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Abstract. The agricultural sector is currently confronted with the challenge

to reduce greenhouse gas (GHG) emissions, whilst maintaining or increasing

production. Energy-saving technologies are often proposed as a partial solu-

tion, but the evidence on their ability to reduce GHG emissions remains mixed.

Production economics provides methodological tools to analyse the nexus of

agricultural production, energy use and GHG emissions. Convexity is pre-

dominantly maintained in agricultural production economics, despite various

theoretical and empirical reasons to question it. Employing a nonconvex, free

disposal hull framework, this paper evaluates energy productivity change (the

ratio of aggregate output change to energy use change) and GHG emission in-

tensity change (the ratio of GHG emission change to polluting input change)

using Hicks-Moorsteen productivity formulations. We consider GHG emissions

as by-products of the production process by means of multi-equation modelling.

The application focuses on 1,510 Dutch dairy farms for the period of 2010-2019.

The results show a positive association between energy productivity change and

GHG emission intensity change, which calls into question the potential of on-

farm, energy-efficiency-increasing measures to reduce GHG emission intensity.
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1. Introduction

The agricultural sector is currently facing the challenge to reduce GHG emis-

sions, whilst maintaining or increasing production. Agriculture contributes to

almost one quarter of total greenhouse gas (GHG) emissions (FAO, 2014). Energy-

saving technologies are often proposed as a way to reduce GHG emissions in agri-

culture (Schneider and Smith, 2009). They can in theory decrease GHG emissions

per unit produced, since they can decrease the requirements for energy use, a

polluting input, per unit produced. In practice, however, these energy-saving

technologies do not necessarily lead to a decrease of energy per unit produced, be-

cause of slower technology adoption among laggards, which furthermore can still

be associated with energy-wasting behaviour because of the rebound effect (Pan

et al., 2021). Moreover, GHG emissions per unit of polluting inputs, consisting of

not only energy, but also for example fertilisers and feed, can still increase.

Analysing energy productivity change and GHG emission intensity change can

provide useful insights on the interplay between agricultural production, energy

use, and GHG emissions. Energy productivity change can be defined as the ratio

of aggregate output change to energy use change, and GHG emission intensity can

be defined as the ratio of GHG emission change to polluting input change. This

paper develops an analytical framework to evaluate energy productivity change

and GHG emission intensity change in the agricultural sector.

Production economics provides a suitable methodological toolbox to analyse

energy productivity change and GHG emission intensity change. This field is con-

cerned with the appropriate modelling of the production relationship between the

inputs used and outputs produced. Energy use is one of the conventional inputs to

produce conventional outputs. The axiomatic properties assigned to analyse the

conversion of conventional inputs to conventional outputs have been thoroughly

studied (e.g., Färe and Primont, 1995), which allows assessment of energy pro-

ductivity growth. GHG emissions are pollutants that occur as by-products in the
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production process. Axiomatic treatment of pollutants has been heavily debated,

but the multi-equation modelling approach proposed by Murty et al. (2012) is

currently considered the most promising.1 Such appropriate modelling permits

assessment of GHG emission intensity growth.

In spite of these methodological advances, applications to the agricultural sector

overwhelmingly use the basic convexity assumption when estimating the produc-

tion technology. However, there are theoretical and empirical reasons to question

the convexity assumption.

Theoretically, there can be indivisibilities in inputs and outputs, economies of

scale and economies of specialisation (that play a role in the new growth theory:

e.g., Romer (1990) on nonrival inputs), as well as externalities. Seminal contri-

butions to axiomatic production theory indicate that the cost function is convex

in the outputs if and only if technology is convex (e.g., Jacobsen (1970, Corollary

5.5)). Thus, using contraposition, the cost function is nonconvex if and only if

technology is nonconvex: Kerstens and Van de Woestyne (2021) illustrate that the

gap between convex and nonconvex costs may be very substantial.

Empirically, various studies in agricultural economics contain evidence about

the potential relevance of nonconvexities. Paris et al. (1970) report concave iso-

quants in the hay and concentrates inputs space for whole milk and skimmed milk.

Brokken (1977) similarly summarises three studies revealing that there are con-

cave isoquants in the concentrates and roughage inputs space in beef production.

Bhide et al. (1980) also report at least partially concave isoquants in the concen-

trate and corn silage input space that best explain the relationship in beef gain

production. Finally, Freeze and Hironaka (1990) report limited substitution of

alfalfa hay and concentrate in beef feeding diets resulting in a forage-concentrate

weight gain isoquant that are concave to the origin in the middle range. Despite

1Surveys on how to model pollutants are available in Dakpo et al. (2016), Ancev et al. (2017),

and Dakpo and Ang (2019).
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the empirical relevance of nonconvexities in agriculture, the large majority of the

empirical applications assume a convex technology set. Recent exceptions empiri-

cally considering a nonconvex technology set include Ruijs et al. (2017), Ang and

Kerstens (2017) and Ang et al. (2018).

Our contributions are threefold. First, using a production economics perspec-

tive, we analyse energy productivity change and GHG emission intensity change

side-by-side. A particular advantage of this approach is its appropriate consid-

eration of on the one hand the conversion of conventional inputs to conventional

outputs and on the other hand the GHG emissions occurring as a by-product

in this process. Employing Hicks-Moorsteen productivity formulations (Bjurek,

1996), the aggregations in the various components are grounded in production

theory. Following Murty et al. (2012), we appropriately consider GHG emissions

as by-products of the production process by means of multi-equation modelling.

Second, in contrast to the prevailing literature, we assume a nonconvex technol-

ogy. To this end, we estimate the production technology using a free disposal hull

(FDH) (Deprins et al., 1984). FDH is a nonparametric approach that only relies

on minimal assumptions.

Third, merging a comprehensive accountancy data set with a unique data set

with GHG emission estimates, we illustrate our approach with an application

to a large sample of Dutch dairy farms for the years 2010-2019. The European

Energy Efficiency Directive focuses on increasing energy efficiency and reduction

of the use of fossil fuels (Moerkerken et al., 2021). The Dutch dairy sector in

particular has signed several covenants that target increases in energy-efficiency.

There have been (so far unsuccessful) calls for making the Dutch dairy chain energy

neutral (Gebrezgabher et al., 2012). Furthermore, the dairy sector contributes

substantially to GHG emissions in the Netherlands (Ruyssenaars et al., 2021). As

a result, the Dutch dairy sector is a good candidate for a case study.
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The remainder of the current contribution unfolds as follows. The next Section

2 describes the theoretical framework, in which we provide a Hicks-Moorsteen

formulation of energy productivity change and GHG emission intensity change.

This is followed by the description of the nonconvex method in Section 3 and by a

brief description of the data set of Dutch dairy farms in Section 4. Subsequently,

we show the empirical results in Section 5. The final Section 6 concludes.

2. Theoretical Framework

Balk (2003) states that Total Factor Productivity (TFP) change, the most en-

compassing measure of productivity change, is the “real” component of profitabil-

ity change. Therefore, productivity is a key component of profitability and it is an

important driver of changes in living standards. TFP growth can be conceived as

an index number that captures any output growth that is unexplained by input

growth (see Hulten (2001)). Recently, Russell (2018) introduces the notion of the-

oretical productivity indices. A theoretical productivity index assumes that the

technology is known and non-stochastic, but unspecified. Thus, this technology

is most often approximated by a nonparametric multiple-input, multiple-output

specification using some form of distance function. Key theoretical productivity

indices are on the one hand the Malmquist productivity index (proposed by Caves

et al. (1982)) and on the other hand the Hicks-Moorsteen productivity index (pro-

posed by Bjurek (1996)). While the Malmquist productivity index fundamentally

measures the local shift of the production frontier, the Hicks-Moorsteen produc-

tivity index is a ratio of an aggregate output index to an aggregate input index.

Therefore, the more popular Malmquist productivity index measures local techni-

cal change but in general not TFP change, while the Hicks-Moorsteen productivity

index has a TFP interpretation.

Our Hicks-Moorsteen productivity formulation has two key advantages in com-

parison to the Malmquist productivity index formulation. First, one can separately
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assess aggregate output change and energy use change, on the one hand, and GHG

emission change and polluting input change, on the other. This is not possible

using a Malmquist productivity formulation. Second, the Hicks-Moorsteen for-

mulation is not susceptible to infeasibilities under weak conditions on technology

(mainly strong disposability), which contrasts with the Malmquist productivity

formulation (see Briec and Kerstens (2011)).2

2.1. Basic notation.

Let x P Rn�o
� be the vector of inputs being transformed to the vector of out-

puts y P Rm
� . Let us additionally consider a production process that generates

greenhouse gas emissions ghg as a by-product. We partition x into a sub-vector of

polluting inputs u P Rn
� and sub-vector of non-polluting inputs v P Ro

�: x � pu,

vq. Energy (E) is one of the polluting inputs; z P Rn�o�1
� is the sub-vector of

non-energy polluting inputs, which implies u � pE, zq.

2.2. Energy productivity change.

The parental conventional technology at time t is defined as follows:

(1) Pt �
 
pxt,ytq P Rn�m�o

� |xt can produce yt

(
.

whereby the vector of inputs x contributes to generating the vector of outputs y.

In line with, for example, Färe and Primont (1995), we make the following

assumptions:

Axiom 1 (Closedness). Pt is closed.

Axiom 2 (Free disposability of inputs and outputs). If px1t,�y
1
tq ¥ pxt,�ytq then

pxt,ytq P Pt ñ px1t,y
1
tq P Pt.

Axiom 3 (Inaction). Inaction is possible: p0n�o,0mq P Pt.

2When using weak disposability (another popular way to model bad outputs), infeasibilities

can occur even with the Hicks-Moorsteen formulation. For instance, Zaim (2004) employs a

Hicks-Moorsteen productivity index with weak disposal of bad outputs and reports infeasibilities

for 8 out of 41 US states, despite using time windows that reduce the number of infeasibilities.
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We can represent technology Pt by the traditional output distance function:

(2) Dy
t pE, z,v,yq � inf

ϕ

"
ϕ ¡ 0|pE, z,v,

y

ϕ
q P Pt

*

that scales up outputs for given total input use, and a sub-vector energy distance

function:

(3) DE
t pE, z,v,yq � sup

θ

"
θ ¡ 0|p

E

θ
, z,v,yq P Pt

*
.

that scales down the energy input given non-energy inputs and outputs.

Using Malmquist aggregations (Caves et al., 1982; O’Donnell, 2012) of equations

(2)-(3), we can define aggregate output change between time s and t as:

(4) Y Cst �

d
Dy

s pEs, zs,vs,ytq

Dy
s pEs, zs, zs,ysq

Dy
t pEt, zt,vt,ytq

Dy
t pEt, zt,vt,ysq

and energy use change between time s and t as:

(5) ECst �

d
DE

s pEt, zs,vs,ysq

DE
s pEs, zs, zs,ysq

DE
t pEt, zt,vt,ytq

DE
t pEs, zt,vt,ytq

.

Dividing the aggregate output change (4) by the (sub-vector) energy use change

(5) yields a Hicks-Moorsteen productivity formulation (Bjurek, 1996; Caves et al.,

1982) of energy productivity change between time periods s and t:

(6) EPRODCst �
Y Cst

ECst

�

b
Dy

s pEt,zt,vt,ysq
Dy

s pEs,zs,zs,ysq

Dy
t pEt,zt,vt,ytq

Dy
t pEt,zt,vt,ysqb

DE
s pEt,zs,vs,ysq

DE
s pEs,zs,zs,ysq

DE
t pEt,zt,vt,ytq

DE
t pEs,zt,vt,ytq

.

Equation (6) represents a sub-vector and therefore partial productivity index fo-

cusing on energy use. Values above unity indicate energy productivity growth.

This means that the growth rate of aggregate output exceeds that of energy use,

which can be interpreted as a relative decoupling of production from energy use.

Note that a sub-vector approach to model energy productivity growth as in

expression (6) has also been used by, for instance, Oude Lansink and Ondersteijn

(2006) with an application to the Dutch glasshouse sector. But, these authors use

a Malmquist productivity index formulation instead.
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2.3. GHG emission intensity change.

Murty et al. (2012) show that pollutants such as GHG emissions can be explicitly

modelled as a by-product. The by-production technology is defined as follows:

(7) Gt �
 
put,vt, ghgtq P Rn�1

� |ghgt ¥ hputq
(
.

whereby the polluting inputs u produce the by-product of greenhouse gas emissions

ghg.

Following Murty et al. (2012), we make the following assumption:

Axiom 4 (Costly disposability of greenhouse gas emissions). If put,vt, ghgtq P Gt

and ghg1t ¥ ghgt and u1
t ¤ ut, then pu

1
t,vt, ghg

1
tq P Gt.

We represent Gt by the polluting input distance function:

(8) Du
t pu, ghgq � inf

ρ

"
ρ ¡ 0|p

u

ϕ
, ghgq P Gt

*

that scales up polluting inputs for given total ghg, and a ghg emission distance

function:

(9) Dghg
t pu, ghgq � sup

δ

"
δ ¡ 0|pu,

ghg

δ
q P Gt

*

that scales down ghg as much as possible.

Analogous to equations (4)-(5) and (6), we aggregate equations (8)-(9) using

Malmquist formulations (Caves et al., 1982; O’Donnell, 2012). We define polluting

input change between time periods s and t as:

(10) XPCst �

d
Du

s pus, ghgtq

Du
s pus, ghgsq

Du
t put, ghgtq

Du
t pus, ghgtq

and GHG emission change between time periods s and t as:

(11) GHGCst �

d
Dghg

s pus, ghgtq

Dghg
s pus, ghgsq

Dghg
t put, ghgtq

Dghg
t put, ghgsq

.
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Dividing equation (11) by equation (10) yields a Hicks-Moorsteen formulation of

GHG emission intensity change between time periods s and t:

(12) GHGICst �
GHGCst

XPCst

�

c
Dghg

s pus,ghgtq

Dghg
s pus,ghgsq

Dghg
t put,ghgtq

Dghg
t put,ghgsqb

Du
s pus,ghgtq

Du
s pus,ghgsq

Du
t put,ghgtq

Du
t pus,ghgtq

.

Equation (12) compares GHG emission change to polluting input change. Values

above one indicate intensification, which means that the growth rate of GHG

emissions exceeds that of polluting inputs. Equation (12) can thus be regarded as

the reciprocal of a productivity change measure: scores above unity are bad, while

scores below unity are good.

3. Empirical Approach: Free Disposal Hull

Thus far we have been silent on the approximation of the conventional and by-

production technologies. This paper employs a nonconvex, nonparametric “Free

Disposal Hull” (FDH) analysis (Deprins et al., 1984). There are I farms. As-

suming variable returns to scale (VRS), the conventional technology of farm k is

approximated by:

P̂tpxkt,yktq �

#
pxkt,yktq|

I̧

i�1

λitxit ¤ xkt,
I̧

i�1

λityit ¥ ykt,
I̧

i�1

λit � 1

+
,(13)

with λit P t0, 1u a binary integer constraint on the activity vector. Again assuming

VRS, the by-production technology of farm k is approximated by:

Ĝtpukt, GHGktq �

#
pukt, GHGktq|

I̧

i�1

µituit ¥ ukt,
I̧

i�1

µitGHGit ¤ GHGkt,
I̧

i�1

µit � 1

+
,

(14)

with µit P t0, 1u again a binary integer constraint on the activity vector. These ap-

proximations allow computation of all components of energy productivity change

and GHG emission intensity change. Appendix A shows an overview of the re-

quired binary mixed-integer linear programmes.
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The only alternative theoretical models that use a by-production framework to

model bad outputs in a convex and nonconvex way are found in Abad and Briec

(2019) and Abad and Ravelojaona (2021). These models are based on recent work

to measure strong forms of hypercongestion for convex and nonconvex technolo-

gies as in Briec et al. (2016) (see Briec et al. (2018) for an empirical illustration).

Abad and Briec (2019) and Yuan et al. (2021) are among the first to empirically

implement a nonconvex version of the Murty et al. (2012) by-production approach:

these authors report substantial differences between convex and nonconvex empir-

ical results.

4. Data

This contribution draws on a data set from the Farm Accountancy Data Net-

work (FADN), which is merged with a data set containing computations of GHG

emissions by Wageningen Economic Research (WEcR). The FADN data set is an

unbalanced, but stratified panel. To obtain a homogeneous sample, the appli-

cation focuses on the specialised dairy farms not producing any other on-farm

output (thus, omitting farms that produce crop outputs). One clear outlier with

an unrealistic value has been omitted. The final, merged data set contains 1,510

observations for the years 2010-2019.

We distinguish one output and six inputs. The output is the aggregate dairy

output (in ¿), which consists of milk and meat. The three polluting inputs are

energy (in ¿), herd size (in livestock units) and other non-energy intermediate

polluting inputs (in ¿). The latter consist of an aggregation of seed, feed, pesticide,

fertilisers and other variable inputs. The three non-polluting inputs are land (in

hectares), labour (in annual working hours), and the aggregate capital depreciation

of buildings and machinery (in ¿).

Dairy output, other non-energy intermediate polluting inputs and aggregate

capital depreciation are computed as the ratio of the total monetary value to the
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respective dimensionless Törnqvist price index. The monetary value of energy

is deflated by the respective dimensionless price index. As a result, the outputs

and inputs expressed in monetary terms are implicit quantities, while livestock,

land and labour are expressed as original quantities. Implicit quantities employ a

common price index per year. This implies that differences in price are reflected

as differences in implicit quantity. Outputs and inputs with a higher price are here

assumed to have a higher quality and hence a higher price (Cox and Wohlgenant,

1986; Mairesse and Jaumandreu, 2005). All price indices are drawn from the

Eurostat (2021) database. Finally, we consider GHG emissions (in kilograms).

Table 1 shows the detailed descriptive statistics. Despite the homogeneity of

the sample, there is substantial heterogeneity in the inputs, output, and GHG

emissions.

Table 1. Descriptive Statistics

Statistic Mean St. Dev.

Dairy output (implicit quantity in ¿) 364,728 276,785

Labour (in annual working hours) 4,730 3,051

Land (in hectares) 58.158 35.635

Herd size (in livestock units) 151.870 100.799

Material non-energy input (implicit quantity in ¿) 144,716 115,273

Energy (implicit quantity in ¿) 7,239 5,246

Aggregate capital depreciation (implicit quantity in ¿) 50,624 41,545

Greenhouse gas emissions (in kilograms) 1,555,100 1,101,576

Dairy Törnqvist price index (dimensionless) 1.107 0.089

Material non-energy input Törnqvist price index (dimensionless) 1.132 0.072

Energy price index (dimensionless) 1.034 0.114

Aggregate capital Törnqvist price index (dimensionless) 1.068 0.061
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5. Empirical Results

This section describes the empirical results. We first show the results regarding

energy productivity change and GHG emission intensity change, which is followed

by a comparison between both. There are in total 1,008 annual growth rates.

5.1. Energy productivity change.

Table 2 shows the annual energy productivity change, EPRODCst, and the

components of aggregate output change, Y Cst, and energy use change, ECst. The

average annual EPRODCst in the considered period is 1.027, which indicates

an average growth rate of 2.7% per annum (p.a.). However, we note that this

is in part driven by a few observations that have a very high growth rate. The

median annual EPRODCst is only 0.992, which indicates a slight median decline of

0.8% p.a. instead. The average EPRODCst indicates growth of �12.9%, �6.4%,

�13.8% and �19.8% in the periods of 2013 � 2014, 2014 � 2015, 2015 � 2016

and 2018� 2019, respectively. In all other periods, there is on average a decline in

EPRODCst, of which 2010�2011 (�12.8%), 2016�2017 (�8.6%) and 2017�2018

(�6.3%) are the worst periods.

Remarkably, average annual growth of EPRODCst is driven by annual average

decline in ECst. It holds for every period that if EPRODCst ¡ 1, then ECst   1,

and vice versa. EPRODCst follows the trend of Y Cst for most periods, but not for

2014� 2015, 2015� 2016 and 2018� 2019, where EPRODCst ¡ 1 and Y Cst   1.

Finally, we remark that ECst is more volatile and has a larger spread than Y Cst.

5.2. GHG emission intensity change.

Table 3 shows the annual GHG emission intensity change, GHGICst, and the

components of polluting input change,XPCst, and GHG emission change, GHGCst.

The average annual GHGICst in the considered period is 0.994, which indicates

an average decline of 0.6% p.a. The median annual GHGICst is 0.995, which

indicates a slight median decline of 0.5% p.a. The mean and median are thus

rather close to one another. The average GHGICst indicates growth of �2.8%,
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Table 2. Average Annual Energy Productivity Change, Aggregate

Output Change and Energy Use Change

Period EPRODCst Y Cst ECst

2010-2011 0.882 0.988 1.154

2011-2012 0.988 0.979 1.056

2012-2013 0.955 0.967 1.066

2013-2014 1.129 1.042 0.975

2014-2015 1.064 0.950 0.917

2015-2016 1.138 0.945 0.875

2016-2017 0.914 0.973 1.100

2017-2018 0.937 1.014 1.119

2018-2019 1.198 0.976 0.844

Overall 1.027 0.981 1.007

�2.4%, �1.7% and �8.0% in the periods of 2013� 2014, 2014� 2015, 2015� 2016

and 2018 � 2019, respectively. In all other periods, there is on average a de-

cline in GHGICst, of which 2012 � 2013 (�13.9%), 2017 � 2018 (�3.1%) and

2010� 2011 (�2.7%) are the best periods. Interestingly, average annual increases

(decreases) in EPRODCst are counterbalanced by average annual increases (de-

creases) in GHGICst. The trend of GHGCst largely follows the trend of XPCst,

except in 2010 � 2011 and 2018 � 2019, in which XPCst ¡ 1 and GHGCst   1,

and XPCst   1 and GHGCst ¡ 1, respectively. The positive association between

XPCst and GHGCst is more pronounced than the one between Y Cst and ECst.

This suggests that decoupling energy use from production occurs more frequently

than decoupling GHG emissions from the use of polluting inputs. Finally, we note

that XPCst and GHGCst are not so volatile and have a relatively low spread.
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Table 3. Average Annual Greenhouse Gas Emission Intensity

Change, Polluting Input Change and Greenhouse Gas Emission

Change

Period GHGICst XPCst GHGCst

2010-2011 0.973 1.021 0.991

2011-2012 0.989 0.981 0.968

2012-2013 0.861 0.963 0.829

2013-2014 1.028 0.955 0.980

2014-2015 1.024 0.947 0.967

2015-2016 1.017 0.924 0.937

2016-2017 0.988 1.025 1.010

2017-2018 0.969 1.063 1.028

2018-2019 1.080 0.960 1.034

Overall 0.994 0.981 0.973

5.3. Comparing energy productivity change to GHG emission intensity

change.

Figure 1 shows a scatter plot that relates energy productivity change to GHG

emission intensity change. It shows a positive association between energy pro-

ductivity change and GHG emission intensity change, which suggests a trade-off

between good performance in one technology and good performance in the other

one. This empirical finding is confirmed by a Pearson correlation of 0.377 and

Spearman rank correlation of 0.486.

The large majority of farms score well either in terms of energy productivity

change or in terms of GHG emission intensity change: quadrant II shows 355

observations with energy productivity growth and GHG emission intensity growth,

while quadrant III shows 400 observations with energy productivity decline and
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GHG emission intensity decline. Quadrant III shows 176 observations with energy

productivity decline and GHG emission intensity growth. Quadrant IV shows 177

observations with energy productivity growth and GHG emission intensity decline.
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Figure 1. Scatter Plot of Energy Productivity Change vs. Green-

house Gas Emission Intensity Change
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6. Conclusions

Using a production economics perspective, this paper develops a framework to

analyse energy productivity change and GHG emission intensity change. Both

measures are computed employing a nonparametric, nonconvex framework based

on a Hicks-Moorsteen productivity formulation. The empirical application focuses

on 1,510 Dutch specialised dairy farms for the years 2010-2019.

The results show an average energy productivity growth of 2.7% p.a. and an

average GHG emission intensity decline of 0.6% p.a. However, the former is in

part driven by a few high-performing observations: the median energy produc-

tivity decreases by 0.8% p.a. Fluctuations over time are substantial for energy

productivity change and more moderate for GHG emission intensity change. Re-

markably, energy productivity growth is positively associated with GHG emission

intensity growth rather than GHG emission intensity decline.

We emphasise that these results should be interpreted as descriptive and ex-

ploratory rather than causal. Our identification strategy disallows verifying whether

energy productivity growth causes GHG emission intensity growth. Nonethe-

less, our findings do call into question the potential of on-farm, energy-efficiency-

increasing measures to reduce GHG emission intensity.

We have five recommendations for future research. First, the flexibility of our

proposed framework allows straightforward application to other empirical settings.

Any change in partial or total factor productivity can be compared to a change in

the performance in the by-production technology. Energy productivity change and

GHG emission intensity change can be evaluated side-by-side in, for instance, the

electric power plant sector. Another interesting avenue is the consideration of other

pollutants such as phosphorus surplus and nitrogen surplus in the agricultural

sector.

Second, the behavioural and technological drivers explaining the nexus of agri-

cultural production, energy use and GHG emissions should be further investigated.
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In this way, policy makers are able to draft policies that effectively stimulate reduc-

tion of GHG emissions whilst increasing or maintaining agricultural production.

Third, one should extend the current analysis by also considering indirect en-

ergy use and GHG emissions. This paper solely focuses on direct energy use and

GHG emissions. Indirect energy use and GHG emissions also take into account

earlier chain stages of, most notably, fertilisers. Although policy makers rather

focus on reducing direct energy use by means of energy-efficiency-increasing initia-

tives, identifying sustainable pathways to reduce GHG emissions requires analysis

beyond the farm level.

Fourth, our framework could be applied in a difference-based productivity indi-

cator framework. Following the terminology of Diewert (2005), the current frame-

work is based on ratio-based productivity “indices”. However, when there are zero

or negative values, difference-based “indicators” are more apt (Balk et al., 2003).

Difference-based productivity measures include Bennet (Chambers, 2002), Bennet-

Lowe (Ang, 2019), Luenberger (Chambers, 2002) and Luenberger-Hicks-Moorsteen

(Briec and Kerstens, 2004) indicators.

Fifth, we recommend to adapt the proposed framework to a statistical set-

ting. Our nonparametric framework is inherently deterministic. Simar and Wil-

son (1999) show how to obtain statistically robust estimates using a bootstrapped

Malmquist productivity formulation. Alternatively, one could employ stochastic

frontier analysis (Aigner et al., 1977; Meeusen and Van Den Broeck, 1977).



ENERGY PRODUCTIVITY AND GHG EMISSION INTENSITY 17

References

Abad, A. and W. Briec (2019): “On the Axiomatic of Pollution-Generating

Technologies: Non-Parametric Production Analysis,” European Journal of Op-

erational Research, 277, 377–390.

Abad, A. and P. Ravelojaona (2021): “Pollution-Adjusted Productivity

Analysis: The Use of Malmquist and Luenberger Productivity Measures,” Man-

agerial and Decision Economics , 42, 635–648.

Aigner, D., C. K. Lovell, and P. Schmidt (1977): “Formulation and es-

timation of stochastic frontier production function models,” Journal of Econo-

metrics , 6, 21–37.

Ancev, T., M. Azad, and M. Akter (2017): “Environmentally Adjusted

Productivity and Efficiency: A Review of Concepts, Methods and Empirical

Work,” in New Directions in Productivity Measurement and Efficiency Analysis:

Counting the Environment and Natural Resources , ed. by T. Ancev, M. Azad,

and F. Hernández-Sancho, Cheltenham: Elgar, 9–58.

Ang, F. (2019): “Analyzing Components of Productivity Growth using the

Bennet-Lowe Indicator: An Application to Welsh Sheep Farms,” American

Journal of Agricultural Economics , 101, 1262–1276.

Ang, F. and P. J. Kerstens (2017): “Decomposing the Luenberger–Hicks–

Moorsteen Total Factor Productivity indicator: An application to US agricul-

ture,” European Journal of Operational Research, 260, 359–375.

Ang, F., S. M. Mortimer, F. J. Areal, and J. R. Tiffin (2018): “On the

Opportunity Cost of Crop Diversification,” Journal of Agricultural Economics ,

69, 794–814.

Balk, B. (2003): “The Residual: On Monitoring and Benchmarking Firms, In-

dustries and Economies with Respect to Productivity,” Journal of Productivity

Analysis , 20, 5–47.



18 F. ANG AND K. KERSTENS
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Appendix A. Binary Mixed-Integer Linear Programmes

A.1. Energy Productivity Change.

To assess Y Cst defined in equation (4), we compute four binary mixed-integer

linear programmes based on the output distance function defined in equation (2).

With I observations in period s, and J observations in period t, we have for

observation k:

(A1)

Dy
s pEks, zks,vks,yksq � infϕ¡0,λisPt0,1u ϕ

s.t.
°I

i�1 λisEis ¤ Eks,°I
i�1 λiszis ¤ zks,°I
i�1 λisvis ¤ vks,°I
i�1 λisyis ¥ yks

ϕ
,°I

i�1 λis � 1.

(A2)

Dy
s pEks, zks,vks,yktq � infϕ¡0,λisPt0,1u ϕ

s.t.
°I

i�1 λisEis ¤ Eks,°I
i�1 λiszis ¤ zks,°I
i�1 λisvis ¤ vks,°I
i�1 λisyis ¥ ykt

ϕ
,°I

i�1 λis � 1.

(A3)

Dy
t pEkt, zkt,vkt,yktq � infϕ¡0,λitPt0,1u ϕ

s.t.
°J

j�1 λitEit ¤ Ekt,°J
j�1 λitzit ¤ zkt,°J
j�1 λitvit ¤ vkt,°J
j�1 λityit ¥ ykt

ϕ
,°J

j�1 λit � 1.
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(A4)

Dy
t pEkt, zkt,vkt,yksq � infϕ¡0,λitPt0,1u ϕ

s.t.
°J

j�1 λitEit ¤ Ekt,°J
j�1 λitzit ¤ zkt,°J
j�1 λitvit ¤ vkt,°J
j�1 λityit ¥ yks

ϕ
,°J

j�1 λit � 1.

To assess ECst defined in equation (5), we compute four binary mixed-integer linear

programmes based on the energy distance function defined in equation (3). With

I observations in period s, and J observations in period t, we have for observation

k:

(A5)

DE
s pEks, zks,vks,yksq � supθ¡0,λisPt0,1u

θ

s.t.
°I

i�1 λisEis ¤ Eks

θ
,°I

i�1 λiszis ¤ zks,°I
i�1 λisvis ¤ vks,°I
i�1 λisyis ¥ yks,°I
i�1 λis � 1.

(A6)

DE
s pEkt, zks,vks,yksq � supθ¡0,λisPt0,1u

θ

s.t.
°I

i�1 λisEis ¤ Ekt

θ
,°I

i�1 λiszis ¤ zks,°I
i�1 λisvis ¤ vks,°I
i�1 λisyis ¥ yks,°I
i�1 λis � 1.
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(A7)

DE
t pEkt, zkt,vkt,yktq � supθ¡0,λitPt0,1u

θ

s.t.
°J

j�1 λitEit ¤ Ekt

θ
,°J

j�1 λitzit ¤ zkt,°J
j�1 λitvit ¤ vkt,°J
j�1 λityit ¥ ykt,°J
j�1 λit � 1.

(A8)

DE
t pEks, zkt,vkt,yktq � supθ¡0,λitPt0,1u

θ

s.t.
°J

j�1 λitEit ¤ Eks

θ
,°J

j�1 λitzit ¤ zkt,°J
j�1 λitvit ¤ vkt,°J
j�1 λityit ¥ ykt,°J
j�1 λit � 1.

Combining the above eight mixed-integer programmes (A1)-(A8) yields EPRODCst

defined in equation (6).

A.2. Greenhouse Gas Emission Intensity Change.

To assess XPCst defined in equation (10), we compute four binary mixed-integer

linear programmes based on the polluting input distance function defined in equa-

tion (9). With I observations in period s, and J observations in period t, we have

for observation k:

(A9)

Du
s puks, ghgksq � infρ¡0,µisPt0,1u ρ

s.t.
°I

i�1 µisuis ¥ uks

ρ
,°I

i�1 µisghgis ¤ ghgks,°I
i�1 µis � 1.
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(A10)

Du
s pukt, ghgktq � infρ¡0,µisPt0,1u ρ

s.t.
°I

i�1 µisuis ¥ ukt

ρ
,°I

i�1 µisghgis ¤ ghgkt,°I
i�1 µis � 1.

(A11)

Du
t pukt, ghgktq � infρ¡0,µitPt0,1u ρ

s.t.
°J

j�1 µituit ¥ ukt

ρ
,°J

j�1 µitghgit ¤ ghgks,°J
j�1 µit � 1.

(A12)

Du
t puks, ghgktq � infρ¡0,µitPt0,1u ρ

s.t.
°J

j�1 µituit ¥ uks

ρ
,°J

j�1 µitghgit ¤ ghgks,°J
j�1 µit � 1.

To assess GHGCst defined in equation (11), we compute four binary mixed-

integer linear programmes based on the ghg emission distance function defined in

equation (9). With I observations in period s, and J observations in period t, we

have for observation k:

(A13)

Dghg
s puks, ghgksq � supδ¡0,µisPt0,1u

δ

s.t.
°I

i�1 µisuis ¥ uks,°I
i�1 µisghgis ¤ ghgks

δ
,°I

i�1 µis � 1.
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(A14)

Dghg
s puks, ghgktq � supδ¡0,µisPt0,1u

δ

s.t.
°I

i�1 µisuis ¥ uks,°I
i�1 µisghgis ¤ ghgkt

δ
,°I

i�1 µis � 1.

(A15)

Dghg
t pukt, ghgktq � supδ¡0,µitPt0,1u

δ

s.t.
°J

j�1 µituit ¥ ukt,°J
j�1 µitghgit ¤ ghgkt

δ
,°J

j�1 µit � 1.

(A16)

Dghg
t pukt, ghgksq � supδ¡0,µisPt0,1u

δ

s.t.
°J

j�1 µituit ¥ ukt,°J
j�1 µitghgit ¤ ghgks

δ
,°J

j�1 µit � 1.

Combining the above eight binary mixed-integer linear programmes (A9)-(A16)

yields GHGICst defined in equation (12).


