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Abstract

This paper investigates the dependence structure among carbon markets around the

world through the application of different copulas. The analysis provides important insights

into the relationship between carbon prices being traded across different exchanges across

the world. The novelty of this study rests into assessing carbon allowances for both futures

and spot prices across all the key carbon markets, such as the EU, RGGI, California,

Quebec, South Korea, as well as the three oldest Chinese pilot carbon markets, Shenzhen,

Guangdong and Hubei for the period 2011 to 2019 for future prices and 2015 to 2020 for spot

prices. The results demonstrate an asymmetric relationship between most carbon markets.

A low tail dependence has been noted between the EU and western carbon markets, while

higher tail dependence has been registered with the eastern carbon markets. Further,

carbon markets that have linkage agreement, ongoing cooperation or are geographically

close tend to have positive and higher tail dependence. The paper points out to regional

carbon clubs being formed as per the dependence structure.
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1 Introduction

Under the Paris Agreement, countries have pledged to reduce their emissions in order to limit

the global mean temperature increase to well below 2-degree (Rogelj et al., 2017). The emission

trading system (ETS), commonly known as carbon market, is considered as a pivotal tool in

the mitigation commitments by the parties that ratified the agreement (Sousa et al., 2014).

Since 2005, carbon markets have been mushrooming around the world (Michaelowa et al.,

2019) and, to date, there are 31 carbon markets that are in place or have been scheduled

(Ramstein et al., 2020). Through carbon markets, the right to emit a given amount of CO2

becomes a tradable commodity and is a factor of production that is subject to stochastic

price changes. Since the advent of emission trading systems in 2005, several studies have

analyzed the behavior of emission allowance prices. A strand of this vast literature focuses on

co-integration in the same market (for example Chevallier et al. (2010), Trück et al. (2014)

and Wu and Hu (2014) for integration between spot and future carbon prices as well as

Zhu et al. (2020) for Chinese pilot carbon market risk of spillovers), whilst another set of

literature focuses on co-integration between two carbon markets and/or between other energy

markets (For example Kanamura (2016), Cherubini et al. (2011) and Zeng et al. (2021) for co-

integration between the European carbon market and Certified Emission Reductions (CERs),

Chun (2018) for spillovers between the European and Chinese carbon markets and Balcılar

et al. (2016) for cross market correlations between the European carbon market and other

energy markets). Establishing the stochastic relationships intertwined in carbon markets still

remains a challenging task.

This study grounds on existing research on co-integration between carbon markets and

contributes to the existing literature by extending the analysis to eight mandatory carbon

markets: EU ETS, RGGI ETS, California ETS for assessing inter-dependencies amongst fu-

ture carbon prices and the Quebec ETS, South Korean ETS and three Chinese Pilots ETS

(Shenzhen, Guangdong and Hubei) for spot carbon prices. The data ranges from August 2011

to August 2019 and from January 2015 to June 2020 for future and spot prices, respectively.
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Rather than grounding on traditional co-integration models such as VECM and VAR models,

our study measures the dependency across the different trading schemes using tail dependence

(Frahm et al., 2005). Tail dependence is computed by fitting a parametric copula family to

the data and by subsequently extracting the tail behavior of that copula. Copulas are a very

flexible method to model the relationship between different variables through their marginal

distributions and dependence structure separately, with the big advantage of accounting for

different types of tail dependence from the return series under consideration (Aloui et al.,

2013; Boako and Alagidede, 2017; Jondeau and Rockinger, 2006). GARCH-Copula models

have since then been extensively adopted in carbon pricing studies (Yu et al., 2020; Uddin

et al., 2018; Wu and Hu, 2014). We follow these studies and first estimate, for each pair,

the full-range tail dependence copulas through both lower and upper tail and tails asymmetry.

Then, we select the best model of copulas over the usual GARCH model based on the goodness

of fitness tests by (Kojadinovic et al., 2010).

The aim of this paper is to provide a thorough analysis of the dependence structure between

prices in carbon markets around the world. Our main contribution is twofold. First, we apply

five different copula models in order to assess the nature of the dependence across the carbon

markets globally, which has, to the best of our knowledge, not been done in prior studies. The

use of five copula models strengthens the degree and structure of dependence, ensuring that

any type of transformation is less likely to change it. Compared with multivariate GARCH,

copula-based GARCH can describe the nonlinear risk spillovers between markets. Second, our

study is the first to investigate the dependence structure among eight different carbon markets

around the world. It also extends to a time horizon which has not been explored by previous

studies. This contribution can help reduce price discrepancies across different markets in

order to achieve the ultimate objective of a global, worldwide carbon emission trading scheme.

Given that it is true that environmental cost of emitting one ton of CO2 should be identical

everywhere on Earth, price discrepancies between different markets might generate issues, like

carbon leakage, that hinder the benefits of the climate actions.
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Our study shows that the European carbon market displays a positive tail dependence

with uprising carbon markets (South Korea and Chinese Pilot carbon markets) whilst the

latter registers zero or weak tail dependence with western carbon markets (RGGI, California

and Quebec). In addition, the western carbon markets have a positive dependence amongst

themselves which might be due to existing linkage practices. Similarly, the Asian carbon

markets are more likely to be dependent on each other. Our results point out to regional

dependence structure rather than the uprising of a global carbon market as being lobbied by

several stakeholders.

The rest of this study is organized as follows. Section 2 provides an overview of the back-

ground of the study by delving into existing literature on methodologies to measure stochastic

dependencies in carbon markets. Section 3 presents the methodology to measure tail depen-

dencies and introduces the copula model. Section 4 shows the data sources and empirical

settings. Section 5 reports the empirical results along with the robustness checks. The final

section concludes.

2 Background

Economic theory has advocated for the use of carbon financial instruments in order to reduce

carbon emission since decades through fixed instruments known as carbon taxes or quantity

instruments known as emissions trading contracts (Weitzman, 1974; Newell and Pizer, 2003;

Metcalf and Weisbach, 2009; Keohane, 2009; Aldy and Pizer, 2015; Schmalensee and Stavins,

2017). Carbon markets have been integrated in international climate agreements since the

Kyoto protocol era under the clean development mechanism, joint implementation and inter-

national emissions trading (Capoor and Ambrosi, 2007). The motivation for this study stems

from both a political and economic dimension. The world is witnessing the proliferation of

carbon markets globally. The European Union Emissions Trading System (EU-ETS) is the

largest one, covering 11,000 emitters across all EU member states, as well as Norway, Ice-

3



land and Liechtenstein. California and Quebec share a market, which Ontario, Manitoba and

provinces in Brazil and Mexico plan to join. Major Asian economies are following the trend,

including Japan, South Korea, China, Kazakhstan, and India (Fankhauser, 2011; Jotzo et al.,

2013; Wang, 2013). China, the world’s largest emerging market, is seen to have great potential

for large-scale carbon trading. China has recently set up its national cap-and-trade system in

June 2021, comprising of more than 7,000 emitters. Since 2013, China has launched seven pilot

carbon markets in Shenzhen, Beijing, Shanghai, Guangdong, Tianjin, Hubei, and Chongqing

(Han et al., 2012; Lo, 2012). Coupled with the above, several countries that ratified the Paris

Agreement expressed their intention to implement carbon markets. Many policymakers argue

that the next logical step is to combine cap-and-trade efforts into one global carbon market.

According to prevailing economic theory, linking markets together should promote trading,

smooth financial flows and lower the overall cost of reducing emissions. A global price on car-

bon emissions would emerge without the need for long and fractious diplomatic negotiations

(Green et al., 2014). Before even embarking on a global carbon market, it is crucial to assess

the dependence amongst the existing ones, thereby giving rise to this study.

A second motivation for the study rests on the increasing attention on linking carbon

markets. Linkages across carbon markets have not escaped the policy makers discussions nor

the scholars’ attention. To date, existing linkages have been formed, for example EU ETS has

agreed to integrate with the Swiss ETS. California’s carbon market has also an established link

with the Quebec carbon market. Jotzo and Betz (2009) evaluate a plan to bilaterally integrate

the Australian ETS with the EU ETS, which was afterwards aborted in 2012. The impact of

linking the EU ETS to the U.S. system was evaluated in Zetterberg et al. (2012). The studies

from Marschinski et al. (2012) and Hübler et al. (2014) investigate a proposal for integrating

the EU ETS with a Chinese ETS. Similarly, Gavard et al. (2016) modelled a sectoral ETS on

electricity and energy-intensive industries in the EU, the U.S. and China, simulating different

linkage scenarios. Some empirical evidence also consider a multi-regional integrated ETS in

which the EU ETS takes part (Anger, 2008; Dellink et al., 2014; Yu and Xu, 2017).
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There is a growing body of literature on carbon markets integration since the last decade.

Three dimensions of the carbon markets’ integration and dependency have been extensively

studied: carbon prices in a single market, bilateral market integration and, dependence with

other energy commodities. Different methods have been used in all these studies. Chevallier

et al. (2010) employ autoregressive methods to measure the cointegration between EUA futures

and spot prices. Rittler (2012) measures spillover effects from futures to the spot market using

10-minute and 30-minute data for the EU carbon market. The relationship between EUA

and CERs has also been studied and a positive spillover effect has been identified. Kanamura

(2016) adopts a supply and demand correlation model to examine the EUA and CERs returns

integration. Trück et al. (2014) add to the empirical analysis of the relationship between EUA

future and spot contracts being traded on the EEX and present a convenience yield model

for the volatilities between the two assets. Zhu et al. (2020) adopt a vine copula approach to

measure the risks and spillovers in Chinese pilot carbon markets and find that the conditional

value at risk (CVaR) is a better measure than traditional risk. Wu and Hu (2014) explore

the dynamic interdependence between European carbon spot and futures prices using copula-

GARCH model. Hu et al. (2015) investigate the dependency characteristics of EU carbon

markets using R-vine copula model and find that R-vine copula methods could better depict

the dependency structure of the carbon market.

As highlighted here above, GARCH and Copula models have been extensively used in

carbon markets literature. Zeng et al. (2021) adopt the copula approach to analyze the dynamic

volatility spillover effect between the European Union allowance (EUA) and CERs markets

during the second and third phases of trading of the European Emission Trading System,

showing that there is a spillover effect across the two carbon markets. Benz and Trück (2009)

capture the regime changes in the EU ETS through an AR-GARCH Markov switching price

return model. Paolella and Taschini (2008) measure the tails and volatility clustering between

the U.S. SO2 permits and EUA price returns through GARCH modelling. Chevallier et al.

(2011) use a DCC-MGARCH model to analyze the dynamic correlation between EUAs and

CERs and find that the correlation coefficient between the two markets changes dynamically
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over time in the range of [0.01; 0.90]. Chun (2018) uses a DCC-MGARCH(1,1) model to

analyze the volatility spillover effect between the market prices of the EU ETS and Chinese

carbon market for the period ranging from 2014 to 2017. The results depict that there are

agglomeration effects in the two markets, but the market concentration and price volatility

are more significant.

The GARCH-Copula methodology has also been applied in other energy commodities’

markets in order to assess tail dependency. For example, Uddin et al. (2018) model the

multivariate tail dependence structure and spillover effects across energy commodities, such

as crude oil, natural gas, ethanol, heating oil, coal and gasoline. Yu et al. (2020) use the

copula and VAR-BEKK-GARCH models to study the volatility spillovers between the oil and

stock markets. Balcılar et al. (2016) rely on the MS-DCC-GARCH model to find time-varying

cross-market correlations and volatility spillover effects between EU carbon futures prices and

electricity, coal and natural gas futures prices.

From the above literature evidence, it can be deduced that GARCH and Copula models

have been the most favored and adopted ones in carbon market integration studies. The

widespread finance literature vouch for the two-step copula modeling which involves the

marginal estimations prior to deducting the dependence parameters (Embrechts et al., 2002;

Meucci, 2011). Copula model encompasses the drawbacks of Pearson correlation coefficient, as

it does not require random variables to be elliptically distributed. They are also invariant to

increasing and continuous transformations. Thus, for the purpose of this study, we resort to

an extensively applied methodology to assess the dependence structure across carbon markets.

Against this backdrop, this study focuses on addressing the gaps in literature. While the

above empirical studies focus on carbon price models and the empirical analyses of a single

carbon market, they do not seem to pay attention to the characteristics of the price dependency

across different carbon markets. With the mushrooming of carbon markets around the world,

there is a need to consider in such an analysis a wider range of carbon markets rather than

investigating bilateral integration as in previous studies. By studying both spot and future
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prices across eight carbon markets, we provide a novel insight on the co-integration of carbon

markets. Further, given the extensive application of the GARCH-Copula methodology in

energy commodities and carbon markets, we rely on the best methodology, to the best of our

knowledge, to test the empirical integration of the global carbon market.

3 Methodology

In this study, we employ the two-step estimation process of copula models suggested by Aloui

et al. (2013). A copula is a function that combines marginal distributions to form a joint

multivariate distribution (Min and Czado, 2010). The concept was initially introduced by

Sklar (1996), but has only gained popularity in modeling financial or economic variables in

the last two decades.1

Sklar (1996) shows that the concept of copulas could deviate from a rich set of joint

distributions. Assuming that X = (X1.....Xd) is a random vector with continuous marginal

cumulative distribution functions F1.....Fd, Sklar (1996) shows that the joint distribution H

of X could be represented as:

H(X) = C(F1(x1), ........, Fd(xd))

(1)

in terms of a unique function C : [0, 1]d → [0, 1] called a copula. Copula functions can

conveniently construct a multivariate joint distribution by first specifying the marginal univari-

ate distributions and then investigating the dependence structure between variables according

to different copula functions. Moreover, tail dependence can be well described by copulas.

Usually, two measurements are applied to evaluate tail dependence: the upper and lower tail

1For an introduction to copulas see e.g. Nelsen et al. (2001) or Joe (2006). For applications to various issues
in financial economics and econometrics, see e.g. Cherubini et al. (2011), Demarta and McNeil (2005), Frey
and McNeil (2003) and Hull and White (2006).
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dependence coefficients, which function well regardless of whether the markets are crashing

or booming. By assuming that X and Y are random variables with marginal distribution

functions F and G , it is possible to compute the coefficient of the lower tail dependence, λL:

λL = Limt→0+Pr[Y ≤ G−1(t) | X ≤ F−1(t)]

(2)

which measures the probability of observing a lower Y if the condition X itself is lower. On

the contrary, the coefficient of upper tail dependence λU can be estimated by :

λU = Limt→1−Pr[Y > G−1(t) | X > F−1(t)]

(3)

when the value of lower tail dependence is the same as the value of upper tail dependence,

we state that there is symmetric tail dependence between the two variables. In all other

cases, dependence is asymmetric. This approach constitutes an efficient way to order copulas.

Moreover if λU of C2 is greater than λU of C1, it is stated that copula C2 is more concordant

than C1.

Dependencies in carbon markets can be examined by combining these copula functions

with a GARCH-type model including conditional heteroscedasticity, since this model not only

successfully describes the characteristics of volatility clustering in carbon allowances prices

but also eliminates the serial dependence from the component time series. By incorporating

asymmetry into the model, the conditional variance of prices of carbon markets is estimated

on the basis of an autoregressive (AR) model for the conditional mean and an exponential

GARCH (EGARCH) model. The AR(k)-EGARCH (p,q) specification is expressed as follows:

xt = a0 +
∑k

i=1 αixt−i + εtEt−1(εt) = 0, Et−1(ε
2
t ) = σ2)
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(4)

and

ln(σ2t ) = ω +
∑p

i=1(αi | εt−1/σt−i | +γiεt−i/σt−i) +
∑q

i=1 βiln(σ2t−i)

(5)

where Et−1 is the conditional information operator based on the information at time t − 1.

In Equation 4, the AR(k) model, indicates that the current movement of a variable xt can

be explained by its own past movement (xt−1, xt−2, ....). In this study, the variable xt is

represented by the carbon prices on the different exchanges. In Equation 5, the EGARCH

(p, q) model describes the asymmetry of markets. In this study, we follow Nelsen et al. (2001)

by assuming that the error term εt follows the generalized error distribution (GED). The

maximum likelihood method was used to estimate each model, while the Schwarz Bayesian

criterion (SBIC) was used to evaluate the AR terms by choosing their smallest value. The

Ljung-Box Q-test was then applied to examine the residuals of AR terms. According to the

SBIC and residual diagnostics, k = 1 and p and q lie in [0,4].

In this study, we consider both the symmetric and the asymmetric structure dependence

between the variables. For a given set of marginals above, we adopt the copula model in order

to investigate the conditional dependence structure among carbon markets. For this study, we

focus on two types of copulas; elliptical copulas (i.e Normal and Student-t) and Archimedean

copulas (i.e Gumbel, Frank and Clayton):

For all u, v in [0, 1], the bivariate Normal Copula is defined by

C(u, v) =
∫ φ−1(u)

−∞
∫ φ−1(v)

−∞
1

2π
√
1−θ2 exp(−

s2 − 2θst+ t2

2(1− θ2)
) ds dt

(6)
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where φ represents the univariate standard normal distribution function and θ is the linear

correlation coefficient restricted in the interval [-1,1]. The bivariate Student-t copula is defined

by :

C(u, v) =
∫ t−1(u)

v

−∞
∫ t−1(v)

v

−∞
1

2π
√
1−θ2 exp(1 +

s2 − 2θst+ t2

(v(1− θ2)
)−(v+2)/2 ds dt

(7)

where t−1v (u) denotes the inverse of the CDF of the standard univariate Student-t distribution

with v degrees of freedom. The Gumbel copula is an asymmetric copula with higher probability

concentrated in the right tail. It can be expressed by :

C(u, v) = exp{−[(−ln u)θ + (ln v)θ]1/θ},

θ ∈ [1 ,+∞]

(8)

The Frank copula is defined as:

C(u, v) = −1
θ ln(1 + exp(−θu)−1)(exp(−θv))−1

exp(−θ)−1 ),

θ ∈ [−∞ ,+∞]

(9)

The Clayton copula is defined as:

C(u, v) = (u−θ + v−θ − 1)−1/θ,

θ ∈ [0 ,+∞]

(10)
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In the finance literature, elliptical copulas are most frequently applied because they have

shown to offer straightforward implications (Nikoloulopoulos et al., 2012; Boako et al., 2019;

Wen et al., 2019; Naeem et al., 2020). The Normal and Student copulas can be classified into

this family because they are based on an elliptical contoured distribution. Gaussian copulas

are symmetric and show no tail dependence, while Student-t copulas can exhibit extreme

dependence between variables. Archimedean copulas such as the Frank copula also tend to

be symmetric and are able to provide the full range of dependence estimation for marginals

exposed to weak tail dependence. However, the Gumbel and Clayton copulas are asymmetric

and not derived from multivariate distributions. Therefore, they are typically used to capture

asymmetry between lower and upper tail dependencies. For example, Clayton copulas show

greater dependence in the negative tail than in the positive, while Gumbel copulas show the

exact opposite. Nevertheless, for both the Clayton and Gumbel copulas, the greater the value

of θ, the greater the dependence between the variables.

In the second step, we estimate the parameters of the copulas based on the quasi-maximum

likelihood (QML) or pseudo-maximum likelihood (PML) methods and filter the returns. Fol-

lowing Aloui et al. (2013), we estimate the marginals Fx and Gy using their empirical CDFs

F̂x and Ĝy defined as:

F̂x = 1
n

∑n
j=1 1{Xi < x} and Ĝy = 1

n

∑n
j=1 1{Yi < y}

(11)

In the implementation, F̂x and Ĝy are replaced by n/(n + 1) uniform variates using the

ECDFs of each marginal distribution in order to ensure that the first order condition of the log-

likelihood function of the joint distribution is well defined for all finite n. Here, Xi and Yi are

the standardized residuals estimated from the first step. Then, we transform the observations

into uniform variates using the ECDF of each marginal distribution and estimate the unknown

parameter θ of the copula.
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4 Data

In this study, we attempt to evaluate the dependence structure amongst both future and spot

contracts of carbon allowances around the world. Despite the fact that there are more and

more carbon markets implemented all around the world, the trading of future contracts is

still at an infancy stage for most of them, except for the EU, RGGI and California ETS. For

example, the Chinese carbon markets only offered future contracts as of 2021. As such, this

study could only assess the dependence structure for future contracts for EUA, RGGI and

Californian allowances. We however collected data from seven different exchanges. The future

contract prices have been retrieved from Refinitiv for EUA being traded on four platforms:

EEX, ICE, Nordpool and NYMEX. RGGI emission contracts are traded on Argus and NYMEX

platforms. California allowances future contracts are traded on NYMEX. Data for RGGI Argus

has been provided by Argus and data for RGGI and California NYMEX have been retrieved

from Refinitiv. For the future contracts, a 1-month rolling approach is adopted to obtain the

price time series. Our study gathers future contracts prices for the period ranging from August

2011 to August 2019, amounting to around 2048 observations. For all future contracts, we

only focused on the December maturity for each year given that there is a large consensus in

the literature about the fact that it dominates all other maturities in terms of trading activity

(See Mizrach (2012) for a thorough discussion).
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Figure 1: Daily Future Prices of Carbon Allowances
The figures show the daily future prices for EUA EEX, EUA ICE, EUA Nordpool, EUA NYMEX, California

NYMEX, RGGI Argus and RGGI NYMEX, from left to right and top to bottom, respectively.
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Figure 2: Daily Returns of Future Contracts of Carbon Allowances
The figures show the returns for future contracts for EUA EEX, EUA ICE, EUA Nordpool, EUA NYMEX,
California NYMEX, RGGI Argus and RGGI NYMEX, from left to right and top to bottom, respectively.
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Regarding spot prices, our study includes additional carbon markets since there are more

widely available. However, most of them are very recent and as such do not offer as much data

points as future contracts. For the EUA spot prices, data has been gathered from the EEX

platform. Additionally, we have been able to include spot prices from California, Quebec and

RGGI since data has been provided by Argus. From the Chinese pilot carbon markets, only

the three oldest ones, i.e., Guangdong, Hubei and Shenzhen, are included in our study. These

pilot markets are also associated with the largest market activity and provide sufficient and

high-quality data for our analysis. Since Sichuan and Fujian markets have begun to operate

on December 16, 2016 and December 22, 2016, respectively, we did not include them because

of too few data points. The data for the Chinese and South Korean carbon allowances have

been gathered through the IETA platform. For spot prices, data were analyzed for the period

ranging from January 2015 to June 2020, including 1048 observations.
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Figure 3: Daily Spot Prices of Carbon Allowances
The figures show the daily spot prices for EU, California, RGGI, Quebec, South Korea, Guandong, Hubei and

Shenzhen, from left to right and top to bottom, respectively.
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Figure 4: Daily Returns of Spot Contracts of Carbon Allowance
The figures show the returns of spot contracts for EU, California, RGGI, Quebec, South Korea, Guandong,

Hubei and Shenzhen, from left to right and top to bottom, respectively.
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In all cases, the price returns are calculated as the first differences of the log of the price

indices. Let St denote the log of the spot price at time t and4St = St−St−1 the corresponding

log return. Similarly, Ft is the log of the future price and 4Ft = Ft−Ft−1 is the corresponding

log-return.

The descriptive statistics of the futures and spot price series are reported in Table 1 and

Table 2, respectively. Kurtosis refers to the degree of the peak in a distribution. In our case, the

results show that Kurtosis > 3 for all the variables which prove that all distributions are higher

than the normal distribution, having the fat tail. The skewness results for future contracts are

diverse. It is negatively skewed for two EU ETS contracts and RGGI and positively for the

rest. Skewness for spot contracts is negative for all variables, indicating that the distribution

is symmetric. The results of the Jarque-Bera test show that the null hypothesis of a normal

distribution is rejected in all cases. The results of the Ljung-Box Q statistics also demonstrate

serial correlation in the time series for all variables.
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5 Empirical Results

As carbon price time series exhibit peaks, thick tails, autocorrelation and conditional het-

eroscedasticity property, the residual sequence of [0, 1] uniform distribution is obtained from

carbon price returns before application of the copula model, as proposed by Zhu et al. (2020).

In the first step, we choose the most appropriate specifications for modelling conditional het-

eroscedasticity according to the usual information criteria such as the AIC, SBIC and Loglik

statistics by employing univariate EGARCH models. Table 3 and Table 4 report the estima-

tion results. As indicated in these tables, all coefficients of the EGARCH term (β) with values

close to 1 are statistically significant at the 1% level. Moreover, the coefficients of the asym-

metric effect (γ) are statistically significant at the 1% level with negative values. The shape

parameters are also statistically significant at the 1% level with values less than 2, suggesting

that the tails of the error terms are heavier compared with the normal distribution. These

results also present the Q(s) and Q2(s) statistics in order to validate the empirical results of

the EGARCH models. The Q(s) statistic at lag s is a test statistic that has an asymptotic

chi-square distribution with degrees of freedom equal to the number of auto-correlations less

the number of parameters. Its null hypothesis assumes that there is no auto-correlation up

to lag s for standardized residuals. In a second step, we transform the standardized residuals

obtained from the EGARCH model into uniform variates based on the empirical CDFs. By

applying this step, we obtain the vector of filtered returns in order to estimate the copula

functions for carbon markets.

Then, we check the rank correlation coefficients for carbon markets dependence. Figure 5

and Figure 6 summarize the Kendall’s tau and Spearman’s rho statistics for the sample. There

is significant negative correlation between EUA ICE and RGGI NYMEX for future contracts.

As for spot prices, higher significant correlations have been registered. The highest positive

correlation is between Quebec and Californian carbon allowances, this might be due to the

existing linkage amongst these two markets. California and Quebec also register a positive but

weak correlation with the EU ETS. RGGI does not have any significant link with the western

20



markets, rather some weak correlation can be noted with South Korea and Guangdong. South

Korean ETS is weakly correlated with Hubei and Shenzhen.
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Figure 5: Correlations between Future Returns
Figures showing the Kendall and Spearman’s Correlation respectively for Future Contracts
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Figure 6: Correlations between Spot Returns
Figures showing the Kendall and Spearman’s Correlation respectively for Spot Contracts
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By applying the vector filtered returns, we incorporate five copula functions (Normal,

Student-t, Frank, Gumbel and Clayton) in order to estimate the dependence parameters θ for

the sample. The results are reported in Table 5 and 6.

The results show that for future return series, all outcomes are significant at the 1% level

for all the copulas. The dependence parameters for EU and Californian allowances are mostly

negative and very low. Similar results can be deduced for the dependence structure between

EU and RGGI as well. The dependence parameters between California and RGGI are negative

despite the facts that there are linkages among both markets and their mechanism structure

is similar. The results differ from Paolella and Taschini (2008) who find contagion between

EUA future prices and SO2 permits.

As for the spot return series, a higher dependency has been noted throughout the markets.

All the copulas have generated significant results at the 1% level. The EU ETS has registered

a positive dependence with California and Quebec while it depicts a negative dependence with

RGGI. In turn, it shows that spot prices in the two oldest markets are still not converging in

the longer run.

Mixed relationship between the EU ETS and Asian carbon markets has been noted. No-

tably, positive dependence parameters with Chinese Shenzhen and Hubei ETS and negative

parameters with South Korea and Chinese Guangdong ETS. The results show that despite

that EU carbon market is one of the largest in the world, it is not highly correlated with the

uprising markets notably in the Asian regions. These results are in line with the findings of

Chun (2018) about EU and Chinese markets spillover between 2014 to 2017.

The dependence parameters between U.S. and Asian carbon markets are also mostly neg-

ative for the different copulas. Only, RGGI and South Korea have registered some positive

relationship. California and RGGI have generated negative parameters as in the case of future

return series. California and Quebec carbon markets however have positive parameters which

might be due to their existing linkages. Quebec and RGGI registered negative parameters
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as well. The Asian carbon markets have positive dependence parameters across the different

copulas.

The study provides a first snapshot of the dependence structure amongst carbon markets

globally. The results put forward the low dependency amongst the markets. Alexeeva and

Anger (2016) discusses about the globalisation of the international carbon market through the

mechanism of International Carbon Action Partnership (ICAP). The European Commission

being a founder member of ICAP did express its interest to globalise the transactions. Yet, so

far, no strong signals about a potential linkage and dependency with the EU ETS ahve been

disclosed. So far, the EU is only linked with the Norway and Switzerland ETSs. A discussion

on the link with the Australian ETS had been initiated but rather quickly aborted. Ye et al.

(2021) also find that the EU carbon market is strongly influenced by the economic policies in

the U.S.. However, we find that the EU ETS is not likely to be dependent on the US carbon

markets, most notably California ETS and RGGI ETS.

Additionally, we expect some dependence structure given that the literature find common

carbon price drivers across carbon markets (For example see Chevallier (2012); Hammoudeh

et al. (2015); Ji et al. (2019) for EU ETS and Energy prices). Previous studies outline the

strong correlation between carbon markets and commodity markets. Since the commodity

prices are alike on international level, it is likely that the dependence structure should also be

stronger amongst carbon markets given their level of influence by similar drivers. Given that

our results portray a weak dependency, there is a need to expand and compare the extent of

spillover of international commodities on carbon markets.

Ranson and Stavins (2016) state that the single most significant predictor of systems

linking may be the geographic proximity. Existing linkages are mostly based on geographical

criteria. The EU Member States are linked through the EU ETS. Norway and Switzerland are

geographically positioned. Quebec and California are linked, as well as the Australian and New

Zealand ETS. The proliferation of geography and dependence is reflected in our findings. Asian

carbon markets, South Korean ETS and Chinese ETS are positively dependent. California
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ETS and RGGI ETS register strong dependence (despite being negative) than other pairs

tested. As such, our results corroborate the findings of Ranson and Stavins (2016).
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To validate which copula offers the best results, we employ the goodness-of-fit test which

compares the distance between the estimated and empirical copulas. The larger the values of

the statistics, the higher the probability that the null hypothesis that copula C belongs to the

class C0 is rejected. Kojadinovic et al. (2010) propose a multiplier approach to find the p-

values related to the test statistics, which overcomes the problem of dependence of the unknown

parameter θ when estimating the distribution. As such, the highest p-value indicates that the

distance between the estimated and empirical copulas is the smallest, in turn, suggesting that

the copula under scrutiny best fits the data.

The results of the goodness-of-fit tests and tail dependence are summarized in Table 7 and

Table 8. It can be deduced that the magnitudes of the tail dependencies in either direction

vary significantly across the carbon market pairs. This suggests that the strength of market

linkages under extreme conditions is quite different among the pairs.

For EU and California carbon markets, the Frank copula provides the best fit. For EU and

RGGI, the asymmetric copulas (Gumbel and Clayton) provide the best fit suggesting asym-

metric comovements in the carbon allowance prices. However, the tail dependence between

the two carbon markets is very low. For California and RGGI, the Normal and Gumbel copula

provide the best fit. The tail dependence is very low in this case.

The goodness-of-fit tests for spot returns indicate presence of asymmetry since most of

the pairs are best fitted to the Frank, Gumbel and Clayton copulas. The EU tail dependence

with the Asian carbon markets is higher than that with the western carbon markets. The

EUA has a zero tail dependence with California, RGGI and Quebec carbon markets. The

western carbon markets also register higher tail dependence with the Asian carbon markets.

The strongest tail dependence has been noted for California and Quebec carbon markets which

might be due to their existing linkages. The Californian and RGGI tail dependence is almost

zero for both future and spot prices.
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Table 7: Results for the goodness-of-fit-tests and tail dependence coefficients of the best copulas
(Future)

Exchanges Normal student’s t Frank Gumbel Clayton Lower Tail Upper Tail
EUA EEX - California NYMEX 0.866 0.658 0.802 0.71 0.781 0 0.011
EUA ICE - California NYMEX 0.134 0.0025 0.0944 0.0385 0.21 1.15E-06 0
EUA Nordpool- California NYMEX 0.196 0.0564 0.125 0.395 0.0794 0 0.0438
EUA NYMEX - California NYMEX 0.152 0.137 0.151 0.724 0.169 0 0
EUA EEX - RGGI Argus 0.0764 5.00E-04 0.13 0.0355 0.0115 0 0
EUA ICE - RGGI Argus 0.0814 5.00E-04 0.148 0.418 0.184 0 0.00277
EUA Nordpool - RGGI Argus 0.253 0.00549 0.2 0.392 0.248 0 0.00825
EUA NYMEX - RGGI Argus 0.265 0.0015 0.279 0.359 0.267 0 0.00961
EUA EEX - RGGI NYMEX 0.688 0.0195 0.69 0.748 0.649 0 0.00689
EUA ICE - RGGI NYMEX 0.75 0.0045 0.625 0.68 0.761 5.06E-12 0
EUA Nordpool - RGGI NYMEX 0.729 0.0266 0.575 0.727 0.718 0 0
EUA NYMEX - RGGI NYMEX 0.653 0.0015 0.595 0.77 0.586 0 0
California NYMEX - RGGI Argus 0.149 5.00E-04 0.0794 0.114 0.0674 0 0
California NYMEX - RGGI NYMEX 0.0405 0.0045 0.0215 0.1 0.0594 0 0.0177

This table presents the results of the goodness-of-fit-tests and tail dependence coefficients of the best copulas,
for the different exchanges, for future contracts by pair of exchange. We incorporate the five copula functions
(Normal, Student-t, Frank, Gumbel and Clayton) and add information about lower tail and upper tail values.

Table 8: Results for the goodness-of-fit-tests and tail dependence coefficients of the best copulas
(Spot)

Exchanges Normal student’s t Frank Gumbel Clayton Lower Tail Upper Tail
EU - California 0.308 0.0195 0.172 0.228 0.242 0 0
EU - RGGI 0.0944 0.167 0.284 0.0135 0.294 0 0
EU - Quebec 0.0574 5.00E-04 0.0215 0.153 0.167 0.000273851 0
EU - South Korea 0.168 0.112 0.103 0.257 0.137 0 0
EU - China Shenzhen 00.0684 0.0804 0.0465 0.107 0.0984 0 0.03869
EU- China Guangdong 0.0984 5.00E-04 0.0495 0.0335 0.0614 0 0
EU - China Hubei 0.0924 0.0504 0.0594 0.147 0.124 0 0.01232721
California - RGGI 0.44 0.206 0.374 0.0634 0.41 0 0
California - Quebec 0.257 0.777 0.282 0.423 0.0864 0.1041575 0.1041575
California - South Korea 0.0564 0.101 0.0425 0.186 0.0704 0 0.01232721
California - China Shenzhen 0.237 0.151 0.295 0.0864 0.271 0 0
California - China Guangdong 0.239 0.155 0.171 0.482 0.177 0 0.02831111
California - China Hubei 0.73 0.00549 0.588 0.113 0.603 3.09E-20 0
RGGI - Quebec 0.881 0.477 0.063 0.31 0.892 0 0
RGGI - South Korea 0.105 0.187 0.112 0.82 0.0233 0 0.00825109
RGGI - China Shenzhen 0.181 0.362 0.469 0.875 0.458 0 0.01232721
RGGI - China Guangdong 0.117 0.0265 0.0704 0.0874 0.0984 0 0
RGGI - China Hubei 0.565 0.0435 0.493 0.544 0.509 0 0
Quebec - South Korea 0.473 0.0025 0.375 0.151 0.46 0 0
Quebec - China Shenzhen 0.414 5.00E-04 0.33 0.485 0.398 0 0.005515466
Quebec - China Guangdong 0.0425 0.294 0.0135 0.325 0.0335 0 0.0136787
Quebec - China Hubei 0.342 0.0125 0.401 0.422 0.48 3.26E-15 0
South Korea - China Shenzhen 0.191 0.0784 0.186 0.0984 0.156 0 0
South Korea - China Guangdong 0.131 0.0015 0.0844 0.53 0.144 0 0.006885108
South Korea - China Hubei 0.428 0.291 0.313 0.268 0.109 0 0

This table presents the results of the goodness-of-fit-tests and tail dependence coefficients of the best copulas,
for the different exchanges, for spot contracts by pair of exchange. We incorporate the five copula functions

(Normal, Student-t, Frank, Gumbel and Clayton) and add information about lower tail and upper tail values.
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6 Concluding remarks

Tail dependence characterizes the cross carbon markets linkages and is of interest to investors

as it is used as an economic barometer in carbon financing. The study of the dependence

structure of carbon markets is also crucial if one aims to design a unique global carbon market

to reach the global climate goals. However, the literature on dependence structure on multiple

carbon markets is very thin. We aim to shed light on the dependence structure among carbon

markets through GARCH-Copula models which have been extensively adopted in literature.

We use three carbon markets for the future price analysis, namely EU, RGGI and California

and expanded the sample to include EU, RGGI, California, Quebec, South Korea and three

Chinese carbon markets to measure the dependence of spot prices. By implementing the copula

model to assess the dependence structure among these carbon markets, we find that there is

more asymmetric dependence in the spot returns among carbon markets. The EU ETS, one of

the largest carbon market around the world, presents very low and negative dependence with

both the oldest carbon markets from the western region (RGGI, California and Quebec) and

with the uprising ones from the eastern regions (South Korea and Chinese carbon markets).

The western carbon markets are also more likely to be dependent amongst each other and

similar results have been obtained for eastern carbon markets. In turn, this highlights a larger

potential for regional carbon clubs rather than an uprising global carbon market.

This study opens wide avenues for future research. More platforms and a longer time

period, both for spot and future contracts, can be investigated, notably on the most recent

eastern carbon markets. Another avenue could lie in the use of tail dependence to design a

unique carbon market or to reduce carbon leakage. All these avenues are part of our future

research agenda.
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