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Abstract

We introduce a novel multi-factor Heston-based stochastic volatility model, which is able
to reproduce consistently typical multi-dimensional FX vanilla markets, while retaining the
(semi)-analytical tractability typical of affine models and relying on a reasonable number of
parameters. A successful joint calibration to real market data is presented together with var-
ious in- and out-of-sample calibration exercises to highlight the robustness of the parameters
estimation. The proposed model preserves the natural inversion and triangulation symmetries
of FX spot rates and its functional form, irrespective of choice of the risk-free currency. That
is, all currencies are treated in the same way.

1 Introduction

The FX OTC market keeps on growing at an unabated speed. In less than ten years the volume
of FX spot, forward and option transactions has more than tripled, reaching almost 4 trillion
USD daily turnover in 2010, see Mallo (2010). From a modeling perspective, capturing the global
nature of the FX option market, is a highly non trivial task. While the modeling of a single FX
spot underlying in isolation has been analyzed in depth (Wystup, 2006; Clark, 2011) and poses
challenges that are similar in nature with other single-dimensional asset classes, like equities, the
simultaneous representation of multiple FX spot rates is by no means a straightforward extension.
Unlike other asset classes, both inversions and appropriate multiplications/divisions of FX rates
are tradable FX cross rates (eg, EUR/JPY can be derived from EUR/USD and USD/JPY). For
cases in which options on the crosses are liquidly traded, a consistent model of multiple FX rates
must be able to reprice vanilla options that are written on different FX underlying rates.

Let Sd,f(t) be the spot exchange rate at time t as the amount of domestic (d) currency for one
unit of foreign currency (f). A consistent multi-dimensional FX model must be symmetric with
respect to inversion and triangulation, that is

1. the flipped process 1/Si,l(t) in the foreign (i.e., l) risk neutral measure follows the same type
of process as the original Si,l(t);

2. the inferred cross rate Sl,m(t) = Si,m(t)/Si,l(t) follows the same type of process as the
original main currency pairs Si,m(t), Si,l(t) in its domestic (i.e., l) risk neutral measure.

In pre-smile times, the standard Black-Scholes model (see Black and Scholes (1973), Garman
and Kohlhagen (1983)) could be easily extended to describe multiple FX rates in a consistent
fashion (Lipton, 2001; Wystup, 2006; Clark, 2011). It is indeed trivial to show that the inverse of
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a geometric Brownian motion is still a geometric Brownian motion and moreover, by choosing the
correlation between the stochastic drivers of the two mains to be

ρim−il(t) =
σ2
il(t) + σ2

im(t)− σ2
lm(t)

2σil(t)σim(t)
, (1)

the cross rate Sl,m(t) follows a geometric Brownian motion with implied volatility σ2
lm(t) (σ2

il(t)
and σ2

im(t) are the implied volatilities of the two mains).
If we include the effect of volatility smiles, the extension from a single-dimensional model to a

multi-dimensional one is way less trivial. Beside preserving the specific FX symmetries, a suitable
model must be able to fit jointly not just the market volatility smiles of the main currency pairs,
say Si,m(t) and Si,l(t), but also the smile of the cross rate Sl,m(t) = Si,m(t)/Si,l(t). In case
more than three currencies are present, say N , the model should be able to fit simultaneously the
market volatility smiles of N − 1 mains and (N − 1)(N − 2)/2 crosses, a task which is increasingly
demanding with growing N .

In this paper we introduce a multi-dimensional stochastic volatility model that is based on
the Heston (1993) model and is able to satisfy the inversion and triangulation symmetries, while
being able to produce a satisfactory joint calibration of main and cross implied volatility smiles.
The choice of a stochastic volatility model is consistent with the persistency of the volatility smile
effect over different maturities, indicating that FX spot returns are not normally distributed, as
observed in time-series analysis (Carr and Wu, 2007). Analysis of butterflies and risk reversals
times series otherwise show a stable behavior for the excess kurtosis of the implied risk-neutral
distribution across currencies and expiries, whereas risk-reversals appear to vary considerably over
time, so that even sign changes are present. This translates into an empirical distribution whose
skewness changes significantly over time.

The inversion symmetry is generally not satisfied by stochastic volatility models. Consider for
example the popular SABR model

dS(t) = S(t)(rd − rf)dt+ σ(t)Sβ(t)dW (t),

dσ(t) = ασ(t)dZ(t), d〈W,Z〉t = ρdt.

It can be shown by straightforward calculations that the inverted SABR process (Ŝ(t) = 1/S(t))
in the foreign risk-neutral measure Qf reads

dŜ(t) = Ŝ(t)(rf − rd)dt+ σ(t)Ŝ2−β(t)dWQf (t),

dσ(t) = ρασ2(t)Ŝ1−β(t)dt+ ασ(t)dZQf (t), d〈WQf , ZQf 〉t = −ρdt.

The inverted process is not of SABR type. Even for β = 1 (log-normal case) the stochastic
volatility process has an addition drift term proportional to the spot-volatility correlation, spoiling
the inversion symmetry. Other examples that do not satisfy the inversion symmetries are the
GARCH (e.g. see Lewis (2000)) and the Scott (1987) models (i.e., popular stochastic volatility
process whose instantaneous volatility is proportional to the exponential of a Ornstein-Uhlenbeck
process). The Heston model, however, naturally satisfies this symmetry, see also Del Baño Rollin
(2008).

The preservation of the triangulation symmetry depends on the specification of the intra-
currency pair correlation structure. If we consider the simplest and often standard choice of
constant correlation, it is easy to show that the FX cross rate implied by the division of two SABR
currency pairs follows a process that is not of SABR type. As long as we keep a constant correlation
between the main currency pairs, also a Heston specification for the stochastic volatility process
of the main FX rates leads to the definition of a cross currency pair which is functionally different.
Hence, in order to achieve the triangulation symmetry, one needs to use a different paradigm in
the specification of the correlation.

The model we present in this paper is a multi-factor stochastic volatility model of Heston (1993)
type. Multi-factor stochastic volatility models in the context of FX derivative pricing are increas-
ingly popular. An example is the Wishart-based approach proposed by Branger and Muck (2012)
that focuses on the pricing of quanto options. The Heston dynamics leads to an affine model which
is known to retain analytical tractability. We will provide a complete discussion concerning the
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set of risk neutral measures and the relation among model parameters under different probability
measures. Rather remarkably, as a consequence of the specific Heston-type dynamics, the model
remains functionally invariant, after parameter rescaling, when the risk-neutral measure is changed.
This is a key feature that allows obtaining a calibration with reasonable computational effort. We
will then test the model on real market data and show how a joint calibration of the volatility smiles
of EUR/USD/JPY and AUD/USD/JPY triangles is possible. In- and out-of-sample calibration
tests will be reported to comment on the robustness of the parameter estimation.

Previous analyses of the multi-dimensional FX volatility smile problem have used different
approaches to recover the risk neutral probability distribution of the cross exchange rate, either
by means of joint densities or copulas, see Austing (2011), Bennett and Kennedy (2004), Salmon
and Schneider (2006), and Hurd et al. (2005). Such contributions may be seen as a generalization
to the multi-dimensional setting of the classical idea of Breeden and Litzenberger (1978), see also
Bliss and Panigirtzoglou (2002) and the Gram-Charlier based approach in Schlögl (2012). The
shortcoming of these techniques is that they provide only a distribution for the cross rate and
not an explicit specification of the dynamics. In the context of stochastic volatility models, Carr
and Verma (2005) propose a model with a single joint stochastic factor, which however limits the
flexibility to achieve satisfactory joint calibrations. Another approach, in the presence of a SABR
stochastic volatility specification, is studied in Shiraya and Takahashi (2012) where asymptotic
formulae are presented.

The approach in this paper is fundamentally different. Instead of putting the currency pairs at
the basis of our model, we start from the observation that any exchange rate may be seen as a ratio
between two quantities, the value of the currencies with respect to some universal numéraire, and
include this feature in the specification of the model. Flesaker and Hughston (2000) introduced
the idea of a ”natural numéraire”, the value of which can be expressed in different currencies, thus
leading to consistent expressions for the FX rates as ratios. This point of view was also followed in
Heath and Platen (2006b) and Heath and Platen (2006a) under the Benchmark approach. In this
way, our model does not change qualitatively depending on which perspective is used and there
is no intrinsic difference between main and cross currency pairs. Independently of our work, the
recent article by Doust (2012) provides a stochastic volatility model of SABR type where triangular
relations hold. The approach is based on the concept of intrinsic currency, introduced in Doust
(2007).

Possible applications of the FX model we propose are the valuation and risk management of
multi-dimensional FX derivative options and the possibility to reconstruct/simulate time series of
less liquid cross currency pairs from liquid ones, see Doust (2012).

The paper is organized as follows: we present the model in Sec. 2, initially using the perspective
given by some kind of universal numéraire. We continue with the basic properties of the model,
such as the presence of stochastic skewness, before presenting the invariance of the model and
transformation rule of its parameters when the risk neutral measure is changed in Sec. 3. The
explicit formulae for the characteristic function and option prices are given in Sec. 4. Finally, the
joint calibration to EUR/USD/JPY and AUD/USD/JPY market volatility smiles is presented in
Sec. 5, together with a discussion of the procedure and the results, including the Feller condition
and moment explosion.

2 A Multifactor Heston-based exchange model

We consider a foreign exchange market in which N currencies are traded between each other via
standard FX spot and FX vanilla option transactions. Inspired by the work of Heath and Platen
(2006b), we start by considering the value of each of these currencies in units of an artificial currency
that can be viewed as a universal numéraire. We will see that the discussion is independent on
the exact specification of this numéraire. Let us work in the risk neutral measure defined by
the artificial currency and call S0,i(t) the value at time t of one unit of the currency i in terms
of our artificial currency (so that S0,i can itself be thought as an exchange rate, between the
artificial currency and the currency i). We model each of the S0,i via a multi-variate Heston
(1993) stochastic volatility model with d independent Cox-Ingersoll-Ross (CIR) components (Cox
et al., 1985), V(t) ∈ Rd. The dimension d can be chosen according to the specific problem and
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may reflect a PCA-type analysis. We further assume that these stochastic volatility components
are common between the different S0,i. Formally, we write

dS0,i(t)

S0,i(t)
= (r0 − ri)dt− (ai)>

√
Diag(V(t))dZ(t), i = 1, . . . , N ; (2)

dVk(t) = κk(θk − Vk(t))dt+ ξk
√
Vk(t)dWk(t), k = 1, . . . , d; (3)

where κk, θk, ξk ∈ R are standard parameters in a CIR dynamics.
√

Diag(V) denotes the diagonal
matrix with the square root of the elements of the vector V in the principal diagonal, this term is
multiplied with the linear vector ai ∈ Rd (i = 1, . . . , N); as a result, the dynamics of the exchange
rate is driven by a linear projection of the variance factor V along a direction parametrized by
ai, namely the total instantaneous variance is (ai)>Diag(V(t))aidt. In each monetary area i, the
money-market account accrues interest based on the deterministic risk free rate ri,

dBi(t) =riBi(t)dt, i = 1, . . . , N ; (4)

in our universal numéraire analogy r0 is the artificial currency rate. Finally, we assume that there
is (only) a correlation between the innovations to Vk and the innovations in the price with volatility
Vk:

d〈Zk,Wh〉t =ρkδkhdt, k, h = 1, . . . , d, (5)

together with d〈Zk, Zh〉t = δkhdt and d〈Wk,Wh〉t = δkhdt, where

δkh =

{
1 k = h,
0 k 6= h.

This concludes the description of our model.

The idea behind this approach is that each exchange rate is driven by several independent
drivers Zk (k = 1, .., d), each with an independent stochastic variance factor Vk, to which Zk is
partially correlated via ρk. The vectors ai (i = 1, . . . , N) describe by how much each of the dif-
ferent volatilities contributes to the dynamics of S0,i. This correlation structure is responsible for
the appearance of non-standard effects in the model, like a stochastic skewness, as we will show in
the sequel.

All in all, we have introduced a total number of parameters equal to NP = Nd+ 5d (Nd from
the vectors ai and 5 for each CIR process, κk, θk, ξk, ρk and the initial value Vk(0)) to describe the
volatility skew of (N2 −N)/2 currency pairs. As rule of thumb, assuming that each currency pair
can be approximately modelled by a standard one-dimensional Heston model, which is described
by 5 parameters, around 5(N2−N)/2 parameters are needed to fit all volatility surfaces; the value
of d should be chosen to produce approximately this number of parameters, if not less, to avoid
instabilities due to overfitting.

Let us now turn our attention to the exchange rate Si,j between two different currencies, say
i and j. We set by definition Si,j = S0,j/S0,i. By straightforward calculation, we obtain for
i, j = 1, .., N :

dSi,j(t)

Si,j(t)
= (ri − rj)dt+ (ai − aj)>Diag(V(t))aidt+ (ai − aj)>

√
Diag(V(t))dZ(t). (6)

At this stage we are still working under the risk neutral measure defined by the universal numéraire.
The additional drift term in (6) can be understood as a quanto adjustment between the artificial
currency 0 and i. Note also that the model is functionally symmetric with respect to which FX
pairs we choose to be the main ones and which one the cross1.

1Note that if we start with a different specification of the model it may happen that taking the dynamics of the
ratio of a pair breaks the structure of the dynamics, namely the model would not be functionally symmetric. This
is what happens for example in the SABR model as illustrated in the introduction, or if we consider a correlated
GARCH volatility model, see e.g. the model specifications in Lewis (2000) and Hull and White (1987).
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Let us now analyze some additional properties of the model and familiarize with the meaning
of the different parameters, starting from ai. A rather natural choice would be to set ai equal to
the canonical basis ei (i.e. the i-th element of the canonical basis of RN , eil = δli, i, l = 1, .., N),
then (6), for i 6= j, reads (note that equal indices are not summed)

dSi,j(t)

Si,j(t)
= (ri − rj)dt+ V i(t)dt+

√
Vi(t)dZ

i(t)−
√
Vj(t)dZ

j(t), (7)

which in the 3-currency case leads to the 3-factor Heston model. The problem with this choice is
that the covariances (and thus the correlations) between different pairs are forced to be positive,

d
〈
Si,j , Si,l

〉
t

= Si,j(t)Si,l(t)V i(t)dt ≥ 0. (8)

There is no empirical evidence for this inequality to hold in general between FX rates, see Carr
and Wu (2007). The additional vectors ai are needed to describe a multi-dimensional FX market
where the correlation may change sign.

To shed some additional light on the meaning of the vectors ai we calculate the infinitesimal
correlation ςi,j between the log returns of Si,j and the squared volatility Vol2(Si,j): the quantity
ςi,j is known to be related to the skewness of the distribution of the log-returns of the spot, see
e.g. Carr and Wu (2007).

ςi,j(t) =
d〈lnSi,j ,Vol2(Si,j)〉t√
d〈lnSi,j〉t

√
d〈Vol2(Si,j)〉t

. (9)

Differently from standard single factor models, multifactor Heston models produce stochastic skew-
ness. In fact, by means of straightforward calculations we obtain

d
〈
lnSi,j ,Vol2(Si,j)

〉
t

= d

〈∫ ·
0

d∑
l=1

(
ail − a

j
l

)√
VldZl,

∫ ·
0

d∑
k=1

(
aik − a

j
k

)2

ξk
√
VkdWk

〉
t

=

d∑
k=1

(
aik − a

j
k

)3

ξkVk(t)ρkdt i, j = 1, .., N. (10)

Combining this term with

d
〈
lnSi,j , lnSi,j

〉
t

=
(
ai − aj

)>
Diag(V(t))

(
ai − aj

)
dt

=

d∑
k=1

(
aik − a

j
k

)2

Vk(t)dt

and

d
〈
Vol2(Si,j),Vol2(Si,j)

〉
t

=

d∑
k=1

(
aik − a

j
k

)4

ξ2
kVk(t)dt

gives

ςi,j(t) =

∑d
k=1

(
aik − a

j
k

)3

ξkVk(t)ρk√∑d
k=1

(
aik − a

j
k

)4

ξ2
kVk(t)

√∑d
k=1

(
aik − a

j
k

)2

Vk(t)

. (11)

The vectors ai are therefore directly related to the amount of skewness for each of the different
exchange rates. This quantity is stochastic due to the presence of the variance factors Vk (see also
Christoffersen et al. (2009) who found similar results in the equity market using a multi-Heston
framework) and can assume positive as negative sign according to the relative importance of the
coefficients aik, a

j
k in the summation, that is according to the relative importance of the volatility
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factor Vk in each currency. The same argument applies to the instantaneous covariance between
the assets that can be written as2

d〈Sij , Sil〉t = Sij(t)Sil(t)(ai − aj)>Diag(V(t))(ai − al)dt

= Sij(t)Sil(t)

d∑
k=1

(aik − a
j
k)(aik − alk)Vk(t)dt.

3 Numéraire invariance

Up to now we have worked under the risk neutral measure defined by our (rather unspecified)
artificial currency. In practical pricing applications, it is more convenient to change the numéraire
to any of the currencies included in our FX multi-dimensional system. Without loss of generality,
let us consider the risk neutral measure defined by the i-th money market account Bi and derive
the dynamical equations for the standard FX rate Si,j .

Under the assumptions of the fundamental theorem of asset pricing (cfr. e.g. Björk (2009),
chapters 13 and 14), investing into the foreign money market account gives a traded asset with
value Si,jBj , whose discounted value has to be a Qi-martingale. Hence,

d

(
Si,j(t)Bj(t)

Bi(t)

)
=
Si,j(t)Bj(t)

Bi(t)

(
(ai − aj)>Diag(V(t))aidt+ (ai − aj)>

√
Diag(V(t))dZ(t)

)
=
Si,j(t)Bj(t)

Bi(t)
(ai − aj)>

√
Diag(V(t))dZQi(t). (12)

In the last line we implicitly defined the new Brownian motion vector ZQi under the measure Qi
by imposing the Qi-local martingale property and by Girsanov theorem

dZ(t)Q
i

= dZ(t) +
√

Diag(V(t))aidt, i = 1, .., N. (13)

The Qi risk neutral dynamics of the exchange rate Si,j becomes

dSi,j(t) = Si,j(t)
(

(ri − rj)dt+ (ai − aj)>
√

Diag(V(t))dZQi(t)
)
, (14)

as desired.
The measure change has also an impact on the variance processes, via the correlations ρk, k =

1, .., d,

dWQi
k (t) = dWk(t) + ρk

(
ek
)>√

Diag(V(t))aidt. (15)

We finally obtain the dynamic equations under the new measure. With an appropriate redefinition
of the CIR parameters

ρQ
i

k =ρk,

κQ
i

k =κk + ξkρka
i
k,

θQ
i

k =θk
κk

κQ
i

k

,

2Note that

d〈Sij , Sil〉t = (Xi,j)>Xi,ldt,

where

Xi,j = Sij(t)
√

Diag(V(t))(ai − aj)

Xi,l = Sil(t)
√

Diag(V(t))(ai − al).

Since ai,aj ,al are arbitrary real vectors, the infinitesimal covariance can be any real number, and the corresponding
infinitesimal correlation spans the entire interval [-1,1].
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we can recast the variance SDE in its original form

dVk(t) = κQ
i

k (θQ
i

k − Vk(t))dt+ ξk
√
Vk(t)dWQi

k (t). (16)

Financially, it makes sense to enforce mean reversion of the variance, other than mean explosion,

yielding a condition on κQ
i

k > 0 or conversely on the original model parameters κk, ξk, ρk, and aik.
By applying Girsanov theorem again, this time switching to the Qj risk neutral measure, the CIR
parameters become

κQ
j

k = κQ
i

k + ρkξk(ajk − a
i
k),

θQ
j

k = θQ
i

k

κQ
i

k

κQ
j

k

, (17)

together with the invariant ρQ
j

k = ρQ
i

k and ξQ
j

k = ξQ
i

k . These are the fundamental transformation
rules for the model parameters. The invariance of the functional form of the model under measure
change is an appealing feature of our model; other specifications of the stochastic volatility might
break this symmetry.

4 Option pricing

Together with the symmetry of the model specification with respect to the numéraire choice, a
second central feature of the model is the availability of a (semi)-analytical solution for all vanilla
option prices. The pricing formula itself is symmetric with respect to the choice of the option
underlying, once we work under the risk neutral measure associated with one of the currencies
involved in the option and the parameters are transformed via (17).

Let us consider a call option C(Si,j(t),Ki,j , τ), i, j = 1, .., N, i 6= j, on a generic FX rate
Si,j(t) = exp(xi,j(t)) with strike Ki,j , maturity T (τ = T − t is the time to maturity) and face

equal to one unit of the foreign currency. We write for the CIR parameters κk = κQ
i

k , θk = θQ
i

k

and so on, implicitly assuming that they have been transformed via (17) in the i-th risk neutral
measure Qi. Being an affine model, the (generalized) characteristic function conditioned on the
initial values

φi,j(ω, t, τ, x,V) = EQi
t [eiωx

i,j(T )|xi,j(t) = x,V(t) = V] (18)

can be derived analytically (here i =
√
−1). Standard numerical integration methods can then

be used to invert the Fourier transform to obtain the probability density at T or the vanilla price
via integration against the payoff, with overall limited computational effort. By applying standard
arguments (see e.g. Lewis (2000), Lipton (2002), Sepp (2003)) the value of a call option can be
expressed in terms of the integral of the product of the Fourier transform of the payoff and the
generalized characteristic function of the log-asset price3:

C(Si,j(t),Ki,j , τ) = e−r
iτ 1

2π

∫
Z
φi,j(−λ, t, τ, x,V)Φ(λ)dλ, (19)

where

Φ(λ) =

∫
Z
eiλx

(
ex −Ki,j

)+
dx

is the Fourier transform of the payoff function and Z denotes the strip of regularity of the payoff,
that is the admissible domain where the integral in (19) is well defined. In other words, the pricing
problem is essentially solved once the (conditional) characteristic function of the log-exchange rate

3Here we adopt the pricing method of Lewis (2000) who uses the characteristic function computed with a complex
argument, also called generalized characteristic function. The complex argument ω belongs to a strip of regularity
for the function φi,j in order to be able to integrate the payoff function. On the other hand, this method generalizes
the methodology introduced by Carr and Madan (1999) which involves the introduction of the so-called damping
integrating factor.
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is known. In what follows we calculate the moment generating function Gi,j(ω, t, τ, x,V) (Laplace
tranform) from which the characteristic function is easily derived via a rotation in the complex
plane φi,j(ω, t, τ, x,V) = Gi,j(iω, t, τ, x,V). The conditional Laplace transform is of a particularly
simple form, which is exponentially affine in the initial state of the process

Gi,j(ω, t, τ, x,V) = exp

[
ωx+

(
ri − rj

)
ω(τ) +

d∑
k=1

(
Ai,jk (τ) +Bi,jk (τ)Vk

)]
, (20)

where for k = 1, .., d:

Ai,jk (τ) =
2κkθk
ξ2
k

log
λ+
k − λ

−
k

λ+
k e

λ−
k (τ) − λ−k eλ

+
k (τ)

; (21)

Bi,jk (τ) =

(
ω2 − ω

)
2

(
aik − a

j
k

)2 1− e−
√

∆kτ

λ+
k e
−
√

∆kτ − λ−k
; (22)

∆k =
(
−κk + ω

(
aik − a

j
k

)
ρkξk

)2

− ξ2
k

(
ω2 − ω

) (
aik − a

j
k

)2

; (23)

λ±k =

(
−κk + ω

(
aik − a

j
k

)
ρkξk

)
±
√

∆k

2
. (24)

The derivation of this formula can be found in the Appendix.

5 Simultaneous calibration of FX triangles

5.1 Setup

In this section we show an example of simultaneous calibration to three market volatility surfaces of
options. We consider two currency triangles: EUR/USD/JPY as it appeared on the day 23/7/2010
and AUD/USD/JPY on 2/11/2012. Differences between the two sets of market data are due both
to the different currency pair involved, e.g. replacing the EUR with the larger yield carry-trade
AUD currency, and the different time-stamp. Note in particular the pronounced skew in the EU-
RUSD volatility (with out-of-the-money EUR puts more expensive than out-of-the-money EUR
calls, see Fig. 1) during the European debt crisis in mid 2010 and the almost symmetric shape of the
USDJPY volatilities in late 2012, which otherwise are normally characterized by out-of-the-money
USD puts that are more expensive than out-of-the-money USD calls, prior to Bank Of Japan
currency easing efforts and the then ongoing USD rally. All in all, the EUR/USD/JPY sample is
composed by three skewed (i.e., asymmetric) volatility surfaces, while the AUD/USD/JPY sample
has still two asymmetric volatility surfaces and a more symmetric one (USD/JPY). Thus, the two
case studies cover qualitatively different currency triangles. For each of the two case studies we
consider the implied volatility surfaces for each pair in the triangle, eg. for EUR/USD/JPY, the
pairs USD/EUR, USD/JPY and EUR/JPY, that is N = 3 with i = USD; EUR; JPY. The
volatility sample includes expiry dates ranging from 3 days to 5 years. The quotes follow the
standard Delta quoting conversion in the FX option market, we have quotes on DN, 25 Delta, 15
Delta, and 10 Delta4.

Let us concentrate here on the EUR/USD/JPY example, the other case follows the same pro-
cedure. We try to fit simultaneously the three volatility surfaces using two stochastic drivers,
d = 2. This choice yields a total number of parameters NP = 16, comparable to the number
of parameters in 3 independent Heston models (15 parameters). This choice should not lead to
overfitting instabilities. We work under the USD risk neutral measure to derive the option prices

4It is important to stress that in the forex market implied volatilities surfaces are expressed in terms of maturity
and Delta (see e.g. Wystup and Reiswich (2010), Clark (2011)): the market practice is to quote volatilities for
strangles and risk reversals which can then be employed to reconstruct a whole surface of implied volatilities via
an interpolation method (see e.g. Wystup and Reiswich (2010), Wystup (2006), Clark (2011)). Once we have the
quotes in terms of Delta, to perform the calibration we have to convert Deltas into strike prices. The procedure can
be found e.g. in Beneder and Elkenbracht-Huizing (2003).
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of the pairs EUR/USD and USD/JPY and the EUR measure for the EUR/JPY options, using
(19). We calibrate the CIR parameters in the USD measure κUSD

k , θUSD

k , ξUSD

k , ρUSD

k , k = 1, 2. The
parameters for the EUR/JPY are transformed to the EUR measure through Eqs. (17) and the
invariance property of correlation and vol-of-vol parameters.

The calibration is done via a standard non-linear least-squares optimizer that minimizes the
total calibration error in terms of the difference between calibrated and target implied volatities∑
n(σimp

n,market − σ
imp
n,model)

2. The use of a norm in price should be avoided as the numerical range
for option prices may be large, thus introducing a bias in the optimization. In fact, a norm in price
penalizes greatly high prices, so that the fit for short maturity options (which are cheaper) is quite
poor. For a more detailed discussion on the impact of the penalizing function on the calibrated
parameters we refer to Christoffersen and Jacobs (2004) and Da Fonseca and Grasselli (2011).

5.2 Calibration results

In Figs. 1, 2 and 3 we plot the market implied volatilities against those produced by the model.
The plots refer to the largest sample in Table 1. Market volatilities are denoted by crosses, model
volatilities are denoted by circles. The quality of the fit is comparable if not superior with respect
to what is usually achieved by means of the standard Heston model for a single currency pair. The
plots for the calibration on the sub-samples are completely analogous.

In Table 1 we report the result of the calibration of the model for the EUR/USD/JPY triangle,
whereas Fig. 4, reports the squared error in volatility for each moneyness/maturity. We have
performed the optimization considering different sets of expiries. The expiries considered in the
largest sample are the following: 1, 2, 3, 6, 9 months and 1 year. The result for this particular choice
of expiries is reported in the first column on the left. Then we have repeated the experiment by
excluding the largest expiry, 1 year. The result is reported in the second column. We proceed in this
way by excluding more and more expiries. The smallest sample is reported in the last column and
considers only options expiring in 1 and 2 months. In-sample squared errors in implied volatilities
are visualized in Figs. 5, 6, 7, and 8.

For the AUD/USD/JPY case, we limit ourselves to report in Figs. 9, 10 and 11 the result of
the fit on the largest sample, consisting of implied volatilities at 1, 2, 3, 6, 9 months and 1 year. In
Fig. 12 we show the squared errors in implied volatilities for each point of the surface that we are
considering. We report in Table 15 the calibrated parameters. The calibration yields a satisfactory
fit to the market data. The agreement is similar to the that was found for the EUR/USD/JPY
example, despite of the qualitatively different market features.

5.3 Parameters stability tests

In this subsection we comment on the stability of the parameters via two different types of anal-
ysis. We first measure the impact on the parameters resulting from the calibration procedure.
Secondly, we fit the model parameters to a certain sample and then use these parameters to price
an option which is not included in the sample. If the out-of-sample prices are close to the market,
the model gives a reasonable description of the joint underlying FX rates dynamics. Moreover, the
calibration can be done on a limited set of expiries, reducing the computation effort of the optimizer.

As far as the first analysis is concerned, we show in Table 2 the relative variations computed
with respect to the largest sample. With the exception of κ1, κ2 we can see that there is a good de-
gree of stability of the parameters across the sub-samples. Consequently, we perform also a second
calibration experiment, where we fix κk = 1, k = 1, 2. The results of this experiment are outlined
in Table 3. The relative variation of the parameters can be found in Table 4. We notice that with
this choice we get a good degree of stability, the most relevant fluctuation is now around 20% for θ1

5.

Let us now turn our attention to the out-of-sample exercise. In Tables 5, 6, 7 and 8 we show the
difference between the market and the out-of-sample volatility for all sub-samples. The differences

5We do not report, for the sake of brevity, the volatility surfaces arising from this last experiment, but the quality
of the fit is the same as before.
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are always well below one volatility point.

5.4 Moment explosion

In this subsection we discuss some caveats coming from the parameters we obtained through the
calibration procedure. It is known that for square root processes 0 represents an attainable state
when the Feller condition is not satisfied, that is when 2κkθk < ξ2

k. In our modelling framework we
have two volatility factors, hence we can perform the check for each factor. In Table 13 we report
the quantity Fk = 2κkθk− ξ2

k, k = 1, 2. We observe violations of the Feller condition, which consti-
tutes a well-known fact in the FX derivative practice, shared with the standard one-dimensional
Heston model, see Clark (2011). This phenomenon is strictly related to another established fact in
stochastic volatility models, namely the pathological moment explosions which might often impact
the stability of the pricing tools, see e.g. Andersen and Piterbarg (2007), Keller-Ressel (2011) and
Glasserman and Kim (2011). The model dynamics might lead to the explosion of moments, which
become infinite in finite time. This fact might lead to complications/instabilities in standard nu-
merical pricing routines mostly for large maturities. We can calculate the time of moment explosion
for all currency pairs, see Andersen and Piterbarg (2007). In Table 14 we consider moments up to
order 5.

6 Conclusions

We have introduced a new multi-factor stochastic volatility Heston-based model that can provide
an accurate joint description of multiple FX vanilla options across different currency pairs. The
emphasis in the model specification has been in the preservation of the specific symmetries of FX
markets. Differently from other asset classes, appropriate multiplications/divisions and inversions
of FX rates are still FX rates. The choice of our simple CIR-based dynamics for the stochastic
variance is instrumental in achieving this symmetry. We have indeed proven that our model is
invariant with respect to the choice of the numéraire once the model parameters are appropriately
transformed. The model is always of affine-type independently of which currency is used as risk
free, leading to semi-analytical expression for all vanilla options between any of two currencies.
This property is crucial when it comes to calibrating the model. In a standard global optimization
algorithm we can consider together vanilla options in all currency pairs and achieve a simultaneous
fit to the different volatility surfaces with reasonable computational effort.

The model shares naturally several stylized facts with the Heston model. The Feller condition
is often violated when fitting the model to FX volatility surfaces, a common observation in the
practice. Moreover, higher moments of the spot distribution explode at finite time; a property that
might lead to complications/instabilities in standard numerical pricing routines mostly when ma-
turities are large. Finally, like any pure stochastic volatility model, our model cannot be expected
to deliver a perfect calibration of the vanilla surfaces across all Deltas and tenors, especially in the
short end.

Having said that, the main result of the paper is a promising joint calibration of the model to
the implied volatilities smiles of the EUR/USD/JPY and AUD/JPY/USD FX triangles. The fit
remains satisfactory across the currency pairs, Deltas and tenors which were considered. Several
in- and out-of-sample calibration studies in fact have proven the robustness of the calibration,
especially once the mean reversion speed κ has been fixed. Asymptotic expansions of the implied
volatility surface are also included in the Appendix as they shed light on the meaning of the different
model parameters and can help speeding up the calibration procedure by giving an educated guess
for the initial parameters in the optimization procedure.

The price to pay in order to obtain a consistent simultaneous calibration to all volatilities
surfaces is that the instantaneous volatilities of the currency pairs do not have single dedicated
drivers. Their dynamics is rather brought about by a linear combination of several hidden stochastic
factors. As in any principal component analysis, it is not easy to assign a financial meaning to
each model parameter. As this study has shown, this appealing feature has most likely to be
traded away in order to capture the complex phenomenology of the present global and widely
interconnected FX markets.
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8 Images and Tables

8.1 Calibration of EUR/USD/JPY

6 5 4 3 2

V1 0.0137 0.0137 0.0136 0.0137 0.0135
V2 0.0391 0.0365 0.0278 0.0293 0.0273
aUSD

1 0.6650 0.6713 0.6165 0.6371 0.6518
aUSD

2 1.0985 1.0531 0.9700 0.9795 0.9514
aEUR

1 1.6177 1.6222 1.5648 1.5804 1.6061
aEUR

2 1.3588 1.3208 1.2746 1.2797 1.2737
aJPY

1 0.2995 0.3151 0.2732 0.3035 0.3116
aJPY

2 1.6214 1.5922 1.5882 1.5858 1.5816
κ1 0.9418 1.1432 1.5138 1.7349 1.8685
κ2 1.7909 1.9998 1.9014 0.7142 0.7210
θ1 0.0370 0.0349 0.0329 0.0329 0.0297
θ2 0.0909 0.0839 0.0670 0.1236 0.1091
ξ1 0.4912 0.5138 0.5542 0.5847 0.5962
ξ2 1.0000 0.9997 0.8736 0.8318 0.8568
ρ1 0.5231 0.5118 0.4916 0.4727 0.4567
ρ2 -0.3980 -0.3956 -0.3943 -0.3902 -0.3728

Res. norm. 4.6996e-004 3.4244e-004 1.8618e-004 1.1145e-004 5.2514e-005

Table 1: This table reports the results of the calibration of the model. We concentrate on the
two factor case. For each column, a different number of expiries, ranging from 6 to 2, is chosen.
More specifically, 6 means that the following expiries are considered: 1, 2, 3, 6, 9 months and
1 year, whereas 5 means that the longest maturity, i.e. 1 year is excluded from the sample. We
proceed analogously in the subsequent columns by excluding the longest expiry date up to the point
where we perform the calibration on the 2-sample, where we fit the smile at 1 and 2 months. We
consider market data as of 23rd July 2010. The reference exchange rates are SJPY,EUR(0) = 112.29,
SUSD,EUR(0) = 1.2921 and SJPY,USD(0) = 86.90. Res. norm. is the residual of the objective function
for the given set of parameters.

5 4 3 2

V1 0.1244% -0.2866% 0.0960% -1.1068%
V2 -6.5645% -28.9269% -25.0960% -30.0900%
aUSD

1 0.9368% -7.3035% -4.1928% -1.9883%
aUSD

2 -4.1309% -11.6957% -10.8309% -13.3918%
aEUR

1 0.2745% -3.2714% -2.3082% -0.7190%
aEUR

2 -2.7989% -6.1962% -5.8255% -6.2652%
aJPY

1 5.1809% -8.8010% 1.3206% 4.0245%
aJPY

2 -1.7985% -2.0460% -2.1910% -2.4522%
κ1 21.3845% 60.7349% 84.2055% 98.3943%
κ2 11.6649% 6.1715% -60.1213% -59.7402%
θ1 -5.6226% -11.1784% -11.0318% -19.7810%
θ2 -7.7145% -26.3082% 36.0430% 20.0453%
ξ1 4.6020% 12.8359% 19.0424% 21.3784%
ξ2 -0.0244% -12.6344% -16.8201% -14.3193%
ρ1 -2.1702% -6.0305% -9.6495% -12.7003%
ρ2 -0.6031% -0.9375% -1.9522% -6.3351%

Table 2: In this table we consider the calibration on the largest sample as a basic case. We report
the percentage difference between the model parameters resulting from the subsamples.
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6 5 4 3 2

V1 0.0438 0.0430 0.0405 0.0421 0.0412
V2 0.0465 0.0450 0.0408 0.0370 0.0335
aUSD

1 0.7201 0.7165 0.7086 0.7099 0.7082
aUSD

2 1.0211 1.0182 1.0095 0.9915 0.9685
aEUR

1 1.2517 1.2534 1.2603 1.2477 1.2538
aEUR

2 1.2624 1.2616 1.2619 1.2575 1.2589
aJPY

1 0.5159 0.5155 0.5093 0.5206 0.5142
aJPY

2 1.5053 1.5083 1.5223 1.5307 1.5372
θ1 0.1154 0.1169 0.1203 0.1391 0.1300
θ2 0.1344 0.1377 0.1350 0.1253 0.1081
ξ1 0.8892 0.8898 0.8992 0.9700 0.9925
ξ2 0.9338 0.9450 0.9458 0.9616 0.9659
ρ1 0.5226 0.5132 0.4950 0.4756 0.4591
ρ2 -0.4042 -0.4030 -0.4004 -0.3887 -0.3721

Res. Norm. 0.0013 4.7824e-04 1.9968e-04 2.6412e-04 4.7716e-04

Table 3: This table reports the results of the calibration of the model. In this case we are assuming
κk = 1, k = 1, 2. For each column, a different number of expiries, ranging from 6 to 2, is chosen.
Res. norm. is the residual of the objective function for the given set of parameters.

5 4 3 2

V1 -1.8915% -7.6930% -3.8971% -5.9284%
V2 -3.1003% -12.1687% -20.3324% -28.0033%
aUSD

1 -0.5056% -1.6003% -1.4171% -1.6497%
aUSD

2 -0.2832% -1.1348% -2.9033% -5.1535%
aEUR

1 0.1322% 0.6825% -0.3164% 0.1703%
aEUR

2 -0.0691% -0.0438% -0.3903% -0.2826%
aJPY

1 -0.0857% -1.2718% 0.9087% -0.3396%
aJPY

2 0.1994% 1.1235% 1.6872% 2.1131%
θ1 1.3740% 4.2649% 20.5911% 12.6966%
θ2 2.4412% 0.4181% -6.8073% -19.5908%
ξ1 0.0622% 1.1246% 9.0864% 11.6096%
ξ2 1.1985% 1.2881% 2.9747% 3.4434%
ρ1 -1.7994% -5.2886% -8.9844% -12.1501%
ρ2 -0.2922% -0.9392% -3.8297% -7.9304%

Table 4: In this table we consider the calibration on the largest sample as a basic case, when
κk = 1, k = 1, 2. We report the percentage difference between the model parameters resulting from
the subsamples.
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USD/EUR USD/JPY EUR/JPY

10DC -0.0006 -0.0002 -0.0027
15DC 0.0003 -0.0017
25DC -0.0012 0.0005 -0.0005

0 -0.0022 0.0009 0.0021
25DP -0.0008 0.0012 0.0042
15DP 0.0004 0.0031
10DP 0.0009 -0.0001 0.0011

Table 5: Out-of-sample performance. This table reports the raw difference between the market
implied volatility and the model generated implied volatility for 1 year, when we calibrate the
model to the previous 5 expiries. Moneyness levels follow the standard Delta quoting convention
in the FX option market, see Footnote 4. DC and DP stand for ”delta call” and ”delta put”
respectively. Blanks on the first column reflect missing market data for 15DC and 15DP.

USD/EUR USD/EUR USD/JPY USD/JPY EUR/JPY EUR/JPY
9m 1y 9m 1y 9m 1y

10DC -0.0031 0.0003 -0.0013 -0.0001 -0.0006 -0.0019
15DC -0.0007 0.0002 0.0008 -0.0012
25DC -0.0023 -0.0007 0.0004 0.0004 0.0021 -0.0006

0 -0.0021 -0.0021 0.0020 0.0006 0.0036 0.0012
25DP -0.0010 -0.0007 0.0011 0.0010 0.0028 0.0033
15DP -0.0008 0.0003 0.0004 0.0025
10DP -0.0006 0.0015 -0.0014 -0.0000 -0.0026 0.0007

Table 6: Out-of-sample performance. This table reports the raw difference between the market
implied volatility and the model generated implied volatility for 1 year and 9 months, when we
calibrate the model to the previous 4 expiries. Moneyness levels follow the standard Delta quoting
convention in the FX option market, see Footnote 4. DC and DP stand for ”delta call” and ”delta
put” respectively. Blanks on the first two columns reflect missing market data for 15DC and 15DP.
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USD/EUR
6m 9m 1y

10DC -0.0060 -0.0023 0.0015
25DC -0.0034 -0.0019 0.0002

0 -0.0018 -0.0020 -0.0017
25DP -0.0006 -0.0010 -0.0005
10DP 0.0002 -0.0002 0.0019

USD/JPY
6m 9m 1y

10DC -0.0058 -0.0011 0.0000
15DC -0.0042 -0.0005 0.0002
25DC -0.0009 0.0005 -0.0000

0 0.0016 0.0020 0.0000
25DP 0.0004 0.0009 0.0007
15DP -0.0019 -0.0012 0.0002
10DP -0.0037 -0.0020 -0.0002

EUR/JPY
6m 9m 1y

10DC -0.0008 -0.0003 -0.0009
15DC 0.0011 0.0007 -0.0006
25DC 0.0031 0.0015 -0.0005

0 0.0041 0.0025 0.0006
25DP 0.0014 0.0018 0.0026
15DP -0.0022 -0.0004 0.0019
10DP -0.0053 -0.0032 0.0003

Table 7: Out-of-sample performance. This table reports the raw difference between the market
implied volatility and the model generated implied volatility for 1 year, 9 and 6 months, when we
calibrate the model to the previous 3 expiries. Moneyness levels follow the standard Delta quoting
convention in the FX option market, see Footnote 4. DC and DP stand for ”delta call” and ”delta
put” respectively.
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USD/EUR
3m 6m 9m 1y

10DC -0.0062 -0.0043 -0.0006 0.0031
25DC -0.0027 -0.0022 -0.0007 0.0010

0 -0.0013 -0.0009 -0.0014 -0.0015
25DP -0.0006 0.0001 -0.0005 -0.0005
10DP 0.0008 0.0009 0.0003 0.0020

USD/JPY
3m 6m 9m 1y

10DC -0.0090 -0.0052 -0.0004 0.0007
15DC -0.0062 -0.0038 -0.0002 0.0003
25DC -0.0037 -0.0009 0.0003 -0.0006

0 0.0010 0.0014 0.0015 -0.0011
25DP -0.0004 0.0006 0.0009 0.0002
15DP -0.0022 -0.0014 -0.0008 0.0002
10DP -0.0039 -0.0029 -0.0013 0.0003

EUR/JPY
3m 6m 9m 1y

10DC -0.0045 -0.0003 0.0002 -0.0006
15DC -0.0021 0.0014 0.0009 -0.0007
25DC 0.0010 0.0030 0.0012 -0.0013

0 0.0030 0.0038 0.0019 -0.0008
25DP 0.0009 0.0014 0.0014 0.0016
15DP -0.0026 -0.0020 -0.0005 0.0013
10DP -0.0057 -0.0050 -0.0030 -0.0000

Table 8: Out-of-sample performance. This table reports the raw difference between the market
implied volatility and the model generated implied volatility for 1 year, 9, 6 and 3 months, when
we calibrate the model to the previous 2 expiries. Moneyness levels follow the standard Delta
quoting convention in the FX option market, see Footnote 4. DC and DP stand for ”delta call”
and ”delta put” respectively.

USD/EUR USD/JPY EUR/JPY

10DC 0.0058 0.0030 0.0046
15DC 0.0022 0.0035
25DC 0.0058 0.0009 0.0041

0 0.0035 0.0007 0.0019
25DP 0.0029 0.0024 0.0016
15DP 0.0027 -0.0012
10DP 0.0042 0.0029 -0.0044

Table 9: Out-of-sample performance. This table reports the raw difference between the market
implied volatility and the model generated implied volatility for 1 year, when we calibrate the
model to the previous 5 expiries and κk = 1, k = 1, 2. Moneyness levels follow the standard Delta
quoting convention in the FX option market, see Footnote 4. DC and DP stand for ”delta call”
and ”delta put” respectively. Blanks on the first column reflect missing market data for 15DC and
15DP.
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USD/EUR USD/EUR USD/JPY USD/JPY EUR/JPY EUR/JPY
9m 1y 9m 1y 9m 1y

10DC 0.0083 0.0092 0.0034 0.0052 0.0073 0.0090
15DC 0.0021 0.0042 0.0061 0.0078
25DC 0.0060 0.0092 0.0005 0.0029 0.0053 0.0079

0 0.0029 0.0066 -0.0000 0.0025 0.0024 0.0050
25DP 0.0033 0.0056 0.0026 0.0044 0.0025 0.0041
15DP 0.0034 0.0049 0.0006 0.0010
10DP 0.0062 0.0067 0.0041 0.0054 -0.0027 -0.0024

Table 10: Out-of-sample performance. This table reports the raw difference between the market
implied volatility and the model generated implied volatility for 1 year and 9 months, when we
calibrate the model to the previous 4 expiries and κk = 1, k = 1, 2. Moneyness levels follow the
standard Delta quoting convention in the FX option market, see Footnote 4. DC and DP stand for
”delta call” and ”delta put” respectively. Blanks on the first two columns reflect missing market
data for 15DC and 15DP.

USD/EUR
6m 9m 1y

10DC 0.0073 0.0116 0.0131
25DC 0.0042 0.0091 0.0128

0 0.0010 0.0056 0.0100
25DP 0.0020 0.0058 0.0087
10DP 0.0056 0.0088 0.0099

USD/JPY
6m 9m 1y

10DC 0.0025 0.0048 0.0067
15DC 0.0009 0.0030 0.0053
25DC -0.0013 0.0008 0.0034

0 -0.0028 -0.0004 0.0023
25DP 0.0002 0.0027 0.0048
15DP 0.0013 0.0041 0.0057
10DP 0.0022 0.0053 0.0067

EUR/JPY
6m 9m 1y

10DC 0.0051 0.0114 0.0138
15DC 0.0036 0.0099 0.0123
25DC 0.0022 0.0085 0.0120

0 -0.0001 0.0048 0.0083
25DP 0.0017 0.0047 0.0071
15DP 0.0010 0.0028 0.0040
10DP -0.0016 -0.0003 0.0006

Table 11: Out-of-sample performance. This table reports the raw difference between the market
implied volatility and the model generated implied volatility for 1 year, 9 and 6 months, when we
calibrate the model to the previous 3 expiries and κk = 1, k = 1, 2. Moneyness levels follow the
standard Delta quoting convention in the FX option market, see Footnote 4. DC and DP stand
for ”delta call” and ”delta put” respectively.
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USD/EUR
3m 6m 9m 1y

10DC 0.0057 0.0085 0.0125 0.0136
25DC 0.0023 0.0042 0.0086 0.0121

0 -0.0018 -0.0000 0.0041 0.0082
25DP -0.0008 0.0010 0.0043 0.0068
10DP 0.0025 0.0050 0.0077 0.0086

USD/JPY
3m 6m 9m 1y

10DC 0.0013 0.0026 0.0046 0.0063
15DC 0.0004 0.0003 0.0020 0.0040
25DC -0.0015 -0.0028 -0.0012 0.0010

0 -0.0033 -0.0051 -0.0033 -0.0010
25DP -0.0010 -0.0015 0.0005 0.0022
15DP -0.0004 0.0002 0.0025 0.0038
10DP -0.0002 0.0017 0.0043 0.0053

EUR/JPY
3m 6m 9m 1y

10DC 0.0002 0.0048 0.0106 0.0127
15DC -0.0009 0.0025 0.0082 0.0101
25DC -0.0026 -0.0001 0.0056 0.0086

0 -0.0038 -0.0035 0.0008 0.0037
25DP -0.0008 -0.0007 0.0016 0.0034
15DP -0.0010 -0.0007 0.0005 0.0012
10DP -0.0021 -0.0026 -0.0020 -0.0015

Table 12: Out-of-sample performance. This table reports the raw difference between the market
implied volatility and the model generated implied volatility for 1 year, 9, 6 and 3 months, when
we calibrate the model to the previous 2 expiries and κk = 1, k = 1, 2. Moneyness levels follow the
standard Delta quoting convention in the FX option market, see Footnote 4. DC and DP stand
for ”delta call” and ”delta put” respectively.

6 5 4 3 2

k = 1 -0.1715 -0.1841 -0.2076 -0.2276 -0.2445
k = 2 -0.6745 -0.6640 -0.5086 -0.5153 -0.5768

Table 13: For all k = 1, 2 and for each sample we report the quantity 2κkθk − ξ2
k. In all cases the

quantity is negative and its absolute value is a measure of the violation of the Feller condition.

Order SUSD,EUR SJPY,USD SJPY,EUR

1 +∞ +∞ +∞
2 +∞ 12.1962 5.1612
3 +∞ 2.9537 2.0580
4 3.3968 1.7990 1.3763
5 2.0070 2.0819 1.0614

Table 14: Times of moment explosions for moments up to order 5 for the three currency pairs.
First moments are always finite.
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Figure 1: Calibration of the USD/EUR implied volatility surface. Market data as of 23/7/2010.
Market volatilities are denoted by crosses, model volatilities are denoted by circles. Moneyness
levels follow the standard Delta quoting convention in the FX option market, see Footnote 4. DC
and DP stand for ”delta call” and ”delta put” respectively.
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Figure 2: Calibration of the USD/JPY implied volatility surface. Market data as of 23/7/2010.
Market volatilities are denoted by crosses, model volatilities are denoted by circles. Moneyness
levels follow the standard Delta quoting convention in the FX option market, see Footnote 4. DC
and DP stand for ”delta call” and ”delta put” respectively.

Figure 3: Calibration of the EUR/JPY implied volatility surface. Market data as of 23/7/2010.
Market volatilities are denoted by crosses, model volatilities are denoted by circles. Moneyness
levels follow the standard Delta quoting convention in the FX option market, see Footnote 4. DC
and DP stand for ”delta call” and ”delta put” respectively.
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Figure 4: In-sample implied volatilities squared error for the joint calibration on 1m, 2m, 3m, 6m,
9m and 1y. The associated model parameters may be found in Table 1, column ”6”.

Figure 5: In-sample implied volatilities squared error for the joint calibration on 1m, 2m, 3m, 6m,
and 9m. The associated model parameters may be found in Table 1, column ”5”.
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Figure 6: In-sample implied volatilities squared error for the joint calibration on 1m, 2m, 3m, and
6m. The associated model parameters may be found in Table 1, column ”4”.

Figure 7: In-sample implied volatilities squared error for the joint calibration on 1m, 2m, and 3m.
The associated model parameters may be found in Table 1, column ”3”.
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Figure 8: In-sample implied volatilities squared error for the joint calibration on 1m, and 2m. The
associated model parameters may be found in Table 1, column ”2”.

8.2 Calibration of AUD/USD/JPY

6 5 4 3 2

V1 0.0115 0.0117 0.0109 0.0124 0.0133
V2 0.0176 0.0159 0.0100 0.0196 0.0171
aUSD

1 0.5142 0.5204 0.5097 0.5266 0.5184
aUSD

2 1.3692 1.3757 1.4358 1.4075 1.3909
aAUD

1 0.8361 0.8179 0.7874 0.7681 0.7516
aAUD

2 0.7999 0.7789 0.6823 0.8455 0.7657
aJPY

1 1.2029 1.2047 1.2211 1.2159 1.2104
aJPY

2 1.5020 1.4957 1.5534 1.4756 1.4596
κ1 1.9865 1.2988 0.2464 2.0000 2.0000
κ2 0.8134 0.2298 0.0647 1.2270 1.8346
θ1 0.0314 0.0398 0.1351 0.0249 0.0182
θ2 0.0823 0.2332 0.5798 0.0608 0.0327
ξ1 0.7196 0.6358 0.5264 0.5793 0.6086
ξ2 1.0000 0.8956 0.7317 1.0000 1.0000
ρ1 0.3337 0.3384 0.3408 0.3225 0.3283
ρ2 -0.4451 -0.4455 -0.4416 -0.3910 -0.3834

Res. Norm. 8.2178e-04 7.6368e-04 0.0016 0.0010 5.4606e-05

Table 15: This table reports the results of the calibration of the model. We concentrate on the two
factor case. For each column, a different number of expiries, ranging from 6 to 2, is chosen. More
specifically, 6 means that the following expiries are considered: 1, 2, 3, 6, 9 months and 1 year,
whereas 5 means that the longest maturity, i.e. 1 year is excluded from the sample. We proceed
analogously in the subsequent columns by excluding the longest expiry date up to the point where
we perform the calibration on the 2-sample, where we fit the smile at 1 and 2 months. We consider
market data as of 2nd November 2012. The reference exchange rates are SJPY,AUD(0) = 83.29,
SUSD,AUD(0) = 1.0375 and SJPY,USD(0) = 80.28.
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Figure 9: Calibration of the USD/JPY implied volatility surface. Market data as of 2/11/2012.
Market volatilities are denoted by crosses, model volatilities are denoted by circles. Moneyness
levels follow the standard Delta quoting convention in the FX option market, see Footnote 4. DC
and DP stand for ”delta call” and ”delta put” respectively.

Figure 10: Calibration of the AUD/USD implied volatility surface. Market data as of 2/11/2012.
Market volatilities are denoted by crosses, model volatilities are denoted by circles. Moneyness
levels follow the standard Delta quoting convention in the FX option market, see Footnote 4. DC
and DP stand for ”delta call” and ”delta put” respectively.
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Figure 11: Calibration of the AUD/JPY implied volatility surface. Market data as of 2/11/2012.
Market volatilities are denoted by crosses, model volatilities are denoted by circles. Moneyness
levels follow the standard Delta quoting convention in the FX option market, see Footnote 4. DC
and DP stand for ”delta call” and ”delta put” respectively.

Figure 12: In-sample implied volatilities squared error for the joint calibration on 1m, 2m, 3m,
6m, 9m and 1y. The associated model parameters may be found in Table 15, column ”6”.
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9 Appendix A: The conditional Laplace transform

Recall that φ (ω, t, τ, x,V) = G(iω, t, τ, x,V), with xi,j(t) = logSi,j(t). The functions φ,G rep-
resent resp. the characteristic function and the moment generating function of the log-exchange
rate. In order to determine these quantities, we first need to write the PDE satisfied by G. First
of all we write down the dynamics of x = xi,j :

dx(t) =

((
ri − rj

)
− 1

2
(ai − aj)>Diag (V(t))

(
ai − aj

))
dt

+
(
ai − aj

)>√
Diag (V(t))dZQi(t). (25)

We also compute the following covariation terms for k = 1, .., d:

d 〈x, Vk〉t = d

〈∫ .

0

(
ai − aj

)>√
Diag (V(u))dZQi(u),

∫ .

0

ξk
√
Vk(u)ρkdZ

Qi
k (u)

〉
t

= d

〈∫ .

0

(
aik − a

j
k

)√
Vk(u)dZQi

k (u),

∫ .

0

ξk
√
Vk(u)ρkdZ

Qi
k (u)

〉
t

=
(
aik − a

j
k

)
Vk(t)ξkρkdt. (26)

The Laplace transform G solves the following backward Kolmogorov equation Karatzas and Shreve
(1991):

− ∂G

∂t
=

1

2

∂2G

∂x2

(
ai − aj

)>
Diag (V)

(
ai − aj

)
+

d∑
k=1

∂2G

∂x∂Vk

(
aik − a

j
k

)
Vkξkρk +

1

2

d∑
k=1

∂2G

∂V 2
k

ξ2
kVk

+

((
ri − rj

)
− 1

2

(
ai − aj

)>
Diag (V)

(
ai − aj

)) ∂G

∂x

+

d∑
k=1

∂G

∂Vk
κk (θk − Vk) (27)

with terminal condition G (ω, T, 0, x,V) = eωx with ω ∈ R. In order to solve this problem we look
for an exponential affine solution of the form:

G (ω, t, τ, x,V) = exp

(
A(t, T ) +

d∑
k=1

Bk(t, T )Vk + C(t, T )x

)
, (28)

for some deterministic functions A,Bk, C that may depend on both t, T . Upon substitution of the
guess and recognition of the terms we obtain the following system of d+ 2 ODE’s:

∂A

∂t
+

d∑
k=1

Bk(t, T )κkθk +
(
ri − rj

)
C(t, T ) = 0; (29)

∂Bk
∂t

+
1

2
C2(t, T )

(
aik − a

j
k

)2

+ C(t, T )Bk(t, T )
(
aik − a

j
k

)
ρkξk

+
1

2
B2
k(t, T )ξ2

k −
1

2

(
aik − a

j
k

)2

C(t, T )−Bk(t, T )κk = 0; (30)

∂C

∂t
= 0, (31)

with terminal conditions: A(T, T ) = 0, Bk(T, T ) = 0, C(T, T ) = ω for k = 1, .., d. From (31)
and its terminal condition, we deduce that C(t, T ) = ω for t ∈ [0, T ], so we can rewrite the system
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as follows:

∂A

∂t
+

d∑
k=1

κkθkBk(t, T ) +
(
ri − rj

)
ω = 0; (32)

∂Bk
∂t

+
1

2
B2
k(t, T )ξ2

k +
(
−κk + ω

(
aik − a

j
k

)
ρkξk

)
Bk(t, T )

+
ω2 − ω

2

(
aik − a

j
k

)2

= 0, k = 1, .., d. (33)

Now for k = 1, .., d we assume that Bk(t, T ) can be written by means of a function Ek(t, T ) and
set:

Bk(t, T ) =
∂
∂tEk(t, T )
ξ2k
2 Ek(t, T )

, (34)

then the solution for (33) is:

Bk(t, T ) =

(
ω2 − ω

)
2

(
aik − a

j
k

)2 1− e−
√

∆k(T−t)

λ+
k e
−
√

∆k(T−t) − λ−k
, (35)

with

∆k =
(
−κk + ω

(
aik − a

j
k

)
ρkξk

)2

− ξ2
k

(
ω2 − ω

) (
aik − a

j
k

)2

(36)

λ±k =

(
−κk + ω

(
aik − a

j
k

)
ρkξk

)
±
√

∆k

2
. (37)

Equipped with the solution for Bk(t, T ) we can now compute A(t, T ) as follows:

A(T, T )−A(t, T ) =

∫ T

t

∂

∂u
A(u, T )du

A(t, T ) =

∫ T

t

d∑
k=1

κkθkBk(u, T ) +
(
ri − rj

)
ωdu

=
(
ri − rj

)
ω(T − t) +

d∑
k=1

κkθk

∫ T

t

Bk(u, T )du

=
(
ri − rj

)
ω(T − t) +

d∑
k=1

2κkθk
ξ2
k

∫ T

t

∂
∂tEk(t, T )

Ek(t, T )
du, (38)

which implies that the solution for A(t, T ) is

A(t, T ) =
(
ri − rj

)
ω(T − t) +

d∑
k=1

2κkθk
ξ2
k

log
λ+
k − λ

−
k

λ+
k e

λ−
k (T−t) − λ−k eλ

+
k (T−t)

=
(
ri − rj

)
ω(T − t) +

d∑
k=1

Ak(t, T ), (39)

where the functions Ak(t, T ) are implicitly defined by the last equality for k = 1, .., d. Now we
obtain the statement of the proposition once we replace Bi,jk (τ) = Bk(t, T ), Ai,jk (τ) = Ak(t, T ) with
τ = T − t.

10 Appendix B: Expansions

The calibrations that were presented in Sec. 5 were performed using a deterministic gradient-based
optimizers of the squared distance between the model implied volatilities and market ones. Model
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implied volatilities are extracted from the prices produced by the FFT routine. The success of the
optimization routine might be jeopardized by the likely existence of multiple local minima. Hence,
it is crucial to start with appropriate initial guess for the model parameters that are as close as
possible to the global minimum. To this aim, approximate solutions for the option prices are very
useful in providing good initial guesses for the parameters.

We present here an approximate expression for the option prices under the multi-Heston model
which is asymptotically valid for small vol-of-vol parameters. The derivation of this formula, which
is reported in the next Appendix, relies on arguments which may be found in Lewis (2000) and
Da Fonseca and Grasselli (2011) (we drop all currency indices, it is intended that we are considering
the (i, j) FX pair).

Proposition 1. Assume that all vol-of-vol parameters ξk, k = 1, .., d have been scaled by the same
factor α > 0. Then the call price C(S(t),K, τ) in the Multifactor Heston-based exchange model
can be approximated in terms of the scale factor α by differentiating the Black Scholes formula
CBS (S(t),K, σ, τ) with respect to the log exchange rate x(t) = lnS(t) and the integrated variance
v = σ2τ :

C(S(t),K, τ) ≈ CBS (S(t),K, σ, τ)

+ α

d∑
k=1

(
A(1)
k (τ) + B(1)

k (τ)Vk

)
∂2
xvCBS (S(t),K, σ, τ)

+ α2
d∑
k=1

(
A(2)
k (τ) + B(2)

k (τ)Vk

)
∂2
vvCBS (S(t),K, σ, τ)

+ α2
d∑
k=1

(
A(3)
k (τ) + B(3)

k (τ)Vk

)
∂3
xxvCBS (S(t),K, σ, τ)

+
α2

2

[
d∑
k=1

(
A(1)
k (τ) + B(1)

k (τ)Vk

)]2

∂4
xxvvCBS (S(t),K, σ, τ) . (40)

We have defined τ = T − t and the auxiliary real deterministic functions B(0)
k ,B(1)

k ,B(2)
k ,B(3)

k , k =
1, .., d as

B(0)
k (τ) =

(
aik − a

j
k

)2 1− e−κkτ

κk
; (41)

B(1)
k (τ) =

(
aik − a

j
k

)3

ρkξk

(
1

κ2
k

− e−κkτ

κ2
k

− τe−κkτ

κk

)
; (42)

B(2)
k (τ) =

(
aik − a

j
k

)4 ξ2
k

2κ2
k

(
1− e−2κkτ

κk
− 2τe−κkτ

)
; (43)

B(3)
k (τ) =

(
aik − a

j
k

)4

ρ2
kξ

2
k

(
1− e−κkτ

κ3
k

− τe−κkτ

κ2
k

− τ2e−κkτ

2κk

)
(44)

and A(0)
k ,A(1)

k ,A(2)
k ,A(3)

k , k = 1, .., d as

A(0)
k (τ) =

(
aik − a

j
k

)2

θk

(
τ +

e−κkτ − 1

κk

)
; (45)

A(1)
k (τ) =

(
aik − a

j
k

)3

θkρkξk

(
τ

κk
+ 2

e−κkτ − 1

κ2
k

+
τe−κkτ

κk

)
; (46)

A(2)
k (τ) =

(
aik − a

j
k

)4

θkρ
2
kξ

2
k

(
τ

κk
+
e−κkτ − 1

κ3
k

+
τe−κkτ

κ2
k

−e
−κkτ − 1

κ2
k

+
τ2e−κkτ

2κk
− τe−κkτ

κk
+
e−κkτ − 1

κk

)
; (47)

A(3)
k (τ) =

(
aik − a

j
k

)4

θkρ
2
kξ

2
k

(
τ

κ2
k

+ 3
e−κkτ − 1

κ3
k

+ 2
τe−κkτ

κ2
k

+
τ2e−κkτ

2κk

)
. (48)
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Finally, the integrated variance reads

v = σ2τ =

d∑
k=1

(
A(0)
k (τ) + B(0)

k (τ)Vk
)
. (49)

Proof. The starting point is given by the Riccati ODE (33) expressed in terms of time-to-maturity
τ = T − t and perturbed by introducing the vol-of-vol scale parameter α:

∂Bk
∂τ

=
1

2
B2
k(τ)α2ξ2

k +
(
−κk + ω

(
aik − a

j
k

)
ρkαξk

)
Bk(τ)

+
ω2 − ω

2

(
aik − a

j
k

)2

, k = 1, .., d. (50)

We consider the following expansion in terms of α: Bk(τ) = Bk,0(τ) + αBk,1(τ) + α2Bk,2(τ). By
plugging in the expansion and upon recognition of terms we obtain the following system of ODE’s:

∂Bk,0
∂τ

= −κkBk,0(τ) +
ω2 − ω

2

(
aik − a

j
k

)2

; (51)

∂Bk,1
∂τ

= −κkBk,1(τ) + ω
(
aik − a

j
k

)
ρkξkBk,0(τ); (52)

∂Bk,2
∂τ

= −κkBk,2(τ) + ω
(
aik − a

j
k

)
ρkξkBk,1(τ) +

1

2
B2
k,0(τ)ξ2

k. (53)

If we denote γ := ω2−ω
2 then the solutions are easily computed as:

Bk,0(τ) = Bk,0(0)︸ ︷︷ ︸
=0

e−κkτ + e−κkτ
∫ τ

0

eκkuγ
(
aik − a

j
k

)2

du

= γB(0)
k (τ); (54)

Bk,1(τ) = Bk,1(0)︸ ︷︷ ︸
=0

e−κkτ + e−κkτ
∫ τ

0

eκkuω
(
aik − a

j
k

)
ρkξkγB(0)

k (u)du

= ωγB(1)
k (τ); (55)

Bk,2(τ) = Bk,2(0)︸ ︷︷ ︸
=0

e−κkτ + e−κkτ
∫ τ

0

eκkuω2γ
(
aik − a

j
k

)
ρkξkB(1)

k (u)du

+ e−κkτ
∫ τ

0

eκkuγ
ξ2
k

2

(
B(0)
k (u)

)2

du

= ω2γB(3)
k (τ) + γ2B(2)

k (τ). (56)

Then we can write the function Bk(τ) as follows:

Bk(τ) = γB(0)
k (τ) + αωγB(1)

k (τ) + α2
(
ω2γB(3)

k (τ) + γ2B(2)
k (τ)

)
. (57)

A direct substitution of (57) into (32) allows us to express the function A(τ):

A(τ) = ω
(
ri − rj

)
τ +

d∑
k=1

κkθk

∫ τ

0

Bk(u)du

= ω
(
ri − rj

)
τ + γ

d∑
k=1

κkθk

∫ τ

0

B(0)
k (u)du︸ ︷︷ ︸

:=A(0)
k (τ)

+ωγα

d∑
k=1

κkθk

∫ τ

0

B(1)
k (u)du︸ ︷︷ ︸

:=A(1)
k (τ)

+ ω2γα2
d∑
k=1

κkθk

∫ τ

0

B(3)
k (u)du︸ ︷︷ ︸

:=A(3)
k (τ)

+α2γ2
d∑
k=1

κkθk

∫ τ

0

B(2)
k (u)du︸ ︷︷ ︸

:=A(2)
k (τ)

. (58)
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We consider then the price in terms of Fourier transform as in (19) by replacing the argument
ω = iλ. A Taylor-McLaurin expansion w.r.t. α gives the following:

C(S(t),K, τ) ≈ e−r
iτ

2π

∫
Z
e
iλ(ri−rj)τ+iλx+γ

∑d
k=1

(
A(0)
k (τ)+B(0)

k (τ)Vk

)
Φ(λ)dλ

+ α

d∑
k=1

(
A(1)
k (τ) + B(1)

k (τ)Vk

)
× e−r

iτ

2π

∫
Z
γiλe

iλ(ri−rj)τ+iλx+γ
∑d
k=1

(
A(0)
k (τ)+B(0)

k (τ)Vk

)
Φ(λ)dλ

+ α2
d∑
k=1

(
A(2)
k (τ) + B(2)

k (τ)Vk

)
× e−r

iτ

2π

∫
Z
γ2e

iλ(ri−rj)τ+iλx+γ
∑d
k=1

(
A(0)
k (τ)+B(0)

k (τ)Vk

)
Φ(λ)dλ

+ α2
d∑
k=1

(
A(3)
k (τ) + B(3)

k (τ)Vk

)
× e−r

iτ

2π

∫
Z
γi2λ2e

iλ(ri−rj)τ+iλx+γ
∑d
k=1

(
A(0)
k (τ)+B(0)

k (τ)Vk

)
Φ(λ)dλ

+
α2

2

[
d∑
k=1

(
A(1)
k (τ) + B(1)

k (τ)Vk

)]2

× e−r
iτ

2π

∫
Z
γ2i2λ2e

iλ(ri−rj)τ+iλx+γ
∑d
k=1

(
A(0)
k (τ)+B(0)

k (τ)Vk

)
Φ(λ)dλ.

(59)

Recall now from (49) the definition of the integrated Black-Scholes variance. In the previous
formula, in the first term on the right hand side, we recognise the Black-Scholes price in terms of
the characteristic function when the integrated variance is v = σ2τ :

CBS (S(t),K, σ, τ) =
e−r

iτ

2π

∫
Z
eiλ(r

i−rj)τ+iλx+
(iλ)2−iλ

2 vΦ(λ)dλ, (60)

so that the price expansion is of the form

C(S(t),K, τ) ≈ CBS (S(t),K, σ, τ)

+ α

d∑
k=1

(
A(1)
k (τ) + B(1)

k (τ)Vk

)
∂2
xvCBS (S(t),K, σ, τ)

+ α2
d∑
k=1

(
A(2)
k (τ) + B(2)

k (τ)Vk

)
∂2
vvCBS (S(t),K, σ, τ)

+ α2
d∑
k=1

(
A(3)
k (τ) + B(3)

k (τ)Vk

)
∂3
xxvCBS (S(t),K, σ, τ)

+
α2

2

[
d∑
k=1

(
A(1)
k (τ) + B(1)

k (τ)Vk

)]2

∂4
xxvvCBS (S(t),K, σ, τ) . (61)

From the previous expression we can deduce the relation defining the deterministic functions
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B(h)
k ,A(h)

k , h = 0, ..., 3.

B(0)
k (τ) =

(
aik − a

j
k

)2 1− e−κkτ

κk
; (62)

B(1)
k (τ) =

(
aik − a

j
k

)
ρkξke

−κkτ
∫ τ

0

eκkuB(0)
k (u)du; (63)

B(2)
k (τ) =

ξ2
k

2κk
e−κkτ

∫ τ

0

eκku
(
B(0)
k (u)

)2

du; (64)

B(3)
k (τ) =

(
aik − a

j
k

)
ρkξke

−κkτ
∫ τ

0

eκkuB(1)
k (u)du (65)

and

A(0)
k (τ) = κkθk

∫ τ

0

B(0)
k (u)du; (66)

A(1)
k (τ) = κkθk

∫ τ

0

B(1)
k (u)du; (67)

A(2)
k (τ) = κkθk

∫ τ

0

B(2)
k (u)du; (68)

A(3)
k (τ) = κkθk

∫ τ

0

B(3)
k (u)du. (69)

Computing the trivial integrals completes the proof.

We can now present another formula, which does not involve the computation of option prices,
and constitutes an approximation of the implied volatility surface for a short time to maturity.
This formula may constitute a useful alternative in order to get a quicker calibration for short
maturities and provides a good initial guess for the parameters in the calibration routine. The
proof is again provided in detail in the next Appendix.

Proposition 2. For a short time to maturity the implied volatility expansion in terms of the
vol-of-vol scale factor α in the multifactor Heston-based exchange model is given by:

σ2
imp ≈ σ2

0 + α

(
d∑
k=1

ρkξk
2

(
aik − a

j
k

)4

Vk

)
mf

σ2
0

+ α2
m2
f

12 (σ2
0)

2

 d∑
k=1

(
1 + 2ρ2

k

)
ξ2
k

(
aik − a

j
k

)4

Vk −
15

4σ2
0

(
d∑
k=1

ρkξk

(
aik − a

j
k

)3

Vk

)2
 ,

where σ2
0 =

(
ai − aj

)>
Diag(V)

(
ai − aj

)
and mf = log

(
Si,je(r

i−rj)τ

Ki,j

)
denotes the forward log-

moneyness.

Proof. We follow the procedure in Da Fonseca and Grasselli (2011). We suppose an expansion
for the integrated implied variance of the form v = σ2

impτ = ζ0 + αζ1 + α2ζ2 and we consider the
Black-Scholes formula as a function of the integrated implied variance and the log exchange rate
x = logS: CBS (S(t),K, σ, τ) = CBS

(
x(t),K, σ2

impτ, τ
)
. A Taylor-McLaurin expansion gives us the

following:

CBS

(
x(t),K, σ2

impτ, τ
)

= CBS (x(t),K, ζ0, τ) + αζ1∂vCBS (x(t),K, ζ0, τ)

+
α2

2

(
2ζ2∂vCBS (x(t),K, ζ0, τ) + ζ2

1∂
2
v2CBS (x(t),K, ζ0, τ)

)
. (70)

By comparing this with the price expansion (61) we deduce that the coefficients must be of the
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form:

ζ0 = v0; (71)

ζ1 =

∑d
k=1

(
A(1)
k (τ) + B(1)

k (τ)Vk

)
∂2
xvCBS

∂vCBS

; (72)

ζ2 =
−ζ2

1∂
2
vvCBS + 2

∑d
k=1

(
A(2)
k (τ) + B(2)

k (τ)Vk

)
∂2
vvCBS

2∂vCBS

+
2
∑d
k=1

(
A(3)
k (τ) + B(3)

k (τ)Vk

)
∂3
xxvCBS +

[∑d
k=1

(
A(1)
k (τ) + B(1)

k (τ)Vk

)]2
∂4
xxvvCBS

2∂vCBS

, (73)

where the Black-Scholes formula CBS

(
x(t),K, σ2

impτ, τ
)

is evaluated at the point (x,K, v0, τ). In
order to find the values of ζ1, ζ2, we differentiate (41)-(44) thus obtaining the following ODE’s:

∂B(0)
k

∂τ
= −κkB(0)

k (τ) +
(
aik − a

j
k

)2

;

∂B(1)
k

∂τ
= −κkB(1)

k (τ) +
(
aik − a

j
k

)
ρkξkB(0)

k (τ);

∂B(2)
k

∂τ
= −κkB(2)

k (τ) +
1

2
ξ2
kB

(0)
k (τ)2;

∂B(3)
k

∂τ
= −κkB(3)

k (τ) +
(
aik − a

j
k

)
ρkξkB(1)

k (τ).

We consider a Taylor-McLaurin expansion in terms of τ :

B(0)
k (τ) =

(
aik − a

j
k

)2

τ − τ2

2
κk

(
aik − a

j
k

)2

; (74)

B(1)
k (τ) =

τ2

2

(
aik − a

j
k

)3

ρkξk −
2

3
τ3κk

(
aik − a

j
k

)3

ρkξk; (75)

B(2)
k (τ) =

τ3

6
ξ2
k

(
aik − a

j
k

)4

; (76)

B(3)
k (τ) =

τ3

6

(
aik − a

j
k

)4

ρ2
kξ

2
k. (77)

Noting from (45)-(48) that A(i)
k are one order in τ higher than the corresponding B(i)

k , the following
approximations hold:

d∑
k=1

(
A(0)
k (τ) + B(0)

k (τ)Vk

)
=

d∑
k=1

(
aik − a

j
k

)2

Vkτ + o(τ); (78)

d∑
k=1

(
A(1)
k (τ) + B(1)

k (τ)Vk

)
=

d∑
k=1

ρkξk

(
aik − a

j
k

)3

Vk
τ2

2
+ o(τ2); (79)

d∑
k=1

(
A(2)
k (τ) + B(2)

k (τ)Vk

)
=

d∑
k=1

ξ2
k

(
aik − a

j
k

)4

Vk
τ3

6
+ o(τ3); (80)

d∑
k=1

(
A(3)
k (τ) + B(3)

k (τ)Vk

)
=

d∑
k=1

ρ2
kξ

2
k

(
aik − a

j
k

)4

Vk
τ3

6
+ o(τ3). (81)

We introduce two variables: the log-forward moneyness mf = log
(
Se(r

i−rj)τ

K

)
and

V =
(
ai − aj

)>
Diag(V)

(
ai − aj

)
τ . Then, from Lewis (2000), we consider the following ratios
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among the derivatives of the Black-Scholes formula:

∂2
xvCBS (x,K, V, τ)

∂vCBS (x,K, V, τ)
=

1

2
+
mf

V
; (82)

∂2
vvCBS (x,K, V, τ)

∂vCBS (x,K, V, τ)
=

m2
f

2V 2
− 1

2V
− 1

8
; (83)

∂3
xxvCBS (x,K, V, τ)

∂vCBS (x,K, V, τ)
=

1

4
+
mf − 1

V
+
m2
f

V 2
; (84)

∂4
xxvvCBS (x,K, V, τ)

∂vCBS (x,K, V, τ)
=

m4
f

2V 4
+
m2
f (mf − 1)

2V 3
. (85)

Upon substitution of (78)-(85) into (71)-(73), we obtain the values for ζi, i = 0, 1, 2 allowing us to
express the expansion of the implied volatility.

ζ0 =
(
ai − aj

)>
Diag(V)

(
ai − aj

)
τ ; (86)

ζ1 =

(
d∑
k=1

ρkξk
2

(
aik − a

j
k

)3

Vk

)
mf

(ai − aj)
>

Diag(V) (ai − aj)
τ ; (87)

ζ2 =
m2
f(

(ai − aj)
>

Diag(V) (ai − aj)
)2 τ

[
1

12

(
d∑
k=1

ξ2
k

(
aik − a

j
k

)4

Vk

)

+
1

6

(
d∑
k=1

ρ2
kξ

2
k

(
aik − a

j
k

)4

Vk

)
− 5

16

(∑d
k=1 ρkξk

(
aik − a

j
k

)3

Vk

)2

(ai − aj)
>

Diag(V) (ai − aj)

]
. (88)
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