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Abstract

Consider a multi-sector general equilibrium model where firms have incomplete information

about the returns to scale of their production and where that information is sequentially updated

once real production is observed. What is the impact of these learning dynamics on the market-

wise equilibrium objects? Under which conditions are firms able to efficiently learn their actual

returns to scale? At which rate does this learning happen? In this work, we analyze endogenous

learning mechanisms and their implications for the market-wise equilibrium objects in the multi-

sector model. Our results shed light on how idiosyncratic shocks translate into the learning

dynamics of firms returns to scale. Particularly, we uncover the advantages and disadvantages

of the maximum a-posteriori estimation as a learning approach and we observe that all the

relevant information in the learning dynamics is encoded in the input decisions and the manner

in which input decisions are taken. We deduce conditions under which firms are able to learn the

actual returns to scale. Using the notion of centrality in the multi-sector network, we uncover a

price mechanism which is consistent not only with the correct knowledge of the returns to scale,

but also with any converging sequence of belief on the returns to scale. On the empirical side,

the proposed analysis of the endogenous learning dynamics is complemented with a statistical

approach that allows testing the presence and level of learning using available input-output data.

The empirical figures reveal the presence of sizable learning processes (driven by underestimations

and overestimations of the returns to scale parameters) in different sectors.
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1 Introduction

In economics, learning is designated as the inference agents draw from observing the appropriateness

of their actions (or those of others) to the external environment (Dasgupta and Stiglitz, 1988;

Kaelbling et al., 1996; Penczynski, 2017; Mossel et al., 2020). In fact, consumers and firms usually

possess incomplete knowledge of some of their payoff-relevant parameters, yet they are sometimes

able to observe the outcomes of their actions and learn from it.

As noted more than half-a-century ago by Arrow (1962), “the role of experience in increasing

productivity has not gone unobserved, though the relation is yet to be absorbed into the main

corpus of economic theory.” To illustrate how much the economic impact of knowledge acquisition

was widespread and allegedly on the rise, Arrow (1962) showcased manufacturing processes in the

aeronautical engineering industry, where the amount of labor-hour required to assemble an airplane

body appeared to decrease as the number of units previously assembled increased.

While it is by now incontrovertible that learning can explain many economic phenomena, such

as herding (Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000), financial turmoil

(Scharfstein and Stein, 1990; Welch, 1992; Collin-Dufresne et al., 2016), and diffusion of innovation

(Duan et al., 2009), this concept has not been extensively embedded in the analysis of general

equilibrium.

To address this problem by means of an integrated modelling framework, we present a dynamic

multi-sector model in which a collection of representative firms operates in a noisy environment

and is unaware of the values of certain profit-relevant parameters. Specifically, we consider the

uncertainty in the returns to scale and embed the dynamic multi-sector model into the Bayesian

framework for optimal information collection and processing (El-Gamal and Sundaram, 1993; Cog-

ley and Sargent, 2008). The proposed adaptation mechanism relies on an incomplete but perfect

information setting, where firms dynamically observe the realized production outcomes after taking

input decisions, while lacking a complete knowledge of their own returns to scale.

A long line of contributions has addressed the estimation of the returns to scale (Golany and Yu,

1997; Basu and Fernald, 1997; Banker et al., 2004; Ackerberg et al., 2015), not only for its important

relationships with externalities and public goods (Starrett, 1977), but also for their impact on input

missallocation (Gong and Hu, 2016). The incorrect knowledge of its own returns to scale can in

fact induce a company to miss the optimal selection of production inputs, with major consequences

at the macro level (Baqaee and Farhi, 2020).

Our quest for firms’ ability to discover their own returns to scale from the dynamic observa-

tion of realized noisy productions is thus driven by the auspicious conjecture that this form of

input missallocation can be asympthotically circumvented by a learning mechanism when partial

information is dynamically revealed.

To detail this mechanism, our model assumes that in each production period, firms (i) make

input decisions based on their current beliefs (point-wise estimation) of the returns to scale, (ii)

observe their realized production, and (iii) compute the Bayesian posterior of their returns to scale

to be used in the next period.

Hence, this approach mirrors a reinforcement learning procedure where the mismatch between a
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firm’s observed production and the one expected for different returns to scale induces a performance

metric (likelihood function) quantifying the correctness of a firm’s belief at each period. This is in

line with the recent work of Beggs (2022), in which agents evaluate outcomes relative to reference

points (point-wise estimation), as well as with a long stream of contributions assessing the statistical

properties of the maximizer of the Bayesian posterior distribution (Robert et al., 2007; Bolstad and

Curran, 2016; Bassett and Deride, 2019). This maximum a-posteriori (hereafter referred to as MAP)

estimation constitutes the main distinction between a fully Bayesian procedure and our proposed

reinforcement learning procedure.

To outline the main insights of this analysis, our results shed light on three aspects. Firstly,

all the relevant information in the learning dynamics (i.e., the information required to produce an

update in firms’ belief) is encoded in the input decisions. In other words, conditioned on input

decisions, the learning path of the belief sequence is invariant with respect to labour, prices and

household consumption. Secondly, we explore the advantages and disadvantages of employing the

MAP estimator. On one hand, we derive conditions in closed-form that ensure firms can accurately

learn the true returns to scale (referred to as the belief sequence converging to the actual returns to

scale). These conditions are primarily linked to the approach used for making input decisions. On

the other hand, we also demonstrate that the probability that the MAP estimator is not defined

increases with the magnitude of idiosyncratic productivity shocks and decreases with the uncertainty

in of the prior distribution. Finally, the mismatch between the true (unknown) returns to scale and

those estimated by firms has a critical effect on the expected firms revenues. This, in turn, plays a

crucial role in input misallocations. In this vein, using the notion of centrality in the multi-sector

network, we uncover a price mechanism which is consistent with any converging sequence of belief

on the returns to scale. This price mechanism supports the correct firms prediction of their own

expected revenue, which allows mitigating input misallocations.

On the empirical side, the deduced market-wise equilibrium objects and the characterization of

the learning dynamics have direct bearing on the construction of a least square estimation approach,

that allows calibrating the parameters of the multi-sector model based on real data. For this

purpose, we use the input-output accounts spanning the 1999-2019 period from the Bureau of

Economic Analysis, and estimate industry level divergences between the belief and the true returns

to scale. This reveals the presence of sizable learning processes in different sectors, that are driven

by underestimations and overestimations of the returns to scale parameters.

The rest of this paper is organized as follows. Section 2 describes some further connections with

the literature. Section 3 introduces the proposed modelling approach for a dynamic multi-sector

input-output economy and its equilibrium conditions. Section 4 establishes our main results on the

incomplete information and learning dynamics. Section 5 analyses the implications of the learning

dynamics on prices and material input missallocation. Section 6 provides an empirical grounding

for our results, based on a least square estimation approach and on real data from the Bureau of

Economic Analysis. Section 7 concludes the paper. All the mathematical proofs of the propositions

are reported in Appendix A.

3



2 Related literature

This work is connected to two streams of literature summarized in this section, highlighting the

relationship to our contribution.

Input-output models. It is reasonable to believe that for decades the macroeconomic tendency

to aggregate idiosyncratic variations stood in the way of multi-sector dynamic general equilibrium

models with endogenous learning (Leontief, 1970). In point of fact, in an economy consisting of

n sectors, the diversification argument by Lucas (1977) has been frequently used to abstract away

from the amazingly sophisticated yet harmonious network of interconnected agents. This line of

reasoning prevented macro-economists exploring the granularity of inter-sectoral networks under a

statistical argument that micro-economic shocks average out across sectors when n grows.1

Motivated by empirical findings using micro-level data, an increasing emphasis on firm-level

decisions has emerged in the last few decades (Coulson and Rushen, 1995). In this context, two

modelling designs departing from the diversification argument are worth mentioning. Firstly, Hor-

vath (2000) presented a multi-sector dynamic general equilibrium model of business cycles, where

“trade among sectors provides a strong synchronization mechanism for shocks due to the limited,

but locally intense, interaction that is characteristic of such input trade flows”. He proved that this

limited interaction leads to a postponement of the law of large numbers in the variance of aggre-

gate production. Secondly, Gabaix (2011) showed that the diversification argument breaks down if

the distribution of firm sizes is fat-tailed, so that idiosyncratic sector-level shocks can explain an

important part of aggregate movements. Particularly, when firm size is power-law distributed, the

conditions under which one derives the central limit theorem break down.

On the one hand, both approaches challenge the diversification argument, by pointing out eco-

nomically relevant conditions under which it cannot be applied. On the other hand, they support

the need of zooming into the complex granularity of input-output economic structures, to explore

the non-negligible micro-founded effects from which learning originates.

Building on the work of Horvath (2000), a static multi-sector general equilibrium model has

been proposed by Acemoglu et al. (2012), who demonstrated that “the interplay of idiosyncratic

microeconomic shocks and sectoral heterogeneity results in systematic departures in the likelihood

of large economic downturns relative to what is implied by the normal distribution”.2

This approach has the potential to be further generalized. For instance, a time dimension

has been included in a follow-up paper by Acemoglu et al. (2017), building on the real business

cycle analysis by Long Jr and Plosser (1983), in which it takes each firm one period to transform

inputs to output. Due to its relevance for the scope of our work, this dynamic extension of the

multi-sector general equilibrium model represents a point of reference for the study of a firm’s

endogenous learning along the analyzed time horizon. From this viewpoint, our work opens a new

line of generalization for the modelling framework of Long Jr and Plosser (1983), Horvath (2000),

1In an economy hit by independent shocks at its n sectors, aggregate fluctuations would have a magnitude propor-

tional to 1/
√
n, a negligible effect at high levels of disaggregation.

2The authors showed that under certain supply-chain configurations, such as the star network, the law of large

numbers fails and the aggregate output does not concentrate around a constant value.
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and Acemoglu et al. (2012), extending this stream of literature towards the analyses of endogenous

learning.

Learning-by-doing and social learning. Since the seminal work of Arrow (1962), different

modelling approaches have been proposed to integrate the acquisition of knowledge in the main cor-

pus of economic theory. For instance, Lucas (1988) has studied how increasing returns to embodied

human capital can be explained based on endogenous learning mechanisms. Dasgupta and Stiglitz

(1988) studied oligopolistic industries in the presence of learning-by-doing. D’Albis et al. (2012)

study the impact of learning-by-doing on business cycle fluctuations.

As noted by Vives (1996), the initial goal of the learning literature in the economic context has

been to emphasize that inefficient outcomes can happen even when consumers and firms act ratio-

nally. For example, agents may herd on a wrong action disregarding private information (Banerjee,

1992; Bikhchandani et al., 1992). This literature emphasizes market failures and feeds into a tradi-

tion of study of excess volatility and crashes in financial markets. Vives (1996) explored some social

learning models and noticed that in all of them “information about the choices of other agents is

obtained via noisy aggregates, prices or quantities”. He analyzed the extent to which the learning

dynamics is capable of casting a doubt on the reliance of the market mechanism.

In the last two decades, the economic literature involving the incomplete information and the

acquisition of knowledge has progressively opened toward learning games and the comparative

analysis of different learning mechanisms, especially focusing on the Bayesian versus non-Bayesian

approaches (Jadbabaie et al., 2012; Molavi et al., 2018; Brandt et al., 2021). In this context, Mossel

et al. (2020) propose a new equilibrium notion for learning games, under the aforementioned idea

that economic agents make decisions on possible alternatives without full awareness of the outcomes

of their actions. Therefore, they use their and others past experiences to learn. The query about the

ability of economic agents to learn from observing the outcomes of their actions has been introduced

in the economic literature in multiple stages by Easley and Kiefer (1988), El-Gamal and Sundaram

(1993), and Wieland (2000), looking at different sides of the problem.

Despite this growing interest, the theoretical literature focusing on the implication of learning on

the general equilibrium remains disconnected and sparse. In this respect, our contribution relates

to the market-wise equilibrium implications of firms’ ability to acquire knowledge, building on the

idea that input decisions yield information on their appropriateness to the external environment

(and, in turn, to the partially unknown production processes).

3 The model

3.1 Baseline definitions and notation

We introduce a dynamic multi-sector economy, closely resembling the modelling frameworks of

Horvath (2000), Gabaix (2011), Acemoglu et al. (2012), and Acemoglu et al. (2017). This consists

of a collection N of distinct sectors (with |N | = n), each producing different goods over a finite time

horizon of length T . The output of each sector is controlled by a representative firm that operates
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so as to maximize its expected profit at the end of the production periods.3 Production does not

take place instantaneously, but with a period delay following the purchase of inputs.4

In addition to the sectors, the economy comprises a representative consumer, taking decisions

about a preferred consumption plan over the n goods, with the aim of maximizing its lifetime

utility. We let xi(t), ci(t), and pi(t) be the corresponding production, consumption, and price

of the i-th good at the end of the t-th production period, for t = 1, . . . , T . In vector form,

x(t) = [x1(t) . . . xn(t)]>, c(t) = [c1(t) . . . cn(t)]> and p(t) = [p1(t) . . . pn(t)]>. We also define

l(t) = [l1(t) . . . ln(t)]> as the vector of labor quantities, measured on a time scale.

Concerning the matrix notation, we denote as [A]i the i-th row of a matrix A. Similarly, given

a sequence of t matrices A(t) = {A(`)}t`=1, we denote as Ai(t) = {[A(`)]i}t`=1 the sequence of their

i-th row vectors.

3.2 The representative household and firms

The consumer problem is designed as a time-discounted logarithmic utility maximization, subject

to the inter-temporal budget constraint:

max
{c(t)}Tt=1

T∑
t=1

ρt
∑
i∈N

κi log ci(t)

subj. to
∑
i∈N

pi(t)ci(t) + p̄a(t+ 1) ≤ w(t) + (p̄+ ϑ(t))a(t), for t = 1 . . . T − 1,

(1)

where, for the sake of market completeness, we include a credit sector with interest rate p̄ + ϑ(t).

Here a(t) is the household’s holding of the credit asset, w(t) the salary corresponding to the labor

income, (p̄+ϑ(t))a(t) the available savings, ϑ(t) captures a dividend paid on endogenous investment

at the t-th period. The exogenous constant ρ ∈ (0, 1] denotes the households’ discount factor, and κi

the utility elasticity of product i, with
∑n

i=1 κi = 1. We assume the boundary conditions a(T ) = 0,

w(1) = 0 and a(1) to be fixed exogenously (with a(1) > 0).

Each good in the economy can be either consumed or used in the next period by other sectors

as an input for production. As in Horvath (2000) and Acemoglu et al. (2012, 2017), the sectors use

Cobb-Douglas technologies. Thus, the output is

xi(t) = ηi(t)µi(t), with µi(t) = (li(t))
(1−φ)

 n∏
j=1

(yi,j(t))
φαi,j

vi

, (2)

where yi,j(t) denotes the amount of production of sector j used as an input in sector i. The exogenous

parameter φ ∈ [0, 1] establishes the material versus labor intensity in production. The inter-sectoral

3The simplifying notion of a representative firm is often used by macroeconomic models (Hartley and Hartley,

2002). By this is meant a hypothetical firm whose production is equal to the aggregate production of the sector as a

whole, and whose inputs are equal to the aggregate inputs of the sector as a whole. At the empirical level, industry

taxonomies (such as the Global Industry Classification Standard, or the Standard Industrial Classification) can be

used to group companies, based on similar production processes and products.
4As stated by Sargan (1955), “[...] a period which measures the effect of the rate of interest on relative prices

of inputs and outputs should be called the period of production. Alternatively, this period can be defined as the

difference between an output period and an input period, each with respect to the plans of a marginal entrepreneur

about to start a new firm.”
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input-output elasticities are summarized by φαi,jvi, measuring the output response to a change in

levels of production inputs, where αi,j is the input-specific factor of this elasticity (with
∑n

j=1 αi,j =

1), and vi quantifies the returns to scale of the material inputs in sector i. As studied in Section 4,

the returns to scale value represents the unknown payoff-relevant parameter firms wish to learn by

observing the outcomes (realized production) of their actions (input decisions).5 We introduce the

notation δi,j = αi,jvi and let A be a n×n non-singular matrix with components αi,j , and ∆ be a n×n
matrix with components δi,j . Similarly, Y (t) is used to denote a n × n matrix with components

yi,j(t). For each i ∈ N , the random factors ηi(t) ∼ logN(mi, σi) are independent idiosyncratic

productivity shocks, with logN(mi, σi) denoting a log-Gaussian distribution with parameters mi

and σi. The scalar quantity mi relates to the i-th firm productivity constant, whose expectation is

qi = Eη[ηi(t)] = exp(mi + σ2
i /2).

Consider the total expenditure on inputs (including the expenditure on labor) that the i-th

representative firm has to pay at the t-th period ei(t), and its corresponding revenue ri(t) after

carrying out the production process from t to t+ 1:
ei(t) = w(t+ 1)li(t) +

n∑
j=1

pj(t)yi,j(t), for i ∈ N , t = 1 . . . T − 1,

ri(t) = pi(t+ 1)xi(t), for i ∈ N , t = 1 . . . T − 1,

(3)

where salaries are paid posterior to the realization of the production period. Building on (2) and

(3), the firms’ problem at the t-th period is to maximize the individual expected profits, by deciding

the share of labor and material inputs to include in the production:

max
li(t),yi,1(t),...,yi,n(t)

Eη

[
(ri(t)− ei(t))

∣∣∣ vi] for i ∈ N , t = 1 . . . T − 1, (4)

where we make explicit the dependency with respect to the knowledge of vi by firms. We also

introduce the notation r̂i(t) = Eηi(t)[ri(t)] = pi(t + 1)qiµi(t), referring to the expected revenue.

Production, consumption and material inputs are linked by the market clearing conditions:
xj(t) = cj(t+ 1) +

∑
i∈N yi,j(t+ 1), for j ∈ N , t = 1 . . . T − 2,

xj(T − 1) = cj(T ), for j ∈ N ,
xj(T ) = 0, for j ∈ N .

(5)

Similarly, in accordance with Acemoglu et al. (2012, 2017), the total supply of labor is fixed and

the representative household is endowed with one unit of labor, which is supplied inelastically:∑
i∈N

li(t) = 1, for t = 1 . . . T. (6)

Firms and household are assumed to be price-takers, with prices determined by enforcing the

clearing conditions (5). Dividends are determined by enforcing the period by period equality between

firms total profit and household saving.

5The multi-sector general equilibrium models of Acemoglu et al. (2012) and Acemoglu et al. (2017) rely upon

constant returns to scale (i.e., vi
∑
j αi,j = 1), whereas this assumption is not set in our modelling design.
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3.3 Market players’ decisions

The learning mechanisms studied in this paper rely on the characterization of market players’ de-

cisions, and in particular material input decisions Y (t), for t = 1, . . . , T − 1. While our theoretical

analysis of the learning dynamics is general (in the sense that its theoretical properties and impli-

cations are valid for any characterization of Y (t)) and can still be adopted when market players

take sub-optimal decisions (based on heuristic algorithms or rules of thumb (Blonski, 1999)), this

section characterizes market players’ decisions by the exact utility maximization (problem (1)) and

profit maximization (problem (4)).

Lemma 1 (Household’s consumption). The utility maximizing household’s consumption is:

ci(t)pi(t) = κiw(t), for i ∈ N , t = 1 . . . T − 1, (7)

where w(t) = w(t)− p̄(a(t+ 1)−a(t)) +ϑ(t)a(t). The optimal holding of the credit stock is achieved

by satisfying the inter-temporal condition

p̄

w(t)
=
ρ(p̄+ ϑ(t))

w(t+ 1)
, for 1 ≤ t ≤ T − 2, (8)

when wage w(t+ 1) and dividend ϑ(t+ 1) are known by the household at time t, and

p̄

w(t)
= E

[
ρ(p̄+ ϑ(t))

w(t+ 1)

]
, for 1 ≤ t ≤ T − 2, (9)

when wage w(t+ 1) and dividend ϑ(t+ 1) are unknown by the household at time t.

From the second order recurrence relations (8) and(9), the equilibrium path of saving is deter-

mined given the exogenous conditions a(1) and a(T ).

Lemma 2 (Firms’ inputs). Let N+ = {i ∈ N : vi > 0} and N0 = N \ N+ = {i ∈ N : vi = 0}.6

The demand for labor and material inputs are:

li(t) =
(1− φ)

φw(t+ 1)
qipi(t+ 1)µi(t), for t = 1, . . . , T − 2, (10)

yi,j(t) =
viαi,j
pj(t)

qipi(t+ 1)µi(t), for , t = 1, . . . , T − 2, (11)

for each i ∈ N+ and

li(t) =

(
(1− φ)pi(t+ 1)

w(t+ 1)

) 1
φ

, for t = 1, . . . , T − 2, (12)

yi,j(t) = 0, for t = 1, . . . , T − 2, (13)

for each i ∈ N0.

Lemma 2 illustrates the functional dependency between input decisions and returns to scale,

constituting the fundamental building block of the learning dynamics studied in Section 4. A

special attention is given to the discontinuity at point vi = 0, having major consequences on firms

6As discussed in Section 4, the case vi = 0 is also a possible realization of the learning dynamics.
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ability to learn. Building on Lemmas 1 and 2, a characterization of equilibrium prices and salaries

consistent with Horvath (2000) is provided in Section 5, analyzing the implications of the learning

dynamics on market-wise equilibrium quantities.7

4 Uncertainty over payoff-relevant parameters and learning

We now introduce firms’ uncertainty about the profit-relevant parameters {vi}i∈N , and study learn-

ing mechanisms for their dynamic estimation from the observed production.

To do so, we embed the proposed multi-sector general equilibrium model into the framework of

information collection and processing introduced by El-Gamal and Sundaram (1993) (and further

explored by Cogley and Sargent (2008)). They presented the optimization problem facing a single

infinitely-living Bayesian agent, who alternatingly combines a decision stage and a learning stage.

More precisely, the agent is unaware of the values of some payoff-relevant parameters and wishes to

maximize the expected discounted lifetime reward. Its actions yield information on these unknown

parameters through the observed rewards (El-Gamal and Sundaram, 1993).

Adapting this framework to our multi-sector model, we let v
(∗)
i denote the true value of the

returns to scale parameter and vi(t) its corresponding firm’s estimation (for each i ∈ N ) at the t-th

period. Consequently, we update the notation δi,j and ∆ to become δi,j(t) = vi(t)αi,j and ∆(t),

respectively. Similarly, δ
(∗)
i,j = v

(∗)
i αi,j and ∆(∗) are defined in an analogous way. Next, to lighten

the mathematical presentation, the following notation is used throughout this section:

εi(t) = log(ηi(t)), zi(t) = log

 n∏
j=1

(yi,j(t))
φαi,j

 and si(`) = εi(`) + v
(∗)
i zi(`). (14)

Therein, firms take decisions based on vi(t), while assessing the appropriateness of their beliefs

to the realized production when constructing a probability distribution for vi(t+1) (the next period

belief of firm i). This is done by invoking the Bayesian rule and a collection of learning assumptions.

Assumption 1. At each production period, firms use the maximum a-posteriori as a point-wise

estimator of the unknown v
(∗)
i .

The adoption of a point-wise estimation method when alternatingly combining a decision stage

and a learning stage, relies on the anticipated utility approach of Kreps (1998) and Cogley and

Sargent (2008). In this approach, firms treat the profit-relevant parameter vi(t) as a random quantity

when they learn but as a constant when they take decisions. Conversely, a full Bayesian procedure

would regard it as a random quantity both for learning and for decision-making.8

We focus on two specifications of the proposed learning method: a long-memory approach, where

firms keep track of the whole history of past productions when building the probability distribution

of vi(t) (as studied in Subsection 4.1); a short-memory approach, where firms only record one

7Bargaining formulations to simultaneously determine input decisions and prices in non-competitive markets can

be considered as an extension (Benita et al., 2022).
8As noted by Cogley and Sargent (2008), a full Bayesian procedure is mathematically intractable for most economic

problems, so that they studied the goodness of the anticipated utility for different economic models.
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previous period when building vi(t) (as studied in Subsection 4.2). As explicitly demonstrated in

these subsections, since the proposed multi-sector model does not include durable capital inputs,

the learning dynamics (which ultimately reflects input decisions) does not depend on weather the

time horizon is finite or infinite.

4.1 Long-memory learning

A long-memory method is a point-wise estimation approach constructed by enforcing the following

assumptions on the information set and the initial knowledge.

Assumption 2. At period t, the firm’s i information set is given by the series of past realized

productions up to the current period: Ii(t− 1) = {xi(t− 1), xi(t− 2), . . . , xi(1)}, for 2 ≤ t ≤ T .

Assumption 3. Firms have an initial knowledge π0,i(vi) quantified as a zero-truncated Gaussian

with parameters v
(0)
i and τi.

9

With respect to Assumption 2, the realized production encodes all required information (in the

sense of statistical sufficiency) for the likelihood characterization. In fact, the likelihood function

of the returns to scale parameter vi(t) is the probability distribution over the realized productions,

which is induced by the idiosyncratic productivity shocks ηi(1), . . . , ηi(t− 1):

L (vi(t); Ii(t− 1)) =

t−1∏
h=1

1

(2πσi)
1
2

exp

(
− 1

2σ2
i

(log xi(h)− logµi(h))2

)
, for 2 ≤ t ≤ T, (15)

where µi(t) has been defined in (2) and represents the deterministic part of the Cobb-Douglas

production. Hence, L (vi(t); Ii(t)) quantifies the mismatch between the log-production of firm i

observed up to period t, and the one it would expect for different values of vi(t). This can be

seen as a way of assessing the goodness of firm i’s knowledge of its production function, or as an

environment reward to the appropriateness of its input allocation.10

The Bayesian posterior distribution of vi(t) at the t-th period is

πt,i(vi(t)) =


L (vi(t); Ii(t− 1))π0,i(vi(t))∫

L (vi(t); Ii(t− 1))π0,i(vi(t)) dvi(t)
if t > 1,

π0,i(vi(t)) if t = 1.

(16)

9It is worth noting that vi(t) represents a MAP estimator, while πt,i(vi) denotes its probability density function.
10In the context of the empirical production literature, the likelihood function L (vi(t); Ii(t)) has been used since the

seminal paper of Marschak and Andrews (1944) to estimate the returns to scale from realized production. Contextually,

the described learning approach compounds a reinforcement learning mechanism, defined upon (i) a state space of the

system, (ii) a set of actions to be taken by firms, (iii) a policy, and (iv) a performance metric.

(i) The state space of the system is the set of feasible returns to scale parameters.

(ii) The actions taken by firm i at period t are li(t) and yi,1(t), . . . , yi,n(t).

(iii) The policy defining the decision criteria at each state visited by the system is the profit maximization (4).

(iv) To judge the performance of the policy, L (vi(t); Ii(t)) constitutes a metric for the difference between the

target production and the realized one.

10



Proposition 1 (The MAP dynamics (long-memory)). For each t ≥ 1, the MAP estimator is

vi(t+ 1) =


(
v

(0)
i + γi

∑t
`=1 zi(`)si(`)(

1 + γi
∑t

`=1 zi(`)
2
) )+

, if yi,j(`)
φαi,j > 0 for all j ∈ N , ` ∈ {1, . . . , t},

v
(∗)
i otherwise (continuous extension),

(17)

where γi = (τi/σi)
2 and the notation (z)+ refers to max(0, z) for any z ∈ R.

The first visible insight from (17) is that vi(t + 1) is updated only based on the i-th material

input decisions. Hence, the price taker behavior assumption (as adopted in Lemma 2) implies that

firm i best response is independent from its knowledge of firm j realized production (where j 6= i).

In other words, (17) demonstrates that vi(t) are conditionally independent once input decisions

are taken and that the learning dynamics is invariant with respect to whether information of the

market-wise equilibrium objects is assumed to be private or public.

The second noticeable insight is that in the case when there exists j ∈ N and ` ∈ {1, . . . , t}, such

that yi,j(`)
φαi,j = 0, the maximization of (16) admits infinite alternative solutions (all vi(t+1) ∈ R+

are optimal for (16)). However, by continuous extension, vi(t + 1) is determined in (17) from the

case when yi,j(`)
φαi,j > 0 for all j ∈ N and ` ∈ {1, . . . , t}. In such case, when input decisions are

taken by a profit maximizing behaviour (4), this point of discontinuity can only happen if either

vi(t) = 0 or pi(t + 1) = 0 (which implies yi,j(t) = 0 by Lemma 2), resulting in an absorbing

state. To visualize the reason of such an absorbing state, it is sufficient to note that if there exists

j ∈ N and ` ∈ {1, . . . , t}, such that yi,j(`)
φαi,j = 0, then for the same j, there must also exist

`′ ∈ {1, . . . , t + 1}, such that yi,j(`
′) = 0. In other words, by adopting the continuous extension to

solve the indeterminacy of the MAP estimator, we obtain that learning cannot be forgotten under

the long-memory assumption.

At this stage, it is worth reminding that the MAP estimator (17) is a random variable induced

by the noisy production xi(t) through the idiosyncratic shocks εi(t), at each time t. A fundamental

step of the analysis of the learning dynamics is the evaluation of the expectation and variance of

vi(t), as well as its convergence when t grows large.

Proposition 2 (Expectation and variance of firms’ belief). For each 1 ≤ t ≤ T − 1, let us define

vi(Y(t)) =
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

1 + γiz̃
(2)
i (t)

, and ϕi(Y(t)) =
γiσiz̃

(1)
i (t)

1 + γiz̃
(2)
i (t)

, (18)

where z̃
(1)
i (t) =

∑t−1
`=1 zi(`), z̃

(2)
i (t) =

∑t−1
`=1 zi(`)

2, and Y(t) = {Y (`)}t`=1 As a consequence of

Proposition 1, conditioned on the i-th input decisions up to period t, we have

E[vi(t+ 1)] = vi(Y(t))F̃i(t) + |ϕi(Y(t))|f̃i(t), (19)

E[vi(t+ 1)2] =
(
vi(Y(t))2 + |ϕi(Y(t))|2

)
F̃i(t) + vi(Y(t))|ϕi(Y(t))|f̃i(t), (20)

where

F̃i(t) ≡ Gi
(
z̃

(1)
i (t), z̃

(2)
i (t)

)
= 1− F

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣) ,
f̃i(t) ≡ gi(z̃(1)

i (t), z̃
(2)
i (t)) = f

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣) .
11



Proposition 3 (Mode of firms’ belief). Let M[vi(t) | Y(t)] be the mode of the MAP estimator vi(t),

conditioned on the i-th input decisions up to period t. Based on Proposition 1, we have

M[vi(t+ 1) | Y(t)] =


vi(Y(t)) if

1

|ϕi(Y(t))|
√

2π
≥ F

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣) ,
0 otherwise.

This characterization of the expectation (Proposition 2) and mode (Proposition 3) of the MAP

distribution allows for a closed-form analysis of its convergence, under the long memory assumption.

This analysis is partitioned into five cases, depending on the dynamics of input decisions yi,j(t), as

encoded by zi(t) (see notation (14)).11

Proposition 4 (Convergence of the expectation (long memory)). The learning dynamics for the

long memory method has five cases:

(1) If for each i ∈ N , the dynamics of input decisions satisfies lim
t→+∞

|z̃(1)
i (t)| = lim

t→+∞
z̃

(2)
i (t) = +∞

and lim
t→+∞

v
(0)
i + γiv

(∗)
i z̃

(2)
i (t)

γiσiz̃
(1)
i (t)

= L < +∞, then we have

lim
t→+∞

E[vi(t)] = v
(∗)
i F̃i(t) + lσif̃i(t)

(
lim

`→+∞

|z̃(1)
i (`)|
z̃

(2)
i (`)

)
.

(2) If for each i ∈ N , the dynamics of input decisions satisfies lim
t→+∞

z̃
(1)
i (t) = L1 and lim

t→+∞
z̃

(2)
i (t) =

L2, then we have

lim
t→+∞

E[vi(t)] =


(
v

(0)
i + γiv

(∗)
i L2

)
Gi(L1, L2) + σiγiL1gi(L1, L2)

1 + γiL2
if L1 6= 0,

v
(0)
i + γiv

(∗)
i L2

1 + γiL2
if L1 = 0.

(3) If for each i ∈ N , the dynamics of input decisions satisfies lim
t→+∞

z̃
(1)
i (t) = L1 < +∞ and

lim
t→+∞

z̃
(2)
i (t) =∞, then we have

lim
t→+∞

E[vi(t)] = v
(∗)
i .

(4) If for each i ∈ N , the dynamics of input decisions satisfies lim
t→+∞

z̃
(1)
i (t) =∞ and lim

t→+∞
z̃

(2)
i (t) =

L2 < +∞, then we have

lim
t→+∞

E[vi(t)] = +∞.

(5) If for each i ∈ N , the dynamics of input decisions satisfies lim
t→+∞

|z̃(1)
i (t)| = lim

t→+∞
z̃

(2)
i (t) =

lim
t→+∞

v
(0)
i + γiv

(∗)
i z̃

(2)
i (t)

γiσiz̃
(1)
i (t)

= +∞, then we have

lim
t→+∞

E[vi(t)] is undetermined.

11Although not explicitly formalized, this time limit implies an equivalent limit of the length of the time horizon T .
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This proposition reveals that under the long memory assumption, there are two possible dynam-

ics of input decisions in which the expected belief of the returns to scale converges to v
(∗)
i : case (1)

and case (3). The first one encompasses situations in which there exists j ∈ N and ` ∈ {1, . . . , t}
for which yi,j(`)

αi,j = 0, and it is the result of the convention to characterize the discontinuity point

by a continuous extension, as established in Proposition 1. Following this reasoning, by the profit

maximizing behaviour characterized in Proposition 2, this discontinuity point is only possible if

either vi(t) = 0 or pi(t+ 1) = 0. Thus, case (1) has little economic interest.

Contextually, case (3) requires lim
t→+∞

z̃
(2)
i (t) = ∞, which can only happen if the path of input

decisions is such that:

lim
t→+∞

n∏
j=1

(yi,j(t))
φαi,j 6= 1.

Since lim
t→+∞

z̃
(1)
i (t) < +∞, case (3) requires that there exists t0 ∈ N, such that

∏n
j=1(yi,j(t))

φαi,j

oscillates around one for all t > t0, which is also of relatively minor economic significance.

Conversely, the most economically meaningful case is (2), which is associated to a converging

pattern of input decisions, and which results to a biased estimator.

Overall, a summary interpretation of this convergence dynamics is that the MAP estimator is

generally biased (its limit expectation differs from the true parameter value v
(∗)
i ), except for very

specific and unlikely cases of input decisions. However, an economically more favourable conclusion

can be reached when focusing on the mode of the estimator. The next proposition shows that cases

(3) and (4) of Proposition 4 (for which the expected belief converges to v
(∗)
i or diverges to +∞,

respectively) are both associated to a correct mode of the MAP estimator.

Proposition 5 (Convergence of the mode (long memory)). Let vi(0) ≥ 0 and v
(∗)
i > 0, for all

i ∈ N . Let us define the ordered set

Ψi = N/
{
t ∈ N : |ϕi(Y(t))|

√
2πF

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣) > 1

}
, (21)

and index its elements by %(t), for t ∈ N. There exists a sub-sequence {vi(%(t))}t such that

lim
t→+∞

M[vi(t) | Y(t)] =


0 if Ψi is a finite set,

v
(∗)
i if Ψi is an infinite set and lim

t→+∞
zi(t) = +∞,

v0
i + γiv

(∗)
i l

1 + γil
if Ψi is an infinite set and lim

t→+∞
zi(t) = L < +∞.

By means of explanation, the ordered set Ψi is an auxiliary representation of the collection

of time periods for which M[vi(t) | Y(t)] > 0. This allows selecting a sub-sequence to study the

convergence of the original sequence, as detailed in Appendix A. Therefore, the mode of the MAP

estimator always converges, even in cases when its expectation doesn’t. The most interesting case

is when zi(t) diverges to +∞.

Corollary 1. We have the following implication:

if lim
t→+∞

n∏
j=1

(yi,j(t))
φαi,j = +∞ then lim

t→+∞
M[vi(t) | Y(t)] = v

(∗)
i .

13



An insightful interpretation of this corollary is that, under the long-memory approach, substan-

tial and enduring economic growth, coupled with a consequent rise in the series of input quantities,

enhances the dynamic learning of the true returns to scale (due to the divergence of zi(t)). This

establishes a theoretical relationship between learning and economic growth, which has been already

conjectured since the seminal work of Arrow (1962) and extensively elucidated by Solow (1997).

As announced in Section 3.3, Propositions 1-5 confirm that the proposed learning mechanism

allows for a high level of generality, as the analysed theoretical properties and implications are

valid for any characterization of the input decisions and can still be adopted when market players

take sub-optimal decisions, based on heuristic algorithms or rules of thumb (Blonski, 1999). This

is explicitly revealed in the MAP estimator (17), whose functional form remains invariant for any

characterization of Y (t) (through the reparametrization (14)).

4.2 Short memory learning

Focusing on a short-memory method, we consider a point-wise estimation approach constructed by

enforcing the following assumptions on the information set and the initial knowledge.

Assumption 4. At period t, firm’s i information set is given by the last realized production: Ii(t−
1) = {xi(t− 1)}.

Assumption 5. At each period t, firms re-initialize their probability distribution πt,i(vi) as a zero-

truncated Gaussian with parameters vi(t− 1) and τi.

In this learning approach, the Bayesian update only keeps track of one previous period, by re-

initializing the prior distribution to a truncated Gaussian centered at the previous MAP estimation.

This captures a memory loss, where the information of all previous periods is encoded in the previous

update vi(t− 1). Hence, the short memory method departs from Assumption 2 and Assumption 3,

and replace them with Assumption 4 and Assumption 5, respectively.

The likelihood function of vi(t) reduces to the probability distribution over the period t − 1

production, which is induced by the idiosyncratic shock ηi(t− 1):

L (vi(t); Ii(t− 1)) =
1

(2πσi)
1
2

exp

(
− 1

2σ2
i

(log xi(t− 1)− logµi(t− 1))2

)
, for 2 ≤ t ≤ T. (22)

The general form of the Bayesian posterior distribution of vi(t) at the t-th period is still (16) and

(17). With few algebrical changes, we obtain the MAP estimator and its expectation and variance,

in line with Propositions 1 and 2.

Proposition 6 (The MAP dynamics (short-memory)). For each t ≥ 1, the MAP estimator is

vi(t+ 1) =



vi(t) + γizi(t)
(
σiεi(t) + v

(∗)
i zi(t)

)
1 + γizi(t)2

+

, if yi,j(t)
φαi,j > 0 for all j ∈ N ,

v
(∗)
i otherwise (continuous extension).

(23)
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Proposition 7 (Expectation and variance of firms’ belief). For each 1 ≤ t ≤ T − 1, let us define

vi,t(Y(t)) =
vi(t) + γiv

(∗)
i zi(t)

2

1 + γizi(t)2
, and ϕi(Y(t)) =

γiσizi(t)

1 + γizi(t)2
.

Conditioned on the i-th input decisions up to period t− 1, we have

E[vi(t+ 1)] = vi(Y(t)) ˜̃Fi + |ϕi(Y(t))| ˜̃fi, (24)

E[vi(t+ 1)2] =
(
vi(Y(t))2 + |ϕi(Y(t))|2

) ˜̃Fi + vi(Y(t))|ϕi(Y(t))| ˜̃fi, (25)

where
˜̃Fi ≡ Gi(zi(t), zi(t)2) = 1− F

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣) ,
˜̃
fi ≡ gi(zi(t), zi(t)2) = f

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣) .
In line with Propositions 4 and 5, an analogous analysis of the learning dynamics is performed

hereafter for the short-memory method.

Proposition 8 (Mode of firms’ belief). Let M[vi(t) | Y(t)] be the mode of the MAP estimator vi(t),

conditioned on the i-th input decisions up to period t. Based on Proposition 6, we have

M[vi(t+ 1) | Y(t)] =


vi(Y(t)), if

1

|oi(Y(t))|
√

2π
≥ F

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣)
0 otherwise.

Proposition 9 (Convergence of the expectation (short memory)). We have the following conver-

gence of the learning dynamics

lim
t→+∞

Eεi(t)[vi(t)] =


v

(∗)
i if lim

t→+∞
zi(t) 6= 0

v
(∗)
i +

vi(0)− v(∗)
i

∞∏
h=1

(1 + γizi(h)2)

if lim
t→+∞

zi(t) = 0.

Proposition 10 (Belief convergence (short memory)). Let us define the ordered set

Ψi = N/
{
t ∈ N : |ϕi(Y(t))|

√
2πF

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣) > 1

}
, for i ∈ N ,

along with the order function ψi(t) that assigns to each t ∈ N the element of Ψi in the t-th position.

We assume vi(0) ≥ 0 and v
(∗)
i > 0, for all i ∈ N , and consider the indicator function

1̃i,t−1 =

1 if t ∈ Ψi,

0 otherwise.

Conditioned on the sequence of material input decisions Y(t), the MAP estimator follows a deter-

ministic sequence {vi(t)}t∈Ψ, where

vi(t+ 1) = vi(t)

(
t−1∏
h=0

1̃i,h
(1 + γizi(h)2)

)
+ v

(∗)
i

(
γi

t−1∑
h=0

zi(h)2
t−1∏
s=h

1̃i,s
(1 + γizi(s)2)

)
. (26)
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We claim that there exists a sub-sequence {vi(ψi(t))}t such that

lim
t→+∞

vi(ψi(t)) =



0 if Ψi is a finite set,

v
(∗)
i if Ψi is an infinite set and lim

t→+∞
zi(t) 6= 0,

v
(∗)
i +

vi(ψi(0))− v(∗)
i

∞∏
h=1

(1 + γizi(ψi(h))2)

if Ψi is an infinite set and lim
t→+∞

zi(t) = 0.

While mirroring the convergence analysis of Propositions 4 and 5 for the long memory method,

Propositions 9 and 10 require less restrictive conditions. In particular, Proposition 10 provides

evidence of the fact that the learning dynamics converges to v
(∗)
i , independently from how material

input decisions are taken, when γi = (τi/σi)
2 grows large or {zi(t)}t does not converge to zero.

It is worth mentioning that these theoretical figures integrate some contextual results about the

convergence pattern of a Bayesian learning dynamics in repeated games (Nyarko, 1994, 1998), while

establishing the advantages and disadvantages of the MAP estimator to infer the unknown returns

to scale in multi-sector economies.

4.3 The discontinuity point of the maximum a-posteriori estimation

Beside the independence and convergence properties of the MAP estimator studied in Subsection

4.1 and Subsection 4.2, one downside for firm i to use such an estimation method at time t is

related to its discontinuity when there exists j ∈ N and ` ∈ {1, . . . , t}, such that yi,j(`)
φαi,j = 0

(for the long-memory method), or when there exists j ∈ N , such that yi,j(t)
φαi,j = 0 (for the short-

memory method). In these cases, the maximization of (16) or (22), for the long and short memory

respectively, admits infinite alternative solutions. In Proposition 1 and Proposition 6, we adopt the

continuous extension for the characterization of the MAP estimator at this point of discontinuity.

Hereafter, the inquiries pertain to the likelihood of the analyzed dynamic system passing through

this particular state. In fact, we have previously mentioned that, when input decisions are taken by

a profit maximizing behaviour (4), this point of discontinuity can only happen if either vi(t) = 0 or

pi(t+ 1) = 0 (which implies yi,j(t) = 0 by Lemma 2).

Proposition 11 (Probability of vi(t) = 0 (long memory)). Under Assumption 2 and Assumption

3, we have that for each t ≥ 1,

P (vi(t) = 0 | Ii(t− 1)) = F

(
−
τiv

(∗)
i

σ3
i

−
v

(0)
i +mi

∑t−1
`=1 zi(`)

σi
∑t−1

`=1 zi(`)
2

)
.

Hence, 
lim
σi→0

P (vi(t) = 0 | Ii(t− 1)) = 0,

lim
τi→∞

P (vi(t) = 0 | Ii(t− 1)) = 0.

where F is the probability distribution function of a standardized Gaussian random variable.

Proposition 12 (Probability of vi(t) = 0 (short memory)). Under Assumption 4 and Assumption

5, we have that for each t ≥ 1,

P (vi(t) = 0 | Ii(t− 1)) = F

(
−
τiv

(∗)
i

σ3
i

− vi(t− 1) +mizi(t− 1)

σizi(t− 1)2

)
.
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Hence 
lim
σi→0

P (vi(t) = 0 | Ii(t− 1)) = 0,

lim
τi→∞

P (vi(t) = 0 | Ii(t− 1)) = 0.

The overall picture of the MAP estimator to infer the returns to scale parameter suggests that

a major role is plaid by the variance of the idiosyncratic productivity shocks σi and the degree of

uncertainty of the a-priory distribution τi. In fact, for any t ≥ 1, the conditional probability of

vi(t) = 0 (which implies yi,j(t) = 0, for all j ∈ N in the next production period) is negligible when

the variance of the idiosyncratic productivity shock is small and the uncertainty of the a-priory

distribution is large. This suggests an adequate economic context in which the proposed MAP

estimator can be fruitfully applied, but also the main drawback induced by large idiosyncratic

fluctuations.

5 The price of incorrect knowledge

After uncovering how information collection and processing unfolds through the multi-sector econ-

omy based on input decisions, the reverse effect of vi(t) on (11) and (13) remains to be investigated.

In this line, a well-established stream of literature has tried to disentangle the sources of produc-

tion input misallocation (David and Venkateswaran, 2017; Jones, 2011; Hsieh and Klenow, 2009)

by looking at technological frictions and firm-specific factors. Since the incorrect knowledge of the

returns to scale of production can be included within this debate, this section studies how this

inferential bias translates into incorrect input decisions and how a price mechanism might mitigate

input misallocations.

While in the previous sections no assumptions have been made on v
(∗)
i , to deduce stylized facts,

we focus hereafter on the limit behaviour of market-wise equilibrium objects under the constant

returns to scale assumption (i.e., v
(∗)
i = 1, for i ∈ N ).12 We introduce the notation:

h̃ =


− log q1

φ −
∑n

h=1 α1,h logα1,h

...

− log qn
φ
−
∑n

h=1 αn,h logαn,h

 and r̂i(t, v) = pi(t+1)qi(li(t))
(1−φ)

 n∏
j=1

(yi,j(t))
φαi,j

v

.

Further, we consider a generalized form of the Bonacich’s beta-centrality vector, which we define

as βj(α,A,h) = (I − αA)−1h, for any arbitrary α ∈ R+, h ∈ Rn and A ∈ Rn×n+ ,13 and we provide

12The constant returns to scale is the underlying hypothesis of Acemoglu et al. (2012, 2017). While we do not

confine ourselves to this assumption when studying the learning dynamics, the particular case of constant returns to

scale is used in this section to highlight the impact of the incorrect knowledge on the limit behaviour of prices.
13For a given square matrix A, the Bonacich’s beta-centrality vector is defined as β(α,A) =

∑∞
l=1 α

l−1Al1 =

(I − αA)−11, where 1 is a vector of ones. The generalized Bonacich’s beta-centrality vector coincides with the

classical Bonacich’s beta-centrality vector when h = 1. While classical Bonacich’s beta-centrality corresponds to a

weighted sum of paths connecting to other industries, this generalized Bonacich’s beta-centrality vector, weights the

contribution of the different industries using the exogenous information provided by vector h. For more details on the

Bonacich’s beta-centrality vector see Bonacich (2007).
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a characterization of equilibrium prices (Lemma 3) and their limit behaviour under the constant

returns to scale condition (Proposition 13).

Lemma 3 (Equilibrium prices). Let us define

Di(t) = qi(1− φ)1−φ

φvi n∏
j=1

(
αi,s
ps(t)

)αi,sφvi

, for t = 1, . . . , T − 1.

We have the following equilibrium prices and expected production:

pi(t+ 1) =
w(t+ 1)1−φ

Di(t)

(
viφ∑n

j=1 [A−1]j,i (pj(t)xj(t− 1)− w(t)κj)

)φ(vi−1)

, (27)

µi(t) =
Di(t)

w(t+ 1)1−φ

(∑n
j=1

[
A−1

]
j,i

(pj(t)xj(t− 1)− w(t)κj)

viφ

)1+φ(vi−1)

, (28)

for each i ∈ N+ (where [A−1]j,i denotes the (j, i) element of matrix A−1) and

pi(t+ 1) = di where di is the solution of
∑
i∈N0

(
(1− φ)di
w(t+ 1)

) 1
φ

= 1−
∑
i∈N+

li(t), (29)

µi(t) =

(
(1− φ)pi(t+ 1)

w(t+ 1)

) 1−φ
φ

, (30)

for each i ∈ N0.

Proposition 13 (Price convergence). Let us assume that {vi(t)}t converges, that w(t+ 1)/w(t) is

uniformly bounded,14 and that v
(∗)
i = 1, for all i ∈ N . We define the sequence

W (t) = log

(
w(t)

w(t− 1)

)
+ φW (t− 1).

A necessary condition for the incorrect knowledge of vi not to translate into the expected revenue

(namely, r̂i(t, vi(t)) = r̂i(t, v
(∗)
i )), is that the limit equilibrium prices (27) to be proportional to the

generalized Bonacichs beta-centrality vector:

pi(t+ 1) ∝ w(t+ 1) exp
(
φβi

(
φ,A, h̃

)
− φW (t)

)
. (31)

Proposition 13 uncovers a price mechanism which is consistent not only with the correct knowl-

edge of the returns to scale v
(∗)
i , but also with any vi(t), as long as {vi(t)}t converges. Hence, for the

nominal revenue of each sector not to be affected by the inferential bias, the limit prices must reflect

the centrality of sectors in the multi-sector network. This condition encompasses cases in which the

limit prices are log-linear in the generalized Bonacich’s beta-centrality of the input-output elasticity

structure and their limit variation rates are finite and uniform for all sectors.15 As a corollary, if

w(t) converges, all prices also do.

14The uniform boundedness implies that there exists a constant ξ > 0 such that for each t > t0, we have w(t+ 1) ≤
ξw(t), for some t0 ∈ N.

15Note that the convergence condition in Proposition 13 only requires {vi(t)}t to converge to an arbitrary point,

not necessarily v
(∗)
i .
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A further qualitative interpretation of this result is that the inferential bias on the returns to

scale happens to be internalized in the price mechanism. An analogous prices dynamics has been

studied by Acemoglu et al. (2012, 2017), providing an analytical relationship between prices and

the influence vector, which they define to mirror the Bonacich centrality vector corresponding to

the inter-sectoral network.

It remains to investigate the existence of equilibrium prices that satisfy the limit behaviour (31).

This is established in the next proposition.

Proposition 14 (The impact of incorrect belief). Let us assume that {vi(t)}t converges to vi, with

vi 6= v
(∗)
i , for all i ∈ N . Let M = ((I − φV A)(I − φA)−1 + I), with V being a diagonal matrix with

elements v1, . . . , vn. Equilibrium prices satisfy (31) if and only if there exists t0, such that for all

t > t0 the following fixed-point equation admits a solution in R+:

w(t+ 1) =
1− φ
φ

n∑
i=1

1

w(t+ 1)
1

vi−1

ιi

(
{w(h)}t−1

h=1

)
, (32)

where vi is the limit point of {vi(t)}t, and ιi({w(h)}th=1) only depends on past salaries:

ιi({w(h)}th=1) = exp


[
M h̃

]
i
− φ̂+ vi(log φ+ φ̃)

1− vi

(w(t)vi+1

w(t− 1)

) 1
vi−1

t−2∏
h=1

(
w(h)

w(h+ 1)

)φt−1−h

,

and φ̂ = − log(1− φ)− log(φ)
1−φ .

Note that by construction, if a solution of (32) exists, it also satisfies the market clearing condi-

tions (5) and (6). While this equation can be computationally solved by state-of-the-art numerical

procedures, for its closed-form analysis, we refer to Smart (1974). The following proposition estab-

lishes a sufficient condition for the existence of a fixed point of (32).

Proposition 15 (Fixed point). We have the following result:

- if for each i ∈ N , vi > v
(∗)
i = 1, then (32) admits a unique fixed-point such that ω(t+ 1) > 0;

- if for each i ∈ N , vi < v
(∗)
i = 1, then the unique fixed-point of (32) is ω(t+ 1) = 0.

By means of explanation, when the limit point of {vi(t)}t is such that i ∈ N , vi > v
(∗)
i (firms are

overestimating their returns to scale), (32) admits a unique and non-trivial fixed-point, which entails

that the price dynamics (31) (i.e., the only price dynamics compatible with r̂i(t, vi(t)) = r̂i(t, v
(∗)
i ))

satisfies the market clearing conditions. Together with the convergence analysis in Propositions 4

and 5 (for the long-memory method) and Propositions 9 and 10 (for the short-memory method),

this result provides a positive assessment to the auspicious conjecture that input missallocation

(which translates into an erroneous estimation of the expected revenue) can be asympthotically

circumvented or mitigated by a learning mechanism and by a pricing/salary mechanism that favors

this convergence. Although this result is only valid under the restrictive case v
(∗)
i = 1, the existence

of equilibrium prices compatible with r̂i(t, vi(t)) = r̂i(t, v
(∗)
i ) under this specific condition opens

the possibility of studying further conditions under which the incorrect knowledge of profit-relevant

parameters can be mitigated by the price mechanism.
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6 Statistical inference of the learning parameters

With a view to providing an empirical grounding for our theoretical results, this section proposes a

calibration procedure for the learning parameters of real intersectoral networks.

Mirroring the traditional approach from Zellner et al. (1966), we tailor a least square estimation

based on the equilibrium equations in Lemma 2 and the learning equations in Proposition 1, that can

be fitted through available data. Specifically, we use the detailed benchmark input-output accounts

spanning the 1999-2019 period from the Bureau of Economic Analysis. These data constitute

the finest level of disaggregation available for the intersectoral input-output network in the U.S,

with most sectors (roughly) corresponding to four-digit SIC codes. Based on the commodity-by-

commodity tables, we denote with ui,j(t) its (i, j) entry at year t. This contains the value of

spending on commodity i per dollar of production of commodity j evaluated at current producer

prices. Using our notation, we obtain

ui,j(t) =
yj,i(t)pi(t)

xj(t)pj(t+ 1)
,

log uj,i(t) = log
yi,j(t)pj(t)

xi(t)pi(t+ 1)
= log

yi,j(t)pj(t)

r̂i(t)
− log

ηi(t)

qi
= log φvi(t)αi,j − σiεi(t).

(33)

Next, from the Bureau of Economic Analysis we collect information about the value added

by sector and the chain-type price indexes for intermediate inputs p̃i(t), for each sector i ∈ N ,

corresponding to the same four-digit SIC codes. This can be used as a proxy for rj(t) = xj(t)pj(t+

1) = r̂i(t)
ηi(t)
qi

and pi(t) (once pi(0) is known, so that pi(0)p̃i(t)). Fixing these observable quantities,

zi(t) can be established as a function of the unknown A, φ and p(0) only:

Zi(A,p(0)) := zi(t) = log

∏
j

(yi,j(t))
φαi,j

 = φ
n∑
j=1

αi,j (log ũj,i(t)− log pj(0)p̃j(t)) ,

where ũj,i(t) denotes an observable quantity encoding ũj,i(t) = log(uj,i(t)r̂j(t)ηi(t)/qi). This allows

building a proxy for vi(t) in (17) and (23) (that we denote as Ṽ LM
i (t) and Ṽ SM

i (t) for the long and

short memory, respectively), that depends on n2+3n+2 unknown quantities: γi, φ, p1(0), . . . , pn(0),

v
(0)
1 , . . . , v

(0)
n , v

(∗)
1 . . . , v

(∗)
n , and A. In the long memory case, this is defined as follows:

Ṽ LM
i (t) =

v
(0)
i + γiv

(∗)
i

∑t
`=1 φ

2
(∑n

j=1 αi,j ũj,i(`)− log pj(0)p̃j(`)
)2

1 + γi
∑t

`=1 φ
2
(∑n

j=1 αi,j ũj,i(`)− log pj(0)p̃j(`)
)2 . (34)

In the short memory case, this is defined as follows:

Ṽ SM
i (t) =

Ṽ SM
i,t−1 + γiv

(∗)
i φ2

(∑n
j=1 αi,j ũj,i(t)− log pj(0)p̃j(t)

)2

1 + γiφ2
(∑n

j=1 αi,j ũj,i(t)− log pj(0)p̃j(t)
)2 , (35)

Combining (33) and (11), we are able to build the error function after observing a sequence of T

commodity-by-commodity tables:
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E(γ̂, p̂,q,v(0),v(∗), A) =
T∑
t=1

 ∑
(i,j):uj,i(t)>0

(
log ũj,i(t)− log qiφṼ

f
i (t)αi,j

)2

 ,

=

T∑
t=1

 ∑
(i,j):ui,j(t)>0

(
log

ũj,i(t)

(qiφαi,j)

(
1 + γiRi(A, p̂)2

)
v

(0)
i + γiv

(∗)
i Ri(A, p̂)2

)2
 ,

where f ∈ {LM,SM}. The least-square estimation is obtained by solving

min E(γ̂, p̂,v(0),v(∗), A), subj. to
n∑
j=1

αi,j = 1, γ̂, p̂,v(0),v∗ ≥ 0. (36)

Using this estimation approach and benefiting from the available observations of ũi,j(t), ri(t),

and p̃i(t), we solve (36) for both cases of long and short learning methods. Figure 1 shows the

estimated input-output elasticity structures αi,j in the form of network plots for both cases. Figure

2 illustrates the corresponding frequency values of αi,j in the form of histograms.

Figure 1: Network plots for the estimated input-output elasticity structures, based on the long memory assumption

(left plot) and short memory assumption (right plot).
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Figure 2: Histograms for the estimated input-output elasticity structures, based on the long memory assumption

(left plot) and short memory assumption (right plot).
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Exploring the estimated values of v
(0)
1 , . . . v

(0)
n and v

(∗)
1 , . . . v

(∗)
n , Table 1 provides a classification

of upward and downward learning industries, based on v
(0)
i < v

(∗)
i and v

(0)
i ≥ v

(∗)
i , respectively. We
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regard an industry to be upward (downward) learning if its starting belief of the returns to scale is

smaller (larger) than the actual returns to scale.

Table 1: Classification of the upward versus downward learning industries based on the estimated returns to scale

parameters v
(0)
i and v

(∗)
i .

v
(0)
i < v

(∗)
i (upward learning) v

(0)
i ≥ v

(∗)
i (downward learning)

Long

memory

Support activities for mining, Mineral products,

Primary metals, Motor vehicles, Furniture, Pa-

per products, Wholesale trade, Food and beverage

stores, General merchandise stores, Other retail,

Rail transportation, Water transportation, Truck

transportation, Transit and ground transportation,

Other transportation activities, Warehousing and

storage, Internet publishing and information ser-

vices, Securities and commodity contracts, Insur-

ance carriers, Funds and financial vehicles, Hous-

ing, Rental and leasing services, Social assistance,

Gambling and recreation industries, Other ser-

vices, except government, Federal government en-

terprises.

Farms, Forestry and fishing, Oil and gas extrac-

tion, Mining, Utilities, Construction, Wood prod-

ucts, Fabricated metal, Machinery, Computer and

electronics, Electrical equipment, Transportation

equipment, Miscellaneous manufacturing, Food

and beverage, Textile product mills, Apparel and

leather products, Printing and support activities,

Petroleum and coal products, Chemical products,

Plastics and rubber products, Motor vehicle deal-

ers, Air transportation, Pipeline transportation,

Publishing industries, Motion picture and sound

recording, Broadcasting and telecommunications,

Federal Reserve banks, Other real estate, Legal

services, Computer systems design, Miscellaneous

technical services, Management of companies, Ad-

ministrative and support services, Waste manage-

ment, Educational services, Ambulatory health

care services, Hospitals, Nursing and residential

care facilities, Performing arts, Accommodation,

Food services and drinking places, Federal general

government (defense), Federal general government

(nondefense).

Short

memory

Mining, Support activities for mining, Mineral

products, Primary metals, Motor vehicles, Fur-

niture, Paper products, Wholesale trade, Food

and beverage stores, General merchandise stores,

Other retail, Rail transportation, Water trans-

portation, Truck transportation, Ground trans-

portation, Other transportation activities, Ware-

housing and storage, Securities and commodity

contracts, Insurance carriers, Funds and financial

vehicles, Housing, Rental and leasing services, Hos-

pitals, Gambling and recreation industries, Other

services, except government, Federal government

enterprises.

Farms, Forestrycand fishing, Oil and gas extrac-

tion, Utilities, Construction, Wood products, Fab-

ricated metal products, Machinery, Computer and

electronics, Electrical equipment, Transportation

equipment, Miscellaneous manufacturing, Food

and beverage, Textile product mills, Apparel and

leather products, Printing and support activities,

Petroleum and coal products, Chemical products,

Plastics and rubber products, Motor vehicle deal-

ers, Air transportation, Pipeline transportation,

Publishing industries, Motion picture and sound

recording, Broadcasting and telecommunications,

Internet publishing and information services, Fed-

eral Reserve banks, Other real estate, Legal ser-

vices, Computer systems design, Miscellaneous

technical services, Management of companies, Ad-

ministrative and support services, Waste manage-

ment, Educational services, Ambulatory health

care services, Nursing and residential care facili-

ties, Social assistance, Performing arts, Accommo-

dation, Food services and drinking places, Federal

general government (defense), Federal general gov-

ernment (nondefense).
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According to Table 1, the only industries whose upward versus downward classifications do

not coincide in the two learning methods are: Internet publishing and information services, Social

assistance, Mining, Hospitals. To explore further these discrepancies, Table 2 provides a compact

view of the differences of both estimations at the aggregate level, based on summary statistics over

the 69 sectors. The correlations between the resulting estimates at the bottom of Table 2 supports

the consistency between the two learning methods (cor = 0.920, and cor = 0.944, for the long and

short memory, respectively), as well as the estimation of the material input intensity (φ = 0.431,

and φ = 0.432, for the long and short memory, respectively).

While these two estimations are compatible in terms of A and φ (as also supported by Figure

1 and Figure 2), seemingly larger divergences appear in terms of v
(0)
i and v

(∗)
i . Specifically, all

the values of v
(0)
i and v

(∗)
i estimated under the long memory assumption are larger than the ones

estimated under the short memory assumption, suggesting a non-negligible impact of the learning

assumption on the least square estimation of v
(0)
i and v

(∗)
i . Although the correlation between v

(0)
i

and v
(∗)
i is negative for both learning methods, it is stronger when the long memory assumption

is adopted (cor = -0.526) than for the case of short memory (cor = -0.382). Hence, sectors with

increasing returns to scale have a tendency to underestimate their parameters, and vice-versa for

those with decreasing returns to scale.

Table 2: The estimated returns to scale parameters v
(0)
i and v

(∗)
i .

v
(0)
i v

(∗)
i

Min Median Max Min Median Max corr φ

Long memory 0.869 1.332 1.915 0.463 1.285 1.524 -0.526 0.431

Short memory 0.645 1.149 1.429 0.463 1.091 1.364 -0.382 0.432

corr 0.920 0.944

Beyond providing an empirical grounding for our theoretical results, this estimation approach

attests that the endogenous learning in input-output economies can be tested in practice, using

state-of-the-art statistical methodologies, once the learning equations are consistently embedded in

a multi-sector general equilibrium model.

7 Conclusions

In this work, a multi-sector dynamic general equilibrium model is embedded into the framework

information collection and processing by economic agents (El-Gamal and Sundaram, 1993; Cogley

and Sargent, 2008), with a view to address the problem of endogenous learning of profit-relevant

parameters by profit-maximizing firms. The proposed model allowed addressing the fundamental

economic question concerning the ability of firms to discover their own production processes.

To do so, we considered a collection of representative firms unaware of the values of certain profit-

relevant parameters, that operate in a non-deterministic production environment. We focused on

the specific case of the returns to scale parameter, in line with a long stream of contributions

(Starrett, 1977; Golany and Yu, 1997; Basu and Fernald, 1997; Banker et al., 2004; Ackerberg et al.,
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2015; Gong and Hu, 2016). Contextually, the proposed learning mechanism relied on an incomplete

but perfect information setting, where firms dynamically observe the realized production outcomes

after taking input decisions, while lacking a complete knowledge of their own returns to scale.

Our results shed light on how idiosyncratic shocks translate into learning dynamics of the returns

to scale and input-output elasticity structure, providing insights on some fundamental aspects.

- We provided a closed-form characterization of the MAP estimator for the firms’ update of their

beliefs about the returns to scale. Contextually, we showed that all the relevant information

to compute this MAP estimator is encoded in the input decisions.

- We characterized closed-form conditions under which firms are able to learn the true returns

to scale (namely, the belief sequence converges to the true parameter), and we showed that

these conditions are exclusively related to the the manner in which input decisions are taken.

- We showed that, under the long-memory approach, substantial and enduring economic growth,

coupled with a consequent rise in the series of input quantities, enhances the dynamic learning

of the true returns to scale. This establishes a theoretical relationship between learning and

economic growth, which has been already conjectured since the seminal work of Arrow (1962).

- Under the specific case of constant returns to scale, the mismatch between the true (unknown)

returns to scale and those predicted by firms has a critical effect on input decisions. In this

vein, we established a price condition which is consistent not only with the correct knowledge

of the returns to scale v
(∗)
i , but also with any vi(t), as long as {vi(t)}t converges. Hence, for

input decisions not to be affected by firms inferential error, the limit prices must reflect the

centrality of sectors in the multi-sector network.

- We proposed an estimation approach that allows the empirical testing of the endogenous learn-

ing in multi-sector economies, and uncovered empirical figures about upward and downward

learning sectors.

Overall, this contribution establishes an integrated modelling approach to address the problem

of learning by economic agents, from within the general equilibrium framework. This paves the

way to further extensions to address the learning of different profit-relevant parameters, based on

the proposed approach. In this regard, a first line of further research that is worth mentioning

is to extend the uncertainty about the returns to scale to the uncertainty about all input-output

elasticities. Secondly, future research can focus on applying of the proposed MAP estimator in the

Bayesian general equilibrium of Toda (2015), where non-optimizing agents respond to prices by

setting a prior distribution on their demand. Likewise, the impact of public policy on the speed of

convergence remains to be studied. Finally, the inclusion of durable capital inputs (which implies

inter-temporal decisions by firms) might have an impact on the learning dynamics and deserves to

be part of a future analysis.
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Appendix A: Proofs of propositions

Lemma 1

Proof. Consider the problem (1) of a representative household maximizing her lifetime utility, sub-

ject to the inter-temporal budget constraint. The first order conditions of the corresponding La-

grangian function imply
κi
κj

cj(t)

ci(t)
=

pi(t)

pj(t)
, (37)

for each pairs of sectors (i, j). After replacing (37) into the budget constraint, the demand curve

for the i-th sector is obtained (7).

Next, by substituting the optimal ci(t) back into the inter-temporal budget constraint, the

consumption-saving problem (1) can be defined in terms of the variables a(t):

max
a(t) : t=1...T−1

T−1∑
t=1

ρt
∑
i∈N

κi log

(
κi
pi(t)

(w(t)− p̄(a(t+ 1)− a(t)) + ϑ(t)a(t))

)
, (38)

when wage w(t+ 1) and dividend ϑ(t+ 1) are known by the household at time t, and

max
a(t) : t=1...T−1

E

[
T−1∑
t=1

ρt
∑
i∈N

κi log

(
κi
pi(t)

(w(t)− p̄(a(t+ 1)− a(t)) + ϑ(t)a(t))

)]
, (39)

when wage w(t+ 1) and dividend ϑ(t+ 1) are unknown by the household at time t. For the case of

(38), the first-order conditions with respect to a(t+ 1) yield (for each 1 ≤ t ≤ T − 2)

p̄

w(t)− p̄(a(t+ 1)− a(t)) + ϑ(t)a(t)
=

ρ(p̄+ ϑ(t))

w(t+ 1)− p̄(a(t+ 2)− a(t+ 1)) + ϑ(t+ 1)a(t+ 1)
.

For the case of (39), the first-order conditions with respect to a(t+ 1) yield (for each 1 ≤ t ≤ T −2)

p̄

w(t)− p̄(a(t+ 1)− a(t)) + ϑ(t)a(t)
= E

[
ρ(p̄+ ϑ(t))

w(t+ 1)− p̄(a(t+ 2)− a(t+ 1)) + ϑ(t+ 1)a(t+ 1)

]
.

Lemma 2

Proof. Consider the problem of the i-th representative firm independently maximizing its profit

(4) at the end of each production period with respect to the input decisions yi,j(t), subject to the

non-negativity constraints yi,j(t) ≥ 0, for j = 1 . . . n. We distinguish two cases.

First case: vi > 0. Since Eη[ri(t) - ei(t)|vi] is concave in {li(t), yi1(t), . . . , yin(t)}, for each i ∈ N+,

the equilibrium point is characterized by the corresponding first-order conditions:

li(t) =
(1− φ)Eη[ri(t)]

w(t+ 1)
and yi,j(t) =

φαi,jviEη[ri(t)]

pj(t)
, (40)

when 0 < φ < 1. Note that when αi,j = 0, the optimal decision is in the boundary, as yi,j(t) = 0.

By contrast, as long as αi,j > 0, the non-negativity of labor and material input does not need to be

explicitly included, as any li(t) and yi,j(t) solving (40) are non-negative. Replacing Eη[ri(t)] with

qipi(t+ 1)xi(t) yields (10) and (11).
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Second case: vi = 0. In this case Eη[ri(t) - ei(t)|vi] is decreasing in yi,1(t), . . . yi,n(t), so that

the optimal solution of the profit maximizing representative firm is yi,j = 0, for all i ∈ N0, j ∈ N .

Hence, the first-order conditions with respect to li(t) yields:16

pi(t+ 1)(1− φ)
1

li(t)φ
= w(t+ 1),

which implies (12).

Proposition 1

Proof. We drop the index i and the time period t from vi(t), as this proof is valid for all firms

and all periods. Based on Assumption 3, π0,i is the density function of a zero-truncated Gaussian

random variable with parameters v
(0)
i and τi. For the case yi,j(`)

φαi,j > 0 for all ` = 1, . . . , t and

j ∈ N , we have zi(`) > −∞, for all ` = 1, . . . , t, so that we can write

L (v; Ii(t))π0,i(v) ∝


exp

(
−1

2
θi(v, Ii(t))

)
if v ≥ 0,

0 otherwise,

where θi is defined as

θi(v, Ii(t)) =



t∑
`=1

1

σ2
i

(si(`)− vzi(t))2 +
1

τ2
i

(
v − v(0)

i

)2
if t > 1

1

τ2
i

(
v − v(0)

i

)2
, if t = 1.

To maximize the posterior distribution for each period t, it is sufficient to solve

max
v

exp (−θi(v, Ii(t))) , subject to v ≥ 0,

as
∫

L (v; Ii(t))π0,i(v) dv is constant with respect to v. By the Karush-Kuhn-Tucker conditions:

∂

∂v

[
exp

(
−1

2
θi(v, Ii(t))

)
− ζv

]
= 0 and ζv = 0,

so that

exp

(
−1

2
θi(v, Ii(t))

)(
∂

∂v
θi(v, Ii(t))

)
= ζ.

Due to the complementarity either ζ = 0 or v = 0. Therefore, if v > 0, then ζ = 0 and
∂
∂vθi(v, Ii(t)) = 0. This implies that for any i ∈ N , we have vi(t+ 1) is the maximum between zero

and the solution of
t∑

`=1

1

σ2
i

zi(t)
(
si(`)− vi(t+ 1)zi(t)

)
=

1

τ2
i

(
vi(t+ 1)− v(0)

i

)
if t > 1

vi(t+ 1) = v
(0)
i if t = 1.

16Since limz→0+ z
z = 1, we adopt the convention 00 = 1.
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Therefore, we obtain (17), for the case yi,j(`)
φαi,j > 0 for all ` = 1, . . . , t and j ∈ N . Then, by

continuous extension, if yij(l)→ 0 for some i, j, l, zi(l)→ −∞. Therefore

vi(t+ 1) = lim
yij(l)→0

(
v

(0)
i + γi

∑t
`=1 zi(`)si(`)(

1 + γi
∑t

`=1 zi(`)
2
) )+

= lim
yij(l)→0

v
(∗)
i γi

∑t
`=1 zi(`)zi(`)

γi
∑t

`=1 zi(`)
2

= v
(∗)
i .

Proposition 2

Proof. Let Y(t) = {Y (`)}t`=0, and for a given i ∈ N define:

bi(t) = −
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣ and Ui(t) = vi(Y(t)) + ϕi(Y(t))ε,

where ε ∼ N(0, 1). We distinguish two cases.

- Case 1. If
∑t

`=1 zi(`) > 0, we have,

E[max(0, Ui(t))] = E[(vi(Y(t)) + ϕi(Y(t))ε)+]

= vi(Y(t))

∫ ∞
bi(t)

1√
2π
e−ε

2/2dε + ϕi(Y(t))

∫ ∞
bi(t)

ε
e−ε

2/2

√
2π

dε

= vi(Y(t))(1− F (bi(t))) + ϕi(Y(t))

∫ ∞
bi(t)

ε
e−ε

2/2

√
2π

dε.

(41)

To compute the latter integral, we define

B(b,m) =

∫ ∞
b

εm
1√
2π
e−ε

2/2dε

and note that using the integration by parts

B(b,m− 2) =

∫ ∞
b

εm−2 1√
2π
e−ε

2/2dε

=
1

m− 1

(
1√
2π

lim
x→∞

[
xm−1e−x

2/2
]
− bm−1f(b) +B(b,m)

)
=

1

m− 1

(
B(b,m)− bm−1f(b)

)
where the last equality comes from the fact that

0 ≤ lim
x→∞

[
xm−1e−x

2/2
]

= lim
x→∞

[
xe
− x2

2(m−1)

]m−1

≤ lim
x→∞

[
e
− x2

2(m−1)
+x
]m−1

= 0.

We obtain the recurrence relation B(b,m) = (m− 1)B(b,m− 2) + bm−1f(b), so that the first

partial moment is B(b, 1) = f(b). Substituting it back into (41), we obtain the expected

vi(t+ 1) in (25).

E[vi(t+ 1)] = vi(Y(t))(1− F (bi(t))) + ϕi(Y(t))f(bi(t))

=

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(1− F (bi(t))) + γiσiz̃

(1)
i (t)f (bi(t))

1 + γiz̃
(2)
i (t)

.
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Applying the same procedure for the second order moment, and using the recurrence relation

B(b,m) = (m− 1)B(b,m− 2) + bm−1f(b), with the initial conditions
B(b, 0) =

∫ ∞
b

1√
2π
e−ε

2/2dε = 1− F (b),

B(b, 1) = 0B(b,−1) + f(b) = f(b),

we have B(b, 2) = B(b, 0) + bf(b), so that

E[((Ui(t))
+)2] = E[((vi(Y(t)) + ϕi(Y(t))ε)+)2]

=
[
vi(Y(t))2 + ϕi(Y(t))2

]
[1− F (bi(t))] + vi(Y(t))ϕi(Y(t))f(bi(t)).

- Case 2. If
∑t

`=1 zi(`) < 0, we have,

E[Ui(t)
+] =

∫ bi(t)

−∞
(vi(Y(t)) + ϕi(Y(t))ε)

1√
2π
e−ε

2/2dε

= vi(Y(t))F (bi(t)) + ϕi(Y(t))

∫ bi(t)

−∞
ε

1√
2π
e−ε

2/2dε.

Since
∫ bi
−∞ ε

1√
2π
e−ε

2/2dε = −
∫ +∞
bi

ε 1√
2π
e−ε

2/2dε = −f(bi). Hence,

E[vi(t+ 1)] = vi(Y(t))F (bi(t)) − ϕi(Y(t))f(bi(t))

=

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
F (bi(t))− γiσiz̃(1)

i (t)f (bi(t))

1 + γiz̃
(2)
i (t)

.

To compute the latter integral, we define

B(b,m) =

∫ b

−∞
εm

1√
2π
e−ε

2/2dε.

By the same arguments, we obtain that B(b,m) = (m− 1)B(b,m− 2)− bm−1f(b). Therefore

E[((Ui(t))
+)2] =

[
vi(Y(t))2 + ϕi(Y(t))2

]
F (bi(t))− vi(Y(t))ϕi(Y(t))f(bi(t)).

Proposition 3

Proof. Using (17) and (18), we consider the probability density function of vi(t + 1), conditioned

on the input decisions

P(vi(t+ 1) | Y(t)) =



exp

(
−(vi(t)− vi(Y(t)))2

2|ϕi(Y(t))|2

)
|ϕi(Y(t))|

√
2π

, if vi(t+ 1) > 0

F (−vi(Y(t))/ϕi(Y(t))) , if vi(t+ 1) = 0

0, otherwise.
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Note that for vi(t+ 1) > 0, if vi(Y(t))) > 0, then P(vi(t+ 1) | Y(t)) is maximized when vi(t+ 1) =

vi(Y(t))), with P(vi(Y(t))) | Y(t)) = (|ϕi(Y(t))|
√

2π)−1. Likewise, P( 0 | Y(t)) = F (−vi(Y(t))/ϕi(Y(t))).

Therefore,

max
vi(t+1)

P(vi(t+ 1) | Y(t)) =


vi(Y(t)) if

1

|ϕi(Y(t))|
√

2π
≥ F (−vi(Y(t))/ϕi(Y(t))) ,

0, otherwise.

Proposition 4

Proof. We distinguish the following cases: Recall the following sequence (defined in (18))

vi(t) =
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

γiσiz̃
(1)
i (t)

.

(1) If lim
t→+∞

|z̃(1)
i (t)| = lim

t→+∞
z̃

(2)
i (t) = +∞ and lim

t→+∞
vi(t) = L < +∞, then vi(t) = L + o(t) with

lim
t→+∞

o(t) = 0. Then,

lim
t→+∞

E[vi(t)] = lim
t→+∞

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(1− F (−L− o(t)) + σiγi|z̃(1)

i (t)|f(−L− o(t))

1 + γiz̃
(2)
i (t)

= v
(∗)
i (1− F (−L)) + σif(−L) lim

t→+∞

|z̃(2)
i (t)|
z̃

(1)
i (t)

.

(2) If lim
t→+∞

z̃
(1)
i (t) = L1 ≤ +∞ and lim

t→+∞
z̃

(2)
i (t) = L2 ≤ +∞, let us consider the following function

Υ(x, y) =

(
v

(0)
i + γiv

(∗)
i y

)
Gi(x, y) + σiγixgi(x, y)

1 + γiy
.

Since Υ is continuous in R∗+ × R+, then we need to distinguish the two following cases:

(2.1) If L1 6= 0, then by continuity of Υ, we obtain that

lim
t→+∞

E[vi(t)] =

(
v

(0)
i + γiv

(∗)
i L2

)
Gi(L1, L2) + σiγiL1gi(L1, L2)

1 + γiL2
.

(2.2) If L1 = 0, then gi(z̃
(1)
i (t), z̃

(2)
i (t)) = o1(t) and Gi(z̃

(1)
i (t), z̃

(2)
i (t)) = 1 + o2(t) with

lim
t→+∞

o1(t) = lim
t→+∞

o2(t) = 0. Then,

E[vi(t)] =

(
v

(0)
i + γiv

(∗)
i z̃

(1)
i (t)

)
(1 + o2(t)) + σiγi|z̃(1)

i (t)|o1(t)

1 + γiz̃
(2)
i (t)

.

Therefore, we obtain

lim
t→+∞

E[vi(t)] = lim
t→+∞

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(1 + o2(t)) + σiγi|z̃(1)

i (t)|o1(t)

1 + γiz̃
(2)
i (t)

= lim
t→+∞

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(1 + o2(t))

1 + γiz̃
(2)
i (t)

=
v

(0)
i + γiv

(∗)
i L2

1 + γiL2
.

29



(3) If lim
t→+∞

z̃
(1)
i (t) = L1 and lim

t→+∞
z̃

(2)
i (t) =∞, then gi(z̃

(1)
i (t), z̃

(2)
i (t)) = o1(t) andGi(z̃

(1)
i (t), z̃

(2)
i (t)) =

1 + o2(t) with lim
t→+∞

o1(t) = lim
t→+∞

o2(t) = 0. Then,

E[vi(t)] =

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(1 + o2(t)) + σiγi|z̃(1)

i (t)|o1(t)

1 + γiz̃
(1)
i (t)

.

Therefore,

lim
t→+∞

E[vi(t)] = lim
t→+∞

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(1 + o2(t)) + σiγi|z̃(1)

i (t)|o(1)(t)

1 + γiz̃
(2)
i (t)

= lim
t→+∞

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
1 + γiz̃

(2)
i (t)

= v
(∗)
i .

(4) If lim
t→+∞

z̃
(1)
i (t) = ∞ and lim

t→+∞
z̃

(2)
i (t) = L2, then gi(z̃

(1)
i (t), z̃

(2)
i (t)) =

1√
2π

+ o1(t) and

Gi(z̃
(1)
i (t), z̃

(2)
i (t)) =

1

2
+ o2(t) with lim

t→+∞
o1(t) = lim

t→+∞
o2(t) = 0. Then,

E[vi(t)] =

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(
1

2
+ o2(t)) + σiγi|z̃(1)

i (t)|
( 1√

2π
+ o1(t)

)
1 + γiz̃

(2)
i (t)

.

Therefore,

lim
t→+∞

E[vi(t)] =

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(
1

2
+ o2(t)) + σiγi|z̃(1)

i (t)|
( 1√

2π
+ o1(t)

)
1 + γiz̃

(2)
i (t)

=

σiγi|z̃(1)
i (t)| 1√

2π

1 + γiz̃
(2)
i (t)

= lim
t→+∞

|z̃(1)
i (t)|

= +∞.

(5) If lim
t→+∞

|z̃(1)
i (t)| = lim

t→+∞
z̃

(2)
i (t) = lim

t→+∞

v
(0)
i + γiv

(∗)
i z̃

(2)
i (t)

γiσiz̃
(1)
i (t)

= +∞, then gi(z̃
(1)
i (t), z̃

(2)
i (t)) =

o1(t) and Gi(z̃
(1)
i (t), z̃

(2)
i (t)) = 1 + o2(t) with lim

t→+∞
o1(t) = lim

t→+∞
o2(t) = 0. Hence,

E[vi(t)] =

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(1 + o2(t)) + σiγi|z̃(1)

i (t)|o1(t)

1 + γiz̃
(2)
i (t)

.

Therefore,

lim
t→+∞

E[vi(t)] = lim
t→+∞

(
v

(0)
i + γiv

(∗)
i z̃

(2)
i (t)

)
(1 + o2(t)) + σiγi|z̃(1)

i (t)|o1(t)

1 + γiz̃
(2)
i (t)

= v
(∗)
i + lim

t→+∞

|z̃(1)
i (t)|o1(t)

z̃
(2)
i (t)

is undetermined.
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Proposition 5

Proof. We invoke Proposition 3 to characterize the mode of the MAP estimator:

M[vi(t) | Y(t)] = argmax
vi(t+1)

P(vi(t+1) | Y(t)) =


vi(Y(t)) if

1

|ϕi(Y(t))|
√

2π
≥ F

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣) ,
0 otherwise.

We construct the ordered set Ψi (as defined in (21)) as the collection of time periods for which

M[vi(t) | Y(t)] > 0. This allows constructing a sub-sequence by indexing the elements of Ψi by %(t),

for t ∈ N. Hence,

{ M[vi(t) | Y(t)] }t∈Ψi
≡ { vi(%(t)) }t≥0

Focusing on the sub-sequence {vi(%(t))}t≥0, we distinguish the following cases:

(1) If Ψi is a finite set, then there is a t0 ∈ N such that for each t ≥ t0, we have M[vi(t) | Y(t)] = 0

and therefore {M[vi(t) | Y(t)]}t converges to 0.

(2) Assume that Ψi is an infinite set. Then, without loss of generality, let Ψi ≡ N (in other words,

if Ψi 6≡ N, then there exists a bijection ϕ : N→ ϕ(N) = Ψi).

(2.1) If lim
t→∞

z̃
(2)
i (t) = +∞, then M[vi(t) | Y(t)] =

v
(0)
i + γiv

(∗)
i z̃

(2)
i (t)

1 + γiz̃
(2)
i (t)

. As a consequence, we

obtain

lim
t→+∞

M[vi(t) | Y(t)] = lim
t→+∞

v
(0)
i + γiv

(∗)
i z̃

(2)
i (t)

1 + γiz̃
(2)
i (t)

= lim
t→+∞

γiv
(∗)
i z̃

(2)
i (t)

1 + γz̃
(2)
i (t)

= v
(∗)
i .

(2.2) If lim
t→∞

z̃
(2)
i (t) = L2 < +∞, then there exists a function o(t) such that z̃

(2)
i (t) = L2 + o(t)

with lim
t→+∞

o(t) = 0. Then we obtain that

lim
t→+∞

M[vi(t) | Y(t)] = lim
t→+∞

v
(0)
i + γiv

(∗)
i (L2 + o(t))

1 + γi(L2 + o(t))

=
v

(0)
i + γiv

(∗)
i L2

1 + γiL2
.

Corollary 1

Proof. We have that

if lim
t→+∞

n∏
j=1

(yi,j(t))
φαi,j = +∞ then lim

t→+∞
zi(t) = +∞.

31



In such case, the input decisions are such that z̃
(2)
i (t) =

∑t−1
`=1 zi(`)

2 grows faster than z̃
(1)
i (t) =∑t−1

`=1 zi(`). Therefore, there exists t0 such that for all t > t0,

1

|ϕi(Y(t))|
=

∣∣∣∣∣1 + γiz̃
(2)
i (t)

γiσiz̃
(1)
i (t)

∣∣∣∣∣ ≥ √2π ≥
√

2πF

(
−

∣∣∣∣∣v(0)
i + γiv

(∗)
i z̃

(2)
i (t)

γiσiz̃
(1)
i (t)

∣∣∣∣∣
)

which implies that {
t ∈ N : |ϕi(Y(t))|

√
2πF

(
−
∣∣∣∣ vi(Y(t))

ϕi(Y(t))

∣∣∣∣) > 1

}
is a finite set and that Ψi is an infinite set. Hence, by Proposition 5,

lim
t→+∞

M[vi(t) | Y(t)] = v
(∗)
i .

Proposition 6 and Proposition 7

Proof. Proposition 6 and Proposition 7 are obtained by replacing v
(0)
i with vi(t) in Proposition 1,

and z̃
(1)
i (t) and z̃

(2)
i (t) with zi(t) and zi(t)

2, respectively, in Proposition 2. To lighten the exposition,

we avoid reporting whole expressions extensively.

Proposition 8

Proof. We consider the probability density function of vi(t), conditioned on the input decisions

P(vi(t+ 1) | Y(t)) =



exp

(
−(vi(t)− vi(Y(t)))2

2|ϕi(Y(t))|2

)
|ϕi(Y(t))|

√
2π

, if vi(t) > 0

F
(
−vi(Y(t))/ϕi(Y(t))

)
, if vi(t) = 0

0, otherwise.

Note that for vi(t) > 0, if vi(Y(t))) > 0, then P(vi(t) | Y(t)) is maximized when vi(t) = vi(Y(t))),

with P(vi(Y(t))) | Y(t)) =
1

|ϕi(Y(t))|
√

2π
. Likewise, P( 0 | Y(t)) = F

(
−vi(Y(t))/ϕi(Y(t))

)
. There-

fore,

max
vi(t)

P(vi(t) | Y(t)) =


vi(Y(t)) if

1

|ϕi(Y(t))|
√

2π
≥ F

(
−vi(Y(t))/ϕi(Y(t))

)
,

0 otherwise.

Proposition 9

Proof. Let us prove that the following sequence

Eεi(t)[vi(t+ 1)] =
Eεi(t)[vi(t)] + γiv

(∗)
i zi(t)

2

1 + γizi(t)2
Gi(zi(t), zi(t)

2) +
γiσi|zi(t)|

1 + γizi(t)2
gi(zi(t), zt(t)

2)
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is convergent. For this, let us consider the following sequence

Bi(t) =
vi(t) + γiv

(∗)
i zi(t)

2

γiσizi(t)
.

We distinguish two cases:

(1) If lim
t→+∞

|zi(t)| = +∞, then lim
t→+∞

Bi(t) = +∞ and consequently, gi(zi(t), zi(t)
2) = o1(t) and

Gi(zi(t), zi(t)
2) = 1 + o2(t) with lim

t→+∞
o1(t) = lim

t→+∞
o2(t) = 0. Then

Eεi(t)[vi(t+ 1)] =

(
Eεi(t)[vi(t)] + γiv

(∗)
i zi(t)

)
(1 + o2(t)) + σiγi|zi(t)|o1(t)

1 + γizi(t)2
.

Therefore, we obtain that

lim
t→+∞

Eεi(t)[vi(t+ 1)] = lim
t→+∞

(
Eεi(t)[vi(t)] + γiv

(∗)
i zi(t)

2
)

(1 + o2(t)) + σiγi|zi(t)|o1(t)

1 + γizi(t)2

= lim
t→+∞

Eεi(t)[vi(t)] + γiv
(∗)
i zi(t)

2

1 + γizi(t)2
.

Define the following sequence as follows by

V̄i(t) = Eεi(t)[vi(t)], and V̄i(t+ 1) =
V̄i(t) + γiv

(∗)
i zi(t)

2

1 + γizi(t)2
.

We have the following implications:

I.1. If V̄i(0) ≥ v(∗)
i , then the sequence

{
V̄i(t)

}
t≥0

is decreasing and lower bounded by v
(∗)
i .

I.2. If V̄i(0) ≤ v(∗)
i , then the sequence

{
V̄i(t)

}
t≥0

is increasing and upper bounded by v
(∗)
i .

For the first case, by induction we have V̄i(0) ≥ v(∗)
i and X1 ≥ v(∗)

i . Assume that V̄i(t) ≥ v(∗)
i .

If V̄i(t+ 1) < v
(∗)
i , then

V̄i(t) + γiv
(∗)
i zi(t)

2

(1 + γizi(t)2)
< v

(∗)
i ,

which implies that V̄i(t) < v
(∗)
i which is a contradiction. Hence,

V̄i(t+ 1)− V̄i(t) =
V̄i(t) + γiv

(∗)
i zi(t)

2

(1 + γizi(t)2)
− V̄i(t)

= γiv
(∗)
i zi(t)

2 v
(∗)
i − V̄i(t)

(1 + γizi(t)2)

≤ 0.

Then the sequence
{
V̄i(t)

}
t≥0

is decreasing. We can prove the second case by an analogous

reasoning. We then conclude that the sequence
{
V̄i(t)

}
t≥0

is convergent.

(2) For the case lim
t→+∞

|zi(t)| = L < +∞, let us assume that the sequence {Eεi(t)[vi(t)]}t is diver-

gent. Then, lim
t→+∞

Bi(t) = +∞ and consequently, gi(zi(t), zi(t)
2) = o1(t) and Gi(zi(t), zi(t)

2) =

1 + o2(t) with lim
t→+∞

o1(t) = lim
t→+∞

o2(t) = 0. Therefore, we obtain

Eεi(t)[vi(t+ 1)] =

(
Eεi(t)[vi(t)] + γiv

(∗)
i zi(t)

)
(1 + o2(t)) + σiγi|zi(t)|o1(t)

1 + γizi(t)2
,
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which implies

lim
t→+∞

Eεi(t)[vi(t+ 1)] = lim
t→+∞

(
Eεi(t)[vi(t)] + γiv

(∗)
i zi(t)

2
)

(1 + o2(t)) + σiγi|zi(t)|o1(t)

1 + γizi(t)2

= lim
t→+∞

Eεi(t)[vi(t)] + γiv
(∗)
i zi(t)

2

1 + γizi(t)2
.

Next, we define the following sequence:

V̄i(t) = Eεi(t)[vi(t)], and V̄i(t+ 1) =
V̄i(t) + γiv

(∗)
i zi(t)

2

1 + γizi(t)2
.

By I.1 and I.2, the sequence {V̄i(t)}t is convergent, which is a contradiction with the divergence

of {Eεi(t)[vi(t)]}t. Therefore, the sequence
{
V̄i(t)

}
t≥0

converges.

By using the fact that in both cases (i) and (ii), {Eεi(t)[vi(t)]}t is a convergent sequence, since

V̄i(t+ 1) =
V̄i(t) + γiv

(∗)
i zi(t)

2

1 + γizi(t)2
.

we have

V̄i(t+ 1)− v(∗)
i =

V̄i(t)− v(∗)
i

1 + γizi(t)2
, and V̄i(t)− v(∗)

i =
V̄i(0)− v(∗)

i
t−1∏
h=1

(1 + γizi(t)2)

.

Hence, we obtain that

lim
t→+∞

Eεi(t)[vi(t)] =


v

(∗)
i , if lim

t→+∞
zi(t) 6= 0

v
(∗)
i +

vi(0)− v(∗)
i

∞∏
h=1

(1 + γizi(t)2)

, if lim
t→+∞

zi(t) = 0.

Proposition 10

Proof. Conditioned on the input decisions Y(t), the MAP estimator follows a deterministic sequence:

vi(t+ 1) = 1̃i,t
vi(t) + γiv

(∗)
i zi(t)

2

(1 + γizi(t)2)
. (42)

By recursively substituting vi(t) into vi(t+ 1), we obtain:

vi(1) = 1̃i,0
v

(0)
i + γiv

(∗)
i zi(0)2

Ri,0
,

vi(2) = 1̃i,01̃i,1
v

(0)
i + γv

(∗)
i zi(0)2

Ri,0Ri,1
+ 1̃i,1

γiv
(∗)
i zi(1)2

Ri,1
,

vi(3) = 1̃i,01̃i,11̃i,2
v

(0)
i + γiv

(∗)
i zi(0)2

Ri,0Ri,1Ri,2
+ 1̃i,11̃i,2

γiv
(∗)
i zi(1)2

Ri,1Ri,2
+ 1̃i,2

γiv
(∗)
i zi(2)2

Ri,2
,

vi(4) = 1̃i,01̃i,11̃i,21̃i,3
v

(0)
i + γv

(∗)
i zi(0)2

Ri,0Ri,1Ri,2Ri,3
+ 1̃i,11̃i,21̃i,3

γiv
(∗)
i zi(1)2

Ri,1Ri,2Ri,3
+ 1̃i,21̃i,3

γiv
(∗)
i zi(2)2

Ri,2Ri,3
+ 1̃i,3

γiv
(∗)
i zi(3)2

Ri,3
,

...
...

vi(t) = v
(0)
i

(
t−1∏
h=0

1̃i,h
Ri,h

)
+ v

(∗)
i

(
γi

t−1∑
h=0

z(h)2
t−1∏
s=h

1̃i,h
Ri,s

)
,
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where Ri,t = (1 + γizi(t)
2). This proves (26). We distinguish the following cases:

(1) If Ψ is a finite set, then there is a t0 ∈ N such that for each t ≥ t0, we have vi(t+ 1) = 0 and

therefore {vi(t)}t converges to 0.

(2) Assume that Ψi is an infinite set and lim
t→∞

zi(t) = 0. Then, without loss of generality, let

Ψi ≡ N (in other words, if Ψi 6≡ N, then there exists a bijection ϕ : N→ ϕ(N) = Ψi).

We now note that the convergence of {vi(t)}t is a direct consequence of the following result:

I.3 If vi(0) ≥ v(∗)
i , then the sequence {vi(t)}t is decreasing and lower bounded by v

(∗)
i .

I.4 If vi(0) ≤ v(∗)
i , then the sequence {vi(t)}t is increasing and upper bounded by v

(∗)
i .

In the case of I.3, we first prove that {vi(t)}t is lower bounded by v
(∗)
i . We proceed by induction

and let vi(0) ≥ v(∗)
i . We show that if vi(t) ≥ v(∗)

i , then vi(t+ 1) ≥ v(∗)
i . By contradiction, let

us assume that vi(t+ 1) < v
(∗)
i . Then, we have

vi(t) + γiv
(∗)
i zi(t)

2

(1 + γizi(t)2)
< v

(∗)
i .

This implies that vi(t) < v
(∗)
i , which is a contradiction. Still in I.3, we can now prove that the

sequence {vi(t)}t is decreasing:

vi(t+ 1)− vi(t) =
vi(t) + γiv

(∗)
i zi(t)

2

(1 + γizi(t)2)
− vi(t)

= γiv
(∗)
i zi(t)

2 v
(∗)
i − vi(t)

(1 + γizi(t)2)

≤ 0.

In the case of I.4, we can use the same argument to prove that {vi(t)}t is increasing and upper

bounded by v
(∗)
i .

Using the proof of Proposition 9, we know that {Eεi(t)[vi(t)]}t is a convergent sequence, and

that in the case lim
t→+∞

zi(t) = 0 we have

lim
t→+∞

vi(t) = v
(∗)
i +

vi(0)− v(∗)
i

∞∏
h=1

(1 + γizi(h)2)

.

(3) If Ψ is an infinite set and lim
t→∞

zi(t) 6= 0, then we show that {vi(t)}t converges to v
(∗)
i . In doing

so, we first rewrite (42) as

vi(t+ 1) =

(
1

1 + γizi(t)2

)[
vi(t) + γiv

(∗)
i zi(t)

2
]
.

Next, we note that

vi(t+ 1)− v(∗)
i =

vi(t)− v(∗)
i

1 + γizi(t)2

implies the monotonicity of the sequence (namely, if vi(0) ≥ v(∗)
i then vi(t+ 1) ≤ vi(t) and if

vi(0) ≤ v(∗)
i then vi(t+ 1) ≥ vi(t)). Next, we have

vi(t+ 1)− v(∗)
i

vi(t)− v(∗)
i

=
1

1 + γizi(t)2
≤ 1.
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Case 1) If the sequence {zi(t)2}t is divergent, then ∀M > 0, there exists t0 > 0, such that

∀t > t0, zi(t)
2 > M . Therefore, for M = 1, ∃t0 > 0 , ∀t > t0, zi(t)

2 > 1. Then

1

1 + γizi(t)2
≤ 1

1 + γi
, for t > t0.

Let γi = 1
1+γi

< 1, then we obtain

|vi(t+ 1)− v(∗)
i | ≤ γi|vi(t)− v

(∗)
i |.

This implies

|vi(t)− v(∗)
i | ≤ γ

t
i|vi(0)− v(∗)

i | −→t→∞ 0.

Case 2) If the sequence {zi(t)2}t converges to M , then by hypothesis

lim
t→∞

zi(t) = M 6= 0.

As a consequence, ∀ε > 0, ∃t0 > 0 such that ∀t > t0, M − ε ≤ r2(t) ≤M + ε. Choose an

arbitrary ε > 0 with M − ε > 0. Then, ∃t0 > 0 such that ∀t > t0, 0 < M − ε ≤ r2(t).

Therefore
1

1 + γizi(t)2
≤ 1

1 + (M − ε)γi
.

Let γi = 1
1+(M−ε)γi < 1, then we obtain

|vi(t+ 1)− v(∗)
i | ≤ γi|vi(t)− v

(∗)
i |.

This implies that

|vi(t)− v(∗)
i | ≤ γ

t
i|vi(0)− v(∗)

i | −→t→∞ 0.

Lemma 3

Proof. The equilibrium prices for sectors inN+ andN0 are characterized separately. By definition of

Eη[ri(t)], we replace the demand for labor and material input (40) into the Cobb-Douglas production

and obtain

r̂i(t) = pi(t+ 1)qili(t)
1−φ

n∏
s=1

yi,s(t)
φδi,s , (43)

where qi = exp(ai + σ2
i /2). From (40) and (43), we obtain

r̂i(t) = Di(t)
pi(t+ 1)

w(t+ 1)1−φ r̂i(t)
1−φ+φvi , where Di(t) = qi(1−φ)1−φ

(
φvi

n∏
s=1

(
αi,s
ps(t)

)αi,s)φvi
. (44)

By (44), we obtain that if vi = 1, then

pi(t+ 1) =
w(t+ 1)1−φ

Di(t)
, (45)
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and if vi 6= 1 and vi 6= 0, then

r̂i(t) =

(
w(t+ 1)1−φ

pi(t+ 1)Di(t)

) 1

φ(vi − 1)
. (46)

Plugging (40) into the market clearing conditions (5) and using the consumption demand (7) yields:

pj(t)xj(t− 1)− w(t)κj =
n∑
i=1

φviαi,j r̂i(t), for j ∈ N . (47)

Let us consider xj(t) = pj(t)xj(t−1)−w(t)κj . In matrix form, (47) implies x(t) = φ∆>r̂(t). Hence,

r̂(t) =
1

φ
(∆>)−1x(t). (48)

Since r̂i(t) = pi(t+ 1)qiµi(t), and by (45), (46) and (48), we obtain that the equilibrium prices and

expected production, for each i ∈ N :

pi(t+ 1) =
w(t+ 1)1−φ

Di(t)

(
φ

[(∆)>)−1]i x(t)

)φ(vi−1)

,

µi(t) =
Di(t)

w(t+ 1)1−φ

([
(∆>)−1

]
i
x(t)

φ

)1+φ(vi−1)

.

Using (10) and the total labor supply condition (6) at the t-th period, the unitary salary reduces

to:

w(t) =


0, for t = 1(

1− φ
φ

) n∑
j=1

r̂j(t− 1), for t = 2, . . . , T.
(49)

If vi = 0. Using (12) and (6), we have

∑
i∈N0

(
(1− φ)pi(t+ 1)

w(t+ 1)

) 1
φ

= 1−
∑
i∈N+

li(t),

with
∑

i∈N+
li(t) being determined in Lemma 2. We obtain the following characterization of equi-

librium prices and expected production:17

pi(t+ 1) = di where di is the solution of
∑
i∈N0

(
(1− φ)di
w(t+ 1)

) 1
φ

= 1−
∑
i∈N+

li(t), (50)

µi(t) =

(
(1− φ)pi(t+ 1)

w(t+ 1)

) 1−φ
φ

, (51)

for each i ∈ N0.

17Since limz→0+ z
z = 1, we adopt the convention 00 = 1.

37



Proposition 11

Proof. Using (1) and noticing that εi(t) = N (mi, σi), we have

P (vi(t) = 0 | Ii(t− 1)) = P

(
v

(0)
i + γi

∑t
`=1 zi(`)si(`)(

1 + γi
∑t

`=1 zi(`)
2
) ≤ 0

∣∣∣ Ii(t− 1)

)

= F

−τiv(∗)
i

∑t
`=1 zi(`)

2 + σ2
i

(
v

(0)
i +mi

∑t
`=1 zi(`)

)
σ3
i

∑t
`=1 zi(`)

2


= F

(
t̃(σi, τi)

)
,

where F is the probability distribution function of a standardized Gaussian distribution and

t̃(σi, τi) = −
τiv

(∗)
i

σ3
i

−
v

(0)
i +mi

∑t
`=1 zi(`)

σi
∑t

`=1 zi(`)
2

.

Note that there exists σ̄i(τi), such that for all σi ≤ σ̄i(τi), we have:

∂

∂σi
t̃(σi, τi) = 3

τiv
(∗)
i

σ4
i

+
v

(0)
i +mi

∑t
`=1 zi(`)

σ2
i

∑t
`=1 zi(`)

2
≥ 0, with lim

σi→0
t̃(σi, τi) = −∞.

Similarly,

∂

∂τi
t̃(σi, τi) = −

v
(∗)
i

σ3
i

≤ 0, with lim
τi→+∞

t̃(σi, τi) = −∞.

Since F is continuous, increasing and limt→−∞ F (t) = 0, then
lim
σi→0

P (vi(t) = 0 | Ii(t− 1)) = 0,

lim
τi→∞

P (vi(t) = 0 | Ii(t− 1)) = 0.

Proposition 12

Proof. Proposition 12 is obtained by replacing v
(0)
i with vi(t) in Proposition 11, and z̃

(1)
i (t) and

z̃
(2)
i (t) with zi(t) and zi(t)

2, respectively. To lighten the exposition, we avoid reporting whole

expressions extensively.

Proposition 13

Proof. Based on the first-order conditions of the firm i’s problem (see the proof of Lemma 2) and

substituting lv(t) and yi,j(t) into the firm i’s production, we note that r̂i(t, vi(t)) = r̂i(t, v
(∗)
i ) is

satisfied if and only if prices p(t+ 1) and p(t) for which

r̂i(t, vi(t)) = pi(t+ 1)Eη[ηi(t)]

(
(1− φ)r̂i(t)

w(t+ 1)

)(1−φ) ∏
j∈N

(
φδi,j(t)r̂i(t, vi(t))

pj(t)

)φv(∗)i αi,j

.
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When
∑

j δ
(∗)
i,j =

∑
j v

(∗)
j αi,j = v(∗) = 1, taking the logarithm yields

log pi(t+ 1) = φ
∑
j∈N

δ
(∗)
i,j log pj(t) + ki(t), (52)

where

ki(t) = − φ
∑
j∈N

δ
(∗)
i,j log δi,j(t) + (1− φ) logw(t+ 1)− log

(
(1− φ)1−φ φφ

)
− log qi,

We define the following matrices:

P (t) =


log pi

...

log pn(t)

 , K(t) =


k1(t)

...

kn(t)

 , and P (t+ 1) = P (t+ 1)− P (t).

Then, (52) implies

P (t+ 1) = P (t+ 1)− P (t)

=
(
φ∆(∗)P (t) +K(t)

)
−
(
φ∆(∗)P (t− 1) +K(t− 1)

)
=

(
φ∆(∗))P (t) +K(t)−K(t− 1)︸ ︷︷ ︸

U(t)

,

so that

P (t) = (φ∆(∗))t−1P (1) +
t−2∑
h=0

(φ∆(∗))hU(t− 1− h).

Since ∆(∗)1 = 1 (which implies (∆(∗))h1 = 1, where 1 is a vector of ones), and φ < 1, we have

lim
t−→∞

P (t) = lim
t−→∞

[
t−2∑
h=0

(φ∆(∗))hU(t− 1− h)

]

= lim
t−→∞

[
(1− φ)

t−2∑
h=0

φh1 log

(
w(t− h)

w(t− h− 1)

)]
,

where we used the fact that

Ui(t) = φ
∑

j∈N δ
(∗)
i,j log

δi,j(t− 1)

δi,j(t)
+ (1− φ) logw(t+ 1)− (1− φ) logw(t),

so that, as long as ∆(t) converges, we have

Ui(t)  (1− φ) logw(t+ 1)− (1− φ) logw(t).

where denotes the limit behaviour. Formally, given functions f(x) and g(x), we have f(x) g(x)

if and only if limx→∞
f(x)
g(x) = 1. Note that a sufficient condition for the existence of the limit is that

there exists a constant ξ > 0 such that for each t > t0, we have w(t+ 1) ≤ ξw(t), for some t0 ∈ N.

Hence, we obtain

(logp(t+ 1)− logp(t)) = (1− φ)
t−1∑
h=0

φh1 log

(
w(t− h)

w(t− h− 1)

)
,
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which is equivalent to

pi(t+ 1)

pi(t)
= exp ((1− φ)W (t)) , where W (t) =

t−2∑
h=0

φh log

(
w(t− h)

w(t− h− 1)

)
. (53)

Hence, equation (52) provides the asymptotic behaviour of equilibrium prices for all i ∈ N :

log pi(t+ 1) = φ
∑
j∈N

v
(∗)
i αi,j log pj(t) + φ

(
hi(t)− v(∗)

i log v
(∗)
i

)
+ b(t), for i ∈ N ,

where

hi = − log qi
φ
−
∑
j∈N

αi,j logαi,j , b(t) = (1−φ) logw(t+ 1)− (1−φ)φ̃, and φ̃ =
log((1− φ)1−φ φφ)

1− φ
.

By considering the variation rates of individual prices in (53), we define

W (t) =
t−1∑
h=1

φt−h−1 log

(
w(h+ 1)

w(h)

)
, with W (t) = log

(
w(t)

w(t− 1)

)
+ φW (t− 1). (54)

and replace pi(t+ 1) = exp((1− φ)W (t))pi(t) into (52):

log pi(t)− φ
∑
j∈N

v
(∗)
i αi,j log pj(t) = φ

(
hi(t) + v

(∗)
i log v

(∗)
i

)
+ b(t)− (1− φ)W (t)

(I − φAV (∗)) logp(t) = φ
(
h̃− V (∗) log V (∗)1

)
+ (b(t)− (1− φ)W (t))1

Solving with respect to log pi(t), under the assumption that v
(∗)
i = 1, we obtain

log pi(t) = φ
n∑
j=1

`i,j(hj(t)− v(∗)
j log v

(∗)
j ) + (b(t)− (1− φ)W (t))

n∑
j=1

`i,j

= φ

n∑
j=1

`i,j

(
n∑
h=1

αj,h logαj,h(t) +
log qj
φ

)
+
b(t)− (1− φ)W (t)

1− φ
,

(55)

where `vj is the (v, j) element of the Leontief inverse, i.e., L = (I−φAV (∗))−1. The second equality

in (55) has been obtained by noticing that the property of constant returns to scale v
(∗)
i = 1, for

i ∈ N , implies

L1 = (I − φA)−11 =
∞∑
s=0

φs(A)s1 =
∞∑
s=0

φs1 =
1

1− φ
1.

We obtain

log pi(t) = logw(t+ 1) + φ

n∑
j=1

`i,jhj(t)−W (t)− φ̃

= logw(t+ 1) + φβi

(
φ,A, h̃

)
−W (t)− φ̃,

(56)

where βj(φ,A, ζ) =
∑

i∈N `i,jζi is the generalized Bonacich centrality of the true input-output

elasticity structure (i.e., the j-th element of (I − φA>)−1ζ). Combining (56) with (53) entails

pi(t+ 1) = exp ((1− φ)W (t)) pi(t)

= w(t+ 1) exp
(
φβi

(
φ,A, h̃

)
− φW (t)− φ̃

)
.
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Proposition 14

Proof. Under the assumptions of Proposition 13, using (27), we have(
φ

[∆>(t)−1]i x̃(t)

)φ(vi−1)

= w(t+ 1)φDi(t) exp
(
φβi

(
φ,A, h̃

)
− φW (t)− φ̃

)
φ

[∆>(t)−1]i x̃(t)
= w(t+ 1)

1
vi−1 (Di(t))

1
φ(vi−1) exp

βi
(
φ,A, h̃

)
−W (t)− ˜̃

φ

vi − 1

 (57)

where
˜̃
φ =

log((1− φ)1−φ φφ)

φ(1− φ)
.

By replacing (56) into Di(t), we have

logDi(t) = log qi(1− φ)1−φ + φvi

(∑
s

αi,s log

(
φviαi,s
ps(t)

))
= φhi(t)− φvi

∑
s

αi,s

(
log(w(t)) + φβs

(
φ,A, h̃

)
− φW (t− 1)− φ̃

)
+(1− φ) log(1− φ) + φvi log φ.

Substituting this back into equation (57), we obtain

φ

[∆>(t)−1]i x̃(t)
=

(
w(t+ 1)

w(t)vi

) 1
vi−1

exp

(
1

vi − 1

([
(I − φV (t)A)(I − φA)−1h̃

]
i

−W (t)− φ̂+ hi(t) + φviW (t− 1) + vi(log φ+ φ̃)
))

,

where

φ̂ =
(1− φ) log(1− φ)

φ
− log((1− φ)1−φ φφ)

φ(1− φ)
= − log(1− φ)− log(φ)

1− φ
.

Let

ιi({w(h)}th=1) = exp

(
1

1− vi

([
M h̃

]
i
− φ̂+ vi(log φ+ φ̃)

))(w(t)vi+1

w(t− 1)

) 1
vi−1

t−2∏
h=1

(
w(h)

w(h+ 1)

)φt−1−h

.

Then the last equality becomes that[
∆>(t)−1

]
i
x̃(t)

φ
=

1

w(t+ 1)
1

vi−1

ιi

(
{w(h)}th=1

)
φ

1− φ
w(t+ 1) =

n∑
i=1

1

w(t+ 1)
1

vi−1

ιi

(
{w(h)}th=1

)
.

Proposition 15

Proof. Let us rewrite (32) as w = gt(w), where

gt(w) =
n∑
i=1

1

w
1

vi−1

ι̃i, with ι̃i =
1− φ
φ

ιi

(
{w(h)}t−1

h=1

)
≥ 0.
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Note that g′t(w) is continuous and strictly increasing, independently from the values of v1, . . . , vn:

g′t(w) =
n∑
i=1

(
− ι̃i
vi − 1

)
1

w
vi
vi−1

,

We study two cases.

First case. If vi > 1 for all i ∈ N , then g′t(w) is negative and gt(w) is continuous and strictly

decreasing. We have the following facts:
lim
w→0

gt(w) =∞

lim
w→∞

g(w) = 0

and


lim
w→0

g′t(w) = −∞

lim
w→∞

g′t(w) = 0.

Therefore, by the intermediate value theorem gt admits a unique fixed-point.

Second case. If vi < 1 for all i ∈ N , then g′t(w) is positive and gt(w) is continuous and strictly

increasing. We have the following facts:
lim
w→0

gt(w) = 0

lim
w→∞

g(w) =∞
and


lim
w→0

g′t(w) = 0

lim
w→∞

g′t(w) =∞.

Based on the continuity and monotonicity of g′t(w), as well as the above limit properties, we have

that w = 0 is the unique fixed point of gt.
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