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Abstract 

Departing from traditional approaches based on treating carbon dioxide (CO2) emissions as a bad 

output, thus relying on the weak disposability assumption, CO2 emissions are considered in this paper 

as a cost to minimize. We extend the Coelli et al. (2007) pollution cost approach preserving the materials 

balance condition by considering that peers are evaluated, besides their energy use, on their carbon 

intensity per total energy consumption. The proposed methodology is applied to estimate the extent to 

which a selection of 33 OECD and BRICS countries can reduce their CO2 emissions given their Gross 

Domestic Product and population over the period 2001-2019. Our results indicate that the period mean 

reduction potential for CO2 emissions of 53% (i.e., an efficiency level of 47%) can be decomposed into 

a 36% reduction in the energy intensity and a 27% decrease in the carbon intensity of energy (i.e., 

efficiency of 64% and respectively, 73%).  

 

Keywords: Carbon dioxide emissions, Emission-generating technologies, Pollution cost, Energy 

use, Activity model, Data envelopment analysis (DEA). 

JEL codes: Q52, Q40, D24, C61 
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1. Introduction 

 

Global warming and climate change primarily caused by the direct release of carbon dioxide (CO2) 

and other greenhouse gases (GHG) into the atmosphere are one of the world’s most crucial and pressing 

challenges. The need for urgent actions for a liveable world was recalled during the 27th Conference of 

the Parties of the United Nations Framework Convention on Climate Change (COP 27) held in Sharm 

el-Sheikh (Egypt, November 2022) by the United Nations Secretary-General António Guterres. He 

warned that our planet is on a “highway to climate hell” and that concrete and appropriate actions should 

be taken in this decade. 

A crucial point for effective climate policies consists in identifying the underlying main drivers 

behind emissions. Indeed, they provide policymakers with information on available pathways for 

reducing emissions and mitigating the environmental impact of human activities. To this end, an 

interesting starting point is the Kaya (1989;1990) identity which expresses emissions (CO2) as a 

function of Population (POP), Gross Domestic Product (GDP), and Energy (E) as follows. 

22 2
CO E GDP E GDP

CO POP CO e POP
E GDP POP GDP POP

      
=  =      

      
     (1). 

Emissions are therefore driven by four main factors: the carbon intensity of energy or the CO2 

emission coefficient (CO2 /E or e), the energy intensity of the economy (E/GDP), GDP per capita 

(GDP/POP), and population (POP). Given the level of population, one of the challenges faced by many 

developed countries is the following: how to scale down emissions at the maximum possible while 

preserving (or limiting the decline of) economic activity? Following Kaya, a possible solution already 

followed by many developed countries (at various speeds, however) consists of decarbonizing energy 

systems (i.e., to act on CO2/E). That is, they explore opportunities to increase the share of renewables 

and nuclear in the energy mix and reduce the share of fossil fuels such as coal, petroleoum and gas. 

Another path consists in reducing the energy intensity of the economy (E/GDP), promoting for example 

energy-efficient renovation of dwellings and energy-efficient machines.  

In this paper, we explore the extent to which a selection of 33 OECD and BRICS countries could 

reduce their CO2 emissions given their level of GDP and population over the period 2001-2019. 

Considering Kaya’s equation, this amounts to identifying the possible decreases in both E and e. We 

use a nonparametric production frontier framework, based on activity models to estimate such 

decreases. Indeed, when it comes to the estimation of possible reduction of resources without reducing 

production, nonparametric frameworks present the advantage of dispensing with the need to define a 

functional form for the production technology and its associated pollution cost frontier. Based on linear 

programming techniques to construct a surface that envelops observations, these methods derive an 
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efficient cost frontier. The distance of a given observation to this frontier gives an estimation of feasible 

reductions. We observe that to estimate the level of feasible CO2 emissions reduction while considering 

the current GDP and/or Population, most studies in the nonparametric production frontier literature treat 

emissions either as undesirable outputs and use the framework of Färe et al. (1989), Färe and Grosskopf 

(2004) or as by-products using the framework of Murty et al. (2012), Murty and Russell (2018).  

In the first approach, the production technology modelling assumes weak disposability of 

undesirable outputs and the null-jointness of both desirable and undesirable outputs. Intuitively this 

means that the undesirable output cannot be reduced without affecting the production of desirable 

outputs. Using this framework, Lin et al. (2013) measure environmental efficiency in 63 countries over 

the period 1981-2005 and test if the adoption of the Kyoto Protocol had a positive effect on 

environmental efficiency. Environmental efficiency is computed using a directional output distance 

function which allows to simultaneously expand GDP (desirable output) and contract CO2 (undesirable 

output). They find that high-income countries achieved the highest progress in their average 

environmental efficiency whereas lower-middle-income low-income countries recorded negative 

growth in their average environmental efficiency. In the same vein, Zhou et al. (2006) proposed slacks-

based efficiency measures to study the CO2 emissions of thirty OECD countries from 1998 to 2002. 

Lozano and Gutierrez (2008), using a selection of developed countries from 1990 to 2004 estimate, 

among other things, the minimum level of GHG emissions compatible with given levels of population, 

GDP, etc. Also following this approach, Boussemart et al. (2017) estimated, for 119 countries on all 

continents, shadow carbon prices via a robust nonparametric framework. Their empirical results 

revealed that the global shadow carbon price increases by about 2.24% per year although there are 

significant regional disparities over the period analysed. They found a substantial sigma convergence 

process in carbon prices across countries over the period 1990-2007. However, following the global 

financial crisis, a divergence movement prevails. Finally, they analysed the relationship between 

shadow carbon prices and the implementation of the Kyoto Protocol. 

In the second approach (i.e., the by-production approach), two sub-technologies are considered: one 

generating the desired outputs and the other generating the by-products. Operational and environmental 

efficiencies can be estimated with regard to the specific corresponding sub-technology frontier. This 

approach also adequately enables suitable trade-offs among outputs (desired and undesired) and inputs. 

Within this framework, Ray et al. (2018) use data on an unbalanced panel of 64 countries from 1986 to 

2011 to compute for each country opportunity costs of a targeted reduction in CO2 emission (by-

product) in terms of amounts of reduction in GDP (desired output). Extending the by-production 

approach, Boussemart et al. (2020) analyse the country's performance across the economic, 

environmental, and social pillars. By linking together three sub-technologies, they model a global 

technology that combines the objectives of these three pillars. The practicality of their approach was 

illustrated by the analysis of policy trade-offs between economic, environmental, and social objectives. 



 

 
5 

 

In our analysis, following Coelli et al. (2007), we approach the problem of pollution-generating 

technologies (i.e., the joint production of undesired and desired outputs) as a cost-minimization 

problem. Unlike the undesirable outputs framework (Färe et al., 1989), the environmental efficiency 

measure introduced by Coelli et al. (2007) ensures consistency with the materials balance principle 

(MBP). Specifically, the approach of Coelli et al. (2007) does not incorporate undesirables as inputs or 

outputs in the production technology modeling but utilizes material flow coefficients to identify the 

input mix that results in the minimal material inflow required to produce a certain bundle of desirable 

outputs. Their material inflow minimization problem mimics the well-known cost minimization 

problem in economics. Lauwers (2009) provides further arguments to justify the adaptation of 

traditional frontier-based models to comply with the MBP. Hoang and Coelli (2011) extend the initial 

efficiency-based frame to estimate the inter-temporal TFP performance of farms. The nutrient total 

factor productivity index (NTFP) also respects the material balance principle. More recently, Rødseth 

(2016) complemented this eco-efficiency estimation via the cost-polluting approach by considering that 

additional inputs could be used to control pollutant emissions. By adding the minimization of these 

pollution control inputs to the initial model of Coelli et al. (2007), they showed that the new efficiency 

measure allows for an improved ranking of the environmental performance of the evaluated DMUs. 

Our contributions are threefold. First, we extend Coelli et al. (2007) and propose a model which 

endogenizes the material flow coefficients which in our application are the CO2 emission coefficients 

(e). This provides countries with two leverages to minimize emissions: energy consumption reduction 

and CO2 emission coefficient reduction. Note that Eder (2022) proposes another generalization of 

Coelli et al. (2007). Their framework allows the estimation of environmental efficiency scores when 

the material flow coefficients are heterogeneous across decision-making units and non-discretionary. 

Contrary to our approach, the model in Eder (2022), does not consider material flow coefficients as a 

lever to decrease pollution: they are non-discretionary (uncontrollable). There is no direct comparison 

(for potential decrease) of material flow coefficients across all DMUs and the heterogeneity of material 

flow coefficients is considered by restricting the set of possible reference units of a given DMU (weight 

restrictions). Moreover, our generalization leans on fewer sets of assumptions.  

Second, we adapt the methodology proposed by Boussemart et al. (2022) in which DMUs minimize 

their costs while considering both input quantities and input prices to estimate our extended Coelli et 

al. (2007) model with endogenous emission coefficients.  

Third, we use a balanced sample of 33 OECD and BRICS countries, observed from 2001 to 2019, 

to explore their energy efficiency and existing room for decarbonization (transition towards renewables 

and low-carbon energies). Our analysis, as it provides interesting insights on available options to 

decarbonize energy systems and/or to scale down the energy intensity of the economy of the selected 

33 countries, is also particularly crucial in the current energy crisis derived from Russia’s war on 
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Ukraine which highlighted the urgency for economies dependent on imported fossil fuels to improve 

their security by improving both their energy intensity and their energy mix. 

The remainder of the paper unfolds as follows. In the next section, we describe our cost approach 

for modeling pollution with endogenous emission coefficients and present a methodology for its 

estimation. Section 3 presents the data used, the adaptation made to our general model to stick to the 

available data, and the obtained results. Section 4 makes some concluding remarks. 

 

2. Methodology: a cost approach for modelling pollution 

 

Our work aiming at enhancing the comprenhension of the different levers of action to reduce the 

CO2 emissions is based on the previous work of Coelli et al. (2007). This methodology relies on activity 

models such as data envelopement analysis (DEA) and it treats pollution as a cost that is to be 

minimized. In line with standard approaches, their model assumes that emission coefficients are given. 

The first sub-section deals with this general approach. The extension proposed consists in allowing for 

endogeneous emission coefficients. This hypothesis makes sense for specific models, such as the one 

studied here, where the energy is considered at an aggregate level, implying a possible different mix of 

energy sources amongst DMUs and thus, possibly different emission coefficients. Thus,we propose to 

evaluate, besides the efficiency of the energy use, the efficiency of the emission coefficient. The 

adaptation of the existing model to encompass this assumption is done in the second sub-section.  

 

2.1 Traditional production technology with exogenous emission coefficients 

 

Consider in the following the case of a decision-making unit (DMU) producing an output quantity 

vector M

+Y , with  1, ..., , ...,M m M= out of a vector of input quantities 
I

+X , with

 1, ..., , ...,I i I= . The corresponding technology can then be defined by:  

( ) ; : can produceI MT + +=  X Y X Y                   (2). 

Assumptions regarding technology are standard and refer to no free lunch, boundedness, closure, 

free disposability, and convexity (see Banker et al., 1984). If we observe N  DMUs with corresponding 

production plans ( ; ), 1, ,n nX Y n N = , then the technology (T) could be estimated by Data 

Envelopment Analysis (DEA) under constant returns to scale (CRS) as follows: 
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                  (3). 

In what follows, we associate to the input quantity vector ( X ), a vector of emission coefficients 

I

+e  leading to a total level of pollution (or emissions) defined as TP = Xe .1 Coelli et al. (2007), 

show that pollution is minimized when aggregate emission related to inputs use is minimized. Thus, 

minimizing the pollution level for a given DMU a mimics the classical cost minimization problem, i.e. 

( ),P C= Y e , with C  defined in equation (4) below. As shown by Coelli et al. (2007), the main 

advantage of this method, compared to the undesirable output approach (such as Färe and al. 1989 and 

Färe and Grosskopf, 2004 to cite only a few) is that in a cost minimization problem, the material balance 

principle is always respected. For the technology defined in equation (2) we define the emission (cost) 

function following Coelli et al. (2007): 

( ) ( ) , min : ,T

DEAC T= 
X

Y e Xe X Y                    (4). 

The above emission minimization problem (equation 4) implicitly assumes that DMUs face identical 

emission coefficients which reduces the problem to an input quantity allocation. Indeed, under this 

approach, DMUs seek only the optimal input quantities given identical emission coefficients. Thus, 

DMUs' strategy to reduce emissions is based uniquely on an “input quantity effect”, while completely 

ignoring the possibility to act on their emission coefficients, and in fine, on their energy mixes. Related 

to traditional cost minimization and allocative efficiency models, the limitation of analyses based on 

exogenous input prices has been emphasized several times in the literature (Camanho and Dyson(2008), 

Portela and Thanalousis (2014), Ayouba et al. (2019), Boussemart et al. (2022)).  

We propose to extend existing pollution cost models, i.e. Coelli et al. (2007) based on exogenous 

emission coefficients by considering that DMUs when choosing different input quantity mixes end up 

having different emission coefficients for those mixes. In other words, the emission coefficients will be 

endogenized in our approach.  

 

 

1 In the same way, we can assume 
R

y +e  a vector of technical coefficients associated with the output. From 

this perspective, the methodology developed here, based on the cost minimization problem, can be extended to 

include both input and output emission coefficients in a profit maximization approach.  
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2.2 Proposition of a pollution cost approach with endogenous emission 

coefficients 

 

2.2.1 General setting  

The standard frame of analysis does not consider the differences in the emission coefficients and 

therefore cannot estimate DMUs efficiency in this dimension: emission coefficients are considered as 

given for each DMU and are not compared among DMUs. Indeed, for a very detailed nomenclature 

grid of a polluting input such as energy comprising different types of fossil fuels (coal, petroleum, 

natural gas, oil shales, bitumens, tar sands, heavy oils, etc.), one can consider that the emission factor 

is identical for each type of fuel according to physical-chemical laws. Therefore, it would not be relevant 

to compare DMUs along this dimension.  

However, at a more aggregate level, when confronted with an aggregate mix of polluting inputs (e.g. 

energy = fossils + nuclear + renewables), the resulting weighted average emission coefficient can be 

different among DMUs. This leads to a form of heterogeneity among the DMUs both from the 

perspective of the input quantities used, but also from the perspective of their respective mixes as 

revealed by the potentially different weighted emissions factors.  

Consequently, DMUs dispose of two leverages to reduce their pollution cost: change the quantity of 

polluting inputs and/or, choose a different mix of polluting inputs resulting in different emissions 

coefficients.  From a practical point of view, this approach has the advantage to give DMUs more room 

for action compared to the traditional approach.  

In the recent literature, Boussemart et al. (2022) have proposed a methodology for standard cost 

minimization in which DMUs minimize their costs while considering both input quantities and input 

prices as optimization levers.2 This methodology can easily be adapted to study pollution emissions as:  

( ) ( ) 
, 0

min : ,T M

DEAC T


+=   
X e

Y Xe X, Y Y                (5).  

Coelli et al. (2017) assume that the cost minimization problem is realized under constant returns to 

scale (CRS), allowing for a rescale of input and output quantities for a given set of emission coefficients. 

Moreover, the model necessary to assess the countries' performance in CO2 emissions in line with the 

Kaya equation (1) also implicitly assumes constant returns to scale as the different elements composing 

it are based on ratios, e.g. E/GDP. However, in Boussemart et al. (2022), their model was developed 

 
2 In their approach and contrary to the standard approach, DMUs are evaluated not only with regard to their 

input quantities, while considering prices as given (which can be an acceptable hypothesis for perfectly 

competitive input markest) but also with regard to their observed prices (which can be related to the assumption 

that input markets are not perfectly competitive).  
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under variable returns to scale (VRS). Indeed, this more general assumption prevents the rescale of all 

corresponding variables, including prices, which would have been irrelevant in this specific dimension 

(prices). In our current approach, a more accurate framework should allow for a rescale in the quantity 

dimensions (input and output), but not in the emission coefficient one. This issue is solved by showing 

that a total cost minimization problem in CRS is equivalent to an average cost minimization one in 

VRS. This is done in the following subsection.  

 

2.2.2 Dealing with returns to scale when emissions coefficients are directly considered 

 

We show that the standard cost minimization problem under CRS assumption (equation 4), i.e. as in 

Coelli et al. (2007), is equivalent to the cost minimization problem under VRS assumption when all 

output and input components of the technology are rescaled with regard to one fixed component. In 

what follows, we will assume that the output 'mY is fixed, with ' ', ' and ' 1m M M M M  = . In 

terms of notations, we introduce the rescaled input and output quantity vectors as: 

' '

1 1
,and

m mY Y
= =x X y Y            (6).  

These rescaled vectors are generally referred to as the input and output intensities relative to the 

chosen fixed output. With these notations, the associated VRS cost function is defined as: 

( ) ( ) , min : , ,VRS T M

DEAC T +=   
x

y e xe x y y         (7). 

The above equation (7) corresponds to the minimization of the average cost for producing one unit 

of the fixed output.  

Proposition 1.  

The total pollution cost minimization problem in equation (4) under constant returns to scale is 

equivalent to an average cost minimization problem under variable returns to scale if all inputs and 

vectors are rescaled with regard to a fixed component as defined in equation (7).  

( ) ( ), ,CRS VRSC CY e y e           (8). 

The proof for the above Proposition is available in the Appendix.  

Thanks to these clarifications and returning to equation (5), we are now able to give the VRS version 

of the average cost minimization problem dealing with endogenous emission coefficients. This consists 

in optimizing the cost value with respect to both input intensity ( x ) and emission coefficient (e ) 

vectors:  
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( ) ( ) 
, 0

min : ,TVRS M

DEAC T


+=   
x e

y xe x, y y               (9). 

Equation (9) naturally leads to solving a non-linear problem NLP1, because the cost minimization 

solution results from the product between the optimal input quantity and the optimal emission 

coefficient. 
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       NLP1 

The problem faced by such non-linear problems is that the solution found is only a local one and, in 

most cases, proving that it is also a global one might be a complex task. In the following empirical 

section, we adapt the linearization method introduced by Banker and Maindiratta (1986) which is 

particularly well suited to our analysis of cost minimization expressed in units of CO2 emissions. 

 

3. Data, estimation strategy, and results 

3.1 Data and variables 

For our analysis of CO2 emissions performance, we have selected 33 countries3 (27 OECD countries 

+ 6 BRICS countries) over the period 2001-2019. In line with the Kaya (1990) identity introduced in 

equation (1), we have retrieved the corresponding variables: GDP, total population (POP), total energy 

consumption (E), and total CO2 emissions (CO2). Based on these variables, we deduce the energy 

intensity (E/GDP) and the emission coefficient (e=CO2/E). The data used come from the World Bank 

and the US Energy Information Administration (see Table 1). GDP is measured at constant 2011 prices 

expressed in international US $ respecting the purchasing power parity (PPP). CO2 emissions are 

 
3 Australia, Austria, Belgium, Brazil, Canada, China, Czech Republic, Denmark, Finland, France, Germany, 

Greece, Hungary, Iceland, India, Ireland, Italy, Japan, Mexico, Netherlands, New Zealand, Norway, Poland, 

Portugal, Republic of Korea, Russian Federation, Slovakia, South Africa, Spain, Sweden, Switzerland, Turkey, 

United Kingdom, United States. 
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expressed in millions of tons. Total energy consumption, expressed in quadrillion Btu, aggregates fossil 

(coal, gas, and oil), nuclear and renewable energies.  

 

Table 1: Definition, measure unit, and source of the variables 

Variables Définition Unit Source 

GDP GDP, PPP constant 2011 

international $ 

 

106 US $ 

2011 

https://data.worldbank.org/indicator 

 

POP Total population 

 

106 https://data.worldbank.org/indicator 

E Energy consumption 

 

1015 Btu https://www.eia.gov/international/data/worl 

CO2 CO2 emissions 

 

106 Tons https://www.eia.gov/international/data/world 

E/GDP Energy intensity 

 

103 Btu/$  

e Emission coefficient mg/Btu  

 

Over the last two decades and relative to the world total, these 33 countries respectively account for 

76% of GDP, 60% of the population, 79.5% of energy consumption, and more than 80% of CO2 

emissions. Analysis of the trends in the selected variables indicates that GDP per capita grew at an 

annual rate of 2.40% due to a faster increase in GDP than in population. At the same time, energy 

intensity (E/GDP) decreased at a rate of -1.17% per year due to a differential in growth in favor of GDP 

compared to overall energy consumption. Finally, the CO2 emission coefficient (e = CO2/E) improved 

slightly over the period, with a trend decrease of -0.10%.  

 

Table 2. Descriptive statistics of the variables 

  Average 2001-2019 Total 33 countries 

GDP Level 74 593 497   

 
% of Total world 75.99% 

  Trend 2001-2019 (%) 3.22% 

POP Level 4 191   

 
% of Total world 60.19% 

  Trend 2001-2019 (%) 0.82% 

E Level 410   

 
% of Total world 79.51% 

  Trend 2001-2019 % 2.05% 

CO2 Level 25 245   

 
% of Total world 80.18% 

  Trend 2001-2019 (%) 1.95% 

GDP/POP Level 17 799   

  Trend 2001-2019 (%) 2.40% 

E/GDP Level 5.50 

https://data.worldbank.org/indicator
https://data.worldbank.org/indicator
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  Trend 2001-2019 (%) -1.17% 

e Level 61.55 

  Trend 2001-2019 (%) -0.10% 

 

Figure 1.a illustrates the indices (and growth rates) of the main variables expressed in level (first 

four lines in Table 2). Figure 1.b complements this analysis by the evolutions of the same variables 

expressed this time with regard to the population, GDP, and energy consumption respectively (the latter 

3 rows in Table 2). Note that the Kaya identity in equation (1) is obtained based on these three ratios. 

The analysis of these two figures allows us to conclude that the strong increase in GDP per capita 

accompanied by a more moderate increase in the world population are the main causes of CO2 

emissions. The respective decreases in energy intensity and emission coefficients (by changing the 

energy mix in favor of non-carbon resources) are not sufficient to reduce CO2 pollution. 

 

Figure 1.Illustrations of the evolutions of the indices (and their trends) for the main variables in Kaya 

identity 

a. Main variables in level (1= 2001, semi-logarithmic scale) 
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b. Evolution (and growth rates) for ratios used in the Kaya identity (1= 2001, semi-

logarithmic scale) 

 

 

 

Algebraically, the relationships between the related growth rates of the variables in Kaya's identity 

(trend 2001-2019 in %) can be expressed as follows:  

2

2
 + 

2

1.95%  0.10%  1.17%   2.40%    0.82%

E GDP
CO e POP

GDP POP

E GDP
d d

dCO de dPOPGDP POP
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GDP POP

  
=   

  



   
   
   = + +
   
   
   

= − − + +

 

 

3.2 Estimation strategy  

According to the availability of data presented above and starting from Kaya's (1990) identity 

expressed in equation (1), we adapt the technology set accordingly. The total cost to minimize is 

expressed in terms of CO2 emissions as: 

2
E GDP

CO e POP
GDP POP

  
=   

  
 

Rearranging this equation leads to the following equivalent formulation:  
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2CO E POP E
e e

GDP GDP POP GDP

    
= =    

    
                 (10). 

Consequently, the average cost of pollution 
2CO

GDP
 is expressed in terms of CO2 emissions per unit 

of output quantity given by the GDP produced over the year: ( )GDP=Y . The polluting input quantity 

is given by the total quantity of energy denoted E needed to produce the GDP. Consequently, the input 

vector can be reduced to the scalar ( )E=X . Similarly, the emission coefficient vector is denoted by 

the scalar ( )
2CO

e
E

 
= =  

 
e . Rescaled output and input variables with regard to the fixed output 

(GDP) are then equal to: ( )1
GDP

y
GDP

 
= = 
 

 and 
E

x
GDP

 
=  
 

. The rescaled output vector corresponds 

naturally to the unit whereas, in the rescaled input vector (x) we have the quantity of energy used to 

produce one unit of GDP called energy intensity. 

In this specific case of a single aggregate input (such as the sum of energies all expressed in the same 

unit), the average cost of CO2 per unit of GDP is simply expressed by the multiplication of two scalars 

2CO E
e

GDP GDP

 
=  

 
. Consequently, the minimization of CO2 emissions per unit of GDP can be solved 

through the following nonlinear program NLP2 below. Note that this program is the adaptation of the 

previous NLP1 where, in the vein of Banker and Maindiratta (1986), we deal with geometric convexity 

instead of linear convexity. Moreover, this solution also has the advantage to address more general 

production situations which involve non-concavity in some regions and a non-convex production 

possibility set. 
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
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=   
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           NLP2. 

 



 

 
15 

 

The linearization of the objective function in NLP2 is possible by a simple logarithmic 

transformation:  
, , , ,

min ln ln ln ln min ln lna
a

a

E
e

GDP   
   

  
+ + +  +  

  
τ τ

.  

Finally, the logarithmic transformation of the first two constraints leads to the final log-linear 

program: 

 
, ,

min ln ln

ln ln ln

ln ln ln

ln ln 0 0

1,

0

n
n

nn a

n n a

n

n a
n

n n a

n

n

n

E E

GDP GDP

e e

GDP GDP

GDP GDP

n N

 
 

 

 







 +

    

 +   
  

  +



   
     

   
 =  













τ

             LP3.  

In the above LP3, we retrieve, for the energy intensity and for the emission coefficient a specific 

score, measured by  and respectively   which give the potential changes in the input quantity and 

emission coefficient to reach the optimal average cost level.   

A country is deemed efficient whenever the product of the two scores is equal to the unit, 

ln ln 0 1  + =  = .  

Note that in this program the goal is cost minimization instead of minimizing each specific score. 

Consequently, the two coefficients are not restricted meaning that a minimisation of the cost can lead 

to several situations: 

- A country can decrease both its energy intensity and its emission coefficient to become 

efficient. 

- A country can decrease its energy intensity and, at the same time, increase its emission 

coefficient. 

- A country can increase its input energy intensity while reducing its emission 

coefficient. 

 

According to Kaya's initial equation, the change in the amount of CO2 emissions can be achieved 

not only through simultaneous variations in the emission coefficient and energy intensity but also over 

a change in the standard of living expressed by the GDP per capita for a given level of population. In 

this analysis, we will consider that environmental policies of countries focus first on the impacts in 
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terms of pollution caused by quantities and mixes of energy. While economic activity and demography 

are more likely to be a matter of economic and social policies. In this context, we consider that GDP 

and population levels are exogenous variables not monitored by energy choices. In more precise terms, 

this means that the minimum emission cost per unit of GDP is obtained with a given level of GDP per 

capita. As a result, the observed 
GDP

POP
 is treated as a control variable and a specific constraint must be 

added to LP3. Thus, the final linear program that will be estimated corresponds to:   

 
, ,

min ln ln

ln ln ln

ln ln ln

ln ln

1,

0

n a
n

n n a

n n a

n

n a
n

n n a

n

n

n

E E

GDP GDP

e e

GDP GDP

POP POP

n N

  
 

 

 







 +

    

 +    
    


 +

    

=   
   

 =  













             LP4. 

 

3.2 Results and discussion 

 

The efficiency score analysis shows that the CO2 emission reduction potential would be significant 

if the different countries could adopt the characteristics of the best practices in terms of energy. 

According to Figure 2, the average CO2 score for the 33 countries oscillates between 44% and 50% 

depending on the year, i.e., a reduction potential varying between 56% and 50%. The efficiency in terms 

of pollution cost is first explained by the energy intensity (E/GDP), for which the efficiency score varies 

between 62% and 66%, while the efficiency score for the emission coefficient resulting from the energy 

mix is higher (between 70% and 76%). 
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Figure 2. Efficiency scores in % (sample geometric mean) 

 

 

Figure 3 shows that in terms of the efficiency for the CO2 emissions per unit of GDP, Switzerland, 

Brazil, and India are the most efficient countries, followed by Sweden, France, Turkey, Portugal, 

Mexico, Norway, and Italy. At the other end of the scale, the least efficient countries are South Africa, 

Australia, Russia, Canada, the USA, China, and the Republic of Korea.  

 

Figure 3. Ranking of countries according to their CO2-to-GDP emissions scores 

 (period geometric mean) 
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Beyond their overall CO2 efficiency scores, the different countries can be categorized according to 

a typology that crosses the two efficiency scores respectively energy intensity and emission coefficient 

related to the mix of different types of energies. Figure 4 plots the period trends for each score thus 

enabling a comparison of the dynamics between these two dimensions. Countries can therefore be 

classified along the four frames to which they belong. We notice that efficient countries in both 

dimensions are placed at the origin of this plot (Switzerland, Brazil, and India). Countries that have 

managed to increase their efficiency in both dimensions are plotted in the upper right-hand frame. With 

regard to the 45° diagonal (the dashed lines), for some countries situated beneath this diagonal, the 

increase in the efficiency of the energy-to-GDP ratio was stronger than the improvement observed by 

the emissions rate efficiency (Czechia, Great Britain, Hungary, Mexico, New Zealand, Poland and, 

Slovakia). The reversed situation was observed for countries in the same frame but above the 45° 

diagonal (Denmark, France, Spain, and Sweden).  

In the left-hand, upper frame, one finds most of the countries in the sample for which the 

improvement in the emissions rate efficiency was associated with a decrease in the efficiency of the 

efficiency in the energy-to-GDP ratio. For countries above the 45° diagonal (Belgium, Finland, Greece, 

Italy, Portugal, and the United States) the increase in the efficiency of the mix was stronger than the 

deterioration of the efficiency of energy consumption for one unit of GDP. The reverse was observed 

for countries in this frame situated below the diagonal (Australia, Austria, Germany, Iceland, Norway, 

and South Africa).  

In the left-hand, bottom frame, one finds the countries for which both efficiencies observed a 

negative trend throughout the study period (Canada, South Korea, the Netherlands, and Turkey). For 

all of them, the decline in the energy mix efficiency was stronger than the decrease in the efficiency of 

energy use for one unit of GDP. Finally, in the last frame (right hand, bottom), there are three countries 

for which the efforts in improving their energy to GDP efficiency were related to a deterioration of the 

energy mix efficiency (China, Japan, Russia). For the first two countries, the increase in the efficiency 

of the first score was stronger than the decrease in the latter score. However, for Russia, the reverse was 

observed.  
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Figure 4. Typology of the countries with respect to the period trend for each efficiency score 

 

 

We pursue the analysis by presenting the period geometric mean for each score. In Figure 5 these 

aggregate scores are illustrated in reference to the whole sample (geometric) mean. We first notice that 

Switzerland, India, Brazil, and France show above-average performance on both dimensions. For 

Switzerland, France, and Brazil, this efficient positioning is explained by their good profiles both in 

terms of productivity and choice of energy mixes in favor of renewable and nuclear (particularly for 

France). For India, although its emission coefficient is among the worst, its overall efficiency is 

explained by a relatively good position in terms of energy productivity but also by the specificity of 

having a very low level of GDP per capita. Three Northern European countries (Iceland, Sweden, and 

Norway) appear super-efficient in terms of emission rates, while their energy intensity scores are below 

average (especially for Iceland). On the other hand, Turkey, Mexico, Portugal, Italy, and Denmark 

derive their good performance from high scores on the energy dimension. As such, Turkey and Mexico 

are super-efficient in this dimension. Among the least efficient countries in terms of CO2 emissions, 

some accumulate bad performances both in their energy use and their emission rate: Russia, the USA, 

China, the Republic of Korea, Australia, and South Africa. 
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Figure 5.Typology of countries by their efficiency profile (period geometric mean) 

 

 

At the sample mean, all these results lead to the conclusion that a 53% reduction target of CO2 

emissions4 would require countries to not only decrease their overall energy consumption but also 

change their energy mix.  This is illustrated by the pie chart in Figure 6. Not surprisingly, fossil energies 

would have to decrease their share from 84.5% to 62% while renewable energies would have to increase 

from 9.5% to 29.4%. Also not surprising is the increase in the share of nuclear power from 6% to 8.6%, 

which also contributes to the reduction of CO2 emissions. 

 

 
4 The mean for all countries efficiency scores for the entire period is 47%, meaning that the potential reduction of 

CO2 emissions has been of 53% on average.   
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Figure 6. Observed and optimal energy mixes (sample mean) 

 

This strong decrease in the use of fossil fuels in favor of renewable energies can be found in most 

countries, but even more so in the most polluting ones, with more or less pronounced nuances in the 

use of nuclear energy. For example, for China, the biggest polluter which accounts for 33% of the CO2 

emissions of the total sample, fossil energies should reduce their weight from 91% to 71%, with nuclear 

power maintaining a small share of around 1% to 1.3%, while renewable energies should increase from 

8% to 28% (cf. Figure 7). For the USA, the second largest polluter of the group, which alone accounts 

for 22% of CO2 emissions, there should also be a drastic decrease in the share of fossil fuels (from 83% 

to 52%) in favor of an increase in nuclear power (from 8.4% to 17.2%) and renewables (from 8.3% to 

30.5%) (cf. Figure 8). 

 

Figure 7.Observed and optimal energy mixes for China (period mean) 
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Figure 8. Observed and optimal energy mixes for the United States (period mean) 

 

4. Conclusion

To limit the deterioration of the environment, it is increasingly acknowledged that past and current 

energy use patterns should be adapted. This confronts developed countries with the challenge of scaling 

down CO2 emissions from energy use at the maximum possible while preserving (or limiting the decline 

of) economic activity. In this article, we provide an answer to this crucial question. Specifically, we use 

a nonparametric pollution cost frontier framework to explore the extent to which a selection of 33 

OECD and BRICS countries could reduce their CO2 emissions given their level of GDP and population 

over the period 2001-2019. We extend the model in Coelli et al. (2007), consistent with the materials 

balance condition, in which the problem of pollution-generating technologies (i.e., the joint production 

of undesired and desired outputs) is approached as a cost minimization problem. While in their 

traditional frame, Coelli et al. (2007) assume that emission coefficients are given, our contribution 

consists in endogenizing them. Indeed, when dealing with heterogeneous energy mixes, the resulting 

weighted coefficient emission factor can differ across countries. Therefore, in our approach, countries' 

performance related to their CO2 emissions has been assessed not only with respect to their energy use 

per unit of GDP but also with regard to their carbon intensity of the energy mix used. 

We also provide an estimation procedure for our extended model. For this, we address two issues 

stemming from the cost minimization problem stated. The first one consists in showing the equivalence 

between a total cost minimization under constant returns to scale assumption and an average cost 

minimization problem under variable returns to scale. As noted above, the assumption of constant 

returns to scale assumption is used in Coelli et al. (2007) and it is also in line with the Kaya identity 

(equation 1). However, in our frame, modeling endogenous coefficient emissions in the optimization 

problem is ill-suited to the constant returns to scale assumption as those coefficients cannot be rescaled. 

The second one consists of having dealt with the nonlinearity of the resulting objective function by 

adapting the Banker and Maindiratta (1986) log-linearization approach.    
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Our results show the reduction potential for CO2 emission varies between 56% and 50% depending 

on the year if the different countries could adopt the characteristics of the best practices in terms of 

energy. This results from a reduction in energy intensity (between 34% and 38%) and a reduction in the 

carbon intensity of energy (between 24% to 30%). Interestingly, at the sample aggregate scale, the 

reduction in the carbon intensity of energy is obtained by decreasing the share of fossil energies (from 

84.5% to 62%) and increasing the share of both renewable energies (9.5% to 29.4%) and nuclear energy 

(6% to 8.6%). 

As it is increasingly acknowledged that past and current energy use patterns should be adapted to 

limit the deterioration of the environment, our results provide interesting insights into available current 

options. 
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6. Appendix: proof to Proposition 1.  

 

Let us start from the LPs that can be used to obtain each of the problems stated in equation (7). 

Denote LP1 the linear program used to calculate the solution to the problem stated in equation (3).  
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                  LP1. 

 

Likewise, denote LP2 the linear program used to calculate the solution to the cost function in 

equation (6), using the notations in equation (5) where we denote by small letters the input and output 

quantity vectors rescaled with regard to the fixed output.  
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