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Abstract

Effective methods for determining the boundary of the normal class are very useful

for detecting anomalies in commercial or security applications - a problem known as

anomaly detection. This contribution proposes a nonparametric frontier-based clas-

sification (NPFC) method for anomaly detection. By relaxing the commonly used

convexity assumption in the literature, a nonconvex NPFC method is constructed and

the nonconvex nonparametric frontier turns out to provide a more conservative bound-

ary enveloping the normal class. By reflecting on the monotonic relation between the

characteristic variables and the membership, the proposed NPFC method is in a more

general form since both input-type and output-type characteristic variables are incor-

porated. A biomedical data set is used to test the performance of the proposed NPFC

methods. The results show that the proposed NPFC methods have competitive clas-

sification performance and have consistent advantages in detecting abnormal samples,

especially the nonconvex NPFC method.
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1 Introduction

Anomaly detection can be defined as the task of detecting anomalous data that differ in

some aspects from the normal data which is known during training. The practical use and

challenging nature of anomaly detection have gained considerable research attention and led

to many methods being proposed. The applications of anomaly detection methods settle

across sectors and disciplines, such as in medical diagnosis (Park, Huang, and Ding (2010);

da Silva, Schmidt, da Costa, da Rosa Righi, and Eskofier (2021)), faults and failure detection

in complex systems (Clifton, Clifton, Zhang, Watkinson, Tarassenko, and Yin (2014); Jiang,

Li, Xie, and Du (2020)), and credit card or telecom fraud detection (Bhattacharyya, Jha,

Tharakunnel, and Westland (2011); Ahmed, Mahmood, and Islam (2016); Al-Hashedi and

Magalingam (2021)) to name but a few. In all of these commercial or security applications,

detecting potential anomalies is of crucial importance to prevent from some catastrophic

outcome. For comprehensive and structured investigations of anomaly detection methods

and their application domains, one may refer to the surveys of, e.g., Markou and Singh

(2003a,b); Ruff, Kauffmann, Vandermeulen, Montavon, Samek, Kloft, Dietterich, and Müller

(2021); Pang, Shen, Cao, and Hengel (2021).

In anomaly detection, the typical dataset is unbalanced, with a very large number of

normal data, but insufficient abnormal data to describe the anomaly or say novelty. Thus,

classical binary classification methods may not be applicable for anomaly detection since

they normally require the two classes to be more or less balanced. To address the anomaly

detection problem from a discriminative perspective, one-class classification, occasionally

also called single-class classification, is introduced (see Moya, Koch, and Hostetler (1993),

El-Yaniv and Nisenson (2006), or Khan and Madden (2014)). The one-class classification

anomaly detection methods are particularly based on the single class of normal data.

The fundamental idea of the one-class classification methods aims at finding a boundary

around the normal class to describe the domain containing normal data only. If a new

data point is located within the boundary, then it is regarded as normal; otherwise, it is

an anomaly. Among the various one-class classification methods, one-class support vector

classifiers (OC-SVCs) determine the boundary using only the normal data closest to it, i.e.,

the support vectors, not relying on any property of the distribution of the data. Over the past

decades, OC-SVCs have been extensively studied and found suitable for anomaly detection

in numerous applications (e.g., Alam, Sonbhadra, Agarwal, and Nagabhushan (2020)).

Two evolutionary methods of OC-SVCs are the support vector data description (SVDD)
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method and the one-class support vector machine (OC-SVM) method. First, the SVDD

method proposed by Tax and Duin (1999) defines a hypersphere with minimum radius that

encloses the normal class. It gives a satisfactory performance but leads to a loose boundary

for multivariate datasets (see Tax and Juszczak (2003)). Second, the OC-SVM method

proposed by Schölkopf, Williamson, Smola, Shawe-Taylor, and Platt (1999) constructs a

hyperplane to separate the normal class with the maximal margin from the origin in some

feature space. In the OC-SVM method, all anomalies are assumed to be close to the origin,

while the normal data points are far from the origin. In this respect, the OC-SVM method

is not purely based on the normal class. Moreover, both the SVDD and OC-SVM methods

have fixed their general shape of the boundary a priori: the former defines a hypersphere

and the latter describes a hyperplane. For cases where the normal class cannot be directly

described by a hypersphere or a hyperplane, the introduction of kernel functions can bring

some flexibility Noble (2006).

In line with the fundamental idea of OC-SVCs, this contribution is also interested in

determining the boundary of the normal class using only part of the normal data. Moreover,

the boundary is expected to be around the data set without pre-determining the exact shape.

To meet this, the Data Envelopment Analysis (DEA) method, which floats a piecewise linear

boundary enveloping the observed data set, becomes of interest. It is a linear programming

model proposed by Banker, Charnes, and Cooper (1984) and widely applied in production

economics and finance (see the surveys and historical developments in Emrouznejad and

Yang (2018); Emrouznejad, Banker, and Neralic (2019); Kaffash, Azizi, Huang, and Zhu

(2020)). The piecewise linear boundary generated from the DEA model is commonly termed

as a nonparametric frontier. The shape of the nonparametric frontier is determined by the

originally observed data and the imposition of some weak maintained axioms, not necessarily

in any feature space.

The main inspiration of introducing the nonparametric frontier to anomaly detection

stems from the earliest work of Troutt, Rai, and Zhang (1996) and a modified version by

Seiford and Zhu (1998). They propose to develop an acceptance frontier with DEA method

for case based computer systems. Based on their work, theoretical extensions include charac-

terizing data with non-discretionary characteristics (Leon and Palacios (2009)), incorporat-

ing importance measures of characteristics (Yan and Wei (2011)), etc. A series of empirical

and experimental studies with the acceptance boundary were contemporaneously conducted

by Pendharkar and coauthors in various domains, e.g., bankruptcy prediction (Pendharkar

(2002)), mining breast cancer patterns (Pendharkar, Khosrowpour, and Rodger (2000)), etc..

In the above classification methods, a convex (C) nonparametric frontier is constructed
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based on a certain group of training data. Then, this C nonparametric frontier is used to

predict the group membership of test data. If a test data point is located within the C

nonparametric frontier, then it has the same group membership as the training data which

generate the C nonparametric frontier. Otherwise, it should be assigned to another group.

We refer to these classification methods as C nonparametric frontier-based classification (C

NPFC) methods.

These C NPFC methods are all constructed from a single group of data. In this respect,

these methods should have a unique advantage in anomaly detection problems, where only

the group of normal data is sufficiently available. However, the existing C NPFC methods

originating from Troutt, Rai, and Zhang (1996) are mainly designed to solve a classical

binary classification problem. Therefore, this unique advantage of relying on only a single

group of data to achieve correct classification has not received any attention in the literature

related to C NPFC methods.

To the best of our knowledge, the C NPFC methods have not been applied to solve

the anomaly detection problem. Moreover, the C NPFC methods are essentially frontier

analysis methods, and anomaly detection is one of the main tasks in supervised machine

learning. Machine learning and frontier analysis are two relatively disconnected fields. In

the literature, a research trend of applying well-known machine learning techniques to fron-

tier analysis seems to emerge (e.g., Aparicio, Esteve, Rodriguez-Sala, and Zofio (2021);

Valero-Carreras, Aparicio, and Guerrero (2021); Zhu, Zhu, and Emrouznejad (2021); Esteve,

Aparicio, Rodriguez-Sala, and Zhu (2023)). However, research applying frontier analysis

methods to machine learning seems not to be developing in parallel. Therefore, the ad-

aptation of C NPFC methods to the anomaly detection problem can help bringing frontier

analysis methods into the field of machine learning, thus creating some connection between

two otherwise more or less unrelated fields.

In addition, there are in our opinion two key shortcomings of the existing C NPFC

methods which may constrain their classification capacity. The goal of this contribution is

to remedy both.

First, the existing C NPFC methods are limited to construct a C nonparametric frontier.

If the boundary of the class happens to be C, then a C nonparametric frontier offers a reas-

onable estimate. But, with our ignorance as to the real shape of the boundary, the convexity

assumption can be overly optimistic. Pendharkar, Rodger, and Yaverbaum (1999, p. 231)

mention this as a potential harm to the capacity of the DEA frontier-based classification

method while comparing it to the neural networks which are not constrained by convexity.
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Second, the existing C NPFC methods are limited to situations in which all characteristic

variables have the property called conditional monotonicity. That is, acceptability of a case

to a class increases with the increase or decrease of all characteristic variables. Thus, a

radial DEA model without outputs or without inputs are adopted in the literature (Lovell

and Pastor (1999)). In conjunction, these two restrictions are severe - a generic data set

need not be separable by a C boundary and it can simultaneously possess monotonically

increasing and decreasing characteristics.

In this contribution, a general NPFC method is proposed to solve the anomaly detection

problems and it eliminates the above two shortcomings. First, the convexity assumption is

interpreted as reflecting a substitution relation between the characteristic variables. This

relation does not always hold in practice. Therefore, we propose to relax the convexity

assumption and construct a nonconvex (NC) NPFC method. This NC NPFC method is

based on the Free Disposal Hull (FDH) model, initially proposed by Deprins, Simar, and

Tulkens (1984). Solving the FDH model results in a monotonous and staircase shaped

nonparametric frontier enveloping the observed data. This NC nonparametric frontier is more

conservative than the C nonparametric frontier. Second, the assumption of free disposability

is interpreted as reflecting the monotonic relation between the characteristic variables and

the membership. Therefore, both monotonically increasing and decreasing characteristic

variables can be incorporated into the model simultaneously. With these two modifications,

a generalized NPFC method is constructed: it can portray both monotonically increasing and

monotonically decreasing characteristic variables, and it can generate C or NC nonparametric

frontiers.

To meet the above objectives, this contribution is structured as follows. Section 2 in-

troduces the models and procedures used to construct the NPFC method. In Section 3,

an experimental analysis is used to show the classification performance of our C and NC

NPFC methods relative to that of the OC-SVM and SVDD methods. Finally, Section 4 is

concluded with a summary of the contributions and a discussion of potential future research

topics.
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2 Nonparametric Frontier-based Classification Meth-

ods

2.1 Problem Description

In anomaly detection problems, there is usually only a sufficient number of normal observa-

tions. The number of anomalous observations is very limited and therefore being insufficient

for training a classifier. Thus, the training set consists of normal observations only. Let

G = {Z1, . . . , Zn} be the set of training observations.

Each training observation Zj ∈ G is characterized by a number of characteristic variables.

These characteristic variables can be exclusively differentiated into two monotonic types,

namely the monotonically decreasing characteristic variables denoted by X = {x1, . . . , xm}
and the monotonically increasing characteristic variables denoted by Y = {y1, . . . , ym}. The

former is also termed as input-like characteristic variables, and the latter is termed as output-

like characteristic variables. Generally, the observation is represented by Zj = (Xj, Yj) ∈
Rm × Rs.

The monotonicity constraints are prior-knowledge of the classification problem about

the relationship between the characteristic variables and the group membership. Consider

the example of credit card default. All other characteristics being the same, cardholders

with higher annual income are less likely to default compared to cardholders with lower

income. That is, the probability of default should not decrease in the presence of better

characteristics while the rest remains the same. Specifically, a characteristic variable is

defined as being output-like if the probability of being normal increases (decreases) with

the increase (decrease) of its value, e.g., the annual income in the example of credit card

default. A characteristic variable is defined as being input-like if the probability of being

normal increases (decreases) with the decrease (increase) of its value.

Given the training set G, an acceptance possibility set (APS) is constructed from the

training observations and the imposition of some weak maintained axioms. It is a data-based

description of the normal group. Any data point within this APS is perceived as normal and

anomalous otherwise. Then, the boundary of the APS, termed as a nonparametric frontier,

is used for anomaly detection. It consists part of the normal training observations. A test

data point that has the same characteristic variables as the training observations is classified

as normal if it lies within the nonparametric frontier and anomalous otherwise.
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2.2 Convex and Nonconvex Acceptance Possibility Set

In this subsection, the normal observations from the training set G are used to describe the

domain containing all possible normal data points. It describes all possible combinations of

characteristic values for which the corresponding evaluated data point can be classified as

normal.

In production analysis, a production possibility set (PPS) is used to describe the attain-

able set in production. For all the combinations of the inputs and the output within the PPS,

these are attainable (producible) under a certain given technology. Instead of discussing the

producibility under the PPS, the attainable set in classification describes the attainability

in accepting an observation as normal. Hence, we define an APS to describe the attainable

set of the normal group based on the training set G.

If a data point has the same characteristic values as a normal observation from the training

set G, then it is in the APS. Based on the monotonicity constraint, any data point with less

X and more Y than an observation Zj ∈ G is perceived as having better characteristics and

should be in the APS of the normal group. A free disposal set denoted by Tj is introduced

to describe the situation under the monotonicity constraint. For every observation Zj ∈ G,

Tj = {(X, Y ) ∈ Rm × Rs | X ≤ Xj and Y ≥ Yj}.

The union of all the free disposal sets of the observations from G constitutes a NC

APS denoted by TNC . Specifically, TNC depicts the normal group based on the n training

observations as follows:

TNC =
n⋃
j=1

Tj

=

{
(X, Y ) ∈ Rm × Rs |

n∑
j=1

λjXj ≥ X,

n∑
j=1

λjYj ≤ Y,

n∑
j=1

λj = 1, λj ∈ {0, 1}

}
.

(1)

Figure 1 sketches a typical figure displaying a NC APS. All grey circles are observations

known from the normal group and constitute the training set G. These observations are char-

acterized by two characteristic variables, namely X ∈ R1 and Y ∈ R1. For the monotonically

decreasing characteristic variable X, the smaller its value the higher is the probability of be-

longing to the normal group. While for the monotonically increasing characteristic variable

Y , the larger its value the higher is the probability of belonging to the normal group.

In Figure 1, the observations from G are known to be normal. Thus, they are apparently
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Figure 1: Nonconvex APS of the normal group G
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in the APS. Then, we take the observation Z6 as an example to explain the free disposal set.

The free disposal set is built based on the monotonic relation of the characteristic variables.

If a data point has either a smaller X or a larger Y than Z6, then it is more likely belonging

to the normal group than Z6 does. Since Z6 belongs to the normal group, thus a data point

which has either a smaller X or a larger Y than Z6 can be accepted as normal. This draws

the dashed hatched area, which is located above and to the left of Z6. This dashed hatched

area represents the free disposal set of Z6, namely T6. If a new data point is located within

this dashed hatched area, then it is regarded as normal just like the observation Z6. For

other observations from the training set G, their free disposal sets are derived in the same

way. The union of all these free disposal sets constitutes the NC APS of the normal group.

In Figure 1, this is the shaded area restricted to the second quadrant located above and to

the right of the dotted polyline P5Z1P1Z2P2Z3P3Z4P4Z5P6.

In addition to the monotonicity assumption, the convexity assumption is commonly ad-

opted in the literature. Mathematically, the axiom on convexity implies that for any two
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observations from one set, the linear combination of these two observations belong to the

same set. In classification, this convexity axiom could explain a substitution relation between

two characteristic variables. For example, both Z2 and Z4 in Figure 1 are normal training

observations. With the convexity assumption, their linear combinations, which locates on

the line between Z2 and Z4, are also regarded as belonging to normal.

The C APS, denoted by TC , is the convex hull of the NC APS. It depicts the normal

group based on the n training observations as follows:

TC =

{
(X, Y ) ∈ Rm × Rs |

n∑
j=1

λjXj ≥ X,

n∑
j=1

λjYj ≤ Y,

n∑
j=1

λj = 1, λj ≥ 0

}
. (2)

Figure 2: Convex APS of the normal group G
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Differences between the C and NC APS

Figure 2 shows a figure of a C APS. The same training observations as in Figure 1

are used to illustrate the construction of a C APS. This C APS is built based on the NC

APS with an additional assumption on convexity. Under the convexity assumption, the

data points derived from the linear combination of observations must also be regarded as
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belonging to the normal group. For example, the data points on the line Z2Z4 should be

classified into the normal group due to the convexity assumption. Then, the data points in

the polygon Z2P2P3Z4Z2 marked by grid lines can also be classified into the normal group

with the monotonicity assumption. Overall, three polygons marked by grid lines are added,

namely Z1P1Z2Z1, Z2P2P3Z4Z2 and Z4P4Z5Z4. Thus, the C APS of the normal group is the

shaded area restricted to the second quadrant located above and to the right of the solid

polyline P5Z1Z2Z4Z5P6.

For the NC case, the APS consists of data points which are located within the free

disposal area of certain training observation from G. While for the C case, except for

the above situation, if a data point is located within the free disposal area of a convex

combination of two training observations from G, it also constitutes the APS and therefore

belongs to the normal group. Obviously, TNC ⊆ TC : a NC monotonic hull is a subset of a C

monotonic hull. Put differently, the NC APS provides a tighter envelopment of the training

observations than the C APS does.

To simplify the expressions, we use the following notation to stand for the APS of the

normal group under the NC and C cases:

TΛ =

{
(X, Y ) ∈ Rm × Rs |

n∑
j=1

λjXj ≥ X,
n∑
j=1

λjYj ≤ Y,
n∑
j=1

λj = 1, λj ∈ Λ

}
. (3)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

2.3 Convex and Nonconvex Nonparametric Frontiers

Instead of using all the training observations, the APS of the normal group can be simply

described by a number of training observations located on the nonparametric frontier. These

training observations have the least preferable characteristic values and are located on the

worst-practice frontier. Any data point with better characteristics than these training obser-

vations is assigned to be normal. On the contrary, any data point with worse characteristics

than these training observations is assigned to be abnormal. In the following, the nonpara-

metric frontiers under the C and NC settings are introduced correspondingly.

Before constructing the nonparametric frontiers, we introduce the directional distance

function (DDF) measure to gauge the relative distance of a data point Z to the frontier. Fol-
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lowing Chambers, Chung, and Färe (1998), TΛ is represented by the DDF measure (DΛ,g(Z))

defined below:

DΛ,g(Z) = sup{δ ∈ R | Z + δg ∈ TΛ}. (4)

where g = (gX , gY ) ∈ Rm×Rs represents the projection direction. To be meaningful, gxi > 0

for all i ∈ {1, . . . ,m} and gyr < 0 for all r ∈ {1, . . . , s}. In this way, the characteristic

variables X are non-decreasing and the characteristic variables Y are non-increasing while

increasing the value of δ, which is the favorable behavior. Note that δ is a free decision

variable that can take positive, zero or negative values.

All the C nonparametric frontier-based classification methods in the literature adopt

either an input-oriented or an output-oriented radial efficiency measure. However, the ad-

option of these radial efficiency measures may lead to infeasibilities for the observations

located outside the APS, when there are both input-like and output-like characteristic vari-

ables. While the DDF measure in expression (4) is well-defined for all possible data points,

and for different monotonic types of characteristic variables.

The value of DΛ,g(Z) serves as an indicator that positions an observation relative to the

frontier of the APS (TΛ). A non-negative DΛ,g(Z) means that Z belongs to TΛ. Specifically,

an observation with DΛ,g(Z) equal to 0 means this observation is located on the frontier. If

an observation Z is located outside TΛ, then DΛ,g(Z) becomes negative and this observation

is projected onto the frontier in the direction opposite to g.

Note that different choices of the direction vectors g lead to various distance values

denoted by DΛ,g(Z). However, this choice does not change the sign of DΛ,g(Z). In the

following, the direction vector is applied with g = (|X0|,−|Y0|) for the observation Z =

(X0, Y0). This invests the DDF measure with a proportional interpretation (see Briec (1997);

Kerstens and Van de Woestyne (2011)). Such a percentage interpretation is not indispensable

to assign a membership, but it remains convenient.

Based on the APS of the normal group defined by expression (3), the proportional DDF

measure is then computed accordingly. With respect to TΛ, the DDF of a data point Z0 =
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(X0, Y0) is obtained by solving the following program:

max
λj ,δΛ

δΛ

s.t.
n∑
j=1

λjxi,j ≥ xi,0 + δΛ|xi,0| ∀i ∈ {1, . . . ,m}

n∑
j=1

λjyr,j ≤ yr,0 − δΛ|yr,0| ∀r ∈ {1, . . . , s}

n∑
j=1

λj = 1

λj ∈ Λ ∀j ∈ {1, . . . , n}

(5)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

In the C case, model (5) is a linear programming (LP) problem, while it involves solving

a binary mixed integer program (BMIP) for the NC case. To remedy the computational

issue in the NC case, a fast implicit enumeration-based method is proposed by Cherchye,

Kuosmanen, and Post (2001) requiring only to compute minima and maxima of lists of

ratios. Instead of solving a BMIP model, the following exact solution is obtained for model

(5) under the NC case:

δ
∗
ΛNC = max

j=1,...,n

(
min

i=1,...,m

(
xi,0 − xi,j
|xi,0|

)
, min
r=1,...,s

(
yr,j − yr,0
|yr,0|

))
. (6)

The assumption on convexity differentiates the NC APS (TΛNC) from the C APS (TΛC).

However, this does not change the definition of the DDF measure, only the value of the DDF

measure may change. Thus, δΛNC ≤ δΛC , since TΛNC ⊆ TΛC .

By solving model (5) for all observations from G, a frontier set denoted by FΛ is generated.

FΛ consists of the observations from G that have δ
∗
Λ = 0. Normally, the set FΛ under the

NC case is different from that under the C case. All frontier observations in FΛC can also

be found in FΛNC . However, not all frontier observations in FΛNC belong to FΛC , since some

frontier observations under the NC case might be dominated by convex combinations of

certain observations. Therefore, FΛC j FΛNC .

We consider Figures 1 and 2 in Section 2.2 as an example to illustrate the results of
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model (5). Under the NC setting, model (5) is executed for all training observations. Only

observations Z1, Z2, Z3, Z4 and Z5 have δ
∗
ΛNC = 0, while the other observations have δ

∗
ΛNC > 0.

Thus, the NC frontier is represented by the frontier set FΛNC = {Z1, Z2, Z3, Z4, Z5}. The NC

nonparametric frontier is the dotted polyline P5Z1P1Z2P2Z3P3Z4P4Z5P6. Similarly, model

(5) is executed for all observations under the C setting. Observations Z1, Z2, Z4 and Z5

still have δ
∗
ΛC = 0, but observation Z3 has δ

∗
ΛC > 0 as all the other observations do. Thus,

FΛC = {Z1, Z2, Z4, Z5}. The C nonparametric frontier is the solid polyline P5Z1Z2Z4Z5P6.

2.4 Nonparametric Frontier-based Classification Rules

The nonparametric frontier represented by the observations in the frontier set FΛ is then used

to determine the membership of a new data point. Specifically, the following model is used

to calculate the distance of the new data point Z0 = (X0, Y0) relative to the nonparametric

frontier:
max
λj ,δΛ

δΛ

s.t.
∑
j∈FΛ

λjxi,j ≥ xi,0 + δΛ|xi,0| ∀i ∈ {1, . . . ,m}∑
j∈FΛ

λjyr,j ≤ yr,0 − δΛ|yr,0| ∀r ∈ {1, . . . , s}∑
j∈FΛ

λj = 1

λj ∈ Λ ∀j ∈ FΛ

(7)

where

(i) Λ ≡ ΛC = {λj ≥ 0} , or (ii) Λ ≡ ΛNC = {λj ∈ {0, 1}} .

For the new data point Z0 = (X0, Y0), the optimal distance measure calculated from

model (7) (δ∗Λ ) is the same as that calculated from model (5) (δ
∗
Λ ). The difference is that

only the observations in the frontier set FΛ are used in the left-hand side of the inequalities

in model (7). Although δ∗Λ = δ
∗
Λ always holds, the decrease in sample size can save some

computational time.

The decision variable δΛ in model (7) is a free variable. If δ∗Λ ≥ 0, then it indicates there

exists a projection point that dominates the new data point Z0 = (X0, Y0). This projection

point is generated from the left-hand side of the inequality constraints in model (7) and is

represented by Zb = (
∑

j∈FΛ
λ∗jXj,

∑
j∈FΛ

λ∗jYj). It is either an observation from the NC
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frontier set FΛNC or a convex combination of the observations from FΛC . In the case where

δ∗Λ ≥ 0, the following inequalities hold:
∑

j∈FΛ
λ∗jXj ≥ X0 and

∑
j∈FΛ

λ∗jYj ≤ Y0. Comparing

to the projection point Zb which is normal, the new data point Z0 = (X0, Y0) has less X and

more Y . Therefore, it should be assigned to the normal group.

By contrast, if δ∗Λ < 0, then the new data point Z0 dominates the projection point Zb.

That is,
∑

j∈SΛ
λ∗jXj < X0 and

∑
j∈SΛ

λ∗jYj > Y0. The projection point Zb is on the boundary

of the APS. Comparing to the projection point Zb, the new data point Z0 has more X and

less Y , and therefore it is situated outside the APS. Hence, the new data point Z0 is assigned

as an anomaly if there is no further information.

To sum up, the membership of the new data point Z0 is determined by the sign of the

optimal DDF δ∗Λ calculated from model (7). The classification rules are summarized as

follows:

If δ∗Λ ≥ 0, then Z0 belongs to the normal group;

Otherwise, Z0 belongs to the group of anomalies.
(8)

Algorithm 1 NPFC Methods

Given:

Training data set: G, Input-like characteristics variables: X

Output-like characteristics variables: Y , Assumption on Convexity

Training:

1: Let FΛ = ∅
2: for j = 1, 2, . . . , n

3: Calculate the corresponding δ
∗
Λ using model (5)

4: if δ
∗
Λ = 0, then

5: Zj is added to FΛ

6: end if

7: end for

8: Export the trained FΛ

Testing:

1: Calculate δ∗Λ of a new data point Z0 using model (7) and the trained FΛ

2: Classify Z0 using Rule (8)
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3 Experimental Analysis

3.1 Experimental Setup

The proposed C and NC NPFC methods are applied to a real-life data set (see Cox, Johnson,

and Kafadar (1982)).1 This data set arose in a study that aims at identifying carriers of

a rare genetic disorder. Because the disease is rare, the number of carriers whose data are

available is relatively smaller comparing to the number of normal samples. Specifically, this

biomedical data set contains 194 observations after excluding 15 observations which have

missing values. Among them, 127 observations are normal samples and 67 observations are

disease carriers which are deemed as anomalies. Each observation is characterized by five

characteristic variables, namely, age and 4 blood measurements.

A k-fold cross-validation is used in this analysis. Specifically, k takes the values of 2, 5

and 10. In the detailed setting, we stick to the general situation of anomaly detection where

only one group of data is available. That is, only the normal observations are used for the

training process, while all the abnormal observations are excluded from the training process

and are waited to be classified in the test process. For example, when k takes the value of

2, then the normal samples are divided into 2 disjoint subsets: each subset contains around

50% observations of the normal sample. In the first iteration, a classifier is trained using

63 normal observations. Then, the trained classifier is examined with a test data set which

contains the remaining 64 normal observations and the 67 abnormal observations. In the

second iteration, the classifier is trained using the 64 normal observations. Then, the trained

classifier is examined with a test data which contains the remaining 63 normal observations

and the same 67 abnormal observations. The classification performance reported by the

2-fold cross-validation is thus the average of the corresponding measures computed in each

iteration. Similar settings are applied for the 5-fold and 10-fold cross-validation.

The classification performance of the classifiers is characterized by 6 measures, namely,

accuracy, precision, recall, specificity, F1 score and G-mean. These performance measures

are listed in equations (9) to (14):

Accuracy =
TP + TN

TP + TN + FP + FN
(9)

Precision =
TP

TP + FP
(10)

1The data set is collected from the Statlib data archive at: http://lib.stat.cmu.edu/datasets/.
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Recall =
TP

TP + FN
(11)

Specificity =
TN

TN + FP
(12)

F1 score =
2 · Precision · Recall

Precision + Recall
(13)

G-mean =
√

Precision · Recall (14)

whereby TN , TP , FN , and FP represent true negative, true positive, false negative and

false positive cases, respectively. An anomaly is depicted as positive, while the normal case

is depicted as negative.

Accuracy captures the percentage of correctly predicted samples out of all test samples.

Precision depicts the percentage of true positive (abnormal) samples out of all predicted

positive samples. Recall represents the percentage of correctly predicted positive (abnormal)

samples out of all true positive samples. Specificity indicates the percentage of correctly

predicted negative (normal) samples out of all true negative samples. To reflect and penalize

the inequalities between the precision and the recall, both harmonic and geometric means

are used, namely the F1 score and the G-mean.

Note that when the data set is unbalanced, then the measure of accuracy can not appro-

priately reflect the overall classification performance (Kumar, Goel, Sinha, and Bhardwaj

(2022)). Thus, the F1 score and the G-mean are used for characterizing the overall classific-

ation performance in this study. However, the results of accuracy are still reported.

The performance of the proposed NPFC methods are compared with the OC-SVM and

SVDD methods. It is important to remark that this comparison is intended to show that

the proposed NPFC methods can be a good candidate for the anomaly detection problem,

rather than always beat the best OC-SVM and SVDD methods. Thus, the OC-SVM method

with a Gaussian kernel and the SVDD method with a polynomial kernel are chosen to be

compared with. The OC-SVM method with a Gaussian kernel is implemented using the

MATLAB function “fitcsvm”. The SVDD method with a polynomial kernel is implemented

using the MATLAB code available from Qiu (2022).

In implementing the NPFC method, age is taken as an input-like characteristic variable

while the four blood measures are taken as output-like characteristic variables. This is sup-

ported by the expert knowledge released in Cox, Johnson, and Kafadar (1982) which claims

that young people tend to have higher measurements. As for the assumption on convexity, it

is decided by the potential substitution relation between the characteristic variables. How-
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ever, in this biomedical data set, there is no prior information on this substitution relation.

Thus, both the C and NC NPFC methods are adopted in this analysis.

3.2 Experimental Results

The classification performance results under the 2-fold cross-validation are presented in Table

1. The four columns correspond to the performance results under the OC-SVM, SVDD, C

and NC NPFC methods, respectively. Horizontally, each row displays the average classific-

ation performance of the various methods under the corresponding measures (9)-(14). In

each row, the best result among the four methods is highlighted in bold.

Table 1: Performance Results of 4 Classifiers under the 2-fold Cross-Validation

k=2

OC-SVM SVDD C NPFC NC NPFC

Accuracy 0.8161 0.7315 0.8389 0.7587

Precision 0.8983 0.9444 0.8670 0.7164

Recall 0.7239 0.5224 0.8209 0.8806

Specificity 0.9134 0.9531 0.8575 0.6303

F1 Score 0.8016 0.6439 0.8415 0.7897

G-mean 0.8063 0.6855 0.8427 0.7941

Three observations can be made from Table 1. First, regarding the overall classification

performance which is reflected by the three overall measures, i.e., accuracy, F1 score and

G-mean, it is observed that the C NPFC method achieves the best overall performance with

respect to all three overall measures. The OC-SVM method also performs well with respect

to the three overall measures, second only to the C NPFC method. Second, the SVDD

method achieves the best performance in identifying the normal samples. It is shown in

Table 1 that 95.31% of the normal samples have been correctly identified with the SVDD

method. Its overall performance is relatively poor because it fails to detect 47.76% of the

abnormal samples. Third, in contrast to the SVDD method, the NC NPFC method correctly

detects 88.06% of the abnormal samples. However, its overall performance is also relatively

poor, because it only identifies 63.03% of the normal samples.

A further comparative analysis is done for the four listed methods under the 5-fold and

10-fold cross-validation. These performance results are reported in Table 2. Horizontally,

the first block of the columns contains the results under the 5-fold cross-validation while

the second block is under the 10-fold cross-validation. Within each of these two horizontal
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blocks, the results of the performance measures (9)-(14) are arranged in the same way as in

Table 1. In each row, the best result within each block is highlighted in bold.

Table 2: Performance Results of 4 Classifiers under the 5-fold and 10-fold Cross-Validation

k=5 k=10

OC-SVM SVDD C NPFC NC NPFC OC-SVM SVDD C NPFC NC NPFC

Accuracy 0.7684 0.6536 0.7921 0.8224 0.7440 0.5118 0.7729 0.8369

Precision 0.9659 0.9857 0.9451 0.9057 0.9881 0.9944 0.9813 0.9584

Recall 0.7075 0.5313 0.7642 0.8537 0.7045 0.4224 0.7448 0.8433

Specificity 0.9292 0.9760 0.8646 0.7382 0.9526 0.9846 0.9231 0.8051

F1 Score 0.8156 0.6789 0.8423 0.8762 0.8221 0.5915 0.8462 0.8968

G-mean 0.8261 0.7166 0.8484 0.8779 0.8341 0.6472 0.8546 0.8988

Similarly, three observations with respect to the overall performance, the performance of

identifying normal cases, and the performance of detecting anomalies are obtained from Table

2. First, the NC NPFC method is observed to have the best overall performance under both

cross-validation settings. The C NPFC method now ranks second in overall performance,

slightly behind the NC NPFC method. Second, the SVDD method always performs the

best in correctly identifying normal samples. When k takes the value of 10, it can correctly

identify 99.44% of normal samples. However, in detecting anomalies, the SVDD method

performs rather worse with a recall of 42.24%. Third, the NC NPFC method is consistently

superior in correctly detecting abnormal samples. Its recall rates are 85.37% and 84.33%

under 5-fold and 10-fold cross-validation, respectively. Meanwhile, the NC NPFC method

shows a significant improvement in the performance of identifying normal samples. Thus, it

ranks first in overall performance under both cross-validation settings.

The above comparative analysis is derived from a specific k-fold cross-validation. In

Figure 3, the performance results with various values of k are displayed and compared.

Figures 3(b) and 3(c) show the classification performance under the two overall performance

measures, F1 score and the G-mean. Figures 3(d) to 3(f) show the classification performance

for the normal or abnormal groups accordingly. In every sub-figure, the blue dashed line

marked with crosses represents the results of the OC-SVM method; the green dash-dotted

line marked with asterisks represents the results of the SVDD method; the red solid line

marked with circles represents the results of the NC NPFC method; the black dashed line

marked with squares represents the results of the C NPFC method.

The dynamic process from 2-fold cross-validation to 10-fold cross-validation is accom-

panied by an increasing number of normal samples for the training process. With increased

normal training samples, the classification methods are expected to be better trained. Note
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Figure 3: Performance Results of 4 Classifiers for Various k-fold Cross-Validation

that the data sets become unbalanced under the 5-fold and 10-fold cross-validation, so ac-

curacy can not appropriately reflect the overall classification performance. Thus, the results

on accuracy are displayed in Figure 3(a) but are not analyzed. From Figure 3, the increase

of normal samples during training has a similar impact on the classification methods, but to

different degrees for various methods.

First, as more normal samples are used for training, more normal samples can be correctly

identified in the test process. This is validated in Figure 3(e) by the progressively increase

in specificity and holds for all four classification methods. The increase in specificity means

that less normal samples are misclassified as being abnormal. Correspondingly, the precision

in Figure 3(d) also shows a consistent increase for all four classification methods. Among the

four classification methods, the improvement in specificity and precision of the NC NPFC

method is the most significant.

Second, while adding normal training samples increases specificity, it has a negative effect

on recall (Figure 3(f)). From the 2-fold cross-validation to the 10-fold cross-validation, the

recall of all classification methods decreases. For the SVDD method, this decrease in recall is

large with a value of 10.00%, but for the NC NPFC method, the decrease in recall is smaller

with a value of only 3.73%.

Third, from Figures 3(b) and 3(c), the increase in normal training samples has an in-
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consistent impact on the overall performance for different classification methods. This is

because the increase in normal training samples has an opposite impact on correctly identi-

fying normal and abnormal samples. For the SVDD method, when k goes from 5 to 10,

its overall classification performance deteriorates because the decrease in recall (10.90%)

greatly outweighs the increase in specificity (0.85%). As for the OC-SVM, C and NC NPFC

methods, the positive impact outweigh the negative impact. Thus, their overall classification

performance is progressively improving.

In general, the proposed NPFC methods show a competitive classification performance,

and even outperform the listed OC-SVM and SVDD methods in some of the performance

measures. Moreover, they show unique advantages in correctly detecting abnormal samples,

especially the NC NPFC method. As the number of normal training samples increases, the

NC NPFC method can greatly improve its performance in identifying the normal cases while

maintaining a relatively better performance in detecting the anomalies. All these support

that the proposed NPFC methods, especially the NC NPFC method, can be well applied to

the anomaly detection problem.

4 Conclusions

Although anomaly detection is a popular research problem, no consensus has been reached

on the best classification method. This contribution proposes for the first time that the

NPFC method can be used for anomaly detection. In the NPFC method, the nonparametric

frontier is generated from the group of normal training data and consists of only a few

training observations. Moreover, the shape of the nonparametric frontier is determined by

the training observations and the imposition of some weak maintained axioms, rather than

being predetermined as a hyperplane or a hypersphere. A test data point only has to be

compared with this nonparametric frontier for deriving its membership.

In addition to bringing the NPFC method to anomaly detection, this contribution also

makes two innovations at the methodological level. First, the convexity assumption is ex-

plained as a substitution relation between the characteristic variables, thus it can be reason-

ably relaxed. Having the convexity assumption relaxed, a NC NPFC method is constructed

for anomaly detection and it ends up with a better classification performance comparing

to the C NPFC method. Second, the other assumption of free disposability is explained

to reflect the monotonic relation between the characteristic variables and the membership.

Therefore, characteristic variables with both the monotonically increasing and the monoton-
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ically decreasing relations can be included in the model without data transformation. To

sum up, assigning reasonable interpretations to the assumptions justifies the NPFC methods

and also contributes to the construction of a more general NPFC method.

The experiment analysis on a biomedical data set reveals that the proposed NPFC meth-

ods have competitive overall performance and have consistent advantages in detecting ab-

normal samples. This advantage in correctly detecting abnormal samples is consistent with

the goal of anomaly detection. Moreover, the NC NPFC method performs better than the

C NPFC method, especially in detecting abnormal samples. Thus, if there is no prior in-

formation on the substitution relation among characteristic variables, then the NC NPFC

method should be favored.

We end with developing some perspectives for potential future research. First, it is an

open question to which extent the proposed NPFC methods could be further enhanced for

better classification performance by a further relaxation of some of the axioms inherited

from production theory. Just as relaxing convexity yields a monotonous frontier instead of

a C piecewise linear frontier, one may wonder whether it is possible to weaken the currently

maintained axiom of disposability. A recent theoretical attempt to do so is developed in Briec,

Kerstens, and Van de Woestyne (2016) and empirically implemented in Briec, Kerstens,

and Van de Woestyne (2018). Second, one may equally wonder to which extent the same

ideas can be transposed in the limited literature employing double separating frontiers in

a classification setting (e.g, see Sueyoshi (2006), Chang and Kuo (2008) and Wu, An, and

Liang (2011)). Third, while we have in this contribution compared the NPFC methods to

the OC-SVM and SVDD methods, it could be interesting to compare the best of the NPFC

methods to some of the best performing state of the art classification methods in anomaly

detection to check their relative classification and prediction accuracies.
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