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Abstract: 

The emergence of the by-production technology as an alternative foundation for a pollution-generating 

technology represents a turning point in the environmental literature given its compatibility with the law of 

thermodynamics and the material balance principle. This approach considers two independent technologies: 

a primary production technology, and a residual-generating technology. The classical by-production 

technology can be estimated using parametric and nonparametric techniques. Alternatively, this study aims 

to identify the impact of the convexity assumption in a semi-parametric framework. We examine four 

specifications: (i) two relate to the error term, which may be either composite or deterministic, and (ii) other 

specifications incorporate either convexity or nonconvexity assumptions. Furthermore, we evaluate the out-

of-sample predictive performance of these alternative approaches. To validate our estimation approach, we 

conduct an empirical case study encompassing 47 Chinese cities from 2011 to 2019. Our findings reveal 

that both StoNED by-production models exhibit a higher consistency than deterministic ones. Moreover, 

we witness a parallel behavior in that relaxing convexity/concavity assumption generates a lower bound for 

both sub-technologies. Exploring the predictive power of nonconvex estimators on unseen data yields more 

precise out-of-sample predictions in both stochastic and deterministic settings. 
† Institute of Manufacturing Information & System, National Cheng Kung University, Taiwan. 

halehh.del@gmail.com. 
* Corresponding author: Univ. Lille, CNRS, IESEG School of Management, UMR 9221 - LEM - 

Lille Économie Management, Lille F-59000, France. k.kerstens@ieseg.fr. 
à Department of Economics, University of Turku, Turku, Finland. timo.kuosmanen@utu.fi.  
‡ IESEG School of Management, CNRS, UMR 9221 - LEM - Lille Économie Management, Lille F-

59000, France. z.shen@ieseg.fr. 

Keywords: By-production technology; StoNED, Convex technology; Nonconvex technology. 

OR/MS subject classification:  Economics; Environment; Technology 

mailto:k.kerstens@ieseg.fr
mailto:.shen@ieseg.fr


1. Introduction  

Following the review paper of Dakpo et al. (2016) pollution-generating techniques in 

nonparametric models are classified into four categories. The first approach is to treat the undesirable output 

as inputs in environmental efficiency measurement (Hailu & Veeman, 2001; Considine & Larson, 2006; 

Mahlberg and Sahoo, 2011). A second approach is based on data transformation (Scheel, 2001): it 

transforms an undesirable output into a desirable output by applying a reverse function. The third approach 

considers pollution as an output under the weak disposability (WD) assumption, which describes the 

situation where outputs are linked to each other, i.e., reducing the level of undesirable outputs inevitably 

requires decreasing the number of desirable outputs proportionally. However, Kuosmanen (2005) and 

Kuosmanen and Podinovski (2009) argue that a single abatement factor (Färe et al., 1985) is a limited 

assumption as firms face different abatement costs. These authors indicate how a WD assumption can be 

modeled using different non-uniform abatement factors across firms. This seems currently the most popular 

approach. The fourth category for incorporating undesirable output into nonparametric models consists of 

decomposing production technology into two sub-technologies: a desirable production technology, and a 

residual generation technology. Some criticize that a single feature of production technology fails to 

represent such a relationship properly, as there is a positive correlation between pollution-generating and 

pollution-causing inputs (Førsund, 2009). Hence, Murty et al. (2012) propose a better by-production (BP) 

approach which has been further elaborated by Baležentis et al. (2021) in productivity estimation. 

Stochastic nonparametric envelopment of data (StoNED) as a unified framework retains both 

characteristics of deterministic and stochastic frontiers (Kuosmanen & Johnson, 2010; Kuosmanen & 

Kortelainen, 2012; Kuosmanen & Johnson, 2017). Andor & Hesse (2014) thoroughly compare StoNED 

against the other classic techniques and conclude that the model performs remarkably well under various 

Monte Carlo simulations, mainly when the data is subject to substantial noise. The StoNED method has 

gained popularity in estimating production technologies due to its solid statistical foundation (Kuosmanen, 

2012; Dai & Kuosmanen, 2014; Saastamoinen & Kuosmanen, 2014). However, in most empirical studies, 

such as manufacturing processes, some undesirable outputs simultaneously accompany the generation of 

the desirable outputs. Mekaroonreung and Johnson (2012) gauge the technical efficiencies of U.S. coal 

power plants and shadow prices of SO2 and NOx through WD StoNED. They conclude that such a 

framework results in more robust efficiency measurements and consistent market prices.  

The convexity (concavity) assumption is a frequently-used axiom in estimating production frontiers 

in various applications. Afriat (1972) is the pioneer to propose a production function relaxing the convexity 

assumption. Later on, Deprins et al. (1984) and Tulkens (1993) develop the mathematical modeling of the 

nonconvex Free Disposal Hull (FDH). Some argue that the convexity assumption is troublesome (Grifell-
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Tatjé & Kerstens, 2008, Cesaroni et al., 2017) under certain circumstances: environmental externalities, 

time indivisibilities (Hackman, 2008), increasing return to scale, and ratio characteristics of some features 

(Emrouznejad & Amin, 2009). For instance, considering a convex production frontier for the nonconvex 

electricity generation problem may likely generate doubtful results with less accuracy due to its nonlinear 

or mixed integer mathematical modeling nature (Grifell-Tatjé & Kerstens, 2008). Hence, under such 

circumstances, relaxing the convexity assumption may be more convincing. 

China, the world's leading carbon emitter, accounts for about 27% of global emissions in 2012. The 

commitment towards curbing greenhouse gas (GHG) urged authorities to bring these contaminants to a 

pinnacle before 2030 due to their detrimental effects on the ecosystem. Since coal, the most carbon-

intensive fossil fuel energy resource, remains the most favorable source in China even for the nearest future, 

the Chinese government urgently needs to enhance abatement technologies. However, achieving this 

milestone depends on balancing environmental goals with economic growth. Some earlier studies 

frequently refer to this as the economics-ecology pair of sustainability (Engel & Engel, 1990; Klaassen & 

Opschoor, 1991; Common & Perrings, 1992; Faucheux & O'Connor, 1998). In China, as in other industrial 

nations, energy demand is mainly attributed to the energy sector. Environmental regulations should be 

announced nationwide to mitigate this energy overconsumption. 

The classical BP approach (Murty et al., 2012) utilizes deterministic nonparametric and parametric 

modeling, each offering distinct advantages and disadvantages. However, it fails to diagnose how effective 

the shape constraint assumptions can be in the estimation. Although the nonparametric model of BP has 

been rather widely used, parametric and semi-parametric models have not been thoroughly explored to our 

knowledge. While Murty et al. (2012) mention theoretical parametric approaches, Tsagris & Tzouvelekas 

(2022) is the only article we are aware of estimating an empirical parametric BP model. However, 

parameterized BP models, due to their complexity, may yield biased results, particularly in cases involving 

multiple frontiers. Hence, the semi-parametric StoNED model proposed herein represents an innovative 

approach, addressing the limitations of parametric estimation methods in multi-frontier models. This paper 

aims to fill this gap and contribute to the exploration of these to our knowledge unexplored semi-parametric 

models.  

The first significant methodological contribution of this study is to enhance the discriminatory 

power of the BP technology through the application of a StoNED framework. In particular, our investigation 

focuses on the impact of shape constraints in this estimation. While Keshvari and Kuosmanen (2013) 

introduce a nonconvex StoNED method specifically designed to separate inefficiency scores from noise, 

we go beyond this by directly comparing and testing convex versus nonconvex specifications. This 

comparative analysis provides valuable insights into the effectiveness and relevance of different approaches 
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within the StoNED framework. A second contribution is to determine which alternative approach has the 

best predictive performance on new data. In the context of convexity versus nonconvexity, if one of the 

models consistently outperforms the other in terms of out-of-sample predictive accuracy, it provides a 

compelling argument in favor of the superior model. The employment of contemporary machine learning 

methodologies helps to corroborate the credibility of the recommended approach. 

The remainder of the current paper unfolds as follows. Section 2 describes the BP technology while 

considering the convexity assumption. In section 3, we develop the BP technology under the relaxation of 

the convexity assumption. In section 4, we investigate how accurate these alternative models are at 

predicting future outcomes based on historical data. By conducting an empirical case study of the Chinese 

energy sector in section 5, we monitor the impact of the convexity assumption in frontier benchmarking. 

Finally, in conclusion, we offer some final thoughts and some perspectives on future studies. 

 

2. By-production Technology with Convexity 

It is worth noting that the BP technology, distinguished for its advancements over other pollution-

generating technology specifications, is derived from material balance principles (MBP). Indeed, as 

emphasized by Førsund (2009), this approach is regarded as a “better approach than operating with output 

couplings and factor bands”. Table 1 elaborates on the different generations of production frontier 

technologies1 (excluding parametric methods) and decent BP estimations until now. This study investigates 

the convex and nonconvex semi-nonparametric BP as indicated by columns 3 and 4 of Table 1. 

Table 1: Overview of production frontier methodologies 

 Production technology By-production technology 

Convex Nonconvex Convex Nonconvex 

Nonparametric 

Afriat (1972) 

Banker et al. 

(1984) 

Afriat (1972) 

Deprins et al. 

(1984) 

Tulkens (1993) 

Murty et al. 

(2012) 

Yuan et al. (2021) 

Ang et al. (2023) 

Yuan et al. 

(2021) 

Ang et al. 

(2023) 

 
1 In a parametric framework, the specification of shape constraint is not considered. 
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Semi- 

nonparametric 

Kuosmanen & 

Kortelainen 

(2012) 

Keshvari & 

Kuosmanen (2013) 
This paper This paper 

 

Suppose there are I firms indexed by 𝑖𝑖, each firm is consisting of 𝑀𝑀 inputs, 𝑆𝑆 desirable outputs, and 

𝐽𝐽  undesirable outputs. We denote the input and the desirable and undesirable outputs vectors by 𝑥𝑥 ∈

ℝ+
M,𝑦𝑦 ∈ ℝ+

S  and 𝑏𝑏 ∈ ℝ+
J , respectively. Following Murty et al (2012), the input vector is divided into two 

subcomponents, 𝑥𝑥𝑖𝑖 = (𝑥𝑥𝑖𝑖𝑁𝑁 ,𝑥𝑥𝑖𝑖
𝑝𝑝) where  𝑥𝑥𝑖𝑖𝑁𝑁  denote 𝑚𝑚1  non-polluting inputs, and m2  denote the polluting 

inputs.  

In practice, the BP technology is defined as an intersection of two sub-technologies: the economic 

technology (𝑇𝑇1 ) , and the environmental technology (𝑇𝑇2) as:  

𝑇𝑇𝐵𝐵𝑝𝑝 = 𝑇𝑇1 ∩ 𝑇𝑇2                           (1) 

Murty and Russell (2022) argue that both sub-technologies can be handled independently and in particular 

that no explicit intersection must be taken since the computation of efficiency measures with respect to both 

sub-technologies implies a separable multi-objective programming problem. This implies that the error 

terms in both sub-technologies can be assumed to be independent of one another. We now turn to the 

discussion of the estimation of both sub-technologies. 

 

2.1. Estimating the economic production technology  

To define a sub-technology 𝑇𝑇1 as a convex estimator of production technology considering variable 

returns to scale (VRS), let λ∈ ℝ+
𝑖𝑖  be the intensity variables used for convex combination of inputs and 

desirable outputs: 

𝑇𝑇1 = {(𝑥𝑥,𝑦𝑦) ∈ ℝ+
M+𝑆𝑆| 𝜆𝜆𝜆𝜆 ≤ 𝑥𝑥, 𝜆𝜆𝜆𝜆 ≥ 𝑦𝑦 & 𝜆𝜆 = 1 for 𝜆𝜆 ∈ ℝ+

𝑖𝑖 }.              (2) 

Assume that 𝑇𝑇1 satisfies the following axioms:  

(2.a) 𝑇𝑇1 is convex. 

(2.b) Free disposability of inputs: 

If  (x,𝑦𝑦)  ∈ 𝑇𝑇1 & �̅�𝑥 ≥ 𝑥𝑥 →  (�̅�𝑥,𝑦𝑦) ∈ 𝑇𝑇1 

(2.c) Free disposability of desirable outputs: 
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If (x,𝑦𝑦)  ∈ 𝑇𝑇1 & 𝑦𝑦� ≤ 𝑦𝑦 →  (𝑥𝑥,𝑦𝑦�)  ∈ 𝑇𝑇1. 

 

Economical production frontier estimation  

We restrict our estimation to the single-desirable output case since the production function f offers 

an accurate representation of the technology frontier. For situations involving multiple desirable outputs, 

the directional distance function (DDF) can be employed (for more details, see Kuosmanen and Johnson, 

2017). Assume the production function f belongs to a class of infinite continuous, monotonic increasing 

and, globally convex functions, denote this class as ℱ, which includes non-differentiable functions as: 𝑦𝑦𝑖𝑖 =

𝑓𝑓(𝑥𝑥𝑖𝑖) + 𝜀𝜀𝑖𝑖,∀𝑖𝑖 = 1, … , 𝐼𝐼 and 𝜀𝜀𝑖𝑖 denotes a composite error term. Following the argument with regard to SFA 

(Aigner et al., 1977), 𝜀𝜀𝑖𝑖 equals to the summation of an inefficiency (𝑢𝑢𝑖𝑖1) and a noise term (𝑣𝑣𝑖𝑖1) resulting in2:  

 𝑦𝑦𝑖𝑖 =  𝑓𝑓 (𝑥𝑥𝑖𝑖) + 𝜀𝜀𝑖𝑖 =  𝑓𝑓 (𝑥𝑥𝑖𝑖) + 𝑣𝑣1𝑖𝑖 − 𝑢𝑢1𝑖𝑖    𝑖𝑖 = 1, … , 𝐼𝐼      (3) 

where random variables 𝑢𝑢1𝑖𝑖  and noise 𝑣𝑣1𝑖𝑖  follow half-normal ( 𝑢𝑢1𝑖𝑖~𝑁𝑁+(𝜇𝜇,𝜎𝜎𝑢𝑢1
2 ) ) and normal 

(𝑣𝑣1𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣1
2 )) probability distributions, respectively. Note that the composite disturbance term in (3) 

violates the Gauss–Markov properties that 𝐸𝐸(𝜀𝜀𝑖𝑖) = 𝐸𝐸�−𝑢𝑢𝑖𝑖1� = −𝜇𝜇1 < 0, where 𝜇𝜇1is the expected technical 

inefficiency and is constant due to the homoscedasticity of 𝑢𝑢1𝑖𝑖. Therefore, the additive model is modified 

as  𝑦𝑦𝑖𝑖 = ( 𝑓𝑓 (𝑥𝑥𝑖𝑖) − 𝜇𝜇1) + (𝜇𝜇1 + 𝜀𝜀𝑖𝑖) = 𝑔𝑔(𝑥𝑥𝑖𝑖) + (𝜇𝜇1 − 𝑢𝑢1𝑖𝑖 + 𝑣𝑣1𝑖𝑖 ) and 𝐸𝐸(𝜇𝜇1 − 𝑢𝑢1𝑖𝑖 + 𝑣𝑣1𝑖𝑖) = 0,  where 𝑔𝑔 

belongs to a class of finite monotonic increasing and concave functions 𝒢𝒢 such that 𝒢𝒢 ⊆ ℱ. Following 

Kuosmanen and Johnson, 2010; Kuosmanen and Kortelainen, 2012, the StoNED estimator consists of 

multiple (in particular, 4) steps.  

The CNLS estimator (Step 1) to estimate conditional mean output is calculated by the following quadratic 

programming (QP) problem as3: 

𝑚𝑚𝑖𝑖𝑚𝑚 ∑ (𝜀𝜀𝑖𝑖)2𝐼𝐼
𝑖𝑖=1                                                                                              

s.t.   𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖′𝑥𝑥𝑖𝑖 + 𝜀𝜀𝑖𝑖                  ∀𝑖𝑖 = 1, . . . , 𝐼𝐼                                   (4) 

       𝛼𝛼ℎ + 𝛽𝛽ℎ′ 𝑥𝑥ℎ ≤ 𝛼𝛼𝑖𝑖 +𝛽𝛽𝑖𝑖′𝑥𝑥𝑖𝑖          ∀𝑖𝑖,ℎ = 1, . . . , 𝐼𝐼  

          𝜷𝜷 ≥ 0             ∀𝑖𝑖. 

 
2 Superscript 1 refers to 𝑇𝑇1. 

3 Note that the composite error term in (4) is the modified version of composite error term in (3) 
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This objective function in (4) calculates the sum of squared disturbance terms. The first constraint denotes 

the distance to the frontier as a linear function of inputs and outputs. The second constraint ensures 

concavity among the hyperplanes in all pairs of observations, where 𝛼𝛼𝑖𝑖 and  𝛽𝛽𝑖𝑖 diagnose intercept and firm-

specific coefficients, respectively (Afriat, 1972). Likewise to the nonparametric deterministic frontier 

literature, these coefficients are not necessarily unique. The last constraint states that the estimated frontier 

is monotonic. Note that by adding the sign constraint (𝜀𝜀𝑖𝑖 ≤ 0) in (4), the so-called sign constrained CNLS 

model is equivalent to a deterministic setting (Kuosmanen & Johnson, 2010, Theorem 3.1).  

There are two common parametric approaches to estimate the variance parameters: (i) method of 

moments (MM) (see Aigner, et al.1977) and (ii) pseudo-likelihood estimation approach (PSL) (see Fan et 

al., 1996). In this study, the former method is applied. 

The MM (Step 2) estimation utilizes CNLS residuals about the mean (𝜀𝜀𝐶𝐶𝑁𝑁𝐶𝐶𝑆𝑆), denoted here as 

𝜀𝜀𝑖𝑖𝐶𝐶𝑁𝑁𝐶𝐶𝑆𝑆and as the residuals sum to zero, i.e., ∑ 𝜀𝜀�̂�𝑖𝐶𝐶𝑁𝑁𝐶𝐶𝑆𝑆𝑛𝑛
𝑖𝑖=1 = 0 , condition in order to estimate σ�𝑢𝑢1 and σ�𝑣𝑣1 by 

central moments will be facilitated (Kuosmanen et al. 2014). The second and third central moments for the 

estimated residuals are equal to 𝑀𝑀2� = ∑ (𝜀𝜀𝑖𝑖 − 𝜀𝜀𝐶𝐶𝑁𝑁𝐶𝐶𝑆𝑆)2 × 1
𝑛𝑛

𝑛𝑛
𝑖𝑖=1   and 𝑀𝑀3� = ∑ (𝜀𝜀𝑖𝑖 − 𝜀𝜀𝐶𝐶𝑁𝑁𝐶𝐶𝑆𝑆)3 × 1

𝑛𝑛
𝑛𝑛
𝑖𝑖=1 , which 

denote the sample variance and the skewness indicator of the density function, respectively. The derived 

theoretical equivalent based on the probability density function of residuals are (see Aigner et al. 1977): 

𝑀𝑀2� = �𝜋𝜋−2
𝜋𝜋
� 𝜎𝜎𝑢𝑢1

2 + 𝜎𝜎𝑣𝑣1
2                (5) 

                                                                  𝑀𝑀3� = ��2
𝜋𝜋
� [1 − 4

𝜋𝜋
]𝜎𝜎𝑢𝑢1

3             (6) 

By adding the estimated moments to the above equations, the (unconditional) estimators of σ�𝑢𝑢1  and σ�𝑣𝑣1  are 

obtained by the following equations: 

𝜎𝜎�𝑢𝑢1 = �
𝑀𝑀3�

��2
𝜋𝜋�[1−4𝜋𝜋]

3                        (7)  

𝜎𝜎�𝑣𝑣1 = �𝑀𝑀2� − �𝜋𝜋−2
𝜋𝜋
� 𝜎𝜎𝑢𝑢1

2                (8) 

The StoNED frontier (Step 3) is obtained by simply shifting the CNLS estimator upwards as: 𝜀𝜀̂StoNED= 𝜀𝜀𝑖𝑖 −

�̂�𝜇1 , where �̂�𝜇1 = σ�𝑢𝑢1�
2
𝜋𝜋
                     (9). 
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To calculate the efficiency score for each firm (Step 4), a conditional expected value formula (see Jondrow 

et al. (1982)) is applied, which is equal to:  

𝐸𝐸(𝑢𝑢1𝑖𝑖|𝜀𝜀𝑖𝑖) = 𝜇𝜇∗ + 𝜎𝜎∗𝝓𝝓(−𝜇𝜇∗𝑖𝑖/𝜎𝜎∗)/[1−𝚽𝚽(−𝜇𝜇∗𝑖𝑖/𝜎𝜎∗)]                         (10) 

where 𝝓𝝓  and 𝚽𝚽  represent the density and cumulative distribution function of the standard normal 

distribution 𝑁𝑁(0,1),  respectively, 𝜇𝜇∗𝑖𝑖 = −𝜀𝜀𝑖𝑖𝜎𝜎𝑢𝑢1
2 (𝜎𝜎𝑢𝑢1

2 + 𝜎𝜎𝑣𝑣1
2 )�  , and 𝜎𝜎∗ = 𝜎𝜎𝑢𝑢1𝜎𝜎𝑣𝑣1 �𝜎𝜎𝑢𝑢1

2 + 𝜎𝜎𝑣𝑣1
2� . Following 

Farrell's definition (1957), the economic efficiency score for the ith firm is obtained as: 

𝑇𝑇𝐸𝐸𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 = 1 − 𝐸𝐸�𝑢𝑢1𝑖𝑖�𝜀𝜀𝑖𝑖�
𝑦𝑦𝑖𝑖

                              (11) 

 

2.2. Estimating the environmental or residual-generating technology  

Define sub-technology T2 as a convex estimator of the costly disposability of polluting inputs and 

pollution generating outputs under a VRS assumption as follows:  

𝑇𝑇2 = {(𝑥𝑥𝑃𝑃,𝑏𝑏) ∈ ℝ+
𝑀𝑀2+𝐽𝐽| 𝜂𝜂𝜆𝜆𝑃𝑃 ≥ 𝑥𝑥𝑝𝑝, 𝜂𝜂𝜂𝜂 ≤ 𝑏𝑏 & 𝜂𝜂 = 1 for 𝜂𝜂 ∈ ℝ+

𝑖𝑖 }             (12) 

Assume that 𝑇𝑇2 satisfies following assumptions:  

(12.a) 𝑇𝑇2 is convex. 

(12.b) Costly disposability of polluting inputs: 

        If (𝑥𝑥𝑃𝑃 , 𝑏𝑏) ∈ 𝑇𝑇2 & �̅�𝑥𝑃𝑃 ≤ 𝑥𝑥𝑃𝑃 →  (�̅�𝑥𝑃𝑃 , 𝑏𝑏) ∈ 𝑇𝑇2   

(12.c) Costly disposability of undesirable outputs: 

         If (𝑥𝑥𝑃𝑃 , 𝑏𝑏) ∈ 𝑇𝑇2 & 𝑏𝑏� ≥ 𝑏𝑏 →  (𝑥𝑥𝑃𝑃 ,𝑏𝑏�) ∈ 𝑇𝑇2. 

 

Environmental or residual frontier estimation 

We restrict ourselves to the case of a single undesirable output (e.g., CO2). In the case of multiple 

undesirable outputs, one can use a DDF (see Kuosmanen and Johnson, 2017). Let 𝓏𝓏(𝒙𝒙𝑃𝑃) denote the 

minimum undesirable output generated through the polluting inputs (𝒙𝒙𝑃𝑃). Assume that 𝓩𝓩 is a class of 

infinite continuous, monotonic increasing and globally convex functions, which includes non-differentiable 
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functions, as: 𝑏𝑏𝑖𝑖 = 𝓏𝓏�𝑥𝑥𝑖𝑖𝑃𝑃� + 𝜀𝜀𝚤𝚤� ,∀𝑖𝑖 = 1, … , 𝐼𝐼 and 𝜀𝜀𝚤𝚤� denotes a composite error term. Similarly, 𝜀𝜀𝚤𝚤�  equals to 

the summation of an inefficiency (𝑢𝑢2𝑖𝑖) and a noise term (𝑣𝑣2𝑖𝑖) that results in4:  

 𝑏𝑏𝑖𝑖 = 𝓏𝓏�𝑥𝑥𝑖𝑖𝑃𝑃� + 𝜀𝜀𝚤𝚤� = 𝓏𝓏�𝑥𝑥𝑖𝑖𝑃𝑃� + 𝑣𝑣2𝑖𝑖 − 𝑢𝑢2𝑖𝑖    𝑖𝑖 = 1, … , 𝐼𝐼      (13) 

where 𝑢𝑢2𝑖𝑖  and noise 𝑣𝑣2𝑖𝑖 are random variables following a half-normal (𝑢𝑢2𝑖𝑖~𝑁𝑁+(𝜇𝜇,𝜎𝜎𝑢𝑢2
2 )) and a normal 

(𝑣𝑣2𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑣𝑣2
2 )) probability distribution, respectively. Note that the composite disturbance term in (13) 

violates the Gauss–Markov properties that 𝐸𝐸(𝜀𝜀𝚤𝚤�) = 𝐸𝐸(−𝑢𝑢2𝑖𝑖) = −𝜇𝜇2 < 0, where the constant  𝜇𝜇2  refers to 

expected technical inefficiency. Therefore, the additive model is modified as  𝑏𝑏𝑖𝑖 = 𝓏𝓏(𝑥𝑥𝑖𝑖𝑃𝑃 − 𝜇𝜇2) + (𝜇𝜇2 +

𝜀𝜀𝚤𝚤�) = 𝑘𝑘(𝑥𝑥𝑖𝑖𝑃𝑃) + (𝜇𝜇2 − 𝑢𝑢2𝑖𝑖 + 𝑣𝑣2𝑖𝑖)  and 𝐸𝐸(𝜇𝜇2 − 𝑢𝑢2𝑖𝑖 + 𝑣𝑣2𝑖𝑖) = 0  where 𝑘𝑘  belongs to a class of finite 

monotonic increasing and convex functions 𝓚𝓚 such that 𝓚𝓚 ⊆ 𝒵𝒵. 

Before going through the StoNED framework, it is imperative to clarify that the residual-sign 

constrained CNLS model is equivalent to the deterministic nonparametric frontier production function that 

incorporates costly disposability. According to (12), the output-oriented costly disposability deterministic 

nonparametric frontier estimator under VRS is formulated as:  

𝑚𝑚𝑖𝑖𝑚𝑚 𝜃𝜃𝑒𝑒   

s.t.   ∑ 𝜂𝜂𝑖𝑖𝐼𝐼
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃 ≥ 𝑥𝑥𝑒𝑒𝑖𝑖𝑃𝑃     ∀𝑚𝑚 = 1, . . . ,𝑀𝑀2 

          ∑ 𝜂𝜂𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖𝐼𝐼
𝑖𝑖=1 ≤ 𝜃𝜃𝑒𝑒𝑏𝑏𝑒𝑒𝑖𝑖         ∀𝑗𝑗 = 1, . . . , 𝐽𝐽                                  (14) 

∑ 𝜂𝜂𝑖𝑖𝐼𝐼
𝑖𝑖=1 = 1                   ∀𝑖𝑖 = 1, . . . , 𝐼𝐼  

where 𝜃𝜃𝑒𝑒 measures the environmental efficiency for a specific firm o. 

Proposition 1. The output-oriented costly disposability deterministic nonparametric frontier model (14) is 

equivalent with the residual sign-constrained CNLS production function (15): 

 𝑚𝑚𝑖𝑖𝑚𝑚 ∑ (𝜀𝜀𝚤𝚤�)2𝐼𝐼
𝑖𝑖=1  

s.t.             𝜀𝜀𝚤𝚤� = 𝑏𝑏𝑖𝑖 − (𝛼𝛼𝑖𝑖 +𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝)  

 𝛼𝛼ℎ + 𝜔𝜔ℎ
′ 𝑥𝑥ℎ

𝑝𝑝 ≥ 𝛼𝛼𝑖𝑖 + 𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝          ∀𝑖𝑖,ℎ = 1, . . . , 𝐼𝐼                      (15) 

                     𝜀𝜀𝚤𝚤� ≥ 0    

 
4 The superscript denotes the corresponding technology (𝑇𝑇2). 
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                   𝛚𝛚 ≥ 0.  

Proof: Appendix A. 

The objective function in (15) is designed to minimize the sum of squared error terms. However, 

the sign of the error term (𝜀𝜀𝚤𝚤�) is inherently non-negative, which contradicts the sign of the error term in the 

production case (𝜀𝜀𝑖𝑖 ). The second constraint is instrumental in imbuing hyperplanes with an inherent 

convexity structure. Each hyperplane is distinguishably defined by its coefficients (α,ω) and 𝛚𝛚 ≥ 0 serving 

to preserve the monotonicity of these hyperplanes. Proposition 1 can be established in a more general form 

when considering other returns to scale (NIRS, NDRS, CRS) by introducing an additional constraint on α. 

The stochastic nature of StoNED methods is a turning point for research in environmental 

economics since it allows obtaining more robust results compared to deterministic methods and it allows 

policymakers to enact more careful regulations. In Section 5, we delve into the empirical exploration of this 

approach. Now let us elaborate on the residual StoNED model. Likewise, the residual-StoNED estimator 

consists of multiple steps. In Step 1, the residual CNLS estimator serves as a gauge for the conditional 

mean of the undesirable output, denoted as 𝐸𝐸(𝑏𝑏𝑖𝑖|𝑥𝑥𝑖𝑖𝑃𝑃): 

 𝑚𝑚𝑖𝑖𝑚𝑚 ∑ (𝜀𝜀𝚤𝚤�)2𝐼𝐼
𝑖𝑖=1  

s.t.             𝜀𝜀𝚤𝚤� = 𝑏𝑏𝑖𝑖 − (𝛼𝛼𝑖𝑖 +𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝)  

   𝛼𝛼ℎ +𝜔𝜔ℎ
′ 𝑥𝑥ℎ

𝑝𝑝 ≥ 𝛼𝛼𝑖𝑖 +𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝          ∀𝑖𝑖,ℎ = 1, . . . , 𝐼𝐼              (16) 

                     𝛚𝛚 ≥ 0 .  

Making a comparison between (15) and (16) it is clear that the residual sign-constraint (𝜀𝜀𝚤𝚤� ≥ 0) is the only 

dissimilarity. To estimate the variance parameters (𝜎𝜎�𝑢𝑢2,𝜎𝜎�𝑣𝑣2) in Step 2, the same MM approach is conducted 

that results in:  

𝜎𝜎�𝑢𝑢2 = �
𝑀𝑀3�

��2
𝜋𝜋�[1−4𝜋𝜋]

3              (17) 

         𝜎𝜎�𝑣𝑣2 = �𝑀𝑀2� − �𝜋𝜋−2
𝜋𝜋
� 𝜎𝜎𝑢𝑢2

2       (18) 

The sign of the third moment 𝑀𝑀3�  that measures the skewness of the distribution is positive. Step 3 of this 

estimation, namely estimating the residual frontier, is as follows:  

�̂�𝑍𝑆𝑆𝑆𝑆𝑒𝑒𝑁𝑁𝐸𝐸𝑆𝑆 = 𝑘𝑘�(𝑥𝑥) − �̂�𝜇2            (19) 
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Or    𝜀𝜀𝚤𝚤� = 𝜀𝜀𝚤𝚤� + �̂�𝜇2            

The determination of the firm-specific environmental inefficiency score (Step 4) is derived through the 

following formulation (as established by Jondrow et al. (1982)): 

𝐸𝐸(𝑢𝑢2𝑖𝑖|𝜀𝜀𝚤𝚤�) = 𝜇𝜇∗𝑖𝑖 + 𝜎𝜎∗𝝓𝝓(−𝜇𝜇∗𝑖𝑖/𝜎𝜎∗)/[1 −𝚽𝚽(−𝜇𝜇∗𝑖𝑖/𝜎𝜎∗)]                         (20) 

where 𝝓𝝓  and 𝚽𝚽  represent the density and cumulative distribution function of the standard normal 

distribution  𝑁𝑁(0,1), respectively, and where 𝜇𝜇∗𝑖𝑖 = 𝜀𝜀𝑖𝑖𝜎𝜎𝑢𝑢2
2 (𝜎𝜎𝑢𝑢2

2 + 𝜎𝜎𝑣𝑣2
2 )�  , and  𝜎𝜎∗ = 𝜎𝜎𝑢𝑢2𝜎𝜎𝑣𝑣2 �𝜎𝜎𝑢𝑢2

2 + 𝜎𝜎𝑣𝑣2
2� , 

respectively. Following Farrell's definition (1957), the environmental efficiency score for the ith firm is 

obtained as follows: 

𝑇𝑇𝐸𝐸𝑖𝑖𝑒𝑒𝑛𝑛𝑣𝑣 = 1 + 𝐸𝐸�𝑢𝑢2𝑖𝑖�𝜀𝜀𝚤𝚤��
𝑏𝑏𝑖𝑖

                             (21) 

 

3. By-production Technology without Convexity 

This section exclusively focuses on the presentation of BP technology under minimal assumptions, 

namely, free disposability (𝑇𝑇1) and costly disposability (𝑇𝑇2). In the deterministic setting, the nonconvex 

nonparametric frontier is denoted as the FDH (see Deprins et al.,1984; Tulkens, 1993). Later, Keshvari and 

Kuosmanen (2013) develop the nonconvex version of the StoNED model (Kuosmanen and Kortelainen, 

2012). In statistical inference, isotonic regression fits a monotonic curve based on specific ordering 

strategies. Isotonic nonparametric least squares (INLS) derives from the seminal work by Ayer et al. (1955) 

and Brunk (1955, 1958). Both FDH and INLS are benchmarking tools to estimate stepwise production 

functions. However, the latter identifies other sources of error5, namely, noise apart from inefficiency. In 

this section, we extend the nonconvex StoNED to estimate the BP technology. For the sake of simplicity, 

the same notation as considered in Section 2 is applied.  

 

3.1. Estimating the economic production technology   

A nonconvex estimator of sub-technology 𝑇𝑇1  satisfies free disposability of inputs and desirable 

outputs (as defined in assumptions (2.b) and (2.c)) under VRS as:  

 
5 Omitted factors, random errors and data processing error. 
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𝑇𝑇1 = {(𝑥𝑥,𝑦𝑦) ∈ ℝ+
𝑖𝑖1+𝑖𝑖2+𝑠𝑠| 𝜆𝜆𝜆𝜆 ≤ 𝑥𝑥, 𝜆𝜆𝜆𝜆 ≥ 𝑦𝑦 , 1𝜆𝜆 = 1 & 𝜆𝜆 = {0,1} for 𝜆𝜆 ∈ ℝ+

𝑖𝑖 }.                        (22) 

where λ∈ ℝ+
𝑖𝑖  be the intensity variables used for nonconvex combination of inputs and desirable outputs.  

 

Economic production frontier estimation 

Let us assume that 𝑓𝑓 belongs to a class of infinite number of isotonic functions ℱ transforming 

inputs X= {𝑥𝑥 ∈ ℝ+
𝑖𝑖1+𝑖𝑖2} to desirable outputs {𝑦𝑦 ∈ ℝ+} that are isotonic with respect to a partial order if  

∀ 𝑖𝑖,ℎ ∈ 𝜆𝜆, 𝑥𝑥𝑖𝑖 ≼ 𝑥𝑥ℎ  results in 𝑓𝑓(𝑥𝑥𝑖𝑖) ≤ 𝑓𝑓(𝑥𝑥ℎ):  𝑦𝑦𝑖𝑖 =  𝑓𝑓 (𝑥𝑥𝑖𝑖) + 𝜀𝜀𝑖𝑖 =  𝑓𝑓 (𝑥𝑥𝑖𝑖) + 𝑣𝑣1𝑖𝑖 − 𝑢𝑢1𝑖𝑖 ;   𝑖𝑖 = 1, … , 𝐼𝐼 . The 

partial order on X is a relation that is reflexive (𝑥𝑥𝑖𝑖 ≼ 𝑥𝑥𝑖𝑖), anti-symmetric (𝑥𝑥𝑖𝑖 ≼ 𝑥𝑥ℎ  then 𝑥𝑥ℎ  ⋠ 𝑥𝑥𝑖𝑖 ; except if 

 𝑥𝑥𝑖𝑖 = 𝑥𝑥ℎ ), and transitive ( ∀ 𝑖𝑖,ℎ, 𝑞𝑞 ∈ 𝜆𝜆, 𝑥𝑥𝑖𝑖 ≼ 𝑥𝑥ℎ ,  𝑥𝑥ℎ ≼ 𝑥𝑥𝑞𝑞  then 𝑥𝑥𝑖𝑖 ≼ 𝑥𝑥𝑞𝑞 ). Similarly, parametric 

assumptions of half-normal inefficiency (𝑢𝑢1𝑖𝑖) and normal noise (𝑣𝑣1𝑖𝑖) hold. As the composite disturbance 

term violates the Gauss–Markov properties that 𝐸𝐸(𝜀𝜀𝑖𝑖) = 𝐸𝐸(−𝑢𝑢1𝑖𝑖) = −𝜇𝜇1 < 0,where 𝜇𝜇1 is the expected 

technical inefficiency. Noting that 𝜇𝜇1is constant due to the homoscedasticity of 𝑢𝑢1𝑖𝑖. Therefore, the additive 

model is modified as  𝑦𝑦𝑖𝑖 = ( 𝑓𝑓 (𝑥𝑥𝑖𝑖) − 𝜇𝜇1) + (𝜇𝜇1 + 𝜀𝜀𝑖𝑖) = 𝑔𝑔(𝑥𝑥𝑖𝑖) + (𝜇𝜇1 − 𝑢𝑢1𝑖𝑖 + 𝑣𝑣1𝑖𝑖)  and  𝐸𝐸(𝜇𝜇1 − 𝑢𝑢1𝑖𝑖 +

𝑣𝑣1𝑖𝑖) = 0, where 𝑔𝑔(𝑥𝑥𝑖𝑖) = 𝛼𝛼𝑖𝑖 belongs to a class of finite isotonic functions 𝒢𝒢, such that 𝒢𝒢 ⊂ ℱ. Following 

Keshvari and Kuosmanen, 2013, the nonconvex StoNED estimator consists of multiple (4) steps.  

The INLS estimator (Step 1) to estimate conditional mean output is calculated by the following 

mixed integer linear programming (MILP) problem:  

𝑚𝑚𝑖𝑖𝑚𝑚 ∑ (𝜀𝜀𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                                                              (23)  

s.t.   𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝜀𝜀𝑖𝑖           ∀𝑖𝑖 = 1, . . . , 𝑚𝑚    

       𝑝𝑝𝑖𝑖ℎ  𝛼𝛼ℎ ≤  𝑝𝑝𝑖𝑖ℎ  𝛼𝛼𝑖𝑖           ∀𝑖𝑖,ℎ  

where the intercepts 𝛼𝛼𝑖𝑖 assumed as dual variables of the associated VRS constraint in FDH are free. The 

preference matrix 𝑃𝑃 = [𝑝𝑝𝑖𝑖ℎ]𝑛𝑛×𝑛𝑛  transforms the partial ordering among elements into binary values. 

Precisely, such a transformation is equal to: If  ∀ 𝑖𝑖,ℎ ∈ 𝜆𝜆, 𝑥𝑥𝑖𝑖 ≼ 𝑥𝑥ℎ  then 𝑝𝑝𝑖𝑖ℎ = 1 , otherwise 𝑝𝑝𝑖𝑖ℎ = 0. 

Following the regression interpretation of DEA (Kuosmanen & Johnson, 2010), Keshvari and Kuosmanen 

(2013) represent the sign-constrained INLS is equivalent to FDH (Lemma 3). In the FDH setting, some 

enumerative algorithms have been proposed that guarantee a computational advantage, i.e., the fastest 

solution strategy. Kerstens and Van de Woestyne (2014) conduct a review paper that elaborates on these 

techniques. Unlike the deterministic setting, in INLS, we can witness substantially reduced computational 

complexities by imposing a pre-specifying dominance relationship by P.  
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Both these models CNLS and INLS maintain the monotonicity axiom. In CNLS, monotonicity is 

identified through the non-negativity of the coefficients. In comparison, such an assumption is represented 

through partial ordering among inputs in INLS framework. In Step 2, a similar framework is applied to 

evaluate 𝜎𝜎�𝑢𝑢1 and 𝜎𝜎�𝑣𝑣1  under the presumed probability distributions (see (7) and (8)). Given 𝜎𝜎�𝑢𝑢1   the 

nonconvex StoNED frontier (Step 3) is obtained by simply shifting the INLS step-function upward as 

follows: 𝑓𝑓NC-StoNED = 𝛼𝛼𝑖𝑖𝐼𝐼𝑁𝑁𝐶𝐶𝑆𝑆 + �̂�𝜇1   where �̂�𝜇1 = 𝜎𝜎�𝑢𝑢1�
2
𝜋𝜋

. To calculate firm-specific inefficiency estimates 

(Step 4), a similar framework as in (10) is applied.  

 

3.2. Estimating the environmental of residual-generating technology  

Assume the nonconvex estimator of sub-technology 𝑇𝑇2  satisfies costly disposability of pollution 

causing inputs and undesirable outputs (as defined in (12.b) and (12.c)) by considering VRS as:  

𝑇𝑇2 = {(𝑥𝑥𝑃𝑃,𝑏𝑏) ∈ ℝ+
𝑖𝑖2+𝐽𝐽| 𝜂𝜂𝜆𝜆𝑃𝑃 ≥ 𝑥𝑥𝑝𝑝, 𝜂𝜂𝜂𝜂 ≤ 𝑏𝑏, 𝜂𝜂 = 1& 𝜂𝜂 = {0,1}  for 𝜂𝜂 ∈ ℝ+

𝑖𝑖 }          (24) 

where 𝜂𝜂 ∈ ℝ+
𝑖𝑖  are the intensity variables used for the nonconvex combination of polluting inputs and 

undesirable outputs.  

 

Environmental or residual frontier estimation  

Let us assume that 𝓏𝓏 belongs to a class of an infinite number of isotonic functions 𝓩𝓩 transforming 

polluting inputs 𝜆𝜆𝑃𝑃 = {𝑥𝑥𝑃𝑃 ∈ ℝ+
𝑖𝑖2} into an undesirable output {𝑏𝑏 ∈ ℝ+} that are isotonic with respect to a 

partial order if ∀ 𝑖𝑖,ℎ ∈ 𝜆𝜆𝑃𝑃 , 𝑥𝑥𝑖𝑖𝑃𝑃 ≼ 𝑥𝑥ℎ𝑃𝑃  results in 𝓏𝓏(𝑥𝑥𝑖𝑖𝑃𝑃) ≤ 𝓏𝓏(𝑥𝑥ℎ𝑃𝑃) :  𝑏𝑏𝑖𝑖 =  𝓏𝓏�𝑥𝑥𝑖𝑖𝑃𝑃� + 𝜀𝜀𝚤𝚤� = 𝓏𝓏(𝑥𝑥𝑖𝑖) + 𝑣𝑣2𝑖𝑖 −

𝑢𝑢2𝑖𝑖, 𝑖𝑖 = 1, … , 𝐼𝐼.  The partial order on 𝜆𝜆𝑃𝑃  is consistent with the reflexivity and transitivity relations. 

Similarly, parametric assumptions of half-normal inefficiency (𝑢𝑢2𝑖𝑖) and normal noise (𝑣𝑣2𝑖𝑖) hold. Note that 

the composite disturbance term violates the Gauss–Markov properties in that 𝐸𝐸(𝜀𝜀𝚤𝚤�) = 𝐸𝐸(−𝑢𝑢2𝑖𝑖) = −𝜇𝜇2 <

0, where 𝜇𝜇2 is the expected technical inefficiency. Note that 𝜇𝜇2 is constant due to the homoscedasticity of 

𝑢𝑢𝑖𝑖2. Therefore, the additive model is modified as 𝑏𝑏𝑖𝑖 = ( 𝓏𝓏�𝑥𝑥𝑖𝑖𝑃𝑃� − 𝜇𝜇2) + (𝜇𝜇2 + 𝜀𝜀𝚤𝚤�) = 𝑘𝑘(𝑥𝑥𝑖𝑖) + (𝜇𝜇2 − 𝑢𝑢2𝑖𝑖 +

𝑣𝑣2𝑖𝑖) and  𝐸𝐸(𝜇𝜇2 − 𝑢𝑢2𝑖𝑖 + 𝑣𝑣2𝑖𝑖) = 0, where 𝑘𝑘(𝑥𝑥𝑖𝑖𝑃𝑃) = 𝛼𝛼𝑖𝑖 belongs to a class of finite isotonic functions 𝓚𝓚 such 

that 𝓚𝓚 ⊂ 𝓩𝓩. 

This part addresses the equivalence between the residual-sign constrained INLS and the costly 

disposability nonconvex production function. Based on (24), the output-oriented costly disposability 

nonconvex estimator under VRS is formulated in a MILP problem as:  
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𝑚𝑚𝑖𝑖𝑚𝑚 𝜃𝜃𝑒𝑒   

s.t.   ∑ 𝜂𝜂𝑖𝑖𝐼𝐼
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃 ≥ 𝑥𝑥𝑒𝑒𝑖𝑖𝑃𝑃     ∀𝑚𝑚 = 1, . . . ,𝑀𝑀 

          ∑ 𝜂𝜂𝑖𝑖𝑏𝑏𝑖𝑖𝑖𝑖𝐼𝐼
𝑖𝑖=1 ≤ 𝜃𝜃𝑒𝑒𝑏𝑏𝑒𝑒𝑖𝑖         ∀𝑗𝑗 = 1, . . . , 𝐽𝐽                                  (25) 

∑ 𝜂𝜂𝑖𝑖𝐼𝐼
𝑖𝑖=1 = 1                   ∀𝑖𝑖 = 1, . . . , 𝐼𝐼  

        𝜂𝜂𝑖𝑖 ∈ {0,1} 

where 𝜃𝜃𝑒𝑒 measures the environmental efficiency for a specific firm o. 

Proposition 2. Let 𝜃𝜃𝑒𝑒∗ be the distance of firm o relative to the residual nonconvex frontier, achieved via 

solving the MILP problem (25), and 𝜀𝜀�̃�𝑒∗, identifies the error term of firm o from the sign-constrained residual 

INLS problem (26). Problems (25) and (26) are equivalent, i.e., 𝜀𝜀�̃�𝑒∗ = 𝑏𝑏𝑒𝑒(𝜃𝜃𝑒𝑒∗ − 1). 

𝑚𝑚𝑖𝑖𝑚𝑚 ∑ (𝜀𝜀𝚤𝚤�)2𝐼𝐼
𝑖𝑖=1   

s.t.             𝜀𝜀𝚤𝚤� = 𝑏𝑏𝑖𝑖 − 𝛼𝛼𝑖𝑖  

 𝑝𝑝𝑖𝑖ℎ𝛼𝛼ℎ ≤ 𝑝𝑝𝑖𝑖ℎ𝛼𝛼𝑖𝑖                             ∀𝑖𝑖, ℎ = 1, . . . , 𝐼𝐼                      (26) 

                     𝜀𝜀𝚤𝚤� ≥ 0    

Proof: Appendix A. 

The residual nonconvex StoNED estimator consists of four steps. Consider in Step 1 the residual INLS 

estimator as a gauge conditional mean of undesirable output 𝐸𝐸(𝑏𝑏𝑖𝑖|𝑥𝑥𝑖𝑖𝑃𝑃): 

𝑚𝑚𝑖𝑖𝑚𝑚 ∑ (𝜀𝜀𝚤𝚤�)2𝐼𝐼
𝑖𝑖=1   

s.t.             𝜀𝜀𝚤𝚤� = 𝑏𝑏𝑖𝑖 − 𝛼𝛼𝑖𝑖                                                                      (27) 

 𝑝𝑝𝑖𝑖ℎ𝛼𝛼ℎ ≤ 𝑝𝑝𝑖𝑖ℎ𝛼𝛼𝑖𝑖                             ∀𝑖𝑖, ℎ = 1, . . . , 𝐼𝐼                       

where the residual sign-constraint (𝜀𝜀𝚤𝚤� ≥ 0) is the only difference between (26) and (27). To estimate 

variance parameters (𝜎𝜎�𝑢𝑢2,𝜎𝜎�𝑣𝑣2) in Step 2, we apply the equalities in (17) and (18). The residual nonconvex 

StoNED frontier is generated by shifting in Step 3 the residual INLS estimator downward by the expected 

value of the inefficiency term (�̂�𝜇2) where �̂�𝜇2 = σ�𝑢𝑢2�
2
𝜋𝜋
, that is: �̂�𝑍𝑁𝑁𝐶𝐶−𝑆𝑆𝑆𝑆𝑒𝑒𝑁𝑁𝐸𝐸𝑆𝑆 = 𝑘𝑘�(𝑥𝑥) − �̂�𝜇2. Analogously, the 

firm-specific environmental inefficiency is obtained by (20). Finally, in Step 4 the firm-specific 

environmental efficiency score is computed as (21).  
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4. By-production Efficiency and Predictive Ability 

Table 2 summarizes in detail the required steps towards BP estimation for both convex and nonconvex 

frameworks. This leads to a separate estimation of economic efficiency and environmental efficiency. 

Table 2: Summary of StoNED estimator for by-production efficiency 

Step 

Convex Nonconvex 

Economic 

production 

Residual 

generation 

Economic 

production 

Residual 

generation 

1. Estimating 

conditional mean 

CLNS 

estimator 

(4) 

Residual-CNLS 

estimator 

(16) 

INLS 

estimator 

(23) 

Residual-INLS 

estimator 

(27) 

2. Estimating the 

variance parameters 

𝜎𝜎�𝑢𝑢1, 𝜎𝜎�𝑣𝑣1 

(7) & (8) 

𝜎𝜎�𝑢𝑢2,𝜎𝜎�𝑣𝑣2 

(17) & (18) 

𝜎𝜎�𝑢𝑢1, 𝜎𝜎�𝑣𝑣1 

(7) & (8) 

𝜎𝜎�𝑢𝑢2, 𝜎𝜎�𝑣𝑣2 

(17) & (18) 

3. Shifting the 

estimator 

Upward 

(9) 

Downward 

(19) 

Upward 

(9) 

Downward 

(19) 

4. Estimating 

conditional expected 

value of inefficiency 

𝐸𝐸(𝑢𝑢1𝑖𝑖|𝜀𝜀𝑖𝑖) 

(10) 

𝐸𝐸(𝑢𝑢2𝑖𝑖|𝜀𝜀𝚤𝚤�) 

(20) 

𝐸𝐸(𝑢𝑢1𝑖𝑖|𝜀𝜀𝑖𝑖) 

(10) 

𝐸𝐸(𝑢𝑢2𝑖𝑖|𝜀𝜀𝚤𝚤�) 

(20) 

Efficiency measure 

Economic 

efficiency 

(11) 

Environmental 

efficiency 

(21) 

 

Economic 

efficiency 

11) 

Environmental 

efficiency 

(21) 

 

Murty et al. (2012) apply an equal weighting (EW) to economic and environmental efficiency. In 

particular, they define BP efficiency as an equal-weighted summation of economic efficiency based on 𝑇𝑇1 

and environmental efficiency score based on 𝑇𝑇2: 
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𝑇𝑇𝐸𝐸𝑖𝑖𝐵𝐵𝑃𝑃 = 1
2� (𝑇𝑇𝐸𝐸𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑇𝑇𝐸𝐸𝑖𝑖𝑒𝑒𝑛𝑛𝑣𝑣)                   (28) 

Although the EW strategy is a straightforward technique to solve a multi-objective optimization problem, 

it causes some disputes among those who mainly focus on the indices' transparency. Moreover, EW is prone 

to the risk of double weighting (as noted by Gan et al. (2017)). Since the BP technology has a stochastic 

underpinning, assigning a statistic-based weighting technique is perhaps more plausible than using pre-

specified weights (i.e., EW). However, this issue is beyond the scope of this study.  

To this point, this study focused on efficiency estimation and examining the robustness of BP 

measures under various configurations. Another critical aspect of this study is identifying the predictive 

power of alternative approaches in terms of out-of-sample performance. This necessitates leveraging 

machine learning techniques to identify patterns that optimize output and then apply those patterns to 

predict outcomes for new data, called model emulation. 

Neural networks (NN) are composed of interconnected neurons, where the output signal of one 

neuron serves as the input signal for another. Neurons that receive input solely from external sources are 

known as input neurons, while neurons that generate the network’s output signals are called output neurons. 

The remaining neurons, which process and transform information internally, are termed hidden neurons 

(see Haykin, 1998; Vaninsky, 2004). Neurons and the NN as a whole adapt their input-output behavior to 

the environment in line with the goal of the NN, i.e., approximating 𝑦𝑦� and 𝑏𝑏� in a training process. The 

activation function specified in hidden layers are Rectified Linear Units (ReLU) that return the value 

provided as input directly, or the value 0.0 if the input is less or equal to zero. This activation function is 

first introduced to a dynamical network by Hahnloser et al. (2000) with strong biological motivations and 

mathematical justifications. It is demonstrated for the first time in 2011 as a way to enable better training 

of deeper networks compared to other widely used activation functions (including the logistic sigmoid and 

the hyperbolic tangent). A linear activation function is used at just one place, i.e., at the output layer. A 

linear activation function is also known as a straight-line function where the activation is proportional to 

the input, i.e., the weighted sum from neurons. Common practice dictates splitting datasets based on their 

size and characteristics. Here is a general outline of the model emulation process: 

Step 1: Train the Optimization Model 

Let us assume that the total number of observations I are split to train and to test such that I = Itrain + Itest. 

The first step is to train the original model on a set of training data. This data must be representative of the 

conditions under which the model will be used. For the deterministic framework, the sign-constraint 
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CNLS/INLS algorithm is used. For the stochastic framework, a procedure outlined in Table 2 (Step 1 to 

Step 3) is employed. 

Step 2: Extract Training Inputs and Model Outputs 

Extract the training inputs and model outputs (i.e., 𝑦𝑦� and 𝑏𝑏�), which may involve transforming the data from 

the model outputs. The extracted data are used to train the surrogate model. 

Step 3: Choose a Machine Learning Algorithm for Emulation 

This study employs artificial neural networks (ANNs) as the surrogate modeling algorithm. The specific 

architecture of the ANNs used for the economic and environmental frontiers are as follows: 

Economical frontier (T1): 

The input layer consists of 5 values, i.e., four inputs and one desirable output serve as neuron inputs. 

In the first hidden layer, dense consists of 9 units and uses the ReLU activation function with normal kernel 

initializer. 

In the second hidden layer, dense consists of 6 units and also uses the ReLU activation function. 

In the output layer, dense consists of 1 unit (i.e., 𝑦𝑦�) and uses a linear activation function. 

Environmental frontier (T2): 

The input layer consists of 2 values, i.e., one polluting input and one undesirable output serve as neuron 

inputs. 

In the hidden layer, dense consists of 4 units and uses the ReLU activation function with normal kernel 

initializer. 

In the output layer, dense consists of 1 unit (i.e., 𝑏𝑏�) and uses a linear activation function. 

Step 4: Train the ANN Model 

Train the ANN model on the extracted training inputs and outputs. This involves optimizing the model's 

parameters to minimize the error between predicted and actual outputs. The NN optimizer is RMSprop that 

is reliable and fast.  

 Step 5: Apply the ANN Model to the Testing Data 

Apply the trained ANN model to a set of testing data. This generates predictions (𝑦𝑦� 𝑜𝑜𝑜𝑜 𝑏𝑏� ) for the 

corresponding outputs. 
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Step 6: Evaluate Model Performance 

Evaluate the performance of the ANN model by comparing its predictions to the actual outputs using Root 

Mean Square Error (RMSE). In this study, the RMSE for the economical and environmental frontiers are 

evaluated as follows:  

𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 = �∑ (𝑦𝑦�𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑦𝑦𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛
𝑖𝑖=1                         𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑒𝑒𝑛𝑛𝑣𝑣 = �∑ (𝑏𝑏�𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑏𝑏𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)2

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑛𝑛
𝑖𝑖=1      (29) 

Computations are done in GAMS and Python: these codes are available upon simple request. 

 

5. Empirical Study 

5.1. Empirical Data 

The empirical application is conducted on 47 city-year observations from 2011 to 2019. The data 

are collected from the China Energy Statistical Yearbook and IPCC Guidelines for National Greenhouse 

Gas Inventories. These cities are carefully selected from the three Chinese provinces characterized by the 

highest industrial output, with their primary business income exceeding 20 million yuan. Energy 

consumption (expressed in standard coal consumption) and carbon emissions are computed based on the 

consumption of nine energy resources. The calculation of the energy consumption index hinges on the heat 

release per unit of energy burned, while the carbon emissions index is derived from the number of carbon 

atoms released. Table 3 shows the different energy source and the conversion coefficients used in the 

computation.  

 

Table 3: Energy and carbon conversion coefficients used in computations. 

Energy  Standard coal Carbon emission 

Raw coal 0.7143 0.7476 

Coke 0.9714 0.1128 

Natural gas 1.3300 0.4479 

Crude oil 1.4286 0.5854 

Gasoline 1.4714 0.5532 

Kerosene 1.4714 0.3416 

Diesel oil 1.4571 0.5913 

Fuel oil 1.4286 0.6176 
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We retain four inputs: current assets, fixed assets, total labor, and energy consumption. A list of 

elements (i.e., cash, cash equivalence, accounts receivable, and inventories) identifies an enterprise's current 

assets within a year. The fixed assets include the prices of principal construction materials, chemical 

materials, labor force, renting of building machinery, and other investments. Both assets are measured in 

10,000 yuan. The total labor variable measures the economically active population in persons. Energy 

consumption is categorized into three distinct components: primary (comprising coal, crude oil, and natural 

gas), secondary (comprising coke, coal gas, and electricity), and fossil fuels, with quantities measured in 

tons. According to the BP framework, energy consumption serves as a polluting input. Regarding outputs, 

desirable output is defined as total profit that is calculated as the net balance between various incomes and 

expenditures incurred during the course of operation in 10,000 yuan. In contrast, undesirable output is 

characterized in terms of carbon dioxide emissions (CO2), with quantities measured in tons. Since both 

energy consumption and CO2 of the environmental model are calculated using the coefficients of Table 3, 

the function z should be linear by construction, and efficiency depends entirely on the fuel mix. Table B.1 

summarizes the descriptive statistics of the collected data over the years (see Appendix B).  

 

5.2. Results and Discussion 

We employ box plots in Figures 1 and 2 to intuitively visualize the results for both convex and 

nonconvex modeling assumptions. The results report that relaxing the convexity assumption results in 

higher efficiency scores than maintaining such an assumption. The box plot is a good tool to visualize some 

statistical values, such as minimum, first quartile, median, mean (+), third quartile, and maximum. The fact 

that remains hidden in this visualization is the number of zeros that represent inefficiency in performance 

evaluation. In particular, under the convexity assumption, the number of economically inefficient firms 

reaches about nine on average. By contrast, under nonconvexity, we witness zero economic inefficiency 

scores in some years.  A latter sub-component of BP efficiency (i.e., environmental efficiency) indicates 

more significant proportions as we rely on only free/costly disposability than involving the convexity 

assumption. The interquartile ranges (IQR) that is recognized through the box lengths indicates the 

dispersion of the results. Economic and residual-generating frontiers constructed by the convexity 

assumption appear to have larger variability than when we only rely on the minimal assumption of 

monotonicity. 
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Figure 1: By-production sub-indicators under convex StoNED 

 

 

 

Figure 2: By-production sub-indicators under nonconvex StoNED 

 

 

We run a BP model on our sample to illustrate the differences between two sets of the model 

discussed in section 2: a deterministic case, when all deviation is attributed to inefficiency, and a stochastic 

case that assumes a combination of inefficiency and noise component. We summarize the main results in 
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Table 5. Monotonicity and variable returns to scale assumptions are the common axioms of both these 

models. 

The difference between these two BP approaches by Murty et al. (2012) is an underestimation of 

efficiency scores when there is no statistical noise in the data. As can be seen from the results, the 

differences are quite noticeable: during the years from 2011 to 2019, on average BP ranges between [0.71, 

0.76], while it is situated between [0.50, 0.71] when the error term is the summation of inefficiency and 

noise terms. Convex, or sign-constrained CNLS model- a nonparametric approach to determine BP- is 

constructed based on deterministic disturbance (𝜀𝜀𝑖𝑖 ≤ 0  & 𝜀𝜀�̃�𝑖 ≥ 0). However, it fails to identify noise in the 

data and/or it ignores whether the production frontier is specified imperfectly.  The StoNED BP addresses 

this concern, as the first step is running without assigning any sign on residual and applying further steps 

to decompose the residual into two components following Jondrow et al. (1982) and Kuosmanen and 

Kortelainen (2012).  

 

Table 5: Average by-production in deterministic and stochastic case under convexity assumption 

 
Type of 

efficiency 
2011 2012 2013 2014 2015 2016 2017 2018 2019 

D
et

er
m

in
is

tic
 

ca
se

 

BP. eff. 0.76 0.71 0.75 0.76 0.74 0.75 0.76 0.73 0.71 

eco. eff. 0.75 0.65 0.74 0.77 0.73 0.74 0.75 0.71 0.67 

env.eff. 0.76 0.77 0.76 0.76 0.75 0.75 0.75 0.76 0.75 

St
oc

ha
st

ic
 

ca
se

 

BP. eff. 0.61 0.60 0.60 0.63 0.62 0.58 0.71 0.55 0.50 

eco. eff. 0.50 0.49 0.55 0.57 0.54 0.56 0.60 0.43 0.39 

env.eff. 0.71 0.70 0.65 0.68 0.70 0.60 0.82 0.67 0.60 

 

Table 6 provides a BP estimate under minimal assumptions (i.e., monotonicity and VRS) to address 

the difference between deterministic and stochastic cases. We find nonconvex or stepwise frontiers 

intriguing as some difficulties exist in postulating convexity assumption in efficiency assessment (Simar & 

Wilson, 2000; Cherchye et al., 2000; Cherchye et al., 2001). The differences are remarkably reflected in 

Table 6: from 2011 to 2019, on average, BP ranges between [0.87, 0.92], while it is situated between [0.63, 

0.92] when the error term is the summation of inefficiency and noise terms. Nonconvex, or sign-constrained 
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INLS model- a nonparametric approach to determine BP- is constructed based on deterministic disturbance 

(𝜀𝜀𝑖𝑖 ≤ 0  & 𝜀𝜀�̃�𝑖 ≥ 0). However, it fails to identify noise in the data or if the production frontier is specified 

imperfectly. The solid theoretical background of nonconvex BP paved the way to stay away from 

postulating convexity issues and generate a more robust estimation. 

 

Table 6: Average by-production in deterministic and stochastic case under nonconvexity assumption 

 
Type of 

efficiency 
2011 2012 2013 2014 2015 2016 2017 2018 2019 

D
et

er
m

in
is

tic
 

ca
se

 

BP. eff. 0.90 0.87 0.88 0.90 0.89 0.92 0.91 0.90 0.88 

eco. eff. 0.93 0.87 0.88 0.91 0.90 0.94 0.93 0.91 0.88 

env.eff. 0.87 0.88 0.88 0.89 0.88 0.90 0.89 0.89 0.89 

St
oc

ha
st

ic
 

ca
se

 

BP. eff. 0.66 0.63 0.64 0.80 0.74 0.90 0.89 0.80 0.81 

eco. eff. 0.60 0.54 0.59 0.82 0.75 0.94 0.85 0.75 0.88 

env.eff. 0.73 0.73 0.70 0.78 0.74 0.88 0.93 0.85 0.75 

 

In the deterministic case, Cesaroni et al., 2017, graphically validate that convex cones containing 

the nonconvex cone (i.e., T1FDH⸦T1DEA ) can be generalized for residual-generating technology 

T2FDH⸦T2DEA. In other words, the relaxing concavity (convexity) assumption provides a lower bound for 

both production and residual-generating technologies. Consequently, this aspect yields lower economic 

(environmental) efficiency scores against maintaining the convexity assumption. Likewise, we witness 

similar behavior as well under the stochastic case.   

Table 8 presents another way to compare BP efficiency scores and their sub-components through 

nonparametric statistical testing, i.e., Li-Test (Fan and Ullah., 1999; Li et al., 2009). Let 𝑓𝑓,𝑔𝑔 denote two 

probability density functions (pdf) of unknown random variables. To test the statistical significance, we 

employ kernel density functions. The null hypothesis indicates no significant difference exists between 

density functions represented by 𝐻𝐻0: 𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) . The null hypothesis can be rejected if there is a 

significant difference between variables. It is often referred to as an alternative hypothesis denoted by  

𝐻𝐻1: 𝑓𝑓(𝑥𝑥) ≠ 𝑔𝑔(𝑥𝑥).  
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The following conclusions can be deduced from Table 8. First, the BP efficiency and its sub-

components under convex vs. nonconvex technologies are all remarkably different at the 5% significance 

level. Second, within a convex or a nonconvex framework, the Tn values generated from the Li-test report 

that in a convex framework, we witness a significant difference between BP components, while under 

nonconvexity such disparity is less noticeable.  

 

Table 8: Two-sample Li-test of the efficiency measures 

Framework Efficiency vs. Efficiency Tn values 

Convex 

 vs 

 Nonconvex 

Convex BP vs Nonconvex BP 27.47(**) 

Convex eco. vs. Nonconvex eco.  30.92(**) 

Convex env.  vs. Nonconvex env.  6.15(**) 

Convex Convex eco.  vs. Convex env.  23.12(**) 

Nonconvex Nonconvex eco.  vs. Nonconvex env.  5.27(**) 

Li test: critical values at 1% = 2.33 (***); 5% = 1.64 (**); 10% = 1.28 (*) 

 

To employ machine learning techniques to compare out-of-sample predictive power of alternative 

models, we split the data from 2011 to 2016 (67%) for training and we keep the years from 2017 to 2019 

(33%) for testing. Table 9 highlights the accuracy of two neural network-based models, StoNED and sign-

CNLS, by comparing their root mean squared errors (RMSE). RMSE measures how closely a model's 

predictions align with the actual values. Lower RMSE values indicate better prediction accuracy. Key 

findings from Table 9 are as follows. (i) Stochastic models outperform deterministic models in terms of 

RMSE for both convex and nonconvex problems. (ii) Relaxing the convexity assumption within a stochastic 

framework (INLS) proves more robust than adhering to the convexity assumption for both economic and 

environmental technologies.  

 

Table 9: RMSE measures for predictive models derived from ANN  

 Deterministic Stochastic 
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 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑒𝑒𝑛𝑛𝑣𝑣 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒 𝑅𝑅𝑀𝑀𝑆𝑆𝐸𝐸𝑒𝑒𝑛𝑛𝑣𝑣 

Convex 0.1500 0.1338 0.0829 0.0788 

Nonconvex 0.1119 0.1105 0.0579 0.0691 

 

In essence, nonconvex stochastic models (INLS) demonstrate superior predictive performance and 

robustness across diverse problem types and technologies. We are only aware of two other studies reporting 

somehow similar results. First, Jin et al. (2024) report slightly superior classification results in a context of 

anomaly detection for nonconvex relative to convex production models. Second, Garbaccio et al. (1994) 

find an expected negative correlation between insolvency and cost frontier models only for the nonconvex 

case (not for the convex case).  

 

6. Conclusions 

The groundbreaking work proposed by Murty et al. (2012) underscores the necessity of employing 

a distinct BP technology to effectively capture all technological trade-offs when modelling the joint 

production of good and bad outputs. First, production technology defines the free disposability concerning 

inputs and desirable outputs, while also acknowledging the costly disposability concerning residual and 

polluting inputs as residual-generating technology. This framework confirms a clear positive correlation 

between desirable and undesirable outputs, providing additional insights in line with the MBP. Indeed, they 

highlight that the mechanism of residual generation arose from solely polluting inputs.  

This paper adopts the model proposed by Murty et al. (2012) for estimation by a semi-parametric 

approach. We highlight the clear advantages of this approach in assessing both economic and environmental 

performance. Among these advantages, the semi-parametric method adeptly addresses the challenge of 

parameterizing double production technologies. Most existing BP models in the literature rely on 

nonparametric methods. However, these methods have an inherent limitation: they do not account for 

statistical errors when evaluating performance, which makes them highly sensitive to outliers. Our proposed 

semi-parametric approach allows us to analyze economic and environmental efficiency and productivity 

while maintaining robustness. The results obtained from this approach provide a solid foundation for 

formulating reliable policy recommendations. 
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The residual-generating CNLS builds up the elusive yet pivotal residual function, which belongs 

to the category of monotonically increasing and globally convex functions. First, we prove that the residual 

generating technology is tantamount to sign-constrained residual-CNLS as we saw such an equivalency in 

production technology. Thus, deterministic BP technology can be formulated through sign-constrained 

(residual) CNLS. Then, we extend the BP estimation in the StoNED framework where noise is explicitly 

modeled.  By addressing expected inefficiencies within each frontier, we shift the average CNLS production 

(residual) function upward (downward) to obtain the BP estimation. Next, we extended residual INLS as 

the second sub-components of BP technology, presenting BP estimation within the INLS framework. Our 

purpose in conducting variant shape restricted assumption is to investigate the impact of different axioms 

on our estimation.  

We also dive into the predictive capabilities of alternative models, unraveling how they leverage 

historical data to forecast future outcomes. To assess the accuracy of our models, we utilize ANN algorithms 

to evaluate the distance between predicted and actual values. Our findings reveal that stochastic models 

consistently outperform deterministic models in terms of RMSE across both convex and nonconvex 

problem categories. Furthermore, we observe that the nonconvex stochastic model is more precise for 

predicting the true values of the problems considered in this study. 

The main finding of this study highlights that the absence of statistical noise tends to overestimate 

efficiency scores, regardless of the chosen shape-restricted assumption. When incorporating the convexity 

assumption alongside other hypotheses, the average difference between deterministic and stochastic 

estimations is 18%, while under minimal assumptions, this variation reduces to 15%. Second, the statistical 

dispersion (IQR) under the convexity assumption is, on average, 0.42, which indicates the estimated BP is 

widely dispersed around the median compared with the relaxing of the convexity assumption, which equals 

0.24. The INLS frontier fitted as close to the observation as possible yields a lower boundary than the 

StoNED frontier. From a managerial viewpoint, the sub-component nature of BP technology allows us to 

address each observation's weakness or strongness toward economic and environmental aspects. According 

to the performance positioning matrix, both convex and nonconvex approaches yield the same proportion 

(53%) of the best possible performance with respect to sub-components.  

The proposed StoNED and INLS BP models employ equal weighting and do not provide insights 

into the sub-components. Different policymakers may have varying preferences regarding improvements 

in the economy and the environment: introducing policy changes through adjusting weights is a feasible 

improvement strategy. Developing a statistically-based weighting technique also represents a credible 

avenue for future research. As another prospective research direction, our methods could be extended to 

accommodate multi-desirable/undesirable settings. Moreover, extending this semi-parametric method to 
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cost function estimation is also worth further consideration, since it has been shown that the cost function 

may well be nonconvex in its outputs (see Kerstens & Van de Woestyne (2021) for a nonparametric study). 

Finally, exploring sustainability assessment, incorporating the social dimension as the third indicator of 

sustainability, presents another intriguing avenue for future study.  
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Supplementary Material: Appendices: 

 

Appendix A: Proofs of Propositions 

Proof of Proposition 1.  

Under single undesirable output multiple residual causing inputs case, the additive form of (14) denoted as: 

𝑚𝑚𝑖𝑖𝑚𝑚 φ  

s.t. ∑ 𝜂𝜂𝑖𝑖𝐼𝐼
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃 ≥ 𝑥𝑥𝑒𝑒𝑖𝑖𝑃𝑃     ∀𝑚𝑚2 = 1, . . . ,𝑀𝑀2 

   ∑ 𝜂𝜂𝑖𝑖𝑏𝑏𝑖𝑖𝐼𝐼
𝑖𝑖=1 ≤ 𝑏𝑏𝑒𝑒 − 𝜑𝜑                                                   (A.1)  

∑ 𝜂𝜂𝑖𝑖𝐼𝐼
𝑖𝑖=1 = 1                   ∀𝑖𝑖 = 1, . . . , 𝐼𝐼  

where θo = 1 − φ
bo

. The standard form of model (A.1) is written as: 

𝑚𝑚𝑖𝑖𝑚𝑚 φ  

s.t. ∑ 𝜂𝜂𝑖𝑖𝐼𝐼
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑖𝑖𝑃𝑃 ≥ 𝑥𝑥𝑒𝑒𝑖𝑖𝑃𝑃     ∀𝑚𝑚2 = 1, . . . ,𝑀𝑀2   

   −∑ 𝜂𝜂𝑖𝑖𝑏𝑏𝑖𝑖𝐼𝐼
𝑖𝑖=1 ≥ −𝑏𝑏𝑒𝑒 + 𝜑𝜑                                                   (A.2)  

∑ 𝜂𝜂𝑖𝑖𝐼𝐼
𝑖𝑖=1 = 1                   ∀𝑖𝑖 = 1, . . . , 𝐼𝐼  

Applying duality theory of linear programming, the LP problem (A.2) has a dual problem: 

𝑚𝑚𝑚𝑚𝑥𝑥 (𝛼𝛼 + 𝜔𝜔𝑥𝑥𝑒𝑒
𝑝𝑝) − 𝑐𝑐𝑏𝑏𝑒𝑒  

𝑐𝑐 = −1  

s.t. α + ω𝑥𝑥𝑖𝑖
𝑝𝑝 − 𝑐𝑐𝑏𝑏𝑖𝑖 ≤ 0   ∀𝑖𝑖 = 1, . . . , 𝐼𝐼                   (A.3) 

                     ω ≥ 0, 

where, 𝜔𝜔 and 𝛼𝛼 represent the multiplier of inputs and shadow price of the VRS constraint. We can remove 

the multiplier 𝑐𝑐 and rewrite the dual problem as: 

𝑚𝑚𝑚𝑚𝑥𝑥 (𝛼𝛼 + 𝜔𝜔𝑥𝑥𝑒𝑒
𝑝𝑝) + 𝑏𝑏𝑒𝑒  

s.t. α + ω𝑥𝑥𝑖𝑖
𝑝𝑝 + 𝑏𝑏𝑖𝑖 ≤ 0   ∀𝑖𝑖 = 1, . . . , 𝐼𝐼                   (A.4) 
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                     ω ≥ 0. 

Note that as α + ω𝑥𝑥𝑖𝑖
𝑝𝑝 + 𝑏𝑏𝑖𝑖 ≤ 0, by subtracting (2𝑏𝑏𝑖𝑖), the constraint still remains consistent. Similarly, we 

apply the same to the objective function. The modified objective function in (A.5) is consistent with the 

definition of the error term as a difference between observed and estimated undesirable output. Next, 

introduce 𝜀𝜀𝑒𝑒� = 𝑏𝑏𝑒𝑒 − (𝛼𝛼 +𝜔𝜔𝑥𝑥𝑒𝑒
𝑝𝑝) as an auxiliary variable: 

𝑚𝑚𝑚𝑚𝑥𝑥  −𝜀𝜀𝑒𝑒�  

         𝜀𝜀𝑒𝑒� = 𝑏𝑏𝑒𝑒 − (𝛼𝛼 + 𝜔𝜔𝑥𝑥𝑒𝑒
𝑝𝑝) 

 𝑏𝑏𝑖𝑖  ≥ α + ω𝑥𝑥𝑖𝑖
𝑝𝑝                 ∀𝑖𝑖 = 1, . . . , 𝐼𝐼                   (A.5) 

            𝛚𝛚 ≥ 0, 𝜀𝜀𝑒𝑒� ≥ 0 . 

Instead of solving (A.5) separately for each firm, we can solve the efficiency scores simultaneously for all 

firms (Kuosmanen, 2006):  

 𝑚𝑚𝑖𝑖𝑚𝑚 ∑ (𝜀𝜀𝚤𝚤�)2𝐼𝐼
𝑖𝑖=1  

s.t.               𝜀𝜀𝚤𝚤� = 𝑏𝑏𝑖𝑖 − (𝛼𝛼𝑖𝑖 + 𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝)  

   𝑏𝑏ℎ  ≥ 𝛼𝛼𝑖𝑖 + 𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝             ∀𝑖𝑖,ℎ = 1, . . . , 𝐼𝐼                   (A.6) 

                     ω ≥ 0, 𝜀𝜀𝚤𝚤� ≥ 0 . 

Finally, as the inefficient firm (𝜀𝜀𝚤𝚤� ≥ 0) does not influence on the shape of the DEA frontier, we can benignly 

add  𝜀𝜀𝚤𝚤�  to the right-hand side of the second constraint as:  

 𝑚𝑚𝑖𝑖𝑚𝑚 ∑ (𝜀𝜀𝚤𝚤�)2𝐼𝐼
𝑖𝑖=1  

s.t.               𝜀𝜀𝚤𝚤� = 𝑏𝑏𝑖𝑖 − (𝛼𝛼𝑖𝑖 + 𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝)  

𝑏𝑏ℎ ≥ 𝛼𝛼𝑖𝑖 + 𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝 + 𝜀𝜀𝚤𝚤�                      ∀𝑖𝑖,ℎ = 1, . . . , 𝐼𝐼                   (A.7) 

                     𝛚𝛚 ≥ 0, 𝜀𝜀𝚤𝚤� ≥ 0 . 

This results in following residual sign-constrained CNLS model: 

 𝑚𝑚𝑖𝑖𝑚𝑚 ∑ (𝜀𝜀𝚤𝚤�)2𝐼𝐼
𝑖𝑖=1  

s.t.             𝜀𝜀𝚤𝚤� = 𝑏𝑏𝑖𝑖 − (𝛼𝛼𝑖𝑖 +𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝)  

  𝛼𝛼ℎ + 𝜔𝜔ℎ
′ 𝑥𝑥ℎ

𝑝𝑝 ≥ 𝛼𝛼𝑖𝑖 + 𝜔𝜔𝑖𝑖
′𝑥𝑥𝑖𝑖
𝑝𝑝          ∀𝑖𝑖,ℎ = 1, . . . , 𝐼𝐼              (A.8) 
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                    𝛚𝛚 ≥ 0, 𝜀𝜀𝚤𝚤� ≥ 0 .  

 

Proof of Proposition 2:  

The proof of this proposition is done in two parts: In the first part, we show that 𝜀𝜀�̌�𝑖 = 𝑏𝑏𝑖𝑖(1 −

𝜃𝜃𝑖𝑖∗)  ∀𝑖𝑖 = 1, . . . , 𝐼𝐼) is consistent in the constraints of model 26. In the second part, it is enough to indicate 

that 𝜀𝜀�̌�𝑖 = 𝜀𝜀𝚤𝚤�. 

Part one: Since 𝜃𝜃𝑖𝑖∗ ≤ 1, it is obvious that 𝜀𝜀�̌�𝑖 ≥ 0. Thus, the sign constraint for the residual INLS residuals 

represented in (26) is satisfied. Next, consider 𝑏𝑏𝑖𝑖𝜃𝜃𝑖𝑖∗ as the projected point of firm 𝑖𝑖 on the FDH frontier. 

Since the FDH frontier has stepwise shape, the reference points must satisfy: 

∀ 𝑖𝑖,ℎ ∈ 𝜆𝜆, 𝑥𝑥ℎ
𝑝𝑝 ≽ 𝑥𝑥𝑖𝑖

𝑝𝑝 → 𝑏𝑏ℎ𝜃𝜃ℎ∗ ≥ 𝑏𝑏𝑖𝑖𝜃𝜃𝑖𝑖∗         (B.1) 

Rearranging the inequality, we have:  

𝑏𝑏ℎ−𝑏𝑏ℎ(1 − 𝜃𝜃ℎ∗) ≥ 𝑏𝑏𝑖𝑖−𝑏𝑏𝑖𝑖(1 − 𝜃𝜃𝑖𝑖∗)          (B.2) 

According to the definition of 𝜀𝜀�̌�𝑖, the inequality can be rewritten as: 

𝑏𝑏ℎ − 𝜀𝜀ℎ̌ ≥ 𝑏𝑏𝑖𝑖 − 𝜀𝜀�̌�𝑖          ∀𝑖𝑖,ℎ 𝑝𝑝𝑖𝑖ℎ = 1      (B.3) 

This inequality is equivalent with the second constraint of problem (23). Hence, the values of 𝜀𝜀�̌�𝑖 satisfy the 

constraints of problem (26), and therefore ∑ 𝜀𝜀�̌�𝑖𝐼𝐼
𝑖𝑖=1  is an upper bound for the optimal solution of problem 

(26).  

Part two:  In this part we apply proof by contradiction: Let us assume that there exist at least one firm that  

𝜀𝜀�̃�𝑖 ≤ 𝜀𝜀�̌�𝑖 where its sum of squared error (SSE) is less than SSE of 𝜀𝜀�̌�𝑖. Based on assumption i.e., 𝜀𝜀�̌�𝑖 = 𝑏𝑏𝑖𝑖(1 −

𝜃𝜃𝑖𝑖∗), we have: 

𝜀𝜀�̃�𝑖 ≤ 𝑏𝑏𝑖𝑖(1 − 𝜃𝜃𝑖𝑖∗)         (B.4) 

Now two cases arise: 

1. If firm 𝑖𝑖  is efficient, then 𝜃𝜃𝑖𝑖∗ = 1  that results 𝜀𝜀�̃�𝑖 ≤ 0 , which contradicts with the sign constraint 

assumption.  

2. If firm 𝑖𝑖 is inefficient, then there exists reference firm as 𝑘𝑘 that satisfies the following condition: 

∃𝑘𝑘 ∈ 𝑖𝑖: 𝑏𝑏𝑘𝑘 ≤ 𝑏𝑏𝑖𝑖  ∀ 𝑖𝑖,𝑘𝑘 , 𝑥𝑥𝑘𝑘
𝑝𝑝 ≼ 𝑥𝑥𝑖𝑖

𝑝𝑝  and 𝑏𝑏𝑖𝑖𝜃𝜃𝑖𝑖∗ = 𝑏𝑏𝑘𝑘. According to (B.4), this results in the following 

inequality: 
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𝜀𝜀�̃�𝑖 ≤ 𝑏𝑏𝑖𝑖 − 𝑏𝑏𝑘𝑘 ≤ 0 ※ 

Thus,  𝜀𝜀�̃�𝑖 = 𝜀𝜀�̌�𝑖, ∀𝑖𝑖 = 1, . . . , 𝐼𝐼. 

 

  



5 
 

Appendix B: Descriptive Statistics Chinese Sample 

Table B.1: Statistics for 47 Chinese city-level energy sector in 2011-2019 

Year Variable Mean Std. Dev. Min Max 

2011 

Current assets  22,586,847 27,830,459 1,363,854 134,625,223 

Fixed assets 13,758,415 11,717,258 1,990,028 63,877,406 

Total Labor  696,910 739,137 105,400 3,411,200 

Energy consumption 18,385,246 14,893,837 1,780,599 59,891,777 

Total profits 4,023,919 3,609,634 139,805 14,847,255 

CO2  17,228,501 13,422,162 2,317,451 56,517,351 

2012 

Current assets  22,430,458 26,499,442 1,356,786 128,445,781 

Fixed assets 14,185,793 11,923,646 1,522,357 63,400,001 

Total Labor  713,606 739,275 103,731 3,449,144 

Energy consumption 18,536,885 15,644,716 1,921,027 59,810,906 

Total profits 3,800,421 3,261,935 276,428 11,649,719 

CO2  17,259,090 14,112,335 2,666,396 62,666,766 

2013 

Current assets  25,293,892 29,052,750 1,694,465 139,386,438 

Fixed assets 15,279,666 12,551,914 2,027,396 68,249,655 

Total Labor  723,232 715,622 105,300 3,287,400 

Energy consumption 19,104,211 16,366,551 2,462,017 64,749,272 

Total profits 4,421,706 4,044,903 338,988 19,789,698 

CO2  17,508,993 14,255,023 2,970,533 67,269,284 

2014 

Current assets  27,722,371 31,404,154 1,739,313 152,228,891 

Fixed assets 17,300,606 13,335,711 2,269,854 69,544,843 

Total Labor  716,167 695,819 105,600 3,336,800 

Energy consumption 19,387,137 16,394,876 2,390,879 65,875,721 

Total profits 4,521,970 3,647,996 314,628 13,879,081 

CO2  17,492,071 13,576,330 2,819,302 63,546,468 

2015 

Current assets  29,259,918 33,321,353 1,867,346 165,512,491 

Fixed assets 19,038,832 15,224,716 2,408,600 70,854,868 

Total Labor  706,620 687,220 111,600 3,246,100 

Energy consumption 19,761,821 17,856,089 2,284,976 71,901,608 

Total profits 4,689,477 3,893,196 379,558 16,962,005 
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CO2  17,622,814 13,959,289 2,713,884 58,402,544 

2016 

Current assets  31,762,909 36,676,194 2,569,981 185,702,149 

Fixed assets 19,299,662 13,946,278 2,768,063 70,731,000 

Total Labor  688,092 660,554 109,736 3,104,200 

Energy consumption 21,518,493 20,801,509 2,244,837 88,613,019 

Total profits 5,038,265 4,158,144 357,838 16,464,252 

CO2  19,059,762 16,288,741 2,696,150 75,097,596 

2017 

Current assets  34,592,311 41,584,062 2,293,258 214,727,118 

Fixed assets 18,175,208 13,221,495 2,471,487 69,215,064 

Total Labor  656,960 677,779 96,688 3,175,313 

Energy consumption 21,896,200 21,348,810 2,185,146 97,361,850 

Total profits 4,944,770 4,447,679 239,114 19,547,231 

CO2  18,944,219 15,824,377 2,811,162 69,394,727 

2018 

Current assets  36,807,493 45,875,043 2,424,727 240,760,300 

Fixed assets 20,675,534 19,065,886 2,521,392 112,408,186 

Total Labor  593,394 653,095 71,300 2,928,600 

Energy consumption 22,304,826 22,155,610 2,119,394 89,314,655 

Total profits 4,109,749 4,579,510 193,981 19,063,543 

CO2  19,412,048 17,251,241 3,016,899 85,625,453 

2019 

Current assets  38,834,268 50,470,532 2,626,955 269,007,895 

Fixed assets 15,570,279 13,275,478 1,116,670 70,590,408 

Total Labor  555,787 677,676 68,500 3,033,800 

Energy consumption 22,745,468 22,504,561 2,358,081 99,788,251 

Total profits 3,825,068 4,940,923 256,218 23,746,580 

CO2  19,500,476 16,643,816 2,852,120 78,417,612 
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