraint but, as already discussed, their shared constraint

is exogenous since it is not generated from the individual ones.

Let us now consider the game with shared constraint generated from our game with individual

constraints in which each country k is seeking to maximize fk(xk) subject to the endogenous shared

constraint de�ned as gi(x ) := aii× ci×xi+
∑

j 6=i aji × cj × xj ≤ Si, i = 1, ..., N . From proposition

1, we know that the Nash equilibria of the game with shared constraint contains the Nash equilibria

of the game with individual constraints. But Nash equlibria of the game with individual constraints

may not always exist, as seen in proposition 2. In the next result, thanks to the existence result by

Rosen for n-person concave games, we show that there always exists Nash equilibria for our game

with endogenous shared constraint.

Proposition 3 The game with a shared constraint generated from the individual ones always has

at least one Nash equilibrium. In particular, a Nash equilibrium in the game with endogenous shared

constraint exists whether the linear system given by equation (7) admits a solution or not.

Proof. See the appendix.

Proposition 3 is an interesting result from a binding agreements point of view since it clearly

shows that a Nash equilibrium always exists in the game with shared constraint generated from

the individual constraints while it may fail to exist in the game with individual constraints. By

reinforcing the environmental constraints, i.e., by sharing the constraints, each country takes into

account the individual constraints of the other countries, and this binding agreement always gener-

ates at least one Nash equilibrium. As already discussed, this interesting feature is counter intuitive

at �rst glance: by putting more constraints on each country (by considering an endogenous shared

constraint rather than individual constraints), one may generate a larger set of Nash Equilibria.

3.2 Contributing to a public good

We now consider a model of collective action with N ≥ 2 agents, similar to [Guttman, 1978] and

to [Cornes and Hartley, 2007] (see also [Buchholz et al., 2011]) but in which each agent faces an
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individual constraint (see [Sandler, 2015] for a review paper on collective action models). Each

agent i is asked to make a voluntary contribution to �nance a public investment project such as

a bridge, a street lighting or any public infrastructure equipment (water, gas, internet...) subject

to an individual constraint. For concreteness, we assume that the higher the total contributions,

the higher quality of the underlying investment. Following the standard terminology introduced

in [Guttman, 1978] (see also ([Buchholz et al., 2011])), let xi ∈ Ei := R+ be the �at (or direct)

contribution of agent i and let b ∈ [0, 1] the known percentage of the sum of the �at contributions

of all the other agents, which thus de�nes here indirect contribution. The indirect contribution of

a given agent i, denoted zbi (x−i) (which depends upon x−i and b), is by de�nition equal to

zbi (x−i) := z−i = b
∑
j 6=i

xj (8)

Given z−i, agent i now has to choose its �at contribution xi ∈ R+, which depends upon the utility

function but also upon the individual constraints. Following [Guttman, 1978], the utility of each

agent i is assumed to be equal to

Ui(xi, x−i) = vi(xi + z−i)− (xi + z−i) (9)

where the function vi(.) measures the willingness-to-pay of a agent i for the public project and

depends upon her own contribution but also upon the contributions of all the other agents. As in the

literature on collective actions and aggregative games ([Guttman, 1978], [Cornes and Hartley, 2007]

[Chen and Zeckhauser, 2018], [Cornes and Hartley, 2012], see also [Cornes, 2016] for a recent review

paper), the willingness-to-pay vi(.) depends upon x−i only through the sum of the contributions of

the other agents, that is, z−i. Given a pro�le of strategies x = (xi, x−i), let

zi = xi + z−i (10)

be the total contribution of agent i given z−i and note that the utility function of can be written

as a function of the sole scalar zi.

Ui(xi, x−i) = vi(zi)− zi (11)

For simplicity, we shall assume that vi(zi) is a twice continuously di�erentiable increasing and

concave function of zi (with vi(0) = 0) so that Ui is also a concave function9.

Regarding now the individual constraints, it can be formulated as a budget constraint or as a

reservation utility.

• The budget constraint of agent i can be given as an exogenous revenue of agent i, ri, which

means that it must be the case that zi ≤ ri.
9Concavity is actually not required. What is actually required is only the single-peakedness of U with respect

to zi, that is, the quasi-concavity of U . Such a single-peakedness assumption is fairly natural and standard (see

[Guttman, 1978], see also [Greenberg and Weber, 1993]).
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• The reservation utility constraint can be given as an exogenous reservation utility of agent

i, ui, which means that it must be the case that Ui(xi, x−i) ≥ ui. The threshold ui can be

interpreted as a minimal quality for the public good according to agent i.

The optimization problem of a given agent i, given z−i, can be formulated as a utility maxi-

mization problem subject to a budget constraint and/or subject to a reservation utility constraint.

Let

• B 6= ∅ be the subset of J that are subject to a budget constraint.

• U 6= ∅ be the subset of J that are subject to a utility constraint.

where the B and U are assumed to form a partition of J , that is, B∪U = J , with B∩U = ∅. Agents
of the group U may be interpreted as those agents that have other investment opportunities and

are only be subject to a utility constraint. Agents of the group B with no other opportunities are

subject to a budget constraint. Since each agent i is endowed with a utility function assumed to

be a concave function of zi, it makes thus sense to consider her ideal contribution z∗i to the public

project, de�ned independently of the participation of the other agents (i.e., for z−i = 0). If agent i

were alone, she would provide a contribution equal to z∗i . In such a case, this also corresponds to

her optimal �at contribution x∗i .

Let z∗i = argmaxzi≥0 Ui(zi) := vi(zi) − zi subject to a budget utility constraint if i ∈ B and a

reservation utility constraint if i ∈ U . Given the assumptions on the utility function, z∗i is unique.

For the sake of interest, we assume that there exists zi > 0 (with zi 6= z∗i ) for which Ui(zi) > 0 so

that Ui(z
∗
i ) ≥ Ui(zi) > 0 for each i ∈ J .

Let zi be the critical threshold of each agent i ∈ J and note that agents of group U are

characterized by two thresholds, a low one zi and a high one zi. However, the best response of these

agents only depend upon the high threshold zi.

Lemma 1 Given z−i ≥ 0, the best response of agent of i ∈ J is given below.

• If z−i ≤ z∗i , then, BRi(z−i) = x∗i = z∗i − z−i > 0

• If z−i ∈ (z∗i , zi), then, BRi(z−i) = x∗i = 0

• If z−i > zi) then, either BRi(z−i) = ∅ or BRi(z−i) = 0

Proof. See the appendix.

The fact that BRi(z−i) = ∅ or BRi(z−i) = 0 depends upon the type of constraint. When

Xi(x−i) = ∅ for i ∈ B, this simply means that this agent must pay more than her own revenue,

which is impossible. As a result BRi(z−i) = ∅. One may interpret this as an exclusion, similar to

the violation of the no-bankruptcy condition in aggregative games (see e.g., [Buchholz et al., 2011]).

The situation is di�erent for agents of the group U . When z−i > zi for an agent i ∈ U , her utility
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will be lower than her reservation utility so that this agent will simply reject the investment project

by choosing not to contributed, i.e., xi = 0.

Regarding agents of the group B, depending upon the willingness-to-pay and the revenue, an

agent i may be such that its optimal contribution z∗i may be equal to ri or may be lower than ri.

When z∗i < ri, the budget constraint is not binding and this occurs when z
∗
i solves the unconstrained

maximization of Ui(zi). When z∗i = ri, the constraint is binding. One may thus write z∗i = α∗i ri

where α∗i ∈ (0, 1] depends upon the willingness-to-pay and the revenue of agent i. An agent i ∈ B
will never provide a contribution higher than α∗i ri. Consider now an agent j ∈ U with a high z∗j and

assume that when xi = α∗i ri, the best response of j, equal to BRj(bα
∗
i ri) = z∗j − bα∗i ri, is higher

than ri. In such a case, whatever the choice of agent i, agent j will always choose a contribution

so high that i is left with an empty set. The following result provides a simple illustration of this

when N = 2 but nothing is changed in the general case of an arbitrary number N of agents.

Proposition 4 Let b ∈ (0, 1] and J = {1, 2} where the group B = {1} and the group U = {2}.
Assume that z∗1 = r1 < z∗2

(i) A su�cient condition for the non-existence of a Nash equilibrium in individual constraints

is
z∗2
z∗1
> 1 + b, that is, z∗2 > (1 + b)r1.

(ii) Assume that z∗1 ≥ bz2 and let x1 :=
z∗1−bz2
(1−b2) . Then, for any θ ∈ (0, 1), the pair of strategies

(x∗1 = θx1, x
∗
2 =

z∗1−θx1
b ) is a Nash equilibrium in shared constraint.

Proof. See the appendix.

Corollary 1 The existence of a Nash equilibrium in endogenous shared constraint does not depend

upon z∗2. In particular, a Nash equilibrium in the game with endogenous shared constraint exists

whether z∗2 > (1 + b)r1 or not.

The above corollary highlights the main di�erence between a Nash equilibrium in individual

constraints and a Nash equilibrium in endogenous shared constraint. When agent 1 faces a budget

constraint such that z∗1 = r1, the existence of a Nash equilibrium in individual constraints critically

depends upon the heterogeneity (or the dispersion) of the set of ideal contributions (z∗i )i∈{1,2}. If this

dispersion is too high, that is, if
z∗2
z∗1

is greater than a critical threshold, then, a Nash equilibrium in

individual constraints does not exist. However, when one considers the game in shared constraint, its

existence interestingly is independent of z∗2 . Whether z∗2 is low or very high, since agent 2 takes also

into account the constraint of agent 1, its ideal contribution is irrelevant. For the Nash equilibrium

in endogenous shared constraint to exist, a necessary and su�cient condition is z∗1 ≥ bz2. If z∗1 is

too low or if z2 is too high, then z
∗
1 < bz2 and there is no equilibrium in shared constraint since the
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underlying set K is empty. In appendix, we show that the non-emptiness of K is equivalent to the

existence of a solution of the following system

x1 + bx2 ≤ z∗1 (12)

x2 + bx1 ≥ z2 (13)

We show in appendix that as long as x1 ≤ x1 (x1 is given as in proposition 4), the above system

has a solution. For any θ ∈ (0, 1), the pair (x∗1 = θx1, x
∗
2 =

z∗1−θx1
b ) is a Nash equilibrium and is

such that x∗1 + bx∗2 = z∗1 . Since for each i =, 1, 2, x
∗
i < z∗i , it thus follows that for any θ ∈ (0, 1), the

Nash equilibrium is Pareto optimal.

Corollary 2 Each Nash equilibrium of the game with shared constraint is Pareto optimal.

Within our particular model of collective action, when a Nash equilibrium in the game with

individual constraint does not exist, there still exists a continuum of Nash equilibria in the game

with shared constraint that are all Pareto-optimal.

Our analysis also reveals an important property of collective actions. If one only looks at the

equilibrium in individual constraints when for instance z∗i = ri for each i ∈ B, the existence of such an
equilibrium in individual constraints critically depends upon the dispersion of the ideal contribution

(z∗i )i∈J). This thus suggests that for a collective action to be possible (in individual constraints),

agents of the group J must have homogenous ideal contributions, something not required for the

shared constraint problem. In the general case with N ≥ 2 agents, let

K = {x ∈ RN+ : xi + b
∑
i 6=j

xj ≤ ri ∀i ∈ B and Uk(xk + b
∑
k 6=j

xj) ≥ uk ∀k ∈ U}

As in proposition 4, as long as the dispersion of (z∗i )i∈J) is "too high", K will be empty and no

Nash equilibrium in individual constraints exists. But in shared constraint, assuming for simplicity

that z∗i = ri, the non-vacuity of K will only depend upon the ideal contribution of agents of B. In
case in which K is a compact and convex subset of RN+ , from theorem 1 ([Rosen, 1965]), a Nash

equilibrium in the game with shared constraint always exist (since the utility functions are concave)

while a Nash equilibrium in individual constraint might not exist.

Throughout the discussion, we made the assumption that for each i ∈ B, z∗i = ri, which means

that the budget constraint is always binding. It would also be possible to consider the case in which

z∗i < ri. If one let zi,0 := infzi U(zi) = 0, there are thus two possibilities, either zi,0 < ri or zi,0 > ri.

In the �rst case, this means that when z−i is slightly higher than zi,0, the strategy set of agent i is

not empty while its utility is negative. If as in [Greenberg and Weber, 1993] however in a di�erent

framework, we allow such an agent to reject the project if its utility becomes negative, it su�ces to

consider the constraint ci of agent i given as ci = min{ri, zi,0} and nothing is changed.

Numerical example. Consider the following example and assume that the willingness-to-pay

of a given agent i is of the form vi(zi) = aiz
1
2
i − zi with zi ≥ 0. Without constraint, it is not di�cult
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to show that z∗i =
a2i
4 . To illustrate proposition 4, assume that a1 = 4 and that r1 = 4 so that

z∗1 = r1 = 4. Assume now that b = 1
2 so that, from the su�cient condition in proposition 4, z∗2

should be higher than 1.5 × 4 = 6. Since z∗2 =
a22
4 , this means that a22 should be higher than 24.

Assume that a2 = 6 so that z∗2 = 9. Assume that the reservation utility u2 is such that U2(3) = u2

so that z2 = 3. The shared constraint thus are

x1 +
1

2
x2 ≤ 4 (14)

x2 +
1

2
x1 ≥ 3 (15)

For BR2(x1) 6= ∅, it must be the case that x1 ≤ 10
3 . Assume that x1 = 5

3 (i.e., θ = 1
2 in

proposition 4) so that BR2(x1) 6= ∅. Since the utility of agent 2 is increasing in x2, agent 2 will

choose x2 such that x1+
1
2x2 = 4, that is BR2(

5
3) = x∗2 =

14
3 . For x

∗
2 =

14
3 , agent 1 will also chooses

x1 so that x1 +
1
2x
∗
2 = 4. As a result, BR2(

14
3 ) = x∗1 = 5

3 and this shows that the pair (53 ,
14
3 ) is

a Nash equilibrium of the game with shared constraint. As long as x1 ≤ x1, equal to
10
3 in this

example, the game reduces to a zero-sum game since x1 and x2 will be chosen such that x1+
1
2x2 = 4

4 Conclusion

In this paper, we presented the notions of generalized games with individual constraints, generalized

games with shared constraint, and generalized games with an endogenous shared constraint gener-

ated from individual constraints. We proved a simple yet interesting and rich result regarding the

existence of Nash equilibria for a generalized game with an endogenous shared constraint generated

from individual ones, that is the Nash equilibria of a generalized game with individual constraints

are included in the set of Nash equilibria of the generalized game with endogenous shared con-

straint. We then studied di�erent applications of this result, among which a public good problem

and an environment control problem. A number of interesting investigations remains do be done.

For instance, under which condition(s) no Nash equilibrium exist in individual constraint while it

exists in endogenous shared constraint? When there is more than one equilibrium, does one of them

Pareto-dominates the others?

5 Appendix

Proof of Proposition 1. The objective function of each agent is assumed to be a cost function

but nothing is changed if it is instead a utility function (i.e., it su�ced to reverse the inequali-

ties). If x ∗ = (x∗,1, ..., x∗,N ) ∈ E is a Nash equilibrium for the game with individual constraints

(J,E, (θi)i∈J , (Xi)i∈J), then:

• ∀i ∈ J, x∗i ∈ Xi(x
∗
−i) so that x ∗ ∈ K.

• ∀i ∈ J, ∀xi ∈ Xi(x
∗
−i), θi(x

∗
i , x
∗
−i) ≤ θi(xi, x

∗
−i) so ∀i ∈ J, ∀xi ∈ Ei such that (xi, x

∗
−i) ∈

K, θi(x
∗
i , x
∗
−i) ≤ θi(xi, x∗−i).
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It thus follows that if the point x ∗ is a Nash equilibrium of the game with individual con-

straints (J,E, (θi)i∈J , (Xi)i∈J), it is also a Nash equilibrium for the game with shared constraint

(J,E, (θi)i∈J , (Ki)i∈J)) but the converse is however not true. If the point x
∗ is a Nash equilibrium of

the game with shared constraint generated from the individual constraints (J,E, (θi)i∈J , (Ki)i∈J)),

it may be the case that the pro�le of strategies x ∗ ∈ E is not a Nash equilibrium of the game with

individual constraint because there may exist i ∈ J such that the best response x∗i := BRi(x
∗
−i) ∈

Xi(x
∗
−i) is such that x ∗ /∈ K where x ∗ = (x∗i , x

∗
−i). Such an example in which a pro�le of strategies

which is a Nash equilibrium in shared constraint but not a Nash equilibrium in individual constraints

has been given. �

Proof of proposition 2.

We shall give here a result more detailed than the one stated in the text. In what follows, we

actually o�er a complete characterization of the existence or non-existence of the Nash equilibrium in

individual strategies. The environmental problem formulated as a game with individual constraints

has a Nash equilibrium if and only if the linear system ATXc = S (AT denotes the transpose of A)

admits at least one solution X∗c ∈ RN+ where X∗c =


c1x
∗
1

c2x
∗
2

...

cNx
∗
N


PropositionA 2

• If the linear system ATXc = S admits no solution in RN+ , then there is no Nash equilibrium.

• If the matrix A is invertible, then, there exists a unique solution X∗c to the linear system, and

if X∗c is in RN+ , there exists a unique Nash equilibrium of the form:

x
∗ =

x∗1 = 1

c1

N∑
j=1

b1jSj , ..., x
∗
i =

1

ci

N∑
j=1

bijSj , ..., x
∗
N =

1

cN

N∑
j=1

bNjSj


If X∗c is not in RN+ , there is no Nash equilibrium.

• If the matrix A is not invertible and the linear system ATXc = S admits at least one solution

X∗,0c ∈ RN+ , then the linear system admits in�nitely many solutions, and there are in�nitely

many Nash equilibria given by
c1x
∗
1

c2x
∗
2

...

cNx
∗
N

 = (X∗,0c +Ker(AT )) ∩ RN+

Proof of propositionA 2
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Let's assume that this game has a Nash equilibrium x∗ = (x∗1, ..., x
∗
N ). Such a Nash equi-

librium must satisfy
∑

j aji × cj × x∗j = Si for all i. Indeed, assume that for a given i we have∑
j aji × cj × x∗j < Si, then country i could still increase its pro�t fi(xi) with a xi higher than x

∗
i

still satisfying the constraint, and therefore x∗ would not be a Nash equilibrium. Therefore a Nash

equilibrium x∗ = (x∗1, ..., x
∗
N ) for this problem with individual constraints must satisfy: ATX∗c = S

with X∗c ∈ RN+ , with

A =


a11 a12 ... a1N

a21 a22 ... a2N

... ... ... ...

aN1 aN2 ... aNN

, X∗c =

c1x
∗
1

c2x
∗
2

...

cNx
∗
N

 , S =


S1

S2

...

SN


And this has a solution if and only if the linear system ATXc = S has a solution X∗c ∈ RN+ .

• If A is invertible, we have an explicit formula for the Nash equilibrium candidate vector since:
c1x
∗
1

c2x
∗
2

...

cNx
∗
N

 = (AT )−1


S1

S2

...

SN


If we denote B = (AT )−1, we have:


c1x
∗
1

c2x
∗
2

...

cNx
∗
N

 =


b11 b12 ... b1N

b21 b22 ... b2N

... ... ... ...

bN1 bN2 ... bNN



S1

S2

...

SN



And for all i x∗i = 1
ci

∑N
j=1 bjiSj , and we have a unique Nash equlibrium candidate x∗ = (x∗1 =

1
c1

∑N
j=1 b1jSj , ..., x

∗
i =

1
ci

∑N
j=1 bijSj , ..., x

∗
N = 1

cN

∑N
j=1 bNjSj).

• If A is not invertible and the linear system ATXc = S admits one solution X∗,0c ∈ RN+ , then
ATXc = ATX∗,0c , which is equivalent to AT (Xc −X∗,0c ) = 0, which is equivalent to Xc = (X∗,0c +

Ker(AT )) ∩ RN+ , and there are in�nitely many Nash equilibria.

• If the linear system ATXc = S admits no solution in RN+ , then there is no Nash equilibrium.

�

Proof of proposition 3

It is easy to see that thea game always satis�es the assumptions of the existence result of Rosen

for n-person concave games (see theorem 1 in the text). Indeed, the payo� functions fi(xi) are

concave, and the shared constraint space K is clearly a convex compact space:
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K = {x ∈ RN+ : gi(x ) ≤ Si, i = 1, 2, ..., N} (16)

K = {x ∈ RN+ : aii × ci × xi +
∑
j 6=i

aji × cj × xj ≤ Si, i = 1, 2, ..., N} (17)

Therefore, there always exist a Nash equilibrium for the game with shared constraint. �

Proof of lemma 1 To avoid confusion between agents of B and agents of U , the �rst ones will
be indexed by j while the other ones will be indexed by k.

Consider �rst agents indexed by j that belong to B. Let z−j = b × (
∑

i 6=j xi) be the sum of

contributions of the agents in B except agent j and let zj := rj > 0 be a critical threshold. It is

assumed that Uj(rj) > 0.

If z−j > zj , then, Xj(z−j) = ∅. Otherwise, that is, if z−j ≤ zi, Xi(z−j) 6= ∅. For each agent

j ∈ B, her ideal contribution is equal to z∗j ∈ (0, zj) so that the best response of agent j ∈ B given

z−j is as follows.

• If z−j ≤ z∗j , then, BRj(z−j) = x∗j = z∗j − z−j > 0

• If z−j ∈ (z∗j , zj), then, BRj(z−j) = x∗j = 0

• If z−j > zj then, BRj(z−j) = ∅

Consider now agents k ∈ U . As before, let z−k := b ×
∑

k 6=i xi. For agents k ∈ U , given the

reservation utility uk, since Uk is concave and since by assumption z∗k > 0 is such that Uk(z
∗
k) > 0,

there thus exists two critical thresholds, a low one de�ned as zk := infzk Uk(zk) = uk and a high

one de�ned as zk := zk := supzk Uk(zk) = uk. It thus follows that if z−k > zk, agent k rejects the

project so that Xk(z−k) = ∅. If z−k < zk, agent will choose her �at contribution xk so that zk = z∗k.

Noting that for each agent k ∈ U , z∗k ∈ (zk, zk), the best response of agent of k ∈ U is given below.

• If z−k ≤ z∗k, then, BRj(z−k) = x∗k = z∗k − z−k > 0

• If z−k ∈ (z∗k, zk), then, BRj(z−k) = x∗k = 0

• If z−k > zk) then, BRk(z−k) = 0

and this concludes the proof �

Proof of proposition 4

Part i). It is assumed that α∗1 = 1 so that z∗1 = α∗1r1 = r1. When x1 = z∗1 , if x
∗
2 := BR2(b×z∗1) >

z∗1 , then, X1(x
∗
2) = ∅ so that No Nash equilibrium in individual constraints can exist. From

lemma 1, BR2(b × z∗1) = z∗2 − b × z∗1 and z∗2 − b × z∗1 > z∗1 is equivalent to z∗2 > z∗1(1 + b).

When this is the case, a Nash equilibrium in individual constraints does not exist � Part ii). Let

K = {(x1, x2) ∈ R+
2 : x1 + bx2 ≤ z∗1 and U2(x1, x2) ≥ u2}. For a Nash equilibrium with shared
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constraint to exist, we must �rst prove the non-vacuity of K, which in turn is equivalent to the

existence of a solution that solves the following system.

x1 + bx2 ≤ z∗1 (18)

U2(x2 + bx1) ≥ u2 (19)

We know from lemma 1 that there exists two critical thresholds z2 and z2 de�ned as z2 =

infz2 U2(z2) = u2 and z2 = supz2 U2(z2) = u2. It thus follows that equation (19) is equivalent to

z2 ∈ [z2, z2], where z2 = x2 + bx1. Since we already know that for z∗2 , an equilibrium does not

exist, one must search for a solution z2 ∈ [z2, z
∗
2). For K to be non-empty, it thus su�ces to �nd a

solution to the following system

x1 + bx2 ≤ z∗1 (20)

x2 + bx1 ≥ z2 (21)

Solving equation (20) in x2 yields x2 ≤
z∗1−x1
b while solving equation (21) yields x2 ≥ z2 − bx1.

For a solution in x2 to exist,
z∗1−x1
b must be higher than z2 − bx1. Solving

z∗1−x1
b ≥ z2 − bx1 yields

z∗1−bz2 ≥ x1(1−b2). There thus exists a solution in x2 i� z
∗
1−bz2 ≥ 0. Assuming that z∗1−bz2 ≥ 0,

x1 must be such that x1 ∈
[
0,

z∗1−bz2
(1−b2)

]
. Let x1 :=

z∗1−bz2
(1−b2) be the maximal value of x1 and assume

that x1 = θx1 for some θ ∈ (0, 1). By construction, BR2(θx1) 6= ∅. Consider now the best response

of agent 2, BR2(θx1) = x∗2. Agent 2 will choose the highest contribution subject to the constraint

given by equations (20) and (21). Agent 2 will thus choose x∗2 so that θx1 + bx∗2 = z∗1 , which means

that x∗2 =
z∗1−θx1

b . Given x∗2 =
z∗1−θx1

b , agent 1 will choose x1 such that x1 + bx∗2 = z∗1 so that

BR1(
z∗1−θx1

b ) = x∗1 = θx1. For any θ ∈ (0, 1), the pair (θx1,
z∗1−θx1

b ) is a Nash equilibrium in shared

constraint �
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