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Abstract

Swedish district courts have undergone a major mergers and acquisitions program

between 2000 and 2010 to centralize activity in larger and fewer courts. The purpose

of this contribution is to conduct an efficiency analysis of these courts to identify the

eventual efficiency gains. Distinguishing mainly between technical and scale efficiency

and determining the returns to scale of individual observations, we try to find the

potential rationales behind this merger wave. We are to the best of our knowledge the

first to combine traditional convex with nonconvex nonparametric frontier methods

to calculate efficiency before and after the mergers. It turns out that the nonconvex

methods provide a more cogent ex post explanation of this merger wave.
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F-59000 Lille, France, k.kerstens@ieseg.fr

§Nanjing University of Aeronautics & Astronautics, College of Economics and Management, Nanjing,
China, zqyustc@mail.ustc.edu.cn.

IÉSEG Working paper series 2021-EQM-05



1 Introduction

Mergers and acquisitions (M&As) reflect a popular strategic choice for growth and expansion

of organisational boundaries. Horizontal M&As take place between organisations working in

the same market, while vertical M&As involve organisations operating in different markets

upstream or downstream (see Gaughan (2007) for a more complete taxonomy). From a reg-

ulatory perspective (e.g., Belleflamme and Peitz (2010) or Viscusi, Harrington, and Vernon

(2005)), since horizontal M&As reduce the number of competitors, they raise the possibility

of creating market power implying social welfare losses. However, since horizontal M&As

redefine the organisational boundaries by integration of the production facilities, there is also

the possibility of achieving social welfare gains by cost reductions (assuming these are passed

onto the final consumers). The main reason for horizontal M&As is economies of scale (ad-

vantages of production in higher volumes) and economies of scope (gains by changing input

and/or output mix).

Horizontal M&As may raise the price due to an effect on the market power. Mergers can

lead to substantial price increases if it makes collusion stable where before it was unstable.

M&As may create cost savings by reshuffling the production of outputs across production

facilities by exploiting cost differences, by using scale economies at a single plant, by creating

synergies by pooling certain functions, by creating a larger innovative capacity leading to

future efficiency gains, or by eliminating any eventual existing inefficiencies. It is well-known

that the cost savings effect is often overruled by the market power effect (e.g., Farrell and

Shapiro (1990)).

Outcomes of horizontal M&As are empirically evaluated using various methodologies. In

the industrial organization literature, it is common to distinguish between event studies for

stock market listed firms to assess shareholder value, direct price comparisons before and

after the merger, and merger simulations using pre-merger market information to calibrate

some noncooperative oligopoly model (see, e.g. Belleflamme and Peitz (2010, Section 15.4)

for a broad overview or Budzinski and Ruhmer (2010) for a survey on merger simulations).

This literature also recognises that technical and cost inefficiencies contribute to cost savings

of horizontal M&As (see, e.g., Caves (2007) or Viscusi, Harrington, and Vernon (2005, p.

88-89) for a general argument and Akhavein, Berger, and Humphrey (1997) for an empirical

study).

Since greater cost savings facilitate M&A being approved by the authorities, M&A par-

ticipants have an incentive to overstate any eventual cost savings. Thus, since M&A par-
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ticipants are incentivised to overstate cost savings, it is important to obtain a conservative

estimate. In this respect, we opt for nonconvex in addition to the traditional convex de-

terministic nonparametric production frontier models: the former exactly provide the most

conservative estimates of efficiency gains available in the literature.

Indeed, our empirical evaluation tool is based on applied production analysis. In par-

ticular, deterministic nonparametric production frontier models (sometimes labeled as Data

Envelopment Analysis (DEA)) are used to provide inner approximations of the boundaries

of production possibility sets subject to a set of minimal axioms on what is deemed feasible

(see Ray (2004)). Efficiency measures are used to position observations with respect to the

boundary of such deterministic nonparametric production frontiers: either the observation

is part of the boundary and technically efficient, or the observation is situated in the interior

of the technology and it is technically inefficient (see Ray (2004)). This literature has led

to evolved efficiency decompositions that fundamentally distinguish between technical and

cost (in case of the cost function) efficiencies. Cost efficiency requires a point minimizing the

linear cost function on the production frontier: an observation can be cost inefficient if it is

situated away from this tangency point. Allocative efficiency closes the eventual gap between

both cost efficiency and technical efficiency (see, for instance, Färe, Grosskopf, and Lovell

(1985)): it indicates to which extent an observation deviates from the cost minimising input

mix. This methodology is popular and has led to a large variety of empirical applications in

a multitude of sectors (see Daraio, Kerstens, Nepomuceno, and Sickles (2020) for a recent

meta-review) and it is a standard tool in the analysis of industrial organization (e.g., Caves

(2007)).

In this deterministic nonparametric production frontier literature, various strands of lit-

erature analyse the potential ex ante and effective ex post efficiency gains of horizontal

M&As. We provide a selective review of this literature, while focusing mainly on our own

methodological choices for this contribution. We already mentioned some studies focusing

on the public court sector that is the focus of our empirical application, but only dig deeper

into this literature in the main body of the text.

We focus on technical efficiency measured with respect to a flexible or variable returns

to scale technology, overall technical efficiency evaluated with regard to a constant returns

to scale technology, and scale efficiency as a ratio of overall technical efficiency and technical

efficiency. Scale efficiency evaluates the optimal scale level compatible with a long-run com-

petitive equilibrium. It can be complemented with qualitative information on global returns

to scale for individual observations. The standard reaction to such information on scale prop-

erties is that observations exhibiting increasing returns to scale should consider expanding,
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while observations showing decreasing returns to scale should contemplate contracting.

Studies adopting a similar methodology include the following examples. Cummins,

Tennyson, and Weiss (1999) apply this frontier approach to determine technical efficiency

and returns to scale in M&A in the US life insurance industry and find that merged firms

realise greater efficiency gains than those that do not, and that firms with increasing re-

turns to scale are more likely to be acquisition targets, among others. Harris, Ozgen, and

Ozcan (2000) examine US hospitals using intertemporal production frontiers and show that

M&As increase efficiency levels and that scale efficiency rather than technical efficiency is

the main source of improved performance. Similar studies on courts (e.g., Agrell, Mattsson,

and Månsson (2020), Castro and Guccio (2018), Peyrache and Zago (2016), among others)

are discussed later on when presenting our own empirical results. In a review Frantz (2015)

states that there is no evidence that mergers improve technical efficiency, underscoring the

regulatory need to scrutinize popular justifications.

In a similar vein, Bogetoft and Wang (2005) initiate a substantial literature by proposing

a decomposition of the potential gains from merging into technical efficiency, size (scale),

and harmony (mix) gains and illustrate this proposal using agricultural extension offices in

Denmark showing that there are considerable expected gains. Kristensen, Bogetoft, and

Pedersen (2010) conduct this decomposition to Danish hospitals and evaluate the potential

gains from the planned M&As, thereby showing that many hospitals are technically inefficient

and some merged hospitals are too large and experience decreasing returns to scale. One

such study on courts is found in Mattsson and Tidan̊a (2019).

Other studies assess the effect of M&As on productivity growth. Krishnasamy, Ridzwa,

and Perumal (2004) analyze productivity growth of ten merged Malaysian banks using the

Malmquist productivity index in the short period 2000-2001 and find that productivity in-

creases in eight out of ten banks. Monastyrenko (2017) computes an eco-efficiency Malmquist

productivity index among European electricity producers in the period 2005–2013 and finds

that the heavily regulated domestic horizontal M&As have no impact, while the horizontal

cross-border M&As damage eco-efficiency in the short run and become only positive in the

medium run. Analogous studies focusing on courts (e.g., Falavigna, Ippoliti, and Ramello

(2018), Mattsson, Månsson, Andersson, and Bonander (2018), among others) are presented

in the empirical section.

As is common with the analysis of the public sector, we opt for an input-oriented efficiency

measure since the outputs are determined by the demand for justice of citizens. However, in

the literature, one can find several instances of articles focusing on output-oriented efficiency
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in courts (e.g., Castro and Guccio (2018) or Giacalone, Nissi, and Cusatelli (2020)). For

our large unbalanced panel of Swedish district courts earlier analysed by Agrell, Mattsson,

and Månsson (2020), Mattsson, Månsson, Andersson, and Bonander (2018) and Mattsson

and Tidan̊a (2019), the approaches are mixed: Agrell, Mattsson, and Månsson (2020) use an

input orientation, while Mattsson, Månsson, Andersson, and Bonander (2018) and Mattsson

and Tidan̊a (2019) opt for output-oriented efficiency. We empirically demonstrate that these

district courts do in fact control their inputs.

Already Farrell (1959) points out that the convexity assumption maintained in almost

all production models precludes the various reasons that may generate nonconvexities in

technology. First, indivisibilities point to the fact that inputs and outputs in production

are not perfectly divisible and thus not continuous (see Scarf (1986; 1994)). These same

indivisibilities may also limit the up- and especially the downscaling of production processes.

Second, economies of scale and increasing returns to scale may yield nonconvex technologies

where organisations have an interest to continue scaling up production. Third, economies

of specialisation instead of economies of diversification may reveal gains in switching costs

and time and yield nonconvex technologies. Fourth, both negative and positive externalities

in production yield nonconvexities in the technology of the affected organisations. More

recently, network externalities and nonrival inputs (like ideas) can be added as additional

sources of nonconvexities.

It is often -implicitly or explicitly- assumed that nonconvexities have no impact on the

estimates of the parameters of interest in production and, e.g., cost approaches alike. How-

ever, a basic deterministic nonparametric production frontier imposing flexible or variable

returns to scale and dispensing with convexity has been originally developed by Deprins,

Simar, and Tulkens (1984) (sometimes labeled Free Disposal Hull (FDH)). Kerstens and

Vanden Eeckaut (1999) extend this basic nonconvex frontier by introducing constant, non-

increasing and non-decreasing returns to scale assumptions. Moreover, these same authors

propose a new goodness-of-fit approach to infer the characteristics of global returns to scale

for nonconvex technologies. All these nonconvex nonparametric frontier technologies are

smaller than the corresponding convex nonparametric frontier models and thus yield more

conservative estimates of efficiency.

Furthermore, seminal contributions to axiomatic production theory indicate that the cost

function is convex in the outputs if and only if technology is convex (e.g., Jacobsen (1970,

Corollary 5.5)). Thus, using contraposition, the cost function is nonconvex if and only

if technology is nonconvex. In fact, Briec, Kerstens, and Vanden Eeckaut (2004) propose

nonconvex nonparametric cost frontiers with any returns to scale assumption and prove
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that these are always larger than or equal to the convex corresponding counterparts with

similar returns to scale assumption: these are only identical under a single output and

constant returns to scale. Kerstens and Van de Woestyne (2021) illustrate the potentially

very substantial impact of convexity on cost function estimates.

In this contribution, we address the following sequence of three questions with regard

to our empirical application based on a large unbalanced panel of Swedish district courts.

First, are there any substantial changes in productivity in this sample that may have an

impact on the assessment of the horizontal mergers? In the case of small or negligible

productivity change, then we can safely ignore it when assessing horizontal mergers. For

this purpose, we compute a Malmquist productivity index and test whether it measures

any significant productivity change. Second, what are the effects of horizontal mergers on

the overall technical efficiency as well as the technical and scale efficiencies under convex

and nonconvex technologies? This question is addressed by computing the overall technical

efficiency, the technical efficiency as well as the scale efficiency under convex and nonconvex

technologies characterised by constant returns to scale and variable returns to scale. This

may shed some light on the driving factors behind horizontal mergers. Third, what are

the effects of the horizontal mergers on the global returns to scale characterization of these

observations? To address this question, we derive qualitative information regarding the

global returns to scale from the observations involved in the horizontal mergers.

For these purposes, this contribution is structured as follows. Section 2 provides some

basic definitions of the traditional convex and the less widely applied nonconvex technologies.

It also defines input-oriented efficiency measures for measuring overall technical efficiency,

technical efficiency, and scale efficiency and describes how to determine global returns to scale

information. Finally, it also defines the input-oriented Malmquist productivity index. After

developing this theoretical framework, Section 3 describes the secondary unbalanced panel

data set of Swedish district courts as well as the historical horizontal merger process that took

place during the years 2000 till 2009. Section 4 with the empirical illustrations first presents

results on the Malmquist productivity index and checks whether there is any substantial

technological change in these courts. Then, we present convex and nonconvex estimates of

overall technical efficiency and its decomposition into technical and scale efficiency at the

sample level, and at the level of the years when horizontal mergers happened and the years

thereafter. We also investigate returns to scale information under convex and nonconvex

estimates. Finally, we repeat the same analysis at the level of the pre-merger and the post-

merger observations. Section 5 concludes and outlines future research issues.
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2 Nonparametric Technologies and Efficiency

This study uses traditional convex and nonconvex nonparametric, deterministic frontier

methods to determine the static input-oriented efficiency of each operating unit, and also

adopts the Malmquist productivity index to analyze the dynamics of productivity change

in discrete time. We first introduce the static efficiency methods, and then the dynamic

productivity index.

2.1 Nonparametric Technology Frontiers: A Unified Representa-

tion

Consider a set of K observations A = {(x1, y1) , ..., (xK , yK)} ∈ Rm+n
+ . A production tech-

nology describes all available possibilities to transform input vectors x = (x1, . . . , xm) ∈ Rm
+

into output vectors y = (y1, . . . , yn) ∈ Rn
+. The production possibility set or technology

S summarizes the set of all feasible input and output vectors: S = {(x,y) ∈ Rm+n
+ :

x can produce y}. Given our focus on input-oriented efficiency measurement later on, this

technology can be represented by the input correspondence L : Rn
+ → 2Rm

+ where L(y) is the

set of all input vectors that yield at least the output vector y:

L(y) = {x : (x,y) ∈ S} . (1)

Nonparametric specifications of technology can be estimated by enveloping these K ob-

servations in the set A while maintaining some basic production axioms (see Hackman

(2008) or Ray (2004)). We are interested in defining minimum extrapolation technologies

satisfying strong disposability in the inputs and outputs, all four traditional returns to scale

hypotheses (i.e., constant, non-increasing, non-decreasing and variable (flexible) returns to

scale), including those technologies that satisfy the assumption of convexity and those that

do not.

A unified algebraic representation of convex and nonconvex technologies under different

returns to scale assumptions for a sample of K observations is found in Briec, Kerstens, and

Vanden Eeckaut (2004):

SΛ,Γ =

{
(x,y) ∈ Rm+n

+ : x ≥
K∑
k=1

α zk xk, y ≤
K∑
k=1

α zk yk,

K∑
k=1

zk = 1, z ∈ Λ, α ∈ Γ

}
,

(2)

6



where

(i) Γ ≡ ΓCRS = {α : α ≥ 0} ;

(ii) Γ ≡ ΓNDRS = {α : α ≥ 1} ;

(iii) Γ ≡ ΓNIRS = {α : 0 ≤ α ≤ 1} ;

(iv) Γ ≡ ΓVRS = {α : α = 1} ; and

(v) Λ ≡ ΛC = {z = (z1, . . . , zk) : zk ≥ 0} , and (ii) Λ ≡ ΛNC = {z : zk ∈ {0, 1}} .

First, there is the activity vector (z) operating subject to a convexity (C) or nonconvexity

(NC) constraint. Second, there is a scaling parameter (α) allowing for a particular scaling

of all K observations spanning the technology. This scaling parameter is smaller than or

equal to 1 or larger than or equal to 1 under non-increasing returns to scale (NIRS) and

non-decreasing returns to scale (NDRS) respectively, fixed at unity under variable returns

to scale (VRS), and non-negative under constant returns to scale (CRS).

2.2 Input-Oriented Efficiency Measures and Estimating Returns

to scale

The radial input efficiency measure can be defined as:

EΛ,Γ
i

(
x,y : SΛ,Γ

)
= min

{
θ | (θ x,y) ∈ SΛ,Γ, θ ≥ 0

}
. (3)

This efficiency measure indicates the minimum contraction of an input vector by a scalar

θ while still producing the same outputs compatible with the technology S. Obviously,

the resulting input combination is located at the boundary of the input correspondence or

technology. For our purpose, the radial input efficiency has two key properties (see, e.g.,

Hackman (2008)). First, it is smaller than or equal to unity (0 < EΛ,Γ
i

(
x,y : SΛ,Γ

)
≤ 1),

whereby efficient production on the isoquant of the input correspondence L(y) is represented

by unity and 1−EΛ,Γ
i

(
x,y : SΛ,Γ

)
indicates the amount of inefficiency. Second, it has a cost

interpretation.

Definition 2.1. Under the assumptions on the technology SΛ,Γ defined in (2), the following

input-oriented efficiency notions can be distinguished:

� Technical Efficiency is the quantity: TEΛ
i (x,y) = EΛ,VRS

i

(
x,y : SΛ,VRS

)
;

� Overall Technical Efficiency is the quantity: OTEΛ
i (x,y) = EΛ,CRS

i

(
x,y : SΛ,CRS

)
;
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� Scale Efficiency is the quantity: SCEΛ
i (x,y) =

EΛ,CRS
i

(
x,y : SΛ,CRS

)
/EΛ,VRS

i

(
x,y : SΛ,VRS

)
.

Since EΛ,CRS
i

(
x,y : SΛ,CRS

)
≤ EΛ,VRS

i

(
x,y : SΛ,VRS

)
≤ 1, evidently 0 < SCEΛ

i (x,y) ≤
1 (see Färe, Grosskopf, and Lovell (1983)). Using Definition 2.1, the following identity readily

follows:

OTEΛ
i (x,y) = TEΛ

i (x,y) · SCEΛ
i (x,y). (4)

This decomposition simply states that Overall Technical Efficiency evaluated under CRS

is the product of Technical Efficiency evaluated under VRS and Scale Efficiency (see Färe,

Grosskopf, and Lovell (1985).

Briefly discussing the computational methods for obtaining the radial input efficiency

measure (3) for each evaluated observation relative to all technologies in (2), the convex case

just requires solving a nonlinear programming problem (NLP): this is evidently simplified to

the familiar linear programming (LP) problem found in the literature (see Hackman (2008)

or Ray (2004)) by substituting wk = αzk. For nonconvex technologies, nonlinear mixed

integer programs must be solved in (2): however, Podinovski (2004), Leleu (2006) and Briec,

Kerstens, and Vanden Eeckaut (2004) propose mixed integer programs, LP problems, and

closed form solutions derived from an implicit enumeration strategy, respectively. Kerstens

and Van de Woestyne (2014) review all methods in this nonconvex case in more detail

and empirically document that implicit enumeration is by far the fastest solution strategy.

Daraio, Kerstens, Nepomuceno, and Sickles (2019) provide a review of software options (with

the main focus on the convex methods).

Proposition 2.1. Following Briec, Kerstens, and Vanden Eeckaut (2004, Lemma 3), it

is straightforward to establish the following relations between convex and nonconvex input-

oriented efficiency components:

� TEC
i (x,y) ≤ TENC

i (x,y);

� OTEC
i (x,y) ≤ OTENC

i (x,y);

� SCEC
i (x,y)

>
=
<
SCENC

i (x,y).

To clarify the relationship between convex and nonconvex decompositions (4), we start from

the observation that nonconvex technologies are nested in the convex counterparts. As a

consequence, nonconvex OTEΛ
i (x,y) and TEΛ

i (x,y) components are larger or equal than

their convex counterparts. However, there is no a priori ordering between nonconvex and
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convex SCEΛ
i (x,y) components: while the underlying efficiency measures can be ordered,

it is impossible to order the ratios between these efficiency measures.

In the literature, several methods are available to obtain qualitative information charac-

terising returns to scale (see Seiford and Zhu (1999) for a review). Since none of these existing

methods are suitable for nonconvex technologies, Kerstens and Vanden Eeckaut (1999, Pro-

position 2) generalize the existing goodness-of-fit method proposed by Färe, Grosskopf, and

Lovell (1983) in a convex setting such that it becomes perfectly general. Obviously, this

qualitative information holds for efficient points only: these are either efficient observations,

or projection points in case of initially inefficient observations. Formally, it is possible to infer

for any single observation whether it satisfies globally constant (CRS), increasing (IRS), or

decreasing (DRS) returns to scale by simply identifying the technology yielding the maximal

input efficiency score.

Proposition 2.2. Using EΛ,Γ
i (x,y : SΛ,Γ) and conditional on an efficient point, technology

SΛ,V RS is characterized by:

(a) CRS ⇔ EΛ,NIRS
i (x,y : SΛ,NIRS) = EΛ,NDRS

i (x,y : SΛ,NDRS);

(b) IRS ⇔ EΛ,NIRS
i (x,y : SΛ,NIRS) < EΛ,NDRS

i (x,y : SΛ,NDRS);

(c) DRS ⇔ EΛ,NIRS
i (x,y : SΛ,NIRS) > EΛ,NDRS

i (x,y : SΛ,NDRS).

Note that all three input efficiency measures coincide for observations subject to constant

returns to scale. The maximal input efficiency measure simply reflects the best fit of a specific

technology for the given observation and therefore serves to indicate the most appropriate

returns to scale assumption. In fact, it is applicable to any specification of technology and

it is simply more general.1

2.3 Input-Oriented Malmquist Productivity Index

In a discrete time framework, the input-oriented radial efficiency measure Et
i (x

t,yt) indicates

the minimum contraction of an input by a scalar θ while still remaining on the boundary of

the technology in time period t:

Et
i (x

t,yt) = min
{
θ | (θ xt,yt) ∈ St, θ ≥ 0

}
. (5)

1One can also distinguish a fourth case of sub-constant returns to scale that is only relevant for noncon-
vex technologies: see Cesaroni, Kerstens, and Van de Woestyne (2017) for more details and a first empirical
exploration. More recently, Mostafaee and Soleimani-Damaneh (2020) propose an even more refined classi-
fication of returns to scale for nonconvex technologies.
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To simplify the notation, we suppress the superscripts Λ,Γ to indicate convexity or not, and

returns to scale on the efficiency measure Et
i (x

t,yt) and the technology St. Drawing on Färe,

Grosskopf, Norris, and Zhang (1994), the radial efficiency measure Et
i (x

t,yt) is defined as

the inverse of the corresponding Shephardian distance function. Hence, for (a, b) ∈ {t, t+1},
the time-related versions of the radial input efficiency measure are given as follows:

Ea
i (xb,yb) = min

{
θ | (θ xb,yb) ∈ Sa

}
(6)

if there is some θ such that (θxb,yb) ∈ Sa and Ea
i (xb,yb) = +∞ otherwise.

Thus, we can use the radial input measure to define the input-oriented Malmquist pro-

ductivity index for base period t as follows:

M t
i (x

t,yt,xt+1,yt+1) = Et
i (x

t+1,yt+1)/Et
i (x

t,yt), (7)

where Et
i (x

t,yt) and Et
i (x

t+1,yt+1) are input efficiency relating observations in period t and

t+1, respectively, to a period t technology. When the value of the input-oriented Malmquist

productivity index for this base period t is above (below) unity, then it reveals an increase

(decrease) in productivity.

In the similar way, an input-oriented Malmquist productivity index with base period t+1

is also defined as:

M t+1
i (xt,yt,xt+1,yt+1) = Et+1

i (xt+1,yt+1)/Et+1
i (xt,yt). (8)

In the same way, when the value of the Malmquist productivity index for this base period

t+ 1 is above (below) unity, then it reveals an increase (decrease) in productivity.

Moreover, to avoid an arbitrary choice of base period, Färe, Grosskopf, Norris, and Zhang

(1994) propose defining the input-oriented Malmquist productivity index as a geometric

mean of a period t and a period t+ 1 index:

M t,t+1
i (xt,yt,xt+1,yt+1) =

√
M t

i (x
t,yt,xt+1,yt+1) ·M t+1

i (xt,yt,xt+1,yt+1)

=

√
Et

i (x
t+1,yt+1)

Et
i (x

t,yt)
· E

t+1
i (xt+1,yt+1)

Et+1
i (xt,yt)

(9)

Once again, when the geometric mean input-oriented Malmquist productivity index is greater

(less) than 1, then it points to an increase (decrease) in productivity.
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The base period of this Malmquist productivity index changes over time. It can be

conceptualized as an index computed in a two-year window sliding over the observations in

time. Moreover, the Malmquist index (9) can be decomposed into two mutually exclusive

components:

M t,t+1
i (xt,yt,xt+1,yt+1) =

Et+1
i (xt+1,yt+1)

Et
i (x

t,yt)
·

√
Et

i (x
t+1,yt+1)

Et+1
i (xt+1,yt+1)

· Et
i (x

t,yt)

Et+1
i (xt,yt)

(10)

The first component measures the change in technical efficiency over time, while the second

component is related to the frontier shifts of the production technology (i.e., it captures

technological change). If M t,t+1
i (xt,yt,xt+1,yt+1) is larger (smaller) than unity, then this

indicates an improvement (deterioration) in productivity. A similar interpretation applies

to the separate components.

Remark that the above definitions deviate from the original ones in Caves, Christensen,

and Diewert (1982) in that the ratios have been inverted. This ensures that productiv-

ity indices above (below) unity reveal productivity growth (decline), which is in line with

traditional productivity indices.

3 Data Sample: Unbalanced Panel of Swedish Courts

The sample is an unbalanced panel of 18 years (2000-2017) of Swedish district courts based on

annual statistics adopted from three existing studies (in particular, Mattsson, Månsson, An-

dersson, and Bonander (2018), Mattsson and Tidan̊a (2019), Agrell, Mattsson, and Månsson

(2020)).2 In these articles, there are four inputs, including three labor inputs and one capital

input, and three outputs as a production specification. More specifically, among the three

labor inputs, there are judges, law clerks, and administrative employees (other personnel)

measured in full-time equivalents. In addition, the court area is adopted as a proxy variable

for capital, under the assumption that the size of the premises is proportional to other capital

variables (for example, the number of computers and other equipment, as well as the oper-

ational expenditures such as heating, maintenance, and insurance). Moreover, these articles

state that the incorporation of capital is important because, to some extent, it is possible

to substitute capital for labor in the production of court decisions. The three outputs are

decided criminal cases, decided civil cases, and decided petitionary matters. Agrell, Matts-

son, and Månsson (2020, p. 662) discuss how these three output categories result from an

2We are grateful to Pontus Mattsson for making these data available for our research contribution.
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aggregation procedure using self-reported time consumption starting from fourteen output

categories. Bogetoft and Wittrup (2021) recently investigate the whole issue of case weight-

ing to assess the workload in a court system. In this contribution, we use the same four

inputs and three outputs as used in the three existing studies to perform our own analysis.

For more institutional details on the Swedish court system and the role of district courts,

the reader is referred to these three existing studies.

Table 1: Descriptive Statistics over the Years 2000-2017

Years
Outputs Inputs

Civil cases Criminal cases Matters Judges Law clerks Other per-
sonnel

Court area

2000 539
(997)

674.7
(938)

309.4
(554)

6.88
(12.54)

5.28
(7.28)

13.77
(22.85)

2545
(3760)

2001 537
(1024)

684.4
(1001)

303.3
(577)

6.68
(12.51)

5.81
(8.78)

12.89
(24.24)

2406
(3867)

2002 651
(1096)

860.3
(1275)

377.1
(681)

8.10
(12.44)

6.81
(9.04)

14.96
(25.72)

2790
(4262)

2003 710
(1150)

966.6
(1329)

430.4
(782)

8.64
(13.57)

7.43
(9.43)

16.61
(27.52)

2976
(4313)

2004 710
(1158)

966.0
(1342)

418.3
(712)

8.32
(12.83)

6.77
(8.57)

15.56
(26.61)

2882
(4275)

2005 734
(1153)

1031
(1405)

440.5
(798)

8.21
(12.77)

6.96
(8.95)

16.04
(27.21)

2893
(4548)

2006 901
(1215)

1320
(1525)

507.7
(767)

10.60
(14.36)

10.15
(12.52)

20.50
(30.04)

3587
(4848)

2007 902
(1032)

1369
(1240)

489.0
(599)

10.41
(12.04)

10.42
(10.76)

21.64
(26.21)

3429
(3796)

2008 1077
(1209)

1621
(1327)

508.3
(531)

11.41
(10.89)

11.51
(10.98)

23.51
(25.13)

3681
(3641)

2009 1169
(1307)

1665
(1461)

542.4
(547)

11.41
(10.66)

10.84
(10.78)

23.38
(25.09)

3703
(4198)

2010 1411
(1469)

1951
(1551)

645.9
(611)

12.86
(11.25)

13.63
(13.14)

25.97
(24.55)

4268
(4176)

2011 1402
(1457)

2045
(1606)

677.5
(670)

13.67
(12.19)

15.05
(14.34)

26.47
(24.35)

4381
(4183)

2012 1458
(1485)

2111
(1811)

499.2
(473)

14.42
(12.29)

15.47
(14.95)

26.42
(24.68)

4371
(4196)

2013 1501
(1531)

2051
(1823)

513.7
(519)

14.77
(13.09)

15.78
(15)

27.34
(25.69)

4465
(4218)

2014 1519
(1531)

2035
(1812)

512.2
(507)

15.52
(13.77)

16.06
(15.17)

27.73
(25.79)

4461
(4180)

2015 1428
(1513)

2043
(1807)

507.9
(513)

15.76
(13.74)

15.81
(15.26)

28.02
(26.83)

4511
(4175)

2016 1343
(1375)

2067
(1869)

481.9
(483)

16.01
(14.54)

15.86
(15.51)

27.58
(26.42)

4554
(4086)

2017 1396
(1414)

2144
(1903)

465
(423)

15.56
(13.17)

15.32
(14.39)

27.71
(25.48)

4509
(3703)

Number of changes 55.71
(12.39)

55.59
(12.47)

55.71
(12.39)

52.47
(11.11)

52.65
(10.80)

53.94
(11.44)

14.29
(6.95)

Standard deviation is displayed in parentheses.

The descriptive statistics of the average level and standard deviations of outputs and

inputs over the 18 years are reported in Table 1. As can be seen, the differences in outputs

and inputs over time are, on average, quite large. More specifically, each of the outputs

and the inputs increases in size over time. For example, the number of civil cases goes on

average up from 539 to 1396 (2.59 times). Moreover, the number of full-time equivalent

judges expands from about 6.88 to about 15.56 on average (2.26 times). Also note that the
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standard deviations of civil cases, criminal cases, and law clerks are almost as large as their

means. However, the standard deviations of the output matters, as well as the inputs judges,

other personnel, and court area remain rather stable with very little variation.

Moreover, to determine whether there are fixed inputs that do not change, we exclude the

initial post-merger observations (that automatically imply a change in inputs and outputs)

and count the number of changes among the observations for each input and each output

over all years: we report the average number and standard deviation of changes for all inputs

and outputs over all years in the last two lines of Table 1. Among the inputs judges, law

clerks, other personnel and court area, there is a change of 52.47, 52.65, 53.94 and 14.29

observations on average. Thus, all inputs seem to change and thus can be treated as variable

inputs.3 More details are provided in Table A.1 in Appendix A.

Table 2 reports the structure of the unbalanced panel over the sample period in the first

two columns, and it summarizes the number of courts involved in a merger, and the resulting

mergers in the third and fourth columns. In this sample, there were initially 95 district courts

in 2000. Then, a court reorganization through mergers is implemented with 36 mergers in

total occurring between 2000 and 2009 and 83 courts being involved in a merger (see Agrell,

Mattsson, and Månsson (2020) for details). Observe that most mergers have taken place

in the two years 2001 and 2005 with no less than 42 (=24+18) merged courts resulting in

16 (=9+7) courts. Between 2000 and 2009, the number of district courts decreases from 95

to 48 and it remains the same thereafter until the end of the sample period. In 2017, the

original amount of courts (95) has almost been halved (48).

Moreover, while in general a horizontal merger is the takeover of one or more smaller

adjacent district courts by a relatively large district court, during this period some of the

new courts consist of parts of the original courts rather than just two or more other courts.

For instance, as mentioned in Agrell, Mattsson, and Månsson (2020, p. 673), there were five

such merger scenarios in 2007: (i) Sollentuna and parts of Södra Roslagen are merged into

Attunda; (ii) parts of Handen, Huddinge, and parts of Stockholm are merged into Södertrön;

(iii) Nacka, parts of Handen, and parts of Stockholm are merged into a new court in Nacka;

(iv) parts of Stockholm and parts of Södra Roslagen are merged into Solna; and (v) Solna

and parts of Stockholm are merged into Stockholm.

Mattsson, Månsson, Andersson, and Bonander (2018, p. 110) describe how the Swedish

government implemented several reforms for the district courts during the last 20 years, with

3Mattsson, Månsson, Andersson, and Bonander (2018, p. 116) mention that inputs are not easily changed
in the short term. This may explain why these authors use an output-oriented Malmquist productivity index.
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the major objective of increasing efficiency and productivity, while simultaneously maintain-

ing a high degree of law and order. One such reform targeted the size of the district courts,

based on the simple presumption that scale advantages exist. There is no knowledge about

any study supporting this presumption at the time of implementation of this merger policy.

Table 2: Summary of Mergers of Swedish District Courts

Years Number of Courts Number of Merging Courts Merged Courts

2000 95 4 2

2001 93 24 9

2002 78 9 3

2003 72 0 0

2004 72 8 4

2005 68 18 7

2006 57 4 2

2007 57 7 5

2008 53 0 0

2009 53 9 4

2010-2017 48 0 0

All 1082 83 36

Furthermore, the descriptive statistics of the averages and standard deviations of the

inputs and outputs for all the courts, the ones included in a merger and the ones not included

in a merger, as well as the pre-merger observations, hypothetical mergers, and the post-

merger observations in the merging years are all reported in Table 3. First, based on the

average values of the total DMUs for all, merging and non-merging years in the first six

rows, it can be seen that the average values of all input and output indicators in the merging

years are smaller than those under all years and even much smaller than those under the

non-merging years. Thus, the mergers that took place during the merging years have led to

an overall scale increase that becomes visible during the non-merging years.

Second, the descriptive statistics of averages and standard deviations of the pre-merger

observations, hypothetical mergers, and post-merger observations in the merging years are

also reported in the final six rows. We observe that the means of the pre-merger observations

are smaller than those of the post-merger observations, and that the means of the hypothet-

ical mergers are even bigger than those of both the pre-merger and post-merger observations.

This indicates that the hypothetical mergers resulting from just adding merging observations

have in fact been judged as being too big. These hypothetical mergers have never material-

ised and the real mergers that took place concern scaled down versions of the hypothetical

mergers resulting in the post-merger observations. Comparisons of standard deviations also
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yield the same conclusion. This phenomenon reveals that the Swedish administrators did

not just blindly combine pre-merger observations into hypothetical mergers, but that they

carefully have tried to trim down the scale of operations below the hypothetical mergers. The

whole merger operations thus seems a very careful operation, even though to our knowledge

no formal modeling was involved at any time.

Table 3: Descriptive Statistics for All, Merging and Non-merging Years

Sample
Outputs Inputs

Civil cases Crime cases Matters Judges Law clerks Other personnel Court area

All years
(All obs. n=1082)

994.29
(1299.41)

1405.81
(1557.18)

459.44
(620.74)

10.89
(13.05)

10.47
(12.25)

20.70
(26.18)

3510.12
(4177.73)

Merging years
(All obs. n=698)

753.37
(1132.78)

1048.14
(1302.07)

416.30
(661.62)

8.73
(12.59)

7.77
(9.73)

17.15
(26.01)

2998.55
(4144.80)

Non-merging years
(All obs. n=384)

1432.22
(1460.26)

2055.94
(1761.16)

537.86
(530.44)

14.82
(12.96)

15.37
(14.62)

27.15
(25.26)

4440.01
(4080.91)

Pre-merger obs.
(Merging years)

460.61
(700.28)

253.14
(365.16)

645.55
(819.48)

5.86
(8.25)

4.83
(5.24)

11.59
(19.37)

2137.84
(2655.24)

Hypothetical mergers
(Merging years)

1305.56
(1310.80)

592.21
(475.40)

1793.64
(1303.59)

12.91
(10.12)

13.51
(11.23)

25.82
(23.30)

4348.34
(3568.83)

Post-merger obs.
(Merging years)

1174.68
(1120.86)

545.06
(359.45)

1684.98
(1140.89)

12.05
(8.90)

12.39
(9.52)

23.76
(19.66)

4021.58
(2853.24)

4 Empirical Illustration

Our empirical analysis proceeds in three steps. The first step is the calculation of the

Malmquist productivity index and its components to obtain information on whether there are

substantial changes in performance over time. The second step is the determination of convex

and nonconvex technical and scale efficiency scores from the static efficiency decomposition

(4). Finally, the third step is the detailed comparison between pre-merger and post-merger

observations.

4.1 Malmquist Productivity Index: Any Substantial Progress?

While the main aim of the paper is to focus on the technical and scale efficiency of court

mergers, a natural question to ask in the context of a panel data set is to which extent

productivity change is substantial for the court sector? If productivity change is important,

then it cannot be ignored in the analysis of horizontal mergers. However, if productivity

change is close to negligible, then it can eventually be ignored and the technical and scale

efficiency analysis can be conducted based on a single intertemporal production frontier that

spans all time periods available.
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The literature on the productivity of courts is scant. The slightly dated survey of Voigt

(2016) on judicial efficiency barely cites a few studies and no firm conclusions are available.

Frontier-based productivity studies on courts are very scarce. First, Mattsson, Månsson,

Andersson, and Bonander (2018) measure the productivity of a sub-sample of 48 Swedish

district courts for the years 2012 to 2015 using an output-oriented Malmquist index and ob-

tain a 1.7% average productivity decline per year. Second, Falavigna, Ippoliti, and Ramello

(2018) use the Malmquist productivity index to the Italian first instance tax courts over

3 years (2009-2011) to assess a court reform and find that a reduction in the number of

active sections has on average a minor positive impact on productivity. Looking in detail,

these authors report a mildly negative impact in some regions and a mildly positive effect

on performance in other regions. Third, Giacalone, Nissi, and Cusatelli (2020) adopt the

Malmquist index to conduct an empirical analysis over the years 2011-2016 of a reform of

Italian first instance courts in 2013: on average there is only a slightly positive effect on

productivity although a majority of provinces experiences a positive technological change.

Finally, Blank and van Heezik (2020) apply a parametric nonfrontier-based cost function

model to time series data from 1980 to 2016 of the Dutch judiciary sector to measure pro-

ductivity development and obtain a sharp decline in productivity throughout the period

despite various policy measures and technological changes.

To conclude, the above productivity measurement review, mainly based on employing

the Malmquist productivity index, finds overall minor evidence of productivity growth in

courts, even when reforms are consciously aimed at improving performance. Therefore, it is

perfectly legitimate in the context of our Swedish district courts to ask the following question:

is there any substantial productivity change as measured by our input-oriented Malmquist

productivity index (9)?

To allow for a comparison with Mattsson, Månsson, Andersson, and Bonander (2018) who

focus on a sub-sample of 48 Swedish district courts for the years 2012 to 2015, we report

empirical results for the input-oriented Malmquist productivity index computed relative to

a convex CRS technology for the whole period 2000 to 2017 in the upper part of Table 4.

There are three slight differences between the Malmquist productivity approach developed

in Mattsson, Månsson, Andersson, and Bonander (2018) as presented in the lower part of

Table 4 and our approach. First, Mattsson, Månsson, Andersson, and Bonander (2018) focus

on the years 2012 to 2015 only, while we analyse the period from 2000 to 2017. Second, our

input-oriented Malmquist productivity index has been defined (see supra) to be comparable

to the output-oriented Malmquist index of Mattsson, Månsson, Andersson, and Bonander

(2018) such that productivity improvements (deteriorations) are indicated by index numbers
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above (below) unity.4 Third, Mattsson, Månsson, Andersson, and Bonander (2018) drop

some outliers from their 48 Swedish district courts and also report bootstrapped results for

their output-oriented Malmquist productivity index.

We report average values per comparison period in Table 4 for the Malmquist productivity

index and its components. Furthermore, we also mention the minimum and maximum values

per comparison period between brackets. Analysing Table 4 we can make the following

observations. First, both productivity growth and decline occur over time, but these are in

general rather small. Second, the gist of the results for the common subperiod 2012 to 2015

is similar between our results and the results reported in Mattsson, Månsson, Andersson,

and Bonander (2018).

Table 4: Malmquist Productivity Index under a Convex CRS Technology
Year Malmquist Productivity Index (MPI) Technical Change (TC) Efficiency Change (EC)

Our results

2000-2001 1.042 (0.606-1.721) 1.033 (0.866-1.250) 1.008 (0.594-1.506)

2001-2002 1.062 (0.558-1.616) 1.126 (0.797-1.856) 0.959 (0.616-1.542)

2002-2003 1.037 (0.570-1.662) 0.919 (0.660-1.103) 1.137 (0.776-1.940)

2003-2004 1.065 (0.672-1.270) 1.067 (0.985-1.179) 0.997 (0.682-1.210)

2004-2005 1.128 (0.692-2.931) 1.210 (0.966-2.196) 0.933 (0.564-1.464)

2005-2006 0.954 (0.092-2.038) 0.872 (0.104-1.081) 1.095 (0.805-2.039)

2006-2007 1.009 (0.417-1.490) 0.959 (0.463-1.309) 1.052 (0.785-1.624)

2007-2008 1.050 (0.752-1.294) 1.048 (0.887-1.142) 1.000 (0.787-1.168)

2008-2009 1.055 (0.794-1.310) 1.056 (0.877-1.259) 1.000 (0.721-1.169)

2009-2010 1.031 (0.592-1.489) 1.002 (0.908-1.078) 1.026 (0.613-1.434)

2010-2011 0.979 (0.801-1.218) 0.986 (0.847-1.218) 0.994 (0.808-1.183)

2011-2012 0.955 (0.684-1.238) 1.015 (0.684-1.238) 0.943 (0.747-1.128)

2012-2013 0.977 (0.732-1.173) 0.923 (0.732-1.097) 1.063 (0.847-1.382)

2013-2014 0.989 (0.815-1.135) 0.963 (0.819-1.071) 1.029 (0.845-1.302)

2014-2015 0.955 (0.689-1.184) 0.975 (0.902-1.054) 0.978 (0.684-1.127)

2015-2016 0.984 (0.777-1.318) 0.981 (0.839-1.104) 1.005 (0.840-1.431)

2016-2017 1.022 (0.801-1.150) 1.021 (0.903-1.121) 1.002 (0.836-1.169)

2000-2017 1.017 (0.590-1.485) 1.009 (0.699-1.256) 1.013 (0.738-1.404)

Mattsson et al. (2018)

2012-2013 0.980 (0.957-1.001) 0.929 (0.863-0.960) 1.057 (1.009-1.136)

2013-2014 1.000 (0.983-1.020) 0.987 (0.941-1.025) 1.014 (0.967-1.069)

2014-2015 0.970 (0.947-0.992) 0.992 (0.961-1.050) 0.978 (0.907-1.016)

2012-2015 0.983 (0.962-1.004) 0.969 (0.921-1.011) 1.016 (0.960-1.073)

t-test † 1.570**(MPI) 0.499**(TC) 1.076**(EC)

p-value 0.135 (MPI) 0.624 (TC) 0.297 (EC)
† t-test: critical values at 1% level=2.55 (***); 5% level=1.73 (**); 10% level=1.33(*)

Finally, we perform a t-test to evaluate whether the average Malmquist productivity

index (MPI) as well as its technical change (TC) and efficiency change (EC) components

are significantly different from unity or not and we report the corresponding p-values. If

the p-value is greater than 0.05, then it means that we cannot reject the null hypothesis

that the population average is equal to unity at the 5% significance level. If the p-value is

4Recall that under a standard definition of the input-oriented Malmquist productivity index it is the
inverse of the output-oriented Malmquist productivity index under CRS.
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less than 0.05, then it means that we reject this same null hypothesis at the 5% significance

level and we consider that the average MPI and/or its components differ from unity. From

the last line of Table 4, the p-values obtained from the t-test are 0.135 for MPI, 0.624 for

TC, and 0.297 for EC, which are all greater than 0.05. This indicates that the average MPI

and its components are equal to unity and thus that there is no obvious improvement or

deterioration in productivity. Thus, we can safely use an intertemporal frontier to measure

the efficiency values under convex and nonconvex estimates and ignore technical change.

4.2 OTE Decomposition under C and NC: A First Analysis

The above-reported t-test of the Malmquist productivity index justifies the use of an in-

tertemporal frontier approach that basically ignores the technical change. Hence, we use a

pooled frontier for the whole period as a benchmark when measuring the overall technical

efficiency based on CRS, technical efficiency based on VRS, and scale efficiency (SCE) as

a ratio of both previous concepts under C and NC technologies. With 1082 observations,

this is among the biggest samples analysed in court efficiency studies (see the Voigt (2016)

survey).

At the sample level of the Swedish district courts, we first illustrate the differences in the

efficiency estimates for OTE, TE and SCE, as well as the returns to scale (RTS) character-

istics for convex and nonconvex technologies. The descriptive statistics for these efficiency

concepts are shown in Table 5. The first line reports the number of efficient observations.

Thereafter, we report the arithmetic average, standard deviation, and minimum and max-

imum of the efficiency scores. The final line lists the results for the Li-test statistic. Indeed,

these efficiency measures are compared by means of a nonparametric test comparing two

entire distributions as initially developed by Li (1996) and refined by Fan and Ullah (1999)

and most recently by Li, Maasoumi, and Racine (2009). The Li-test statistic tests for the

eventual significance of differences between two kernel-based estimates of density functions

f and g of a random variable x. The null hypothesis states that both density functions are

almost everywhere equal (H0 : f(x) = g(x) for all x). The alternative hypothesis negates

this equality of both density functions (H1 : f(x) 6= g(x) for some x).5

Table 5 reports these descriptive statistics for both the nonconvex and convex efficiency

estimates in the columns 3 to 5 and the columns 6 to 8, respectively. The final three

columns report the difference in terms of the nonconvex estimates (i.e., (ENC
i −EC

i )/ENC
i ).

5Matlab code developed by P.J. Kerstens based on Li, Maasoumi, and Racine (2009) is found at:
https://github.com/kepiej/DEAUtils.
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Table 5: Nonconvex and Convex Efficiency Estimates: Descriptive Statistics

Sample
Nonconvex Convex ∆w.r.t NC

OTE TE SCE OTE TE SCE OTE TE SCE

All years (all obs.)

#Eff. Obs. 241 797 241 18 58 18 13.389 13.741 13.389

Average 0.873 0.977 0.892 0.676 0.758 0.893 0.225 0.225 -0.001

Stand. Dev 0.127 0.051 0.112 0.128 0.134 0.065 -0.007 -1.619 0.418

Min 0.310 0.692 0.328 0.291 0.309 0.609 0.046 0.553 -0.857

Max 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

Li-test † 157.23*** (OTE) 457.19*** (TE) 113.18*** (SCE)

p-value 0.0000 (OTE) 0.0000 (TE) 0.0000 (SCE)

Merging years (all obs.)

#Eff. Obs. 136 508 136 13 35 13 10.462 14.514 10.462

Average 0.850 0.974 0.871 0.648 0.730 0.888 0.237 0.250 -0.020

Stand. Dev 0.138 0.056 0.123 0.131 0.137 0.068 0.050 -1.443 0.449

Min 0.305 0.692 0.328 0.291 0.309 0.609 0.046 0.553 -0.858

Max 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

Li-test † 84.522*** (OTE) 296.383*** (TE) 56.331*** (SCE)

p-value 0.0000 (OTE) 0.0000 (TE) 0.0000(SCE)

Non-merging years (all obs.)

#Eff. Obs. 105 288 105 5 23 5 21.000 12.522 21.000

Average 0.914 0.983 0.930 0.726 0.808 0.900 0.206 0.178 0.032

Stand. Dev 0.090 0.040 0.076 0.105 0.111 0.060 -0.162 -1.798 0.208

Min 0.535 0.764 0.576 0.409 0.477 0.702 0.235 0.375 -0.220

Max 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

Li-test † 77.237*** (OTE) 162.444*** (TE) 57.760*** (SCE)

p-value 0.0000 (OTE) 0.0000 (TE) 0.0000 (SCE)

Hypothetical mergers (merging years)

Average 1.006 1.550 0.689 0.814 0.919 0.896 0.191 0.407 -0.300

Stand. Dev 0.135 0.492 0.155 0.115 0.177 0.086 0.143 0.639 0.448

Min 0.657 0.901 0.311 0.601 0.628 0.577 0.086 0.304 -0.854

Max 1.350 3.735 0.991 1.165 1.576 1.000 0.137 0.578 -0.009

Li-test † 33.909*** (OTE) 47.069*** (TE) 27.734***(SCE)

p-value 0.0000 (OTE) 0.0000 (TE) 0.0000 (SCE)
† Li-test: critical values at 1% level=2.33 (***); 5% level=1.64(**); 10% level=1.28(*)

The first horizontal part contains the sample level results that are our focus. The second

and third horizontal parts report results for merging and non-merging years. Finally, the

fourth horizontal part reports the results for the hypothetical mergers during the merging

years. All these results are sequentially commented upon below.

This empirical analysis at the sample level generates the following conclusions. First,

among all 1082 observations, the number of efficient observations is 241 under CRS and 797

under VRS under NC, while the number of efficient observations is just 18 under CRS and

58 under VRS under C. Thus, the number of efficient observations is in both cases more than

13 times higher under NC than that under C. Secondly, NC frontier estimates of OTE and

TE are on average substantially higher than their C counterparts, while -as expected- the

VRS estimates are again higher than the CRS ones. More specifically, the average value of

OTE for all observations is 0.873 and for TE it is 0.977 under NC, while the average value

of OTE is 0.676 and TE is 0.758 under C, respectively. Looking at the OTE decomposition,

it is clear that the major source of inefficiency differs under NC and C. Under NC, TE being

close to unity on average, the problem of OTE inefficiency is mainly caused by a low SCE.

Under C, the major source of inefficiency is clearly TE, with SCE being less of a problem.
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The last two columns also indicate that the C estimates are on average among 22.5% lower

in the CRS case and 22.5% lower in the VRS case. Thirdly, the Li-test statistic, which

is valid for both dependent and independent variables, has a null hypothesis stating that

there exists no difference between the C and NC efficiency distributions for a given return

to scale assumption. The bottom line reporting the results of this Li-test statistic confirms

that OTE, TE and SCE all differ significantly at the 1% significance level between the NC

and C series.

Furthermore, the empirical analysis at the level of merging years and non-merging years

generates the following conclusions. First, among the 698 merging year observations and the

384 non-merging year observations, the number of efficient observations is 136 under CRS

and 508 under VRS under NC and just 13 under CRS and 35 under VRS under C in the

merging years, and 105 under CRS and 288 under VRS under NC and just 5 under CRS and

23 under VRS under C in the non-merging years. Thus, the number of efficient observations

is in both cases more than 10 to 14 times higher under NC than that under C in the merging

years, and more than 12 to 21 times higher under NC than that under C in the non-merging

years. Secondly, NC frontier estimates of OTE and TE are on average higher than their C

counterparts and the VRS estimates are again higher than the CRS ones. Comparing the

OTE decomposition between merging years and non-merging years, we have the following

conclusions. Under NC, TE being nearly efficient, the problem of OTE inefficiency is mainly

caused by a relatively low SCE during the merging years which is substantially improved

during the non-merging years. Under C, the main source of inefficiency being TE, both TE

and SCE improve from the merging years to the non-merging years. Third, the bottom

lines reporting the results of the Li-test statistic confirm that OTE, TE and SCE all differ

significantly between the NC and C series for both the merging years and non-merging years

alike.

Finally, the empirical analysis of the hypothetical mergers during the merging years pro-

jected onto the intertemporal frontier composed of all years generates the following results.

First, under NC the average values of OTE and TE are 1.006 and 1.550, which are both lar-

ger than unity. However, the mean value of SCE is only 0.689, which is smaller than unity.

Under C, the mean values of OTE, TE and SCE are 0.814, 0.919 and 0.896, which are all

smaller than unity. Thus, the hypothetical mergers are situated in front of the NC CRS

and VRS frontiers and therefore generate a technological progress, which is absent under C.

Second, the C estimates are on average among 40.7% lower in the VRS case and 19.1% lower

in the CRS case. Finally, the Li-test statistic confirms that the OTE, TE and SCE all differ

significantly between the NC and C series. Thus, these results confirm that the hypothetical
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mergers would have generated technological change by shifting the frontier under NC: this

would have generated overcapacity and this has led the Swedish administration to downscale

the hypothetical mergers towards the current post-merger observations.

A comparison with related literature on courts learns us the following lessons. Castro

and Guccio (2014) analyse 27 out of 29 Italian judicial districts in 2006 and find that TE and

SCE are on average of equal importance. Castro and Guccio (2018) scrutinise 165 Italian

judicial counties for 2011 and find that TE is now the dominant source of poor performance.

Peyrache and Zago (2016) use the directional distance function to evaluate the inefficiency

and the optimal structure of the Italian court system thereby focusing on the aggregation of

results across regional levels. However, this framework is practically incomparable with the

static efficiency decomposition.

Turning to the articles on the Swedish district courts, the work by Agrell, Mattsson,

and Månsson (2020) adopts three complementary frameworks that allow for no comparison:

a global frontier under CRS (results only graphically displayed); a metafrontier approach;

and a conditional difference-in-differences analysis. In a similar vein, Mattsson and Tidan̊a

(2019) adopt an analysis based on Bogetoft and Wang (2005): therefore, a comparison is not

possible.

Next, we analyse the returns to scale (RTS) characterization of all observations, as well

as the observations in the merging and non-merging years. A detailed count of the number

of observations for various RTS under C and NC efficiency measures is shown in Table 6.

Recall that CRS stands for constant returns to scale, NIRS stands for non-increasing returns

to scale (thus, in fact decreasing RTS (DRS)), while NDRS represents non-decreasing returns

to scale (thus, in fact increasing RTS (IRS)).

For the total sample, we can infer two conclusions. First, the amount of CRS observations

is substantially higher under NC compared to C. Second, under C the overwhelming majority

of observations experiences DRS with very few observations undergoing IRS, while under NC

a small majority of observations experiences IRS with a slightly smaller amount being DRS.

When comparing the merging years and the non-merging years, one can deduce the following

conclusions. First, the amount of CRS observations increases due to the merger under NC,

while this amount is about stationary under C. Second, the relative number of both IRS and

DRS observations decreases in favour of CRS under NC, while under C the amount of IRS

observations is reduced to zero while the relative amount of DRS observations increases even

further.

This markedly different analysis of RTS under NC and C is not unusual: similar results
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have earlier been reported in even more details in Cesaroni, Kerstens, and Van de Woestyne

(2017). Castro and Guccio (2018) find that the majority of Italian courts are under IRS

under one model specification and that the majority of courts are under DRS under another

model specification.

Table 6: RTS Classification over All Years, Merging and Non-merging Years

Sample #CRS #NDRS (IRS) #NIRS (DRS) Total #observations

Nonconvexity

All obs. 240 (22.181) 434 (40.111) 408 (37.708) 1082

Merging years 134 (19.198) 289 (41.404) 275 (39.398) 698

Non-merging years 106 (27.604) 145 (37.760) 133 (34.635) 384

Convexity

All obs. 18 (1.664) 14 (1.294) 1050 (97.043) 1082

Merging years 13 (1.862) 14 (2.006) 671 (96.132) 698

Non-merging years 5 (1.302) 0 (0.000) 379 (98.698) 384

4.3 OTE Decomposition under C and NC: Comparing Pre- and

Post-Merger Observations

In addition to the empirical analysis at the sample level and at the level of merging years and

non-merging years above, thanks to the level playing field created by the hypothesis of no

technical change and the resulting intertemporal frontier we can now dig deeper in detail by

focusing on the comparison between pre-merger and post-merger observations solely. In this

subsection, we conduct a comparative analysis and statistical tests on the efficiency values

between the pre-merger and post-merger observations.

Table 7: Pre- and Post-Merger Observations under C and NC: Descriptive Statistics

Sample
Nonconvexity Convexity ∆w.r.t NC

OTE TE SCE OTE TE SCE OTE TE SCE

Pre-merger Obs.

# Eff. obs. 2 21 2 0 0 0 1.000 1.000 1.000

Average 0.800 0.976 0.820 0.641 0.717 0.896 0.199 0.266 -0.093

Stand. Dev 0.116 0.039 0.116 0.117 0.124 0.057 -0.008 -2.193 0.505

Min 0.556 0.868 0.556 0.405 0.442 0.763 0.272 0.491 -0.373

Max 1.000 1.000 1.000 0.901 0.933 0.992 0.099 0.067 0.008

Li-test † 7.689***(OTE) 16.598***(TE) 1.888***(SCE)

p-value 0.0000 (OTE) 0.0000 (TE) 0.0320 (SCE)

Post-merger obs.

# Eff. Obs. 7 25 7 0 1 0 1.000 0.960 1.000

Average 0.879 0.974 0.902 0.664 0.766 0.870 0.244 0.213 0.035

Stand. Dev 0.093 0.046 0.075 0.090 0.108 0.068 0.034 -1.375 0.099

Min 0.669 0.827 0.716 0.488 0.597 0.725 0.270 0.278 -0.013

Max 1.000 1.000 1.000 0.834 1.000 0.999 0.166 0.000 0.001

Li-test † 15.175***(OTE) 15.980***(TE) 0.244***(SCE)

p-value 0.0000 (OTE) 0.0000 (TE) 0.2830 (SCE)
† Li-test: critical values at 1% level=2.33 (***); 5% level=1.64(**); 10% level=1.28(*)
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Descriptive statistics are reported in Table 7. This empirical analysis allows us to infer

the following conclusions. First, the number of efficient observations is zero across the board

under C for pre-merger observations, while only a single observation becomes efficient for

TE due to the mergers. By contrast, the number of efficient observations is 2 for OTE and

SCE, and 21 for TE under NC for pre-merger observations, and this number increases after

the mergers to 7 for OTE and SCE, and 25 for TE: the largest relative increase is clearly in

OTE and SCE. Second, as expected the NC frontier estimates are on average substantially

higher than their C counterparts (about 20% and more) except for the SCE component,

while the VRS results are again higher than the CRS ones in the pre-merger case. This

result is confirmed in the post-merger case: NC frontier estimates are between 21.3% and

24.4% higher than their C counterparts, and this is now also valid for the SCE component

(3.5%). Looking in more detail at the OTE decomposition, we find that under NC the

TE component is close to unity and the main source of OTE inefficiency is due to SCE

inefficiency, and that the merger improves the OTE efficiency level substantially because the

SCE efficiency improves. Under C, the TE inefficiency is worse than the SCE inefficiency,

and the merger improves the OTE efficiency level less than in the NC case because the TE

efficiency level improves. Third, the bottom line containing the results of the Li-test statistic

confirms once more that OTE, TE and SCE differ significantly at the 1% significance level

between the NC and C series.

In addition, to further explore whether the performance of the observations involved in

the merger has improved after the merger or not, we establish the following definition.

Definition 4.1. When comparing pre-merger and post-merger observations, we define per-

formance as follows:

� If the average efficiency of pre-merger observations is smaller than or equal to the

efficiency of post-merger observations, then we consider the performance has been

improved.

� If the average efficiency of pre-merger observations is bigger than the efficiency of

post-merger observations, then we consider the performance has been deteriorated.

Implementing this Definition 4.1, we simply count the number of different observations com-

plying with this definition to verify if the merging activity improves performance or not.

Results are reported in Table 8.

Analysing Table 8 we can infer the following conclusions. First, for the three efficiency

results of OTE, TE and SCE the large majority of the 36 observations improve under NC.
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Table 8: Number of Observations with Improved or Deteriorated Performance

Nonconvexity Convexity

OTE TE SCE OTE TE SCE

# Observations with improved performance 29 29 29 21 22 13

# Observations with decreased performance 7 7 7 15 14 23

Second, for the same three efficiency results under C only OTE and TE improve in the

majority of cases (even though it is less pronounced than under the NC case), while for

SCE performance deteriorates for the majority of cases.

Next, our analysis tests for the returns to scale (RTS) characterization of these pre-merger

and post-merger courts. A count of the number of observations for various RTS under C

and NC efficiency measures is shown in Table 9.

Table 9: RTS Classification between Pre- and Post-Merger Observations

Sample #CRS #NDRS (IRS) #NIRS (DRS) Total # observations

Nonconvexity
Pre-merger Observations 13 (15.663) 31 (37.349) 39 (46.988) 83

Post-merger Observations 6 (16.667) 12 (33.333) 18 (50.000) 36

Convexity
Pre-merger Observations 6 (7.229) 9 (10.843) 68 (81.928) 83

Post-merger Observations 0 (0.000) 1 (2.778) 35 (97.222) 36

For the numbers of the pre-merger observations under different returns to scale, we can

make the following observations. First, among the 83 pre-merger observations 6 observations

experience CRS under C and 13 observations under NC. Thus, under NC more observations

are able to obtain an optimal size compatible with a long-run zero profit equilibrium. Second,

under C only 9 observations experience IRS, while the largest group of observations (68) is

characterised by DRS: thus, few observations can potentially benefit from a merger and

the largest group of observations is actually already too big. Under NC, 31 observations

experience IRS, while a slightly larger group of 39 observations experiences DRS: thus,

substantially more observations can potentially benefit from a merger under NC. Third,

both C and NC methods agree that the largest group of observations experiences DRS.

Switching to the post-merger observations under different returns to scale, the follow-

ing conclusions are justified. First, among the 36 post-merger observations, 0 observation

experiences CRS under C and 6 observations experience CRS under NC. Again, under NC

more observations are able to obtain an optimal size. Second, under C only 1 observation

experiences IRS, while the remaining group of 35 observations is characterised by DRS: thus,

almost all observations have actually become too big. Under NC, 12 observations experience
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IRS, while a slightly larger group of 18 observations experiences DRS: thus, fewer observa-

tions have actually become too big. Third, both C and NC methods indicate that by far the

largest group of observations experiences DRS.

Hence, under C most pre-merger and almost all post-merger observations are DRS: this

indicates a kind of overshooting of the goals of the merger wave. However, under NC the

number of CRS, IRS, and DRS cases are more balanced: this would have allowed to better

select the IRS observations for the merger, and it signifies there is less overshooting of the

goals of the merger wave.

5 Conclusions

Inspired by other contributions utilizing the traditional static input-oriented decomposition

of overall technical efficiency to assess the benefits of horizontal mergers, we have applied

this rather well-known methodology to a large unbalanced panel of Swedish district courts

observed over the years 2000 till 2017. To the best of our knowledge, we are the first study

assessing the benefit of horizontal mergers under both convex and nonconvex nonparametric,

deterministic frontier specifications. As argued in the introduction, there is a need for con-

servative estimates of cost savings, since in general these savings are often overcompensated

by a market power effect: as shown by Definition 2.1, nonconvex estimates of efficiency gains

are more conservative than traditional convex ones. Obviously, in the public sector a market

power effect can be safely ignored, but the need for conservative estimates of cost savings

remains.

Drawing upon the literature on court productivity and following up on the earlier study

of Mattsson, Månsson, Andersson, and Bonander (2018) for a sub-sample of years, we find

using an input-oriented Malmquist productivity index that the average productivity change

is negligible. This serves to justify the use of an intertemporal or pooled frontier approach

over all years that basically ignores any technical change in the sample.

The OTE decomposition under C and NC at the sample level yields the following con-

clusions. First, there are much more efficient observations under NC compared to C. Second,

the major source of OTE inefficiency is SCE under NC and TE under C. Third, according

to the Li-test OTE, TE and SCE all differ significantly between the NC and C series. When

comparing merging years and non-merging years, about the same conclusions emerge: SCE

improves over time under NC, and especially TE improves over time under C.
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Turning to the characterization of RTS at the sample level, there are far more CRS

observations under NC than under C, and most observations are DRS under C and IRS

under NC. Comparing merging years and non-merging years, the amount of CRS observations

increases due to the merger under NC, while it is about stationary under C. Furthermore,

the relative number of IRS and DRS observations decreases in favour of CRS under NC,

while under C the amount of IRS observations becomes null while the relative amount of

DRS observations increases further.

Focusing on the analysis of pre- and post-merger observations solely, the following con-

clusions are supported by the data. First, the number of efficient observations increases

under NC, and does only marginally so under C. Second, under NC the OTE decomposition

improves because SCE improves, while under C the OTE decomposition improves because

TE improves and SCE even slightly deteriorates. Implementing Definition 4.1 confirms

improvement across the board under NC, and improvements in OTE and TE jointly with a

deterioration of SCE under C. Turning to the characterization of RTS among these pre- and

post-merger observations, under C most pre-merger and almost all post-merger observations

are DRS, while under NC the number of CRS, IRS, and DRS cases are more balanced.

Therefore, the main contributions in this work can be summarized as follows. First,

contrasting the traditional C with the less popular NC methodology, it is fair to state that the

former has much more difficulty compared to the latter to make sense of the administrative

decision to merge Swedish district courts. Under C, only TE tends to improve and most

observations are DRS, while under NC one could have selected among IRS observations for

the merger. Under C, there is a kind of overshooting of the traditional goals of the merger

wave. Second, these empirical results make the NC methods a worthwhile alternative when

one aims at a conservative estimate of the savings associated with horizontal mergers. Third,

our results are complementary to the three existing studies analysing this merger wave among

Swedish district courts.
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Appendix A Additional Descriptive Statistics

Table A.1: Number of times observations change

Years
Outputs Inputs

Civil cases Criminal cases Matters Judge Law clerks Other personnel Court area

2000-2001 91 91 91 89 90 91 35

2001-2002 69 69 69 67 68 68 18

2002-2003 69 69 69 62 55 61 10

2003-2004 72 72 72 55 56 64 12

2004-2005 64 64 64 55 51 57 23

2005-2006 49 49 49 41 46 47 10

2006-2007 53 53 53 51 52 53 13

2007-2008 48 48 48 46 48 48 12

2008-2009 52 52 52 51 52 52 22

2009-2010 44 44 44 43 43 43 16

2010-2011 48 48 48 46 47 47 16

2011-2012 48 48 48 48 48 48 14

2012-2013 48 48 48 48 48 48 11

2013-2014 48 47 48 48 48 48 9

2014-2015 48 48 48 47 48 47 9

2015-2016 48 48 48 48 48 48 6

2016-2017 48 47 48 47 47 47 7

Average 55.71 55.59 55.71 52.47 52.65 53.94 14.29

Standard Deviation 12.39 12.47 12.39 11.11 10.80 11.44 6.95

To ascertain whether or not there are any fixed inputs that do not change, we exclude the

initial post-merger observations and count the number of changes among the observations

for each input and each output over all years: we report the specific numbers per year as

well as the average number of changes for all inputs and outputs over all years in the Table

A.1.

Among the inputs judges, law clerks, other personnel and court area, one can observe

variations over all years. In particular, in the non-merging years, there are 48 units. And

from the Table A.1, we find that almost all the outputs as well as the three labor inputs

have changed. Moreover, the input court area also experiences a smaller number of changes.

Therefore, all inputs are changing over the years and can be considered as variable inputs.

A1
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