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Abstract: Implementing the United Nations 2030 Agenda for Sustainable 

Development requires the expansion of green agriculture through updating low-carbon 

agricultural technologies. This study extends the definition of technological progress 

by introducing undesirable outputs into the calculation of global and local technological 

progress in the context of the by-production model. Convex and nonconvex models are 

applied to calculate the distance function, and then the Luenberger productivity 

indicator is obtained and decomposed into economic and environmental performance. 

This study then calculates the contribution of global and local innovation forces to 

technological progress with consideration for environmental factors. Finally, it tests the 

beta-convergence of productivity and identifies innovators. In the investigation of 

global and local technological changes in the agricultural sector in developing 

economies, the results show improvements in the Luenberger green productivity, 
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efficiency changes, and technological progress, with technological progress in the 

environmental dimension contributing the most to performance improvement. 

Moreover, 14 sample countries experience global and local technological progress, and 

global and local innovation forces contribute equally. But the countries’ agricultural 

green development did not converge. Therefore, developing economies should pay 

more attention to environmental technological innovation and agricultural cooperation. 

JEL Codes: D24 

Keywords: Global and local technological change; by-production model; Luenberger 

productivity indicator; convex and nonconvex 
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1. Introduction  

Developing economies have committed to building a green Belt and Road and have 

made it official through the Memorandum of Understanding in 2016 (Solheim, 2017) 

to implement the United Nations 2030 Agenda for Sustainable Development. Given 

that agriculture not only plays an important role in these developing economies, but 

also contributes substantially to greenhouse gas emissions in the world (Cassman, 

Dobermann, Walters, & Yang, 2003), it is necessary to study green agriculture 

development in these countries.  

In fact, developing countries are generally confronted with pressing environmental 

challenges in agricultural production. For instance, widely-used puddling and 

transplanting technique for rice in South Asia will not only consume intensive irrigation 

water and energy (Kumar et al., 2018), but also reduce rice yield by 8–10% (Kumar & 

Ladha, 2011). Consequently, significant efforts have been made in all aspects of 

agricultural production to improve agricultural performance in developing countries.  

Impressive technological progress in agriculture across developing countries 

contributes to green performance improvement to a large extent. On the one hand, 

global technological progress is promoted in many developing economies and helps to 

improve productivity. For instance, pest management technique has not only increased 

the average yield of crops by 40.9%, but it also decreases the use of pesticides by 30.7% 

(Pretty & Bharucha, 2015). On the other hand, local technological progress has taken 

place in a single country because of the force of local innovation, such as India who has 

developed intensive techniques and become an example of rapid development of 
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sustainable agriculture (Emerick, De Janvry, Sadoulet, & Dar, 2016).  

Therefore, identifying the main contributor to performance improvement and 

technological progress helps to seek a path to sustainable development of agriculture in 

developing economies. What are the main drivers of changes in agricultural green 

productivity in developing countries? Do global and local innovation forces drive 

technological progress in the same way? Are the levels of green development in 

agriculture in these countries convergent? Which country is the innovator? The answers 

to these questions offer empirical evidence and policy implications for the development 

of sustainable agriculture in developing countries.  

Correspondingly, the first goal of this study is to examine the role of economic and 

environmental performance in agricultural green productivity change in the 2000–2019 

period through convex and nonconvex models. Next, we aim to distinguish global and 

local technological change combined with performance decomposition in the context 

of the by-production model. Finally, we investigate performance convergence and 

identify innovators. Although a few studies have investigated agricultural technological 

changes in developing countries, no empirical studies have quantified global and local 

technological progress in agriculture among developing countries with consideration 

for undesirable outputs. 

This study makes three key contributions to the existing literature. First, to the best 

of our knowledge, this study is the first to explore green productivity of agricultural 

sector across Belt and Road countries. Second, the identification of global technological 

progress (GTP) and local technological progress (LTP) in agriculture is helpful in 
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identifying the driving factors of green agricultural development among developing 

countries and extends the operational definition of these technological properties to 

undesirable outputs. Third, further discussions are of great significance to fostering 

deep cooperation on sustainable agricultural development in these developing countries. 

Our study may be also of certain reference for the green Belt and Road construction. 

2. Literature Review 

2.1 Green Productivity Estimation 

A large body of literature has been conducted to extend the measurement of 

productivity with consideration for environmental inputs and outputs. For example, the 

Malmquist productivity index is utilized to model the joint production of desirable and 

undesirable outputs (Färe, Shawna, & Carl A., 2001), but its weak disposability 

assumption does not meet the conservation laws of matter (Coelli, Lauwers, & Van 

Huylenbroeck, 2007). Chambers (2002) proposed the Luenberger productivity 

indicator (LPI) by using the directional distance function (DDF), which has also been 

extended to include pollutants as undesirable outputs. However, it fails to analyze the 

economic or environmental contributions to green productivity gains because of its lack 

of additive completeness.  

To address these issues, Murty, Russell, and Levkoff (2012) construct a by-

production (BP) model in which pollutants meet cost disposability and other outputs 

satisfy free disposability. The model decomposes performance into economic and 

environmental changes using two sub-technologies. The combination of LPI and the 
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BP model creates a model with three appealing properties: (i) it meets the material 

balance conditions; (ii) it can be decomposed into economic and environmental changes; 

and (iii) it can be made to relax the convexity assumption. This approach has been 

applied to the estimation of economic and environmental production performance in 

some countries or regions, such as the European Union (Beltrán-Esteve & Picazo-Tadeo, 

2017) and China (Shen, Vardanyan, Balezentis, & Wang, 2021; Wang & Wei, 2016). 

However, it has rarely been used to investigate the economic and environmental 

performance of Belt and Road countries (Yuan, Balezentis, Shen, & Streimikiene, 2021; 

Zhu, Dai, Balezentis, Streimikiene, & Shen, 2022).  

2.2 Convex and Nonconvex Technologies 

In the past, productivity growth is typically calculated by parametric specification 

approaches, but a lot of recent studies have adopted nonparametric approaches that 

allow for a dynamic analysis based only on technical information without input and 

output price data. Data envelopment analysis (DEA) _ENREF_13with a convex 

production frontier and Free disposal hull (FDH) with a nonconvex production frontier 

are two typical nonparametric methods (Charnes, Cooper, & Rhodes, 1978; De Borger 

& Kerstens, 1996; Deprins, Simar, & Tulkens, 1984). The convex production frontier 

is a piecewise linear curve composed of actual decision-making units (DMUs), and its 

outward expansion requires a global shift in the production frontier. By contrast, the 

nonconvex production frontier is composed of actual DMUs without strict convex 

shape constraints, and its outward expansion allows for a local shift in the production 
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frontier.  

It has a long debate over whether the production frontier is convex. The traditional 

view generally holds that production technology satisfies the convexity theorem. 

However, production activities carry the complex factors such as widespread setup and 

lead times that challenge the convexity axiom (Coviello, Ichino, & Persico, 2014). In 

addition, the indivisibility of production factors, the increasing returns to scale and 

well-known externalities of production violate the convexity axiom and should also be 

carefully considered (Baumol & Bradford, 1972; Romer, 1990; Scarf, 1994). Therefore, 

the nonconvex model is proposed and further extended to the case of variable returns 

to scale, aiming to provide a benchmark for inefficient DMUs (Deprins et al., 1984; 

Kristiaan Kerstens & Eeckaut, 1999; McFadden, 1978). But there are still several 

disputes over the application of nonconvex technology such as scale defects (Cesaroni, 

Kerstens, & Van de Woestyne, 2017).  

Nevertheless, a growing body of evidence supports the superiority of nonconvex 

models over convex models. Tone and Sahoo (2003) argue that nonconvex techniques 

embedded in FDH models can help reveal the inseparability caused by task-specific 

processes. Balaguer-Coll, Prior, and Tortosa-Ausina (2007) explain that the nonconvex 

production frontier contains more efficient observations. Furthermore, Copeland and 

Hall (2011, p. p. 246, p. 246) show that the per vehicle cost is 4.36% higher under 

nonconvex model than that under convex model in the car manufacturing case. 

Kristiaan Kerstens and Van de Woestyne (2021) reveal that cost estimations under 

convexity are on average between 21% and 38% lower than those under nonconvexity.  
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All this logical and empirical evidence points to the need to reconsider the 

convexity assumption in green productivity estimates. Because land is generally 

indivisible in agricultural production (Krautkraemer, 1994), performance evaluations 

under convexity may not be accurate (Ang & Kerstens, 2021; Kim, Chavas, Barham, 

& Foltz, 2012). Thus, we aim to provide more empirical analysis for the application of 

nonconvex models as well as evidence in support for the comparison of the convexity 

and nonconvexity assumptions. 

2.3 Global and Local Technological Change 

The original concept of local technological change dates to the seminal research 

by Atkinson and Stiglitz (1969). Although these authors did not provide a formal 

definition of LTP, they compare the concept of technological progress that transfers the 

entire production function outward with that of local technological progress that 

transfers part or different parts of the production function outward to different degrees.  

Following this initial contribution, empirical studies have emerged. Bernard, 

Cantner, and Westermann (1996) examine innovators and technological changes in the 

French machinery industry using a nonparametric approach under a convex production 

technology. They find that local technological change has significant impacts on firm 

performance and that innovators promote LTP in a particular field. Timmer and Los 

(2005) investigate labor productivity growth in Asian countries and show that 

technological innovation is localized in the agricultural and manufacturing sectors. 

López-Pueyo and Mancebón (2010) report that LTP makes a significant contribution to 
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performance improvements in the information and communication technology industry. 

However, all of the above works have not provided operational identification. 

K. Kerstens and Managi (2012) conduct the first attempt to provide an operational 

definition of global and local technological change (GTP and LTP) within the context 

of convex and nonconvex technologies. In one of their empirical studies on oil field 

drilling in the Mexican Gulf, they conclude that approximately 62.8% more 

observations satisfy the conditions for LTP than GTP. Barros, Fujii, and Managi (2015) 

report the opposite case in Chinese commercial banks and show more observations 

fitting GTP rather than LTP. Fujii et al. (2015) analyze 16 sectors in the Japanese 

manufacturing industry and showe that the relative importance of GTP and LTP varies 

by sector and period. Therefore, the assumption of convex and nonconvex technologies 

is of great significance in distinguishing global and local technological changes. 

However, undesired outputs have not been introduced to the quantification of GTP and 

LTP, which would need empirical testing in agricultural production. 

3. Methodology 

Initially, we model an environmental technology that is related to convex and 

nonconvex specifications in the context of the BP model, followed by a rough 

illustration. Next, we decompose the LPI for detailed measurements. In this second step, 

we explicitly define the distinction between global and local technological changes in 

green production performance, with consideration for undesirable outputs. In the third 

step, we investigate whether green performance development would show a beta-

convergence that refers to a process in which poor regions grow faster than rich ones 



 10 

 

and therefore catch up on them. We also identify innovators. Next, we provide a detailed 

description of the data used. The details of the nonparametric estimation strategies for 

the convex and nonconvex models appropriate for the BP model are presented in the 

Appendix.  

3.1 Modeling environmental technology 

We apply a By-production technology that could be illustrated by a dual frontier 

(T1, T2) (Murty et al., 2012). We assign K DMUs that corresponded to the agricultural 

sectors in each developing country in our case. To account for environmental 

performance, we separate inputs into two groups, namely the “clean” inputs (𝑥𝑥𝑛𝑛), the 

consumption of which does not produce pollutants, and the “dirty” inputs (𝑥𝑥𝑝𝑝), which 

generate pollution in production activities. The “dirty” inputs generate undesirable 

outputs (𝑧𝑧), whereas both types of inputs produce desirable outputs (𝑦𝑦). Accordingly, 

the desirable output production process could be modeled by one subset of technology 

that describes the efficient economy, 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒, whereas the polluting production process is 

defined by another subset of technology that focuses on the green environment, 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒. 

Production technology sets (𝑇𝑇𝐵𝐵𝐵𝐵) are defined as follows: 

{ }
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where f and g are used to model the sub-technologies related to economic and 

environmental performance, respectively. Thus, we conceive the BP model as the 
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intersection of the two sub-technologies, both of which satisfy closedness, variable 

returns to scale, and strong disposability under the premise of continuous 

differentiability. We should note that no convexity axiom was imposed.  

To distinguish these two output groups, we assume free disposability (𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒) in 

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 that employs all inputs to obtain desirable outputs—the supplied inputs can yield 

fewer outputs. We also assume the cost disposability (𝐴𝐴𝑒𝑒𝑛𝑛𝑒𝑒) in 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒 associated with 

“dirty” inputs and undesirable outputs, signifying the difficulty in abandoning the 

undesirable outputs as easily as disposing of desirable outputs. The specific formal 

requirements for 𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒 and 𝐴𝐴𝑒𝑒𝑛𝑛𝑒𝑒  are as follows: 

1

2
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In our empirical application, we presume that the good agricultural outputs are 

generated by using “clean” inputs, such as labor and capital. Moreover, to assess the 

environmental performance, we presume that the undesirable output at the national 

level of carbon equivalent emissions is generated by the “dirty” inputs, including land, 

energy, fertilizers, and pesticides. Although pedoclimatic conditions (e.g., soil quality, 

sunshine, rainfall, and temperature) play a major role in agricultural production 

processes (Deligios, Carboni, Farci, Solinas, & Ledda, 2019), we do not consider them 

in the study for the sake of brevity. 

We employ a non-radial directional distance function (DDF) for the nonparametric 

estimation to assess the potential for progress compared with the relevant production 
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frontier. As in previous work (Chung, Färe, & Grosskopf, 1997; Färe, Grosskopf, Noh, 

& Weber, 2005), one can expand the desirable outputs and reduce the undesirable 

outputs simultaneously, i.e.: 

{ }( , , ; , , ) max , : ( , , )x y z y zD x y z g g g R x y g z g Tδ θ δ θ+= ∈ + − ∈
 (3) 

where δ   and θ   are inefficiency scores, scalar δ   is a symbol of the potential 

expansion of desirable outputs, and scalar θ   refers to the possible reduction in 

pollutants along the direction indicated by the direction vector (gy, gz). Thus, an 

evaluated country with scalar 0δ =  or 0θ =  at the optimum can be regarded as a 

benchmark in a certain field. 

3.2 Productivity measurement 

The green LPI focuses on the distances between the frontier and each observation 

during the timeline from t to t+1 such that changes in the environmental productivity 

gains can be measured (Chambers, Fāure, & Grosskopf, 1996). The output-oriented 

green LPI formulation comparing the base period t with the following period t+1 and 

that keeps the input amounts the same is given by: 

( ) ( )
( ) ( )

1 1 1 1 1
, 1

1 1 1 1 1 1 1
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2 , , ;0, , , , ;0, ,
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t t t t t t t t t t t t
y z y z
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D x y z g g D x y z g g

+ + + + +

+

+ + + + + + +

 −
 =  + −    (4) 

This output-oriented green LPI can be decomposed to evaluate the disparity 

between efficiency and technological contributions_ENREF_10. First, efficiency change 

(or the catch-up effect) quantifies the change in distance between observations and their 

benchmark for a given period and evaluates the potential for improvement through 
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more efficient resource utilization. Second, technological change measures a frontier 

shift over the period t to t+1, which indicates higher productivity owing to technological 

innovations in the case of a positive frontier shift. Combining the four output-

directional distance functions from (4), both of these additive components of the 

environmental LPI can be formulated as follows:  

( ) ( )
( ) ( )
( ) ( )

, 1 1 1 1 1 1 1
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The LPI inefficiency scores can be further dissected into economic and 

environmental sub-scores ( mθ and jθ ) using a mix of DDFs and the BP technology 

(Shen et al., 2021). Therefore, the economic and environmental decomposition of the 

LPI can be summarized as: 

, 1 , 1 , 1

, 1 , 1 , 1

, 1 , 1 , 1

1 ( )
2
1 ( )
2
1 ( )
2

t t t t t t
green eco env

t t t t t t
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+ + +
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 (6) 

3.3 Global and local technological progress 

To provide an identification strategy for distinguishing between GTP and LTP in 

a green productivity context, we follow K. Kerstens and Managi (2012) who elaborate 

on the properties of technological progress using productivity estimates in connection 

with convex and nonconvex assumptions. Because the BP model distinguishes the 

contributions of economic and environmental progress separately, the definition of GTP 
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or LTP is based on the analysis of efficiency scores relative to the corresponding sub-

frontiers, which allows distinguishing between the origins of technological progress. 

The BP model is suitable for convex and nonconvex technologies (Murty, 2015). If we 

define global and local technological change in terms of economic and environmental 

performance as shifts toward the economic and environmental frontiers, then the 

definitions of K. Kerstens and Managi (2012) can be extended to the BP setting where 

undesirable outputs are included.  

GTP is defined as arising from an outward shift of the convex frontier that occurs 

to efficient observations associated with the same frontier from year t to year t+1. This 

puts forward three constraints on the observations: (i) technological progress during the 

period, (ii) efficiency compared with the initial convex frontier, and (iii) efficiency 

compared with the final convex frontier. However, they are so strict that only a few 

observations fit. Therefore, it is desirable to apply a more relaxed definition. Given that 

progress is a relative concept, it is not necessary to require observations to remain 

efficient on a convex frontier at the two time periods. Thus, if we relax one of the 

constraints on efficient observations and adhere to the constraint of positive 

technological change related to either the convex or nonconvex frontier, then more 

suitable observations can be obtained in the context of these relaxed definitions. The 

three definitions of GTP are as follows: 
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 (7) 

LTP is introduced as the product of an outward shift of the nonconvex frontier, 
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where observations are regarded as efficient relative to nonconvex frontiers but 

inefficient for convex frontiers throughout the year. Observations have three constraints 

as well: (i) technological progress during the period relative to the nonconvex frontier, 

(ii) having to remain on the nonconvex frontier over the years, and (iii) having to remain 

in the interior relative to the convex frontiers over the years. We can define weaker 

versions of the same definitions, whereby an observation could only be efficient in one 

of the two time periods considered. The following three definitions of LTP are obtained: 
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Figures 1 A and B illustrate the difference between GTP and LTP in the “clean” 

input and desirable output space, and in the “clean” input and undesirable output space, 

respectively. The broken line represents the convex technology, and the full line 

indicates the nonconvex technology. The production possibility sets are given by the 

area inside these frontier curves.  

Focusing on year t, the frontier has four DMUs—A, B, D, and F—for both 

technology specifications, reflected in the 0% inefficiency score. C and E fail to be 

efficient under the convex assumption, but are efficient under the nonconvex one. If 

their economic inefficiency scores are 1%, then they can increase their desirable outputs 

by 1% without increasing inputs. If their environmental scores are 1%, then they can 

decrease their undesirable outputs by 1% without decreasing inputs.  
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One year later, the position of A stays the same, which means that no GTP and LTP 

have occurred. Productivity is relatively stagnant during the period. By contrast, B, D, 

and F reach a higher frontier for both assumptions in the year t+1: an indicator of global 

technological progress. By contrast, C and E are inside the convex frontier in year t+1, 

and such a shift is regarded as LTP, regardless of how perfect they are on the nonconvex 

frontier.  

Here, we offer two other manifestations of local technological progress. In Figure 

1A, if a shift towards the upper left direction occurs to E in year t+1, but the new 

position of E is still far from both convex and nonconvex frontiers, then E can be 

presumed to experience economic LTP. In Figure 1B, if a shift towards the bottom right 

direction occurs to a DMU that was within the frontier in year t, and the later position 

is on the frontiers of year t+1, then the change can be described as LTP. 

 

Figure 1A. Production frontier of 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 
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Figure 1B. Production frontier of 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒 

3.4 Growth convergence and innovator identification 

To gain deeper insight into green performance change, we refer to Barro and Sala-

i-Martin (1992) in presenting estimates for the beta-convergence model. It measures 

whether countries with low initial productivity experience faster growth, implying a 

convergence trend between efficient and inefficient countries. We establish a regression 

model using a simple unconditional convergence velocity equation (Steger, 2000):  

( ) 0ln lnit i i iy y eα β∆ = + +  (9) 

where  can be interpreted as convergence flexibility;  is a symbol of the 

indicator that covers a range of performance changes, such as average green 

productivity change, efficiency change (EC), and technological progress (TP) between 

these two time periods; and  represents the initial level of the same indicators. 

Error terms are shown in  . All the estimated results of the indicators relative to 
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convex and nonconvex technologies are regressed in the formulation. In addition, 

average green productivity growth can be easily decomposed into economic and 

environmental changes in the context of the BP approach. 

We intend to determine if a high starting production performance of one 

observation can be sustained and if a low initial production performance of one 

observation can, with time, catch up with the frontier. If the estimated value of β is 

significantly negative, then poorer observations gradually narrow the gap with better 

observations. In other words, the β-convergence hypothesis is applicable under these 

conditions. By contrast, a positive value of the β-estimate can refute the validity of the 

convergence hypothesis.  

The LPI framework also contributes to identifying the most innovative countries. 

Innovative countries are defined as efficient observations that push the production 

frontier upward to a location with greater efficiency scores owing to technological 

progress during that period. These countries tend to have great potential for 

performance improvements and strong radiation effects in the region. We use three 

criteria to identify innovative countries (Beltrán-Esteve & Picazo-Tadeo, 2017; Färe, 

Grosskopf, Norris, & Zhang, 1994): 

(10) 

In other words, innovative countries experience positive technological changes 

and move from an inefficient to an efficient position.  
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3.5 Data 

Our data sample covers 53 developing countries across the Belt and Road, namely, 

Armenia, Azerbaijan, Bangladesh, Belarus, Bhutan, Bosnia and Herzegovina, Brunei 

Darussalam, Bulgaria, Cambodia, China, Croatia, Cyprus, Czechia, Egypt, Estonia, 

Georgia, Greece, Hungary, India, Indonesia, Iran, Iraq, Israel, Jordan, Kazakhstan, 

Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lithuania, Malaysia, Maldives, Mongolia, 

Nepal, Oman, Pakistan, Palestine, the Philippines, Poland, Romania, Russia, Saudi 

Arabia, Slovakia, Slovenia, Sri Lanka, Tajikistan, Thailand, Turkey, Turkmenistan, 

Ukraine, Vietnam, and Yemen. The period covered is from 2000 to 2019.  

We describe the products of agricultural production activities by one desirable 

output (gross production value) and one undesirable output (carbon dioxide emissions). 

The inputs to the production process are classified into two categories. The group of 

“clean” inputs consists of agricultural employment and gross fixed capital formation 

capital. The group of “dirty” inputs consists of agricultural land1, energy consumption, 

fertilizer use, and pesticide use. Undesirable outputs can only be produced by “dirty” 

inputs. 

All data are collected from the Food and Agriculture Organization (FAO) database. 

The capital stock and gross production values are converted to the value of the 2015 

price as the base period via the subtraction method. Fertilizer dosage data are obtained 

by aggregating the volume of the three main elements of nitrogen, phosphorus, and 

 
1 Agricultural land is a contributor of total emissions. When the soil is turned over by growing crops, carbon forms 
in the soil and is gradually released into the atmosphere. 
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potassium, for a unified calculation. Table 1 provides a brief description of the input 

and output variables and offers descriptive statistics.  

Table 1. Data description 

Variable Unit Mean Std. Dev Min Max 
Agricultural Employment 1000 persons 11,904.7 42,237.7 1.1  307,213.1 
Gross Fixed Capital Formation million$  4,150.1 15,282.7 1.9  142,570.9 
Agricultural Land 1000 ha 35,849.8 86,266.4 5.6  529,038.6 
Energy Consumption Terajoule 88,054.1 242,716.8 91.2  1,940,192.5 
Fertilizers Use tonnes 1,994,983.7 7,228,750.6 18.0  55,612,825.0 
Pesticides Use  tonnes 39,264.7 222,449.3 1.0  1,815,690.0 
Gross Production Value thousand$ 38,586.9 147,967.1 3.3  1,257,561.8 
CO2 eq Emissions  kilotonnes  75,747.9 194,553.2 46.8  1,439,537.3 

 

4. Results and discussion 

4.1 Productivity growth and its decomposition 

Figure 2 displays the cumulative LPI scores in terms of green productivity, 

economic performance, and environmental performance over the past two decades in 

the sample of countries. We divide the changes into three components for both convex 

and nonconvex technologies: aggregated indicator scores, efficiency change, and 

technological change. The results show more variations in aggregate green LPI, 

efficiency change, and technological change by nonconvex technologies than by 

convex technologies. Moreover, the aggregate green LPI, efficiency change, and 

technological change by nonconvex techniques were higher than those by convex 

techniques. The environmental performance of LPI, efficiency change, and 

technological change presents similar trends to aggregate green productivity—more 
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variation and higher values of LPI, EC, and TP by nonconvex techniques compared to 

convex techniques. Regarding economic productivity, the LPI and TC calculated by 

convexity are higher than those computed by nonconvexity, whereas the EC calculated 

by convexity is lower than that calculated by nonconvexity. These results suggest that 

the cumulative LPI under nonconvexity is higher and that TP is the major driving force 

of green productivity. 

The scores of the green LPI and its TP component slowly increase during the initial 

period of 2000–2011. From 2012 to 2019, they experience a striking increase of 160%. 

The turning point is 2011, which coincides with the proposal of the Belt and Road 

construction. The growth pattern of TP is similar to that of green LPI. In addition, 

changes in overall productivity over the years are strongly due to pedoclimatic 

conditions. 
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Figure 2. Accumulative LPI change 

Note. NC is for nonconvex model, whereas C stands for convex model. LPI refers to 

green Luenberger productivity indicator, EC refers to efficiency change, and TP refers 

to technological advancement. 

 

The annual changes in the LPI scores, including overall change, efficiency change, 

and technological change, among the 53 developing countries are presented in Table 2. 

We observe substantial disparities in the estimation results for convex and nonconvex 

technologies. First, agricultural green productivity and its components EC and TP are 

higher in terms of environmental performance under nonconvexity than under 

convexity, whereas the values of all the components are lower in terms of economic 

performance under nonconvexity than under convexity. Second, most of the average 

change rates in all elements are positive; only the values of environmental EC under 

convexity and economic LPI and TP under nonconvex are negative. The contradictory 

estimates under the convex and nonconvex models may have been affected by the 

difference in the characteristics of returns to scale between the two models (Cesaroni et 

al., 2017).  
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Table 2. Descriptive statistics of green productivity change 

Descriptive Statistics Convex Nonconvex 
 LPI EC TP LPI EC TP 

 Eco Env Eco Env Eco Env Eco Env Eco Env Eco Env 
Mean 0.005  0.001  0.001  -0.001  0.004  0.003  -0.003  0.846  0.001  1.545  -0.004  1.235  
Standard deviation 0.265  0.080  0.258  0.054  0.158  0.065  0.128  3.138  0.097  0.098  0.135  3.138  
Minimum -2.484  -0.493  -2.938  -0.285  -1.892  -0.493  -0.789  -8.842  -1.545  -0.729  -0.842  -8.842  
Maximum 4.244  0.728  3.972  0.740  1.467  0.491  0.846  9.795  1.545  0.738  1.235  9.795 

Note. LPI stands for green productivity, EC for efficiency improvement, and TP for 

technological development; Eco and Env stand for the economic and environmental 

performance of LPI scores, respectively. 

 

4.2 Global and local technological progress 

Owing to the large number of production units involved, the growth of 

technological change is often a localized and diffused dynamic process. Technological 

progress is mainly reflected in frontier shift, which is subject to a certain input space in 

the output-oriented BP model. If the convexity assumption is imposed on the 

technology, then the actual technological progress may be covered. In other words, local 

technological change is aggregated in global technological change, and even significant 

progress is likely to be overestimated. In the light of the aforementioned empirical 

findings, a higher performance score under the assumption of a nonconvex technology 

suggests local instead of global technological change over time.  

Table 3. Global and local technological progress identification 

Country Global technological progress Local technological progress 
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 TP1 TP2 TP3 TP1 TP2 TP3 
 Eco Env Eco Env Eco Env Eco Env Eco Env Eco Env 
Armenia 0 0 0 0 0 0 0 2 2 1 1 2 
India 4 0 0 1 0 0 0 0 0 2 0 0 
Azerbaijan 0 0 0 1 0 0 0 2 0 1 0 1 
China 0 2 0 0 0 0 0 0 0 3 0 0 
Bulgaria 0 0 0 1 0 0 2 0 0 0 1 0 
Georgia 0 0 1 1 0 0 1 0 1 0 0 0 
Pakistan 0 0 1 0 0 0 0 0 1 1 0 1 
Sri Lanka 0 0 1 1 0 0 0 0 1 0 1 0 
Hungary 0 0 0 1 0 0 0 0 1 0 1 0 
Cyprus 0 0 0 0 1 1 0 0 0 0 0 0 
Malaysia 0 0 0 1 0 0 0 0 1 0 0 0 
Oman 0 0 1 1 0 0 0 0 0 0 0 0 
Russia 0 0 0 1 0 0 0 0 0 0 0 1 
Tajikistan 0 0 1 1 0 0 0 0 0 0 0 0 
In total 4 2 5 10 1 1 3 4 7 8 4 5 

Note. TP1, TP2 and TP3 denote the first identification strategy with strict conditions, 

the second one with one form of relaxed conditions, and the third one with the other 

form of relaxed conditions of global and local technological progress separately; Eco 

and Env designate technological progress presented in economic efficiency and 

environmental protection respectively. 

 

Table 3 shows the annual frequency and distribution of GTP and LTP in developing 

countries over the past two decades as defined in (7) and (8). Fourteen countries, or 

approximately 26% of the sample countries, experience some form of GTP or LTP. In 

particular, the frequency of GTP does not exceed LTP based on any of the three 

definitions, indicating that the technological progress of developing countries generally 

comes from local technological progress. In particular, the second identification 
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strategy captures a larger number of GTP and LTP signals. This is likely due because 

the method of TP2 relaxes the identification conditions.  

Armenia shows a lead in frequent technological change; every technological 

progress was localized. The results of TP2 show that Armenia experiences two times of 

economic LTP and environmental LTP. Thus, local technological innovations promote 

Armenia’s success in agriculture. Agriculture in Armenia has been suffering from poor 

infrastructure and insufficient facilities in the early 21st century [53, 54]. Local 

governments adopted a combination of incentive and assistance strategies. Since 2011, 

the Armenian government has exempted agricultural technology products from value-

added tax while importing agricultural machinery from neighboring countries, such as 

Belarus, for leasing (see Armenia Economic and Commercial Affairs Office2).  

India and Azerbaijan follow in terms of the frequency of GTP and LTP. Over the 

past 20 years, India has made more global technological progress and fewer local 

technological changes. Local technological changes in agricultural production have 

occurred more frequently in Azerbaijan and are reflected in the improvement of its 

environmental productivity.  

China, as the country proposing the Belt and Road initiative, has also experienced 

GTP and LTP several times. Specifically, China’s agricultural green production 

technology has undergone three local changes over the past 20 years, all of which are 

reflected in the improvement in environmental productivity. Bulgaria, Georgia, and 

Pakistan show fewer overall and local technological advances. Finally, countries such 

 
2 For more information, see http://am.mofcom.gov.cn/index.shtml.   
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as Sri Lanka, Hungary, Cyprus, Malaysia, Oman, Russia, and Tajikistan stagnated after 

one or two GTP and LTP in agricultural green production technology have occurred in 

certain periods. 

4.3 Convergence and Innovator Recognition 

Table 4. Testing β-convergence of productivity changes 

 LPI EC TP 
 Eco Env Eco Env Eco Env 

Convex       
β 0.229*** 0.175 3.221*** 0.340*** 0.427** 0.444*** 
 (4.49) (1.29) (4.37) (4.13) (2.55) (8.71) 
R² 0.100 0.017 0.124 0.013 0.072 0.197 
Nonconvex       
β 0.443*** 0.752*** 11.884 0.309*** 0.095 0.575*** 
 (7.21) (9.78) (0.60) (3.85) (1.56) (8.50) 
R² 0.152 0.250 0.109 0.149 0.028 0.185 

Note. () means t-value; *Significant at the 10% level. **Significant at 5% level. 

***Significant at 1% level. LPI stands for green productivity, EC for efficiency 

improvement, and TP for technological development; Eco and Env represent the 

development of economic and environmental performance.  

 

Table 4 reports the convergence results of our parameter estimation in productivity 

changes, efficiency changes, and technological progress in 53 developing countries. 

The results show that regardless of the convex and nonconvex models, the coefficients 

of agricultural green productivity and its two components in economic and 

environmental dimensions are all positive, most of which were significant at the 1% 

level. As such, the performance of agricultural green productivity and its two 
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components in economic and environmental dimensions does not converge. These 

developing countries are in different stages of agricultural development, whereas the 

initial level of agricultural green productivity is significantly different. Although green 

agriculture productivity has improved in all countries in the past 20 years, the speed of 

development green agriculture has failed to make up for the low agricultural green 

productivity in lagging countries. Developing countries with higher agricultural green 

productivity have maintained their good performance through their effective allocation 

of resources and advanced technology. 

Table 5. Number of periods countries appeared as innovators, 2000–2019 

Country Number of periods Initial period Last period 
Azerbaijan 4 2011-2012 2018-2019 
Armenia 3 2008-2009 2011-2012 
India 3 2001-2002 2010-2011 
Egypt 1 2007-2008 - 
Pakistan 1 2012-2013 - 

 

Table 5 provides the detailed results for innovative countries from 2000 to 2019 

according to definition (10). We also report the number of times each country is 

identified as an innovator, as well as the first and last periods in which this occurs. 

Azerbaijan has been identified as the most frequently innovative country during the 

period 2000–2019. It becomes an innovator in 2011 and maintained this position until 

2019. Armenia and India follow Azerbaijan. Armenia appears as an innovator among 

developing countries for three consecutive years since 2008, whereas India becomes an 

innovative country three times in 2001–2011. Countries such as Egypt and Pakistan 

have become innovators in agricultural green production for some time. Pakistan 
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becomes an innovative country during 2012–2013 when biotechnology spread 

throughout the country. Biotechnology has made a significant contribution to 

agricultural green development in Pakistan. Pakistan grew 2.8 million hectares of 

biotech cotton in 2013, which significantly reduced the use of pesticides (James, 2013).  

5. Conclusions and policy implications 

This study introduces undesirable outputs into the calculation of global and local 

technological progress and expands the definition of both to green productivity. First, 

we calculate the green performance of agriculture in Belt and Road countries based on 

the by-production model using the convex and nonconvex methods. Second, we 

distinguish the sources of agricultural technological progress in Belt and Road countries. 

Using the extended definitions, we explore the extent to which global and local 

innovation forces have contributed to agricultural technological progress in developing 

countries. Third, we examine whether the agricultural green performance of countries 

in the Belt and Road region converged and we also identify which countries play the 

role of innovators, to provide a reference for promoting agricultural cooperation in the 

region.  

The key findings are summarized as follows. First, Belt and Road countries show 

improvements in their agricultural green productivity, efficiency changes, and 

technological progress from 2000 to 2019. The 2011–2019 period witnesses rapid 

development of green agriculture, and environmental technological progress is the 

driving force of growth under the nonconvex model. However, the cumulative change 

rate of green productivity indicators obtained by the nonconvex method is higher than 
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that calculated by the convex method, which provides evidence from agriculture for the 

inference of the previous literature supporting the nonconvex FDH method. The 

nonconvex frontier is likely to offer a better depiction of agricultural activities and of 

the actual situation. Second, 14 of the sample countries demonstrate GTP and LTP 

between 2000 and 2019, and the contributions of global and local innovation power are 

about the same. However, the local innovation force is relatively weak in terms of 

environmental performance. Overall, the loose definition of TP2 is the most applicable 

definition for the agricultural sector in Belt and Road countries. Third, we find no 

convergence in the green development of agriculture in the Belt and Road region. Some 

of the countries continue to push the production frontier in the Belt and Road region 

upward with higher agricultural green production performance. Azerbaijan is shown to 

be the most innovative country. 

The results have several policy implications. First, developing countries must pay 

more attention to environmental technological innovation. To reduce carbon emissions 

from agricultural production, each country should increase investment in agricultural 

technology and promote low-carbon production technologies to give full play to the 

power of local innovation. Second, Belt and Road construction must consider the gaps 

in agricultural development among countries and implement more agricultural 

cooperation projects. To narrow the gaps in sustainable agricultural development, 

regional organizations should promote the widespread dissemination of advanced 

technologies and experiences within the region and encourage innovative countries to 

help backward countries improve their agricultural green performance. 
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This study has some limitations. First, more research is needed to examine the 

validity of convexity imposed on production technology in general, especially when the 

true empirically estimated technology may be nonconvex. Second, we only investigate 

the agricultural sector of 53 developing countries, and further research could be 

conducted with larger samples.  

 

  



 31 

 

Appendix. Estimation Strategy 

A set of linear programs that involves comparing observations with their sample 

must be solved to compute the Luenberger productivity indicator (4) and its 

components. Provided that the production technology is convex, the output-oriented 

DEA model can be applied. The specific directional distance function with given 

constraints is given by: 
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where both kλ  and kσ  are weight variables. The former weight variable is associated 

with desirable outputs, “clean” inputs, and “dirty” inputs rendered by sub-technology 

𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒 . The latter weight variable represents the impact of sub-technology 𝑇𝑇𝑒𝑒𝑛𝑛𝑒𝑒 . that 

employs “dirty” inputs and generates undesirable outputs. It is noticeable that all the 

constraints on the left reflect the performance of the benchmark unit while the other 

side expressions reveal the real performance of each DMUS. In the current setting, we 
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strike a balanced expansion whereby desirable outputs can be expanded and undesirable 

outputs can be contracted simultaneously.  

In a similar manner, if we discard the convexity assumption in favor of a non-

convex technology, then our FDH program for calculating the distance function is 

shown by: 
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where  and  have only two possible binary integer values, which ensures that the 

peer unit on the production frontier must be a real observation. If one observation result 

is dominated by at least one other observation, then it can be declared invalid. We think 

that the continuing debate surrounding convex and non-convex technologies stems 

from the point that the units on the curve connecting each vertex point in the convex 

frontier are not included in the nonconvex frontier. Because a nonconvex frontier is 

only composed of a few actual observations, the nonconvex model tends to offer a more 
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conservative evaluation of production possibility sets than does the convex one.  
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