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Quantum computing has sparked a tremendous interest from governments, academics,

and the private sector alike. According to a 2021 McKinsey report, governments have

announced to invest almost $30 billion to develop quantum technologies. Companies

such as IBM, Google, Amazon, and Microsoft are also investing heavily, and have already

launched commercial quantum-computing services. Research on quantum computing is

also on the rise with hundreds of publications in Nature, Science, and PNAS. Despite

this enormous interest, quantum computing has received little or no attention in the OR

community. This is somewhat surprising given the potential that has been ascribed to

quantum computers to solve Operations Research (OR) problems. To investigate the

potential of quantum computing from an OR perspective, we discuss the most important

quantum algorithms, and use them to effectively solve the knapsack problem for the

very first time. We verify our results using Qiskit (IBM’s software development kit

for quantum computing), and make available templates that allow to solve other OR

problems. In addition, we highlight a number of important limitations and drawbacks of

quantum computing (when compared to classical computing), and conclude that quantum

computing indeed shows promise, albeit not for every application.

Keywords: Quantum; computing; algorithm; knapsack.

1. Introduction

The idea of quantum computing was first launched in 1980, when Benioff described a quantum

mechanical model of a Turing machine. A few years later, Feynman (1982) proposes the idea

of a universal quantum simulator. Building on the work of Benioff and Feynman, Deutsch (1985)

describes the first universal quantum computer that is able to efficiently simulate any other quantum

computer. In addition, Deutsch proposes the Deutsch algorithm, the first quantum algorithm that

has a proven speedup when compared to a classical algorithm. Later, Deutsch and Josza (1992)

extend this algorithm, and achieve an exponential speedup. Deutsch and Josza, however, consider

a problem (the Deutsch-Josza problem) that is purely theoretical and has no practical use. It isn’t

until 1994 that quantum computing really takes off. In 1994, Shor proposes a quantum algorithm
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Figure 1. Number of English documents that have been published according to Google Scholar when conducting a
search using the keyword “quantum computing”.
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to find the prime factors of large integers in polynomial time. In theory, Shor’s algorithm can be

used to break many of the cryptography schemes in use today. Not surprisingly, the publication of

Shor’s algorithm has sparked tremendous interest for quantum computing. A few year later, Grover

(1996) published a quantum search algorithm that achieves a quadratic speedup when compared to

a classical algorithm. Arguably, Grover’s algorithm is the most important algorithm in quantum

computing today. It can be used to solve a variety of problems, and is the corner stone of many

other quantum algorithms. Even though many other quantum algorithms have been published since

1997 (e.g., the Quantum Algorithm Zoo lists 62 quantum algorithms), there have been no other

major breakthroughs in quantum computing. Despite the lack of recent breakthroughs, a recent

McKinsey report (2021) shows that, since 2010, quantum computing has attracted $3.3 billion in

investments from private companies (of which $1.7 billion in 2021 alone), and that governments have

announced to spend almost $30 billion on the development of quantum technologies. In addition,

investments in quantum computing are expected to further increase in the upcoming years.

This increasing trend can also be seen in the number of published papers that deal with quantum

computing. For instance, Figure 1 shows the number of English documents that have been published

since 1996 according to Google Scholar when conducting a search using the keyword “quantum

computing”. Most papers on quantum computing have been published in physics journals, however,

also Nature, Science, and PNAS are popular outlets for this topic (with 794, 410, and 115 published

papers that mention “quantum computing”, respectively).

Notwithstanding the tremendous interest in quantum computing, there has been little to no

attention to this topic from the OR community. This is somewhat surprising given the potential that

has been ascribed to quantum computers to solve OR problems. In this paper, we open up the field

of quantum computing to the OR community, illustrate the most important quantum algorithms,

and show how they can be used to solve the knapsack problem. We highlight challenges that are
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typically overlooked in the current literature on quantum computing, and verify our calculations

using Qiskit; IBM’s open-source software development kit that allows to simulate or operate a

universal quantum computer. Our code is made available as supplementary material, and includes

templates to solve the knapsack problem, the graph-coloring problem, and the resource-constrained

project scheduling problem. Using these templates, other OR problems can be solved as well.

Following our implementation of the knapsack problem, we identify a number of important

drawbacks that limit the potential of quantum computing to solve OR problems. We discuss how

these drawbacks have been addressed in the literature, and show that the proposed solutions also

have limitations. we conclude that quantum computing indeed shows promise, albeit not for every

application.

In what follows, in Section 2, we introduce the fundamentals of quantum computing, and the

notation that will be used throughout the rest of the paper. Next, in Section 3, we define the

gates and circuits that are required to establish universal quantum computing. In Section 4, we

introduce the Deutsch algorithm and its extension to the Deutsch-Josza algorithm. The Deutsch-

Josza algorithm serves as an important building block of Grover’s algorithm, that is discussed

in Section 5. In Section 6, we use Grover’s algorithm to solve the knapsack problem. Section 7

discusses the (current) limitations of quantum computing for solving OR problems, and Section 8

concludes this paper.

2. Fundamentals of Quantum Computing

In 1939, Dirac introduced the “bra-ket” notation to facilitate the study of quantum systems. In

this notation, a “ket” |v⟩ denotes a column vector v defined in a complex vector space V , a “bra”

⟨f | denotes a row vector f that acts as a linear map on V , and a “bra-ket” ⟨f |v⟩ represents the

inner product of ⟨f | and |v⟩. In what follows, we adopt bra-ket notation.

In quantum computing, information is stored in so-called “qubits”. A qubit can be seen as a

two-state quantum system that has basis states |0⟩ = (1, 0)T and |1⟩ = (0, 1)T. These basis states

are the quantum equivalents of states 0 and 1 of a classical bit. In contrast to a classical bit,

however, a qubit may also be in a superposition of both basis states (i.e., it is in both states at the

same time). In superposition, the state of the quantum system is described by a so-called “wave

function”. In case of a single qubit, the wave function is a linear combination of basis states |0⟩
and |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩ , (1)

where α and β are complex numbers that are also known as the “probability amplitudes” of wave

function |ψ⟩. By observing (i.e., measuring) a qubit in superposition, the state of the quantum

system is said to collapse into one of the basis states. The probability that a qubit collapses into

basis state |0⟩ or |1⟩ is proportional to the square of probability amplitutes α and β, respectively.

This result is also known as the Born rule (1926). Given that α and β are complex numbers, we
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have:

|α|2 + |β|2 = 1. (2)

In systems with two (or more) qubits, the basis states can be obtained as the Kronecker product

of the basis states of each individual qubit. For instance, if we consider two qubits, a first basis

state is given by:

|00⟩ = |0⟩ ⊗ |0⟩ = (1, 0)T ⊗ (1, 0)T = (1, 0, 0, 0)T.

The other basis states are |01⟩ = (0, 1, 0, 0)T, |10⟩ = (0, 0, 1, 0)T, and |11⟩ = (0, 0, 0, 1)T. If both

qubits are in superposition, we get:

|Ψ⟩ = |ψ1⟩⊗|ψ2⟩ = (α1 |0⟩+β1 |1⟩)⊗(α2 |0⟩+β2 |1⟩) = α1α2 |00⟩+α1β2 |01⟩+β1α2 |10⟩+β1β2 |11⟩ ,

where |Ψ⟩ is used to denote the state of a set of qubits.

3. Universal Quantum Computing

Similar to universal computing, quantum computing uses logic gates to perform operations. In

contrast to the gates of classical computing, however, quantum gates need to be reversible (i.e.,

given the output of an operation, we should be able to determine the input that produced that

output). In what follows, we introduce the X, CX, and Toffoli quantum gates, and show how these

gates can be used to create the quantum counterpart of the AND, OR, XOR, and NOT gates of

classical computing.

The X gate is the quantum equivalent of the classical NOT gate, and transforms input state |0⟩
into output state |1⟩ (and vice versa). Formally, X is a two-by-two matrix that operates as follows:

X |0⟩ =

(
0 1

1 0

)(
1

0

)
=

(
0

1

)
= |1⟩ , X |1⟩ =

(
0 1

1 0

)(
0

1

)
=

(
1

0

)
= |0⟩ .

The CX (or controlled-X) gate has two input qubits: a target qubit on which an X operation may

be performed, and a control qubit that determines whether or not the X operation is performed on

the target qubit. If the control qubit is in basis state |1⟩, the X operation is performed on the target

qubit. Otherwise, if the control qubit is in basis state |0⟩, the target qubit remains unchanged.

Formally, CX is a four-by-four matrix that operates as follows:

CX |00⟩ =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



1

0

0

0

 =


1

0

0

0

 = |00⟩ .

One can verify that CX |10⟩ = |11⟩, CX |01⟩ = |01⟩, and CX |11⟩ = |10⟩.
The Toffoli gate is a controlled-CX (CCX) gate that has two control qubits. Only if both control
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qubits are in basis state |1⟩, the X operation is performed on the target qubit. Formally, CCX is

an eight-by-eight matrix that operates as follows:

CCX |000⟩ =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0





1

0

0

0

0

0

0

0


=



1

0

0

0

0

0

0

0


= |000⟩ .

One can verify that CCX |100⟩ = |100⟩, CCX |010⟩ = |010⟩, CCX |110⟩ = |111⟩, CCX |001⟩ = |001⟩,
CCX |101⟩ = |101⟩, CCX |011⟩ = |011⟩, and CCX |111⟩ = |110⟩.

We can use the X, CX, and CCX gates to create the quantum equivalents of the classical AND,

OR, XOR, and NOT gates: the quantum equivalent of the AND gate corresponds to a CCX gate

with target qubit initialized as |0⟩, the quantum equivalent of the OR gate is a series of a CX, X,

CCX, and X gate with target qubit initialized as |0⟩, the quantum equivalent of the XOR gate is

a series of two CX gates with target qubit initialized as |0⟩, and the quantum equivalent of the

NOT gate is simply the X gate. All aforementioned gates are illustrated in Figure 2. Note that a

series of gates is called a “circuit”, and that the quantum equivalent of an AND, OR, and NOT

gate suffice to establish universal quantum computing.

4. The Deutsch algorithm

The Deutsch algorithm was first published in 1985, has been generalized by Deutsch and Josza in

1992, and has further been improved by Cleve et al. (1998). Even though the Deutsch algorithm

solves a problem that is of no practical use, it is of particular interest because (1) it uses the “phase

kickback” trick that is exploited in many quantum algorithms, and (2) it is one of the first quantum

algorithms for which it has been shown that it can solve a problem more efficiently than a classical

algorithm.

The Deutsch algorithm solves the following problem: we are given a function f that maps a

binary input to a binary output in a way that is unknown to us. Even though function f acts as a

black box, we are told that f is either “constant” or “balanced”; f is said to be constant if it always

produces the same output, and f is balance if it produces a zero for half of the inputs and a 1 for

the other half of the inputs. For a binary input, this implies that a balanced function produces a
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X gate (quantum NOT gate)

|0⟩ |1⟩ |1⟩ |0⟩

CX gate

|0⟩ |0⟩

|0⟩ |0⟩

|1⟩ |1⟩

|0⟩ |1⟩

|0⟩ |0⟩

|1⟩ |1⟩

|1⟩ |1⟩

|1⟩ |0⟩

CCX gate (quantum AND gate if target qubit is initialized as |0⟩)

|0⟩ |0⟩
|0⟩ |0⟩

|0⟩ |0⟩

|1⟩ |1⟩
|0⟩ |0⟩

|0⟩ |0⟩

|0⟩ |0⟩
|1⟩ |1⟩

|0⟩ |0⟩

|1⟩ |1⟩
|1⟩ |1⟩

|0⟩ |1⟩

|0⟩ |0⟩
|0⟩ |0⟩

|1⟩ |1⟩

|1⟩ |1⟩
|0⟩ |0⟩

|1⟩ |1⟩

|0⟩ |0⟩
|1⟩ |1⟩

|1⟩ |1⟩

|1⟩ |1⟩
|1⟩ |1⟩

|1⟩ |0⟩

Quantum OR gate

|0⟩ |0⟩

|0⟩ |0⟩

|0⟩ |0⟩

|1⟩ |1⟩

|0⟩ |0⟩

|0⟩ |1⟩

|0⟩ |0⟩

|1⟩ |1⟩

|0⟩ |1⟩

|1⟩ |1⟩

|1⟩ |1⟩

|0⟩ |1⟩

Quantum XOR gate

|0⟩ |0⟩
|0⟩ |0⟩

|0⟩ |0⟩

|1⟩ |1⟩
|0⟩ |0⟩

|0⟩ |1⟩

|0⟩ |0⟩
|1⟩ |1⟩

|0⟩ |1⟩

|1⟩ |1⟩
|1⟩ |1⟩

|0⟩ |0⟩

Figure 2. Circuits of the X, CX, and CCX quantum gates, as well as the quantum equivalents of the classical AND,
OR, XOR, and NOT gates. The target qubit is indicated in blue.
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different output for each input. As such, f is one of the following four functions:

f0 = 0 and f1 = 0 (f is constant),

f0 = 1 and f1 = 0 (f is balanced),

f0 = 0 and f1 = 1 (f is balanced),

f0 = 1 and f1 = 1 (f is constant),

where fx is used to denote f(x). To solve the Deutsch problem, it suffices to determine whether

f is constant or balanced. The traditional way to solve this problem would be to evaluate both

f0 and f1, and to observe whether the outputs are the same. This solution, however, requires two

calls to function f . Using the Deutsch algorithm, we only require a single call to function f .

The circuit of the Deutsch algorithm is presented in Figure 3.

Figure 3. Circuit of the Deutsch algorithm

|0⟩ H

Of

H

|1⟩ H

x x

y y ⊻ fx

1 2 3 4

In this circuit, the Hadamard gate (represented by the letter H) plays a pivotal role. The Hadamard

gate is one of the most important quantum gates as it is used to put qubits in superposition. In

case of a single qubit, it operates as follows:

H |0⟩ = 1√
2

(
1 1

1 −1

)(
1

0

)
=

|0⟩+ |1⟩√
2

= |+⟩ , H |1⟩ = 1√
2

(
1 1

1 −1

)(
0

1

)
=

|0⟩ − |1⟩√
2

= |−⟩ .

If a qubit, initialized as |0⟩ or |1⟩, is passed through a Hadamard gate, it is said to be in super-

position, and has a 50 percent probability to collapse into either basis state when measured. In

general, when applied to a set of n qubits, the Hadamard gate is defined as the nth tensor power of

H (denoted H⊗n), and the probability to measure any of the 2n basis states equals 2−n. Note that

H⊗n is an involutory matrix (i.e., a square matrix that is its own inverse). As a result, H |+⟩ = |0⟩
and H |−⟩ = |1⟩.

The Deutsch algorithm can be broken down in four steps (indicated by the red dashed lines in

the circuit). In a first step, we initialize two qubits, and obtain quantum state |Ψ1⟩ = |01⟩. Next,
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in a second step, both qubits are put in superposition using a Hadamard gate:

|Ψ2⟩ = H⊗2 |01⟩ = 1

2


1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1



0

1

0

0

 =
1

2


1

−1

1

−1

 =
1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩) = |+−⟩ .

In step 3, we pass both qubits through an oracle Of that, unlike us, has complete knowledge of

function f . Oracle Of uses its knowledge of f to map state |xy⟩ to |x(y ⊻ fx)⟩, where ⊻ represents

the XOR operation, and where x and y represent the first and second qubit, respectively. It is

important to note that oracle Of only makes a single call to function f ; only the first qubit is

evaluated using f . After applying oracle Of , we get:

|Ψ3⟩ =
1

2
(|0⟩ ⊗ (|(0 ⊻ f0)⟩ − |(1 ⊻ f0)⟩) + |1⟩ ⊗ (|(0 ⊻ f1)⟩ − |(1 ⊻ f1)⟩)) .

For x ∈ {0, 1}, one can verify that |x⟩ ⊗ (|0 ⊻ fx⟩ − |1 ⊻ fx⟩) = (−1)fx |x⟩ ⊗ (|0⟩ − |1⟩), and hence,

the sign (or phase) of the second qubit is “kicked back” to the first qubit if fx = 1 (i.e., the phase

kickback trick has been applied). As a result, |Ψ3⟩ may also be defined as:

|Ψ3⟩ =
1

2

(
(−1)f0 |0⟩ ⊗ (|0⟩ − |1⟩) + (−1)f1 |1⟩ ⊗ (|0⟩ − |1⟩)

)
.

Quantum state |Ψ3⟩ can further be simplified depending on whether f is constant or balanced.

First, assume that f is constant. In this case, f0 = f1, and there are two options. Either f0 = 0,

and |Ψ3⟩ is given by:

|Ψ3⟩ =
1

2
(|00⟩ − |01⟩+ |10⟩ − |11⟩) = |0⟩+ |1⟩√

2
⊗ |0⟩ − |1⟩√

2
= |+−⟩ ,

or f0 = 1, and we obtain:

|Ψ3⟩ =
1

2
(− |00⟩+ |01⟩ − |10⟩+ |11⟩) = −|0⟩+ |1⟩√

2
⊗ |0⟩ − |1⟩√

2
= − |+−⟩ .

If, on the other hand, f is balanced, f0 ̸= f1, and there are again two options. Either f0 = 0, and

|Ψ3⟩ is given by:

|Ψ3⟩ =
1

2
(|00⟩ − |01⟩ − |10⟩+ |11⟩) = |0⟩ − |1⟩√

2
⊗ |0⟩ − |1⟩√

2
= |−−⟩ ,

or f0 = 1, and we obtain:

|Ψ3⟩ =
1

2
(− |00⟩+ |01⟩+ |10⟩ − |11⟩) = −|0⟩ − |1⟩√

2
⊗ |0⟩ − |1⟩√

2
= − |−−⟩ .

Note that − |+−⟩ and |+−⟩ are said be equivalent; the “global phase” of the quantum system has
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no impact on the probability that it collapses into one of the basis states. The same logic applies

to − |−−⟩ and |−−⟩. At the end of step 3, we can dispose of the second qubit (it is no longer

needed), and observe that the first qubit is in state |+⟩ if f is constant, and in state |−⟩ if f is

balanced. Therefore, if the first qubit is passed through a second Hadamard in the last step, we

measure |Ψ4⟩ = H |+⟩ = |0⟩ if f is constant, and |Ψ4⟩ = H |−⟩ = |1⟩ if f is balanced. With only

a single call to function f , the Deutsch algorithm is able to determine whether f is constant or

balanced. This result was further generalized by Deutsch and Josza, who consider a function f

that has n binary inputs (rather than only a single binary input, as was the case in the Deutsch

algorithm).

5. Grover’s algorithm

The goal of Grover’s algorithm is to find a single target entry in an unstructured database that

has 2n entries. Similar to Deutsch and Josza, Grover considers a function f that has n binary

inputs that are modeled using n qubits. The resulting quantum system has 2n basis states that

each correspond to an entry of the database. In contrast to Deutsch and Josza, however, f is not

constant or balanced, but returns 1 if the target entry is given as an input, and 0 otherwise. Table 1

provides an example with three binary inputs, resulting in a quantum system that has eight basis

states. In this example, function f outputs 1 only for target entry 101 (represented by basis state

|101⟩; indicated in blue). Throughout the remainder of this section, this example will be used to

illustrate the different steps of Grover’s algorithm.

Table 1. Example database with eight entries that are represented by the basis states of a quantum system that
has three qubits. The target entry is printed in blue.

x 000 100 010 110 001 101 011 111

fx 0 0 0 0 0 1 0 0

The circuit of Grover’s algorithm is presented in Figure 4. Once again, the algorithm can

be broken down in four steps (indicated by the red dashed lines in the circuit). The first steps of

Grover’s algorithm are almost identical to those of the Deutsch-Josza algorithm. The only difference

is that oracle Of only kicks back the phase of the basis state that corresponds to the target entry.

In our example, |Ψ1⟩ = |0001⟩, |Ψ2⟩ = |+++−⟩, and |Ψ3⟩ is given by (the basis state whose phase

has been kicked back is indicated in blue):

|Ψ3⟩ =
1√
8
(|000⟩+ |100⟩+ |010⟩+ |110⟩+ |001⟩− |101⟩+ |011⟩+ |111⟩)⊗ |−⟩ .

At this stage, if we observe the first three qubits, there is an equal probability that the system

collapses into either of the 8 basis states. In other words, we have 1 chance out of 8 to find out

that |101⟩ is the target basis state; measuring the state of the system at this stage is equivalent to

randomly guessing the target entry. To increase the probability of measuring the correct basis state,
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Figure 4. Circuit of Grover’s algorithm

n|0⟩ H⊗n

Of

2 |H⊗n0⊗n⟩ ⟨H⊗n0⊗n| − I2n

|1⟩ H

x x

repeat π4−1
√
2n times

y y ⊻ fx

1 2 3 4

Grover uses a so-called “difusion” operator. In short, the diffusion operator is a quantum gate that

reflects the probability amplitudes of the basis states about the average probability amplitude. The

goal of the diffusion operator is to amplify the probability amplitude of the target basis state. For

three qubits, the diffusion operator is given by:

2
∣∣H⊗30⊗3

〉 〈
H⊗30⊗3

∣∣− I8 =



−0.75 0.25 0.25 0.25 0.25 0.25 0.25 0.25

0.25 −0.75 0.25 0.25 0.25 0.25 0.25 0.25

0.25 0.25 −0.75 0.25 0.25 0.25 0.25 0.25

0.25 0.25 0.25 −0.75 0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25 −0.75 0.25 0.25 0.25

0.25 0.25 0.25 0.25 0.25 −0.75 0.25 0.25

0.25 0.25 0.25 0.25 0.25 0.25 −0.75 0.25

0.25 0.25 0.25 0.25 0.25 0.25 0.25 −0.75


,

where |0⊗n⟩ is the nth tensor power of |0⟩, |v⟩ ⟨f | is the outer product of |v⟩ and ⟨f |, and I2n is

an identity matrix of dimension 2n × 2n. When applied to our example, one can verify that the

average probability amplitude is 6(8
√
8)−1, and we get:

|Ψ4⟩ =
(

20

8
√
8
|101⟩+ 4

8
√
8
(|000⟩+ |100⟩+ |010⟩+ |110⟩+ |001⟩+ |011⟩+ |111⟩)

)
⊗ |−⟩ .

In other words, the probability amplitude of the target basis state (i.e., −(8
√
8)−1) is reflected

about 6(8
√
8)−1, resulting in probability amplitude 20(8

√
8)−1. The probability amplitudes of all

other basis states (i.e., (8
√
8)−1) are also reflected, resulting in probability amplitudes 4(8

√
8)−1.

These reflections are illustrated in Figure 5.

After a first iteration of steps 3 and 4, the probability of identifying the correct target state

has increased from 0.125 to 0.7813 (i.e., (20(8
√
8)−1)2). We can further increase this probability
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Figure 5. Probability amplitudes of the different basis states before and after applying the diffusion operator in a
first iteration (target basis state is printed in blue, other basis states are printed in grey, and the average amplitude
used by the diffusion operator is printed in red).
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by repeating steps 3 and 4. We get:

|Ψ3.2⟩ =
(
− 20

8
√
8
|101⟩+ 4

8
√
8
(|000⟩+ |100⟩+ |010⟩+ |110⟩+ |001⟩+ |011⟩+ |111⟩)

)
⊗ |−⟩ ,

resulting in an average probability amplitude of (8
√
8)−1, and:

|Ψ4.2⟩ =
(

22

8
√
8
|101⟩ − 2

8
√
8
(|000⟩+ |100⟩+ |010⟩+ |110⟩+ |001⟩+ |011⟩+ |111⟩)

)
⊗ |−⟩ .

After a second iteration of steps 3 and 4, the probability of success increases to 0.9453; we are

94.53 percent certain to identify the target basis state after only two calls to function f . Another

repetition of steps 3 and 4, however, will not increase the success probability:

|Ψ3.3⟩ =
(
− 22

8
√
8
|101⟩ − 2

8
√
8
(|000⟩+ |100⟩+ |010⟩+ |110⟩+ |001⟩+ |011⟩+ |111⟩)

)
⊗ |−⟩ ,

resulting in an average probability amplitude of −4.5(8
√
8)−1, and:

|Ψ4.3⟩ =
(

13

8
√
8
|101⟩ − 7

8
√
8
(|000⟩+ |100⟩+ |010⟩+ |110⟩+ |001⟩+ |011⟩+ |111⟩)

)
⊗ |−⟩ .

After a third iteration of steps 3 and 4, the probability of success drops to 0.3301. Figure 6

illustrates the second and third iteration.

For different numbers of iterations, Table 2 lists the average probability amplitude, the prob-

ability amplitudes of the target and other states, and the probability to successfully identify the

target basis state before the diffusion operator is applied. In addition, Figure 7 shows the proba-

bility amplitude of the target basis state after each iteration. From Figure 7, one can observe that

the probability amplitude of the target basis state approximates a sine function that has its first

extremum after two iterations. In fact, to find a target entry in a database of 2n entries, Grover

11



Figure 6. Probability amplitudes of the different basis states before and after applying the diffusion operator in a
second (left panel) and third (right panel) iteration (target basis state is printed in blue, other basis states are printed
in grey, and the average amplitude used by the diffusion operator is printed in red).

probability
amplitude

1

8 8

−20

8 8

4

8 8

−2

8 8

22

8 8
1.00

−22

8 8

probability
amplitude

−4.5

8 8

−2

8 8

−7

8 8

13

8 8

1.00

has shown that the probability amplitude of the target basis state reaches a first extremum after

approximately π4−1
√
2n iterations. In other words, whereas a classical algorithm requires 2n−1 calls

to function f (on average), Grover’s algorithm only needs π4−1
√
2n calls, resulting in a quadratic

speedup for large n. In addition, for this problem, Bennett et al. (1997) have shown that it is not

possible to achieve a better speedup on a quantum computer. Admittedly, the output of Grover’s

algorithm is probabilistic (as is the case with most quantum algorithms). However, for sufficiently

large n, even if we have to repeat Grover’s algorithm a number of times, it is still faster than a

classical algorithm.

Note that, even if there is more than one target entry, Grover’s algorithm can still be used to

quickly identify one of the target entries. In general, if there are m target entries in a database

of 2n entries, Grover’s algorithm needs approximately π4−1
√
m−12n iterations (again, this result

cannot be improved on a quantum computer; an algorithm to calculate the exact number of required

iterations is available in Appendix). If the number of target entries is unknown, Grover’s algorithm

can be evaluated for different values of m until a matching entry has been found. One approach

is to first evaluate Grover’s algorithm assuming m = 2n, and to evaluate m = m/2 in subsequent

runs until a matching entry is found.

6. Application of Grover: Knapsack

In the previous section, Grover used a function f that outputs 1 if a set of n binary inputs cor-

responds to a given target entry in an unstructured database of 2n entries. We can, however,

also equip Grover’s algorithm with other functions. By doing so, we can use Grover’s algorithm

to solve many classical problems. In this section, we use Grover’s algorithm to solve the binary

12



Table 2. Average probability amplitude, probability amplitude of the target basis state, probability amplitude of
the other basis states, and probability to successfully identify the target basis state before step 4 for different numbers
of iterations.

iteration
average target other success

amplitude amplitude amplitude probability

1 0.2652 -0.3536 0.3536 0.1250
2 0.0442 -0.8839 0.1768 0.7813
3 -0.1989 -0.9723 -0.0884 0.9453
4 -0.3425 -0.5745 -0.3094 0.3301
5 -0.3149 0.1105 -0.3757 0.0122
6 -0.1298 0.7403 -0.2541 0.5480
7 0.1202 0.9999 -0.0055 0.9998
8 0.3100 0.7596 0.2458 0.5770
9 0.3449 0.1395 0.3743 0.0195
10 0.2073 -0.5504 0.3156 0.3029
11 -0.0339 -0.9650 0.0991 0.9313
12 -0.2582 -0.8972 -0.1669 0.8049
13 -0.3534 -0.3807 -0.3495 0.1450
14 -0.2719 0.3261 -0.3573 0.1063
15 -0.0544 0.8698 -0.1865 0.7566
16 0.1902 0.9787 0.0776 0.9578

Figure 7. Probability amplitude of the target basis state after each iteration.
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knapsack problem (we have chosen this problem because it is a typical OR problem that can be

easily implemented as a function to be used in Grover’s algorithm; other OR problems, however,

can be implemented just as well).

The binary knapsack problem is an NP-complete problem that has been studied for more than

a century (see e.g., Kellerer et al. (2004)). The goal of the binary knapsack problem is to maximize

the value of a knapsack by adding items from a pool of n items. Each item i has a weight wi and

a value vi. The weight of the selected items should not exceed W , the maximum weight capacity

of the knapsack. The binary knapsack problem may be formulated as follows:

Maximize
n∑

i=1

vixi (3)

s.t.
n∑

i=1

wixi ≤W (4)

xi ∈ {0, 1} , ∀ 1 ≤ i ≤ n (5)

In this formulation, xi is a binary decision variable that determines whether or not item i has

been added to the knapsack, objective function 3 maximizes the value of the knapsack, constraint 4

ensures that the items in the knapsack do not exceed the maximum weight, and constraint 5 ensures

that decision variables are binary.

To solve the binary knapsack problem, we equip Grover’s algorithm with a function fx that

outputs 1 if knapsack x = {x1, . . . , xn} is valid (and 0 otherwise). As a result, Grover’s algorithm

will only kickback the phase of basis state |x⟩ if knapsack x is valid. Knapsack x is valid if it is

feasible (i.e., if it satisfies constraint 4), and if it has a value of at least V . To ensure that knapsack

x has a value of at least V , we impose an additional constraint:

n∑
i=1

vixi ≥ V (6)

We use a binary search procedure to find the optimal knapsack and its value (denoted x∗ and V ∗,

respectively). An outline of the procedure is provided in Algorithm 1 (note that, with a minimum

of adaptations, this procedure can also be used to solve other OR problems). After initializing

a minimum knapsack value Vmin and a maximum knapsack value Vmax, the procedure evaluates

at most
⌈
log2(1 + (Vmax − Vmin)(mini vi)

−1)
⌉
iterations of an outer loop. In each iteration of the

outer loop, we initialize a knapsack value V and the number of valid solutions m. V is initialized

as the largest value that is divisible by mini vi, and that is still smaller-than-or-equal-to the center

of the interval that has endpoints Vmin and Vmax. In addition, we let m = 2n because we don’t

know the number of valid solutions (as also explained at the end of the previous section). Next, we

perform at most n iterations of an inner loop. In each of these iterations, we perform π4−1
√
m−12n

repetitions of Grover’s algorithm, and measure the basis state into which the system collapses (i.e.,

we measure |x⟩). Because the outcome of Grover’s algorithm is probabilistic, it is possible that
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solution x is not valid. In addition, if no valid solution exists, any basis state that we measure will

correspond to an invalid solution. Therefore, we need to verify whether x is valid; we need to verify

whether
∑n

i=1wixi ≤W and
∑n

i=1 vixi ≥ V . If the validity of solution x has been verified, Vmin is

updated (i.e., Vmin = V +mini vi), we break the inner loop, and start a new iteration of the outer

loop in which we reinitialize V and m. If, on the other hand, solution x is not valid, there are two

options. If m > 1, we let m = m/2, and perform another iteration of the inner loop. If, however,

we already evaluated all values of m, we update Vmax (i.e., Vmax = V −mini vi), we break the inner

loop, and start a new iteration of the outer loop in which we reinitialize V and m. This process

continues until Vmin > Vmax. The last found solution and its value are optimal. Note that, in order

to reduce the number of iterations, lower and upper bound procedures may be used to initialize

Vmin and Vmax.

Algorithm 1: Procedure to solve the binary knapsack problem using Grover’s algorithm

initialize Vmin = 0 and Vmax =
∑n

i=1 vi;
do

V = mini vi
⌊
(2mini vi)

−1(Vmin + Vmax)
⌋
;

m = 2n;
do

perform π4−1
√
m−12n repetitions of Grover’s algorithm equipped with fx;

measure basis state |x⟩;
if validity of solution x has been verified then

update optimal solution x∗ = x and its value V ∗ = V ;
Vmin = V +mini vi;
break;

else if m > 1 then
m = m/2;

else
Vmax = V −mini vi;
break;

while m ≥ 1;

while Vmin ≤ Vmax;

The circuit of function fx is presented in Figure 8. The circuit may be divided into three parts

(indicated by the red dashed lines in the circuit). In the first two parts, we determine whether

knapsack x satisfies constraints 4 and 6, respectively. In a third part, we obtain the output of

function fx. In what follows, we use an example to demonstrate the dynamics of the circuit. In

the example, we have a pool of three items and a knapsack that has maximum weight capacity

W = 4. The weights and values of the items are listed in Table 3. Since we are working with qubits,

all weights and values need to be converted to binary values. Let b denote the number of qubits

that are required to represent the largest weight or value used in the example. In our example,

b = 3, and the qubits that represent the maximum weight capacity are initialized as follows:∣∣cW1 〉 = |1⟩,
∣∣cW2 〉 = |0⟩, and

∣∣cW3 〉 = |0⟩ (with cW =
{
cW1 , . . . , c

W
b

}
). The binary conversions of the
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weights and values of the items are listed in Table 3, where cw = {cw1 , . . . , cwn }, cv = {cv1, . . . , cvn},
cwi = {cwi1, . . . , cwib}, and cvi = {cvi1, . . . , cvib}. In our example,

∣∣cW 〉, |cw⟩, and |cv⟩ are initialized as

Table 3. Data for example knapsack problem with three items

i wi cwi1 cwi2 cwi3 vi cvi1 cvi2 cvi3

1 2 0 1 0 3 0 1 1
2 3 0 1 1 1 0 0 1
3 2 0 1 0 2 0 1 0

|100⟩, |010011010⟩, and |011001010⟩, respectively. Next, imagine that we use the circuit of function

fx to evaluate knapsack x = {1, 0, 1}. In this case, |x⟩ is initialized as |101⟩. In a first part of the

circuit, we distinguish three steps (indicated by the blue dotted lines in the circuit). In a first step

(1a), we determine how much weight each item contributes to knapsack x. The contributed weight

of the items is represented by qw = {qw
1 , . . . ,q

w
n }, with qw

i = {qwi1, . . . , qwib}. |qw⟩ is initialized as

|0⟩, and is used to store the result of an AND operation on |x⟩ and |cw⟩. In our example, one can

verify that |qw⟩ = |010000010⟩. In a second step (1b), we obtain the weight of knapsack x itself

(represented by qW =
{
qW1 , . . . , qWb

}
).
∣∣qW

〉
is initialized as |0⟩, and is used to store the result of∑n

i=1 |qw
i ⟩. To perform the aforementioned addition, we use a circuit that was developed by Draper

(2002). In our example,
∣∣qW

〉
= |100⟩. As a last step (1c), we verify whether knapsack x satisfies

constraint 4. This can be done using the quantum equivalent of a digital magnitude comparator

(see e.g., Xia et al (2018)). The digital magnitude comparator compares the weight of knapsack

x (represented by qW ) and the maximum knapsack weight (represented by cW ), and outputs 1 if

a smaller-than-or-equal-to condition is met. The result is stored in a qubit that is initialized as∣∣qW 〉 = |0⟩. In our example, constraint 4 is satisfied, and
∣∣qW 〉 evaluates to |1⟩. This concludes

the first part of the circuit. The second part of the circuit is almost identical to the first part, and

verifies whether the value of the knapsack (stored in
∣∣qV

〉
=
∑n

i=1 |qv
i ⟩, where qV =

{
qV1 , . . . , q

V
b

}
,

qv = {qv
1, . . . ,q

v
n}, and qv

i = {qvi1, . . . , qvib}) is at least equal to value V (stored in
∣∣cV 〉, where

cV =
{
cV1 , . . . , c

V
b

}
). If this is the case, constraint 6 is satisfied, and

∣∣qV 〉 = |1⟩. If, however,

knapsack x does not satisfy constraint 6,
∣∣qV 〉 = |0⟩. In a last part of the circuit, we obtain the

outcome of function fx itself (stored in a qubit that is initialized as |fx⟩ = |0⟩). If both constraints

are satisfied, |fx⟩ = |1⟩ (and |fx⟩ = |0⟩ otherwise).
Figure 9 presents the circuit of Grover’s algorithm equipped with function fx (once more, the

steps of the algorithm are indicated by red dashed lines). In this circuit, x, c, q, and fx are the

qubits that are used to store the decision variables, the constant values that are used by function fx,

the outcomes of operations performed by function fx, and the result of function fx, respectively.

In addition, y is a qubit that is used to induce phase kickback. |y⟩ is initialized as |1⟩. The

initialization of |c⟩ depends on the constant values that are used by function fx. All other qubits

are initialized as |0⟩. The gates grouped in blue replace oracle function Of in the original circuit

of Grover’s algorithm (see Figure 4). These gates ensure that: (1) the phase of each target basis

state is kicked back, and (2) |q⟩ and |fx⟩ are reinitialized. To reinitialize |q⟩ and |fx⟩, it suffices to
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apply all gates of function fx in reverse order and to use Draper’s circuit to subtract rather than

to add (note that applying all gates of function fx in reverse order does not impact |x⟩ nor |c⟩;
in addition, after step 2, qubit y remains in state |−⟩ until completion of the algorithm). |q⟩ and
|fx⟩ need to be reinitialized because steps 3 and 4 are repeated π4−1

√
m−12n times (and for each

repetition of Grover’s algorithm, |q⟩ and |fx⟩ need to be initialized as |0⟩ and |0⟩). Alternatively,

if we have sufficient qubits at our disposal, we don’t need to “recycle” qubits, and we can just use

new qubits for each repetition of Grover’s algorithm. Contemporary quantum computers, however,

only have a limited number of qubits, and hence, recycling qubits is necessary.

Figure 9. Circuit of Grover’s algorithm equipped with function fx

replaces oracle function Of

n|0⟩ H⊗n

fx f ′
x

2 |H⊗n0⊗n⟩ ⟨H⊗n0⊗n| − I2n

|c⟩

|0⟩

|0⟩

XOR

|1⟩ H

repeat π4−1
√
m−12n times

x x x x

c c c c

0 q q 0

0 fx fx fx fx 0

y y ⊻ fx

1 2 3 4

We can now use Algorithm 1 to find the optimal solution to our example knapsack prob-

lem. The steps of the algorithm are illustrated in Figure 10. First, we let Vmin = 0, and

Vmax =
∑n

i=1 vi = 6. Next, we initiate a first iteration of the outer loop, and initialize V =

mini vi
⌊
(2mini vi)

−1(Vmin + Vmax)
⌋
= 3 and m = 2n = 8. In a first iteration of the inner loop,

we evaluate π4−1
√
m−12n = 0.7854 ≈ 1 repetition of Grover’s algorithm. Given V = 3, there are

two valid solutions (i.e., solution {1, 0, 0} and {1, 0, 1}). As such, the phases of basis states |100⟩
and |101⟩ are kicked back by Grover’s algorithm. One can verify that, after a single repetition of

Grover’s algorithm, we have a 50 percent probability to measure |100⟩, and a 50 percent proba-

bility to measure |101⟩. In other words, if we observe the system after one repetition of Grover’s

algorithm, we are certain to measure a valid solution that has at least value V = 3. After verifying

that {1, 0, 0} (or {1, 0, 1}) is a valid solution, we let Vmin = V + mini vi = 4, update the optimal

solution and its value, break the inner loop, and start a second iteration of the outer loop. In this

second iteration, we let V = 5 and m = 8. Next, we initiate a first iteration of the inner loop, and

evaluate π4−1
√
m−12n = 0.7854 ≈ 1 repetition of Grover’s algorithm. Given V = 5, however, one
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can verify that there is only one valid solution (i.e., solution {1, 0, 1}). If there is only a single valid

solution, a single repetition of Grover’s algorithm only has a 78.13 percent chance to measure the

correct basis state (see also the previous section). In other words, there is a 21.88 percent chance

that we measure a basis state that is not valid. This illustrates why every solution resulting from

Grover’s algorithm needs to be verified. If the validity of the solution has been verified, we update

the optimal solution, let Vmin = 6, break the inner loop, and start a third iteration of the outer

loop in which V = 6 (in this third iteration, no valid solution can be found for any value of m,

and we let Vmax = V −mini vi = 5; as a result, Vmin > Vmax, and the procedure stops). If, on the

other hand, no valid solution was identified (with probability 0.2188), we let m = m/2 = 4, and

we perform π4−1
√
m−12n = 1.1107 ≈ 1 repetition of Grover’s algorithm. Again, we have a 78.13

percent chance to measure the basis state that corresponds to valid solution {1, 0, 1}. As such, we
have a 17.09 percent chance to end up a situation where we did not measure a valid solution in

the first iteration of the inner loop, but did measure a valid solution in the second iteration of the

inner loop. If a valid solution was measured, we update the optimal solution, let Vmin = 6, break

the inner loop, and start a third iteration of the outer loop in which V = 6. If no valid solution

was measured, we let m = 2, and perform π4−1
√
m−12n = 1.5708 ≈ 2 repetitions of Grover’s

algorithm. With 2 repetitions of Grover’s algorithm, we have a 94.53 percent chance to identify a

valid solution. If, however, we still fail to identify a valid solution, we let m = 1, and again perform

2 repetitions of Grover’s algorithm. In total, we are 99.99 percent certain to measure |101⟩, and to

obtain {1, 0, 1} as a valid solution during the second iteration of the outer loop. There is, however,

a 0.0143 percent probability to measure the wrong basis state. If this happens, verification of the

solution fails, we cannot reduce m any further, and we let Vmax = V − mini vi = 4 (i.e., we have

wrongfully concluded that V = 5 has no valid solution; this illustrates why it is possible that we

are unable to identify the optimal solution if we use Grover’s algorithm in an optimization proce-

dure). At this point, we enter a third iteration with V = 4 (here again, we have a 99.99 percent

probability to identify {1, 0, 1} as the only valid solution, after which we update Vmin such that

Vmin > Vmax, and the procedure stops; conversely, we have a 0.0143 percent probability to identify

an invalid solution, after which we update Vmax such that Vmin > Vmax, and the procedure also

stops). Even though we are reasonably certain to find the optimal solution, we also require at least

8 repetitions of Grover’s algorithm (and at most 13). In addition, we need to verify the validity of

at least 6 knapsack solutions (and at most 9; note that a brute-force classical approach would need

to evaluate at most 8 knapsack solutions).

In order to verify the required number of repetitions of Grover’s algorithm for various values

of n, we perform an additional experiment. In this experiment, we use Algorithm 1 to solve a

knapsack problem that has a pool of n items. For the purpose of this experiment, we let Vmin = 0

and Vmax = 2n at the start of the algorithm, and assume that there is only a single valid solution

that has value 0.5×2n. As a result, if we evaluate a value V <= 0.5×2n, we can find 1 valid solution.

If, on the other hand, we evaluate a value V > 0.5× 2n, no valid solution can be found. Figure 11

summarizes the result of the experiment, and shows the expected number of repetitions of Grover’s
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Figure 10. Illustration of the dynamics of Algorithm 1 for the example knapsack problem. In each node (represented
by a square), we perform 1 to 2 repetitions of Grover’s algorithm (depending on the value of m), we measure the
basis state, and we verify whether the corresponding solution is valid. If the solution is valid (indicated in green),
Vmin is updated. If, on the other hand, the solution is not valid (indicated in red), we update m or Vmax (if m = 1).
The procedure stops if Vmin > Vmax (indicated in blue).
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Figure 11. Expected number of repetitions of Grover’s algorithm (vertical axis) when solving a knapsack problem
with n items using Algorithm 1 (black full line). For reference, function f(n) = 2n (dark grey dashed line) and

f(n) =
√
2n (light grey dotted line) have also been added.
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algorithm required to solve a knapsack problem with n items using Algorithm 1. One can observe

that, as n increases, the number of required repetitions of Grover’s algorithm increases rapidly.

Similar results were obtained in other experiments (we discuss two additional experiments in the

Appendix). We conclude that, for a knapsack with large n, computational gains can certainly be

achieved when compared to a brute-force classical approach that evaluates 2n knapsack solutions.

However, we cannot claim that this speedup is quadratic.

7. Beyond Grover

In the previous section, we used Grover’s algorithm to solve the knapsack problem, and have

shown that the quadratic speedup (that is attributed to Grover’s algorithm) was not achieved.

A practical implementation of Grover’s algorithm requires additional repetitions of the algorithm,

and also needs to verify the validity of the measured solution after each run. In addition, the

outcome of Grover’s algorithm is probabilistic. As a result, there is no guarantee the algorithm

will output the optimal solution. Even if we ignore these implementation challenges, Grover’s

algorithm has another major drawback. To illustrate this drawback, let’s return to the initial

purpose of Grover’s algorithm: to find a target entry in an unstructured database of 2n entries

using a minimum number of calls to a lookup function f . Whereas a classical algorithm requires

an average of 2n−1 calls to lookup function f , Grover’s algorithm only needs
√
2n calls, resulting in

a quadratic speedup for large n. However, if we consider a structured database, Grover’s algorithm

still needs
√
2n operations. A classical algorithm may need far less calls. For instance, if the

database is sorted, binary search may be used, and n+1 calls suffice. In other words, if a classical

algorithm can exploit the structure of a problem, it can easily outperform an implementation of

Grover’s algorithm.
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In order to improve the performance of Grover’s algorithm, Cerf et al. (2000) have suggested

to use a “nested quantum search” to solve NP-complete problems. Rather than using Grover’s

algorithm to search the entire solution space to find the optimal solution (as we have done in the

previous section), a nested quantum search “nests” one quantum search within another. This way,

partial solutions (that are obtained efficiently using Grover’s algorithm) are used to build other

partial solutions that, in turn, can be used to build the optimal solution. The nested quantum

search algorithm is the quantum counterpart of a classical nested search algorithm, and often

allows to exploit the structure of most problems. A classical nested search algorithm performs

bαn operations, where n is the number of decision variables, b is the number of values that can

be assigned to the decision variables, and α is some number less-or-equal-than 1 that depends on

the problem. Cerf et al. (2000) have shown that the nested quantum search only needs b0.5αn

operations, once more resulting in a quadratic speedup. In addition, they show that α decreases

with an increasing nesting depth; with an increased number of nesting levels. Whereas Cerf et al.

(2000) alleviate one drawback of Grover’s algorithm, they also introduce another: in each nested

quantum search the number of valid solutions (m) is unknown. As a result, each combination

of valid solutions for each level of nesting needs to be assessed in order to be sufficiently certain

that the nested quantum search outputs the correct solution. For instance, consider a knapsack

problem that has a pool of n = 24 items. Assume that we have three levels of nesting, and that

in each of the nested quantum searches we perform Grover’s algorithm on 8 items. As a result,

for each nested search we have 4 possible values for m that need to be verified (m can be 8,4,2,

and 1), resulting in 34 = 64 combinations of possible values for m for 3 levels of nesting. As a

first combination, we assume m = 8 at level 1, m = 8 at level 2, and m = 8 at level 3; if no valid

solution is found, we evaluate a second combination, and assume m = 8 at level 1, m = 8 at level

2, and m = 4 at level 3. This process continues until a valid solution is found, or until we conclude

that no valid solution exists. Note that, to find the optimal knapsack, we need to use the binary

search procedure outlined in Algorithm 1. As a result, in this example, we need to evaluate up to

64 combinations of nested searches for each value of V .

Other attempts have also been made to improve the performance of Grover’s algorithm by

mixing classical and quantum algorithms. One notable example is the quantum dynamic pro-

gramming algorithm proposed by Ambainis et al. (2018). In their paper, Ambainis et al. (2018)

outline (among others) an approach to solve the travelling salesman problem (without implement-

ing it). Their approach builds on the Bellman-Held-Karp algorithm (1962), and uses a recursion

that adopts Grover’s algorithm to find the shortest path for a subset of cities. If, however, Grover’s

algorithm is used to find the shortest path for each subset of cities, it is highly likely that it will

output the wrong solution for at least some of these subsets (after all, the outcome of Grover’s

algorithm is probabilistic). As a result, the outcome of the quantum dynamic program is not likely

to be optimal (especially for dynamic programs with large state spaces, for which you would like to

obtain a quantum speedup in the first place). Last but not least, also in this approach, additional

repetitions of Grover’s algorithm are required because we don’t know the number of valid solutions
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in advance.

It is clear that several challenges need to be overcome if we want to use Grover’s algorithm to

solve typical OR problems. This, however, should not come as a surprise since there is also no clas-

sical algorithm that excels in solving each and every OR problem. Perhaps then, we should wait for

dedicated quantum algorithms that solve dedicated problems? The design of quantum algorithms,

unfortunately, is not as straightforward (as is shown by the limited number of groundbreaking

quantum algorithms that have been published). In addition, Bennett et al. (1997) have shown that

a quadratic speedup (as obtained by Grover’s algorithm) is the best we can hope for when per-

forming an unstructured search on a quantum computer. This limitation is one of the main reasons

why many researchers are sceptical about the potential of quantum computing to (significantly)

outperform classical algorithms when solving difficult OR problems (a quadratic speedup does not

transform exponential time to polynomial time; see e.g., Aaronson (2008)) for a discussion on the

difficulty of solving NP-complete problems on a quantum computer).

The biggest obstacle, however, may not be the development of quantum algorithms, but the

computers on which they run. Today we are in the era of “Noisy Intermediate Scale Quantum

computers” (NISQ), a term proposed by Preskill in 2018. NISQ are quantum computing systems

that are noisy, and that don’t have an effective implementation of error correction codes. As a

result, NISQ do not produce reliable output. NISQ systems also have a number of qubits in the

order of dozens to thousands. Preskill estimates that a system would need at least 106 quantum

bits in order to achieve fault tolerance computing. As of 2022 the current state-of-the-art NISQ,

is the IBM 127-qubit “Eagle” processor. Recently (2022) IBM released an updated road map in

which they expect to release a new “Osprey” 433-qubit quantum processor by the end of 2022

and a “Condor” 1121-qubit quantum processor by the end of 2023. Although this progress seems

remarkable for such a small time frame, there is still a long way to go before we have a real universal

quantum computer.

Despite all these limitations, quantum computing still has a lot of potential. Even though

the design of quantum algorithms is not straightforward, efficient quantum algorithms for solving

difficult OR problems may yet be developed. After all, Shor’s algorithm shows that a dedicated

quantum algorithm can be devised to solve a difficult OR problem in polynomial time (note, how-

ever, that we don’t know whether the prime factorization problem is NP-complete, nor do we know

whether an efficient classical algorithm exists that can solve the problem efficiently). In addition,

given their probabilistic nature, quantum algorithms may be particularly useful in heuristic proce-

dures, or for solving problems where it is less important that the optimal solution is obtained. Also

in the field of quantum simulation and machine learning advances are being made, with potential

use cases in the pharmaceutical, chemical, automotive, and financial industries (McKinsey, 2021).

Next to gate-based quantum computing (discussed in this paper), there is also adiabatic quantum

computing. Adiabatic quantum computing exploits the fact that in physics everything tends to seek

a minimum energy state. Using adiabatic quantum computing, OR problems can be formulated as

energy minimization problems. Starting from an initial state, quantum annealing is then used to
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evolve the quantum system towards a low-energy state. This low-energy state corresponds to the

optimal or near-optimal solution of the problem (see e.g., Farhi (2014)).

8. Conclusion

In this paper, we investigate the potential of quantum computing from an OR perspective. For this

purpose, we discuss a number of quantum algorithms, among which Grover’s algorithm. Arguably,

Grover’s algorithm is the most important quantum algorithm as it achieves a quadratic speedup

(when compared to classical algorithms), and can be used to solve many OR problems. We are

the first to use Grover’s algorithm to solve a classic OR problem, the knapsack problem, and verify

our calculations using Qiskit (IBM’s software development kit to simulate or operate a quantum

computer). Our code for the knapsack problem and templates for solving other OR problems

are made available as supplementary material. Note that, even though we focus on the knapsack

problem, our insights are valid for other OR problems as well.

From our implementation of the knapsack problem, we conclude that there are four prob-

lems when using Grover’s algorithm to solve OR problems: (1) the quadratic speedup ascribed

to Grover’s algorithm is not obtained because additional repetitions of Grover’s algorithm are re-

quired, (2) the validity of every solution resulting from a run of Grover’s algorithm needs to be

verified, (3) since the outcome of Grover’s algorithm is probabilistic, there is no guarantee that the

optimal solution is found, and (4) Grover’s algorithm cannot exploit the structure of a problem. In

the literature, several solutions have been proposed to resolve this last issue (e.g., nested quantum

search and quantum dynamic programming), however, these solutions still suffer from the first

three problems.

The problems we identified, however, do not imply that quantum computing has no potential.

For many problems, Grover’s algorithm may still allow a speedup, albeit not quadratic. In addition,

quantum algorithms show a lot of promise as a heuristic solution procedure, or for problems where

obtaining the optimal solution is less important/critical. Given the enormous interest in quantum

computing of governments, academics, and the private sector alike, we can safely say that quantum

computing is there to stay, just don’t expect it to solve all your OR problems (yet).

Appendix

In what follows, we first discuss an algorithm that can be used to determine the exact number of

repetitions required by Grover’s algorithm. Next, we present a number of experiments that assess

the number of repetitions of Grover’s algorithm that are required when solving a knapsack problem.
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A. Procedure to find exact number of repetitions of Grover’s Algorithm

Below, we outline a procedure that can be used to determine the exact number of iterations re-

quired by Grover’s algorithm. In a first step of the algorithm, we initialize the current probability

amplitude of the regular basis states (αr), the current probability amplitude of the target basis

states (αt), the current iteration (r), and the current probability to to measure a target basis state

(p). Next, in each iteration r, we calculate the average probability amplitude as the weighted

sum of the probability amplitudes of the regular and the target basis states. We use the average

probability amplitude to update the probability amplitude of the target states (i.e., we reflect αt

about ᾱ), and calculate the new probability to successfully identify a target basis state (p′). If this

new probability is smaller than the current probability, the current probability is an extremum,

and we return r as the number of required repetitions. Otherwise, if p′ ≥ p, we update the current

probability, the probability amplitude of the regular states, and the current iteration. Afterwards,

we start a new iteration, and continue this process until the required number of iterations has been

identified. If the number of correct entries is unknown, Grover’s algorithm can be ran for different

Algorithm 2: Procedure to determine the number of repetitions required by Grover’s
algorithm

Input n,m;

Initialize αr = (
√
2n)−1, αt = αr, r = 0, and p = m2−n;

do
αt = −αt;
ᾱ = 2−n((2n −m)αr +mαt);
αt = 2ᾱ− αt;
p′ = mα2

t ;
if p′ < p then

Return r;

p = p′;
αr = 2ᾱ− αr;
r = r + 1;

while true;

values of m until a matching entry has been found. One approach is to start with m = 2n, and to

use divide m by two in a subsequent run if no matching entry was found.

B. Additional experiments to assess the number of repetitions of Grover’s

algorithm required to solve a knapsack problem

In order to verify the required number of repetitions of Grover’s algorithm for various values of n,

we perform two additional experiments. In the first additional experiment, we use Algorithm 1 to

solve a knapsack problem that has a pool of n items, and assume there is only a single valid solution
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Figure 12. Expected number of repetitions of Grover’s algorithm (vertical axis) when solving a knapsack problem
with n items using Algorithm 1 (black full line) when there is only one valid solution with value 1. For reference,

function f(n) = 2n (dark grey dashed line) and f(n) =
√
2n (light grey dotted line) have also been added.
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that has value 1 (i.e., only if we evaluate a value V <= 1, we are able to find a valid solution).

At the start of the algorithm, we let Vmin = 0 and Vmax = 2n. The results of this experiment

are presented in Figure 12. In a second additional experiment, we replicate the setting of the first

additional experiment, however, we assume there is only a single valid solution that has value 2n

(i.e., we are always able to find a valid solution, no matter the value for V ). The results of this

experiment are presented in Figure 13. Both experiments show similar results as those presented in

Section 6. We do observe that the number of required repetitions of Grover’s algorithm is smaller

if a solution can always be found. This indicates that less repetitions of Grover’s algorithm may be

required to solve problems that have many valid solutions that are close to the optimal solution.
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