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Abstract

This paper investigates the existence of pure strategy Nash equilibria in discontinuous and

nonquasiconcave games. We introduce a new notion of continuity, called weakly continuous

security, which is weaker than the most known weak notions of continuity, including the

continuous security of Barelli and Meneghel [2013], C-secure of McLennan, Monteiro and

Tourky [2011], generalized weakly transfer continuity of Nessah [2011], generalized better-

reply security of Carmona [2011], Barelli and Soza [2009], Barelli and Meneghel [2013],

lower single deviation property of Reny [2009], better-reply security of Reny [1999] and the

results of Prokopovych [2011, 2012] and Carmona [2009]. We show that a compact, convex

and weakly continuous secure Hausdorff locally convex topological vector space game has a

pure strategy Nash equilibrium. Besides, it holds in a large class of discontinuous games.
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1 INTRODUCTION

This paper presents an existence of pure strategy Nash equilibrium theorem, which characterizes

the existence of pure strategy equilibrium in games which the strategy space is not necessary

compact and/or convex and payoff functions are may be discontinuous and/or nonquasiconcave.

Debreu [1952] then showed that games possess a pure strategy Nash equilibrium if the game is

convex, compact, continuous and quasiconcave. Game theory has then been successfully applied

in many areas in economics including oligopoly theory, social choice theory, and incentive mech-

anism design theory. These applications lead researchers from different fields to investigate the

possibility of weakening equilibrium existence conditions to further enlarge its domain of appli-

cability.

Nishimura and Friedman [1981] considered the existence of Nash equilibria in games where

the payoff functions are not quasi-concave but satisfying a strong condition. Dasgupta and Maskin

[1986] established the existence of pure and mixed strategy Nash equilibria in games where the

strategy sets are convex and compact, and payoff functions are quasiconcave, upper semicontin-

uous and graph continuous by using an approximation technique. Simon [1987] and Simon and

Zame [1990] used a similar approach to consider the existence of mixed strategy Nash equilib-

ria in discontinuous games. Simon and Zame [1990] showed that if one is willing to modify the

vector of payoffs at points of discontinuity so that they correspond to points in the convex hull of

limits of nearby payoffs, then one can ensure a mixed strategy equilibrium of such a suitably mod-

ified game. Vives [1990] established the existence of Nash equilibria in games where payoffs are

upper semicontinuous and satisfy certain monotonicity properties. Baye, Tian and Zhou [1993]

provided necessary and sufficient conditions for the existence of pure strategy Nash equilibria

and dominant strategy equilibria in noncooperative games which may have discontinuous and/or

non-quasiconcave payoffs. It is shown that diagonal transfer quasiconcavity is necessary, and

further, under diagonal transfer continuity and compactness, sufficient for the existence of pure

strategy Nash equilibrium. Both transfer quasiconcavity and diagonal transfer continuity are very

weak notions of quasiconcavity and continuity and use a basic idea of transferring nonequilibrium

strategies to a securing profile of strategies. Reny [1999] established the existence of Nash equi-

libria in compact and quasiconcave games where the game is better-reply secure, which is a weak

notion of continuity. Reny [1999] showed that better-reply security can be imposed separately as

reciprocal upper semicontinuity introduced by Simon [1987] and payoff security. Bagh and Jofre

[2006] further weakened reciprocal upper semicontinuity to weak reciprocal upper semicontinuity

and showed that it, together with payoff security, implies better-reply security. Reny [2009] intro-

duced a game property that is weaker than better-reply security, called the lower single-deviation

property and proved that if a game is bounded, convex, compact, quasiconcave and has the lower

single-deviation property, then it possesses a pure strategy Nash equilibrium. Prokopovych [2011]
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introduced the transfer reciprocal upper semicontinuity and established the existence of Nash equi-

librium in compact and quasiconcave games where the game is payoff secure and transfer recipro-

cal upper semicontinuous. Carmona [2011] introduced the weak better-reply security. He showed

that a bounded, convex, compact, quasiconcave game and weakly better-reply secure has a Nash

equilibrium. He also proved that, when players’ action spaces are metric and locally convex, this

implies the existence results of Reny [1999] and Carmona [2009] and it is equivalent to the result

of Barelli and Soza [2009]. Nessah [2011] introduced the generalized weak transfer continuity and

showed that a bounded, compact, convex, quasiconcave and generalized weak transfer continuous

game has an equilibrium.

Tian [2009] characterized the existence of equilibria in games with general strategy spaces and

payoffs. He established a single condition, called recursive diagonal transfer continuity, which is

both necessary and sufficient for the existence of equilibria in games with arbitrary compact strat-

egy spaces and payoffs. McLennan, Monteiro and Tourky [2011] characterized the existence of

Nash equilibrium in compact and convex games and established a single condition, called MR-

secure, that is both necessary and sufficient for the existence of equilibrium in games under the

compactness and convexity conditions. More recently, Barelli and Meneghel [2013] introduced the

continuous security condition and proved that a convex, compact and continuously secure game

has a pure-strategy Nash equilibrium. Other papers on existence of equilibrium with discontinu-

ous payoff functions include Baye, Kovenock and de Vries [2012], Carmona [2012], Carmona and

Podczeck [2012], Prokopovych [2012], Balder [2011], de Castro [2011], Reny [2011], Carbonell-

Nicolau [2011], Carmona and Podczeck [2009], Bich [2009], Duggan [2007], Monteiro and Page

[2007, 2008], Jackson and Swinkels [2005] and Athey [2001]. Like other existing characterization

results, this is mainly for the purpose of providing a way of understanding equilibrium and identi-

fying whether or not a game has an equilibrium. In general, the weaker a condition in an existence

theorem, the harder it is to verify whether the conditions are satisfied in a particular game.

This paper investigates the existence of pure strategy Nash equilibria in discontinuous and/or

nonquasiconcave games. We introduce a new notion of very weak continuity, called weakly con-

tinuous secure, which holds in a large class of discontinuous games. Roughly speaking, a game

is weakly continuous secure if for every nonequilibrium strategy x, there is a neighborhood V of

x and a well-behaved correspondence φx : V � X so that for every strategy deviation profile z

nonequilibrium in V , the strategy zj is not in the convex hull of strategy (tj , z) which dominates

all strategies (yj , x) in the graph of φx,j , for some player j. We establish that the game has a pure

strategy Nash equilibrium if and only if there exists a compact, convex and dominant subset X0

in X such that G is weakly continuous secure on X0 under the boundedness of G = (Xi, ui)i∈I .

The condition of g-weak continuous security if more flexible and easily to check compared

to the recursively diagonal transfer continuity of Tian [2009], continuous security of Barelli and

Meneghel [2013] and the multiply restrictionally security of McLennan, Monteiro and Tourky
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[2011]. We show that it strictly generalizes Barelli and Meneghel [2013], McLennan, Monteiro

and Tourky [2011], Bich and Laraki [2012], Carmona [2011, 2009], Barelli and Soza [2009],

Reny [1999, 2009], Nessah [2011], and Prokopovych [2011, 2012]. In Reny [1999] it is shown

that better-reply security can be imposed separately as two conditions. We introduce here two new

conditions called g-pseudo upper semicontinuity and g-generalized payoff security. We prove that

the g-pseudo upper semicontinuity together with g-generalized payoff security, implies g-weakly

continuous security under the quasiconcavity of payoffs, and we show that 0-pseudo upper semi-

continuity is weaker than the weakly reciprocal upper semicontinuity of Bagh and Jofre [2006] and

transfer reciprocal upper semicontinuity of Prokopovych [2011]. Consequently, we strictly gener-

alize the results of Proposition 1 of Bagh and Jofre [2006], Corollaries 3.3-3.4 of Reny [1999] and

Corollary 8.5 of McLennan, Monteiro and Tourky [2011]. These conditions are satisfied in many

economic games and are often simple to check.

The remainder of the paper is organized as follows. Section 2 describes the notations. Sub-

section 3.1 introduces the notion of weakly continuous security, provides the main result on the

characterization and existence of pure strategy Nash equilibrium, examples illustrating the the-

orems are also given. Subsection 3.2 offers the sufficient conditions for the weak continuous

security. Section 4 describes the related results. Section 5 presents some application examples.

Section 6 will briefly present the conclusion.

2 PRELIMINARIES AND DEFINITIONS

Consider the following noncooperative game in a normal form: G = (Xi, ui)i∈I where I =

{1, ..., n} is a finite set of players, Xi is player i’s strategy space that is a nonempty subset of a

Hausdorff locally convex topological vector space Ei, and ui is player i’s payoff function from

the set of strategy profiles X =
∏
i∈I
Xi to R. For each player i ∈ I , denote by −i all players rather

than player i. Also denote by X−i =
∏
j 6=i
Xj the set of strategies of the players in −i. The graph of

the game is Γ = {(x, u) ∈ X×Rn : ui(x) = ui, ∀i ∈ I}. The closure of Γ in X×Rn is denoted

by cl(Γ). The frontier of Γ, which is the set of points that are in cl(Γ) but not in Γ, is denoted by

Fr(Γ). We say that a game G = (Xi, ui)i∈I is compact, convex and bounded, respectively if, for

all i ∈ I ,Xi is compact and convex, and ui is bounded onX . We say that a gameG = (Xi, ui)i∈I

is quasiconcave if, for every i ∈ I , Xi is convex and the function ui is quasiconcave in xi.

We say that a strategy profile x ∈ X is a pure strategy Nash equilibrium of a game G if, for

each i ∈ I , and yi ∈ Xi, we have ui(yi, x−i) ≤ ui(x).

A correspondence C : Z � E is said to be upper hemicontinuous at the point z ∈ Z if, for

any open set V of C(z) there exists a neighborhood Vz of z such that for all z
′ ∈ Vz , C(z

′
) ⊂ V .

C is said closed if its graph is closed in Z × E (Graph(C) = {(z, y) ∈ Z × E : y ∈ C(z)}).
When Z is compact Hausdorff, then C is closed if and only if it is upper hemicontinuous and
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closed valued. Denote also by coA the convex hull of A.

3 MAIN RESULTS

In this section, we examine the existence of a pure strategy Nash equilibrium in discontinuous

games. We introduce a new notion of very weak continuity, called weakly continuous secure,

which holds in a large class of discontinuous games. We characterize the existence of pure strategy

Nash equilibrium and we introduce some sufficient conditions.

3.1 WEAKLY CONTINUOUS SECURITY: EXISTENCE AND CHARACTERIZATION

Let us consider a correspondence C : X � Y . C is said to be a well-behaved correspondence if

it is upper hemicontinuous with nonempty, convex and closed values. For each player i ∈ I , let

ui be real-valued function defined on Xi ×X and u = (u1, ..., un) ∈ Rn. Let X0 be a nonempty

subset of X .

DEFINITION 3.1 A game G = (Xi, ui)i∈I is said to be u-weakly continuous secure on X0 if

whenever x ∈ X0 is not an equilibrium, there exist a neighborhood V ⊆ X0 of x and a well-

behaved correspondence φx : V � X0 so that for each z ∈ V nonequilibrium, there exists a

player j so as for each (x, yj) ∈ Graph(φx,j),

zj /∈ co{tj ∈ X0
j such that uj(tj , z) ≥ uj(yj , x)}.

A game is weakly continuous secure if for every nonequilibrium strategy x, there is a neighbor-

hood V of x and a well-behaved correspondence φx : V � X so that for every strategy deviation

profile z nonequilibrium in V , the strategy zj is not in the convex hull of strategy (tj , z) which

dominates all strategies (yj , x) in the graph of φx,j , for some player j. In Section 4, we show that

u-weakly continuous security is weaker than continuous security of Barelli and Meneghel [2013],

C-secure of McLennan, Monteiro and Tourky [2011], generalized deviation property of Bich and

Laraki [2012], generalized better-reply security of Barelli and Meneghel [2013], Carmona [2011],

Barelli and Soza [2009], lower single deviation property of Reny [2009], better-reply security of

Reny [1999] and generalized weakly transfer continuity of Nessah [2011].

REMARK 3.1 If the game G is quasiconcave, the condition for each (x, yj) ∈ Graph(φx,j), zj /∈
co{tj ∈ Xj such that uj(tj , z) ≥ uj(yj , x)} becomes uj(yj , x) > uj(zj , z), for each (x, yj) ∈
Graph(φx,j).

REMARK 3.2 In the definition of continuous security of Barelli and Meneghel [2013], the devi-

ation z ∈ V is not imposed to be nonequilibrium contrary to the definition of weak continuous

security. Then, if V contains an equilibrium, this fails the definition of point secure. To illustrate

this point, consider the following example.

5

IESEG Working Paper Series 2013-ECO-20



EXAMPLE 3.1 Consider the two-player game with the following payoff functions defined on

[0, 1]× [0, 1] by:

ui(x1, x2) =

{
1 if xi > 1

2

0 otherwise.

This game is compact, convex and quasiconcave, but it is not continuous security. Indeed, let

x = (1
2 ,

1
2). Clearly x is not a Nash equilibrium. Therefore, for each neighborhood V of x and

each well-behaved correspondence φx : V � X , there exists z̃ ∈ V with z̃1 = z̃2 >
1
2 such that

uj(z̃) = 1 ≥ uj(yj , t−j), for each j = 1, 2, and for each (t, yj) ∈ φx,j . Note that z̃ ∈ V is a Nash

equilibrium. However, this game is weakly continuous secure. To prove it, it is sufficient to let the

correspondence ϕ : V � X defined by ϕ(z) = {(1, 1)} where V is a neighborhood of x, for each

x ∈ X nonequilibrium and u ≡ u.

Tian [2009] introduced the notion of upsetting defined as follows: the strategy y upsets the

strategy x if there is a player i such that ui(yi, x−i) > ui(x). Based on the concept of upsetting,

we introduce the following dominance of sets as follows. The set X0 dominates X if for each

x ∈ X0 and whenever x is upset by a strategy in X\X0, then it is upset by a strategy in X0.

The following theorem characterizes the existence of pure strategy Nash equilibrium without

convexity and/or compactness of X .

THEOREM 3.1 The G = (Xi, ui)i∈I has a pure strategy Nash equilibrium if and only if there

exists a nonempty, dominant, compact and convex subset X0 of X such that G is u-weakly con-

tinuous secure on X0.

REMARK 3.3 The condition of g-weak continuous security if more flexible and easily to check

compared to the recursively diagonal transfer continuity of Tian [2009], continuous security of

Barelli and Meneghel [2013] and the multiply restrictionally security of McLennan, Monteiro and

Tourky [2011].

REMARK 3.4 Theorem 3.1 characterizes the existence of pure strategy equilibrium in games

which the strategy space is not necessary compact and/or convex and payoff functions are may

be discontinuous and/or nonquasiconcave. Then, it generalizes the most existing results on the

existence of pure strategy Nash equilibrium.

The Necessity of Theorem 3.1 is particulary useful to verify the nonexistence of pure strategy

Nash equilibrium. Example 3.2 shows that the game is not weakly continuous secure and since it

is compact and convex then according to Theorem 3.1, the considered game has no pure strategy

Nash equilibrium. Let us consider the following example.
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EXAMPLE 3.2 Consider the following two players on the unit square X1 = X2 = [0, 1] that was

considered by Dasgupta and Maskin [1986]. For player i = 1, 2 and x = (x1, x2) ∈ X = [0, 1]2,

the payoff functions are:

ui(x) =

{
0, if x1 = x2 = 1

xi, otherwise
i = 1, 2

This game is bounded and quasiconcave. Let us show that it is not u-weakly continuous

secure on X0, for each X0, dominant, compact and convex set of X . Let X0 be a compact,

convex and dominant subset of X1 and x ∈ X0 defined by x = ( max
x1∈X0

1

x1, max
x2∈X0

2

x2). Let

ui(yi, x) = sup
Vx∈Ω(x)

sup
ϕi∈WVx (yi,x)

inf
(ti,z)∈Graph(ϕi)

ui(ti, z−i)
2 in Definition 3.1 and for any neighbor-

hood V of x, any well-behaved correspondence ϕ : V � X0, let βi = inf
(t,yi)∈Graph(ϕi)

ui(yi, t−i) ={
0, if (1, 1) ∈ Graph(ϕi)

yi, otherwise.
There is a z ∈ V ∩X0 with zi ≥ xi for each i = 1, 2 such that uj(z) ≥ βj , for each j = 1, 2.

Thus, this game is not u-weakly continuous secure on X0. So by Theorem 3.1, this game does not

have a pure strategy Nash equilibrium.

PROOF OF THEOREM 3.1. Necessity: Suppose that the game G has a Nash equilibrium

x ∈ X . Let x ∈ X be nonequilibrium and X0 = {x}. Since x is a Nash equilibrium, then it can

not be upset by a strategy in X\X0. Therefore, there is a neighborhood V of x, a well-behaved

correspondence φx : V � X defined by φx(z) = {x}, such that for each z ∈ V nonequilib-

rium, there is a player j so that zj 6= xj . Consequently zj /∈ co{tj ∈ X0
j such that ugj (tj , z) ≥

ugj (yj , x) for each (x, yj) ∈ Graph(φx,j)}.
Sufficiency: Let X0 be a nonempty dominant, compact, convex subset of X such that G is

weakly continuous secure on X0. Assume that the game G0 = (X0
i , ui)i∈I has a pure strategy

Nash equilibrium x ∈ X0. If x is not a Nash equilibrium of G, then there is a player j, a strategy

ỹ ∈ X so that uj(ỹj , x−j) > uj(x). The strategy ỹ /∈ X0 otherwise we have a contradiction with

x is a Nash equilibrium in X0. Thus, ỹ ∈ X\X0 upsets x ∈ X0, and by dominance of X0, x is

upset by a strategy in X0, which is a contradiction with x is a Nash equilibrium in X0. Hence, x

is a Nash equilibrium of G.

Assume that there is no equilibrium in X0. Then by weakly continuous security, for each

x ∈ X , there is a neighborhood Vx ⊆ X0 and a well-behaved correspondence ϕx : Vx � X0 so

that for each z ∈ Vx nonequilibrium, there exists a player j so that for each (x′, y′j) ∈ Graph(ϕx,j),

we have

zj /∈ co{tj ∈ X0
j such that uj(tj , z)j ≥ uj(y′j , x′)}.

1The compact, convex and dominant subsets of X are of the form [α, 1]× [β, 1], with α, β ∈ [0, 1)
2Ω(x) is the set of all open neighborhoods of x, for each x ∈ X . For each (yi, x) ∈ Xi ×X , WV(yi, x) is the set

of all well-behaved correspondences ϕi : V � Xi that satisfy (x, yi) ∈ Graph(ϕi)
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Thus, we obtain a collection {(Vx, ϕx)}x∈X where {Vx}x∈X form an open cover of X . Since X

is compact, then it can be extract a finite subcollection {(Vxk , ϕxk)}k∈K (K is a finite set), so as

for each k ∈ K and for each z ∈ Vxk nonequilibrium, there exists a player j so that for each

(x, yj) ∈ Graph(ϕxk,j), we have

zj /∈ co{ti ∈ Xi such that uj(tj , z) ≥ uj(yj , x)}. (3.1)

Define k dominates k′ for i if for each (x, yi) ∈ Graph(ϕxk,i), there is (x′, y′i) ∈ Graph(ϕxk′ ,i)

such that

ui(yi, x) ≥ ui(y′i, x′).

This dominance relation is complete, reflexive and transitive. For each y ∈ X , let Vy =( ⋂
k∈K:y∈V

xk

Vxk

)⋂( ⋂
k∈K:y/∈V

xk

cl(Vxk)c

)
3, a neighborhood of y and for each player i ∈ I ,

let fi(y) be any member of the set {k ∈ K : y ∈ Vxk} that dominate every other member of the

set.

For each y ∈ X , let Uy = Vy
⋂(⋂

i∈I
Vxfi(y)

)
be an open neighborhood of y, and φy : Uy � X

defined by

φy,i(t) = ϕxfi(y),i(t) (3.2)

Note that φy is well-behaved correspondence. We have for each player i, for each (x′, y′i) ∈
Graph(φy) (x′ ∈ Uy ⊆ Vxfi(y)) and for each k ∈ K with y ∈ Vxk , there exists (x′′, y′′i ) ∈
Graph(ϕxk,i) such that ui(y′i, x

′) ≥ ui(y
′′
i , x
′′) (Indeed, y ∈ Vxk and fi(y) dominates k for i).

Then, we obtain a collection of couple {(Uy, φy)}y∈X where {Uy}y∈X form an open cover of X .

Since X is compact, then it can be extract a finite subcollection {(Uyh , φyh)}h∈H (H is a finite

set) so that for each h ∈ H , for each player i, for each k ∈ K with yh ∈ Vxk , and for each

(x′, y′i) ∈ Graph(φyh), there exists (x′′, y′′i ) ∈ Graph(ϕxk,i) such as

ui(y
′
i, x
′) ≥ ui(y′′i , x′′). (3.3)

Let {βh}h∈H be a partition of the unity subordinate to {Uyh}h∈H and consider the following

correspondence Ψ : X0 � X0 defined by

Ψ(z) =
∑
h∈H

βh(z)φyh(z).

Then, it is easy to see that Ψ is an upper hemicontinuous correspondence with nonempty, closed

and convex values (by (3.2)). Thus, Ψ has a fixed point z ∈ X0 by the Kakutani-Fan-Glicksberg

Theorem (see Aliprantis and Border [2006], Corollary 17.55).
3Let A ⊆ X , then denote by Ac the complementary set of A in X , i.e. Ac = {z ∈ X, x /∈ A}
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Let J = {h ∈ H such that βh(z) > 0}, then z =
∑
h∈H

βh(z)ỹh where ỹh ∈ φyh(z). Let

h ∈ J and k ∈ K with z ∈ Vxk , then z ∈ Uyh
⋂
Vxk . Therefore for each player i, there exists

(xi,h, yi,hi ) ∈ Graph(ϕxk,i) such as by (3.3), we have

ui(ỹ
h
i , z) ≥ ui(y

i,h
i , xi,h). (3.4)

Let h0 ∈ J so that ui(y
i,h0
i , xi,h0) ≤ ui(yi,hi , xi,h), for each h ∈ J . Thus by (3.4), for each player

i ∈ I , we have zi ∈ co{ti ∈ Xi such that ui(ti, z) ≥ ui(y
i,h0
i , xi,h0)} which is a contradiction

with (3.1).

When X0 = X , we have the following corollary.

COROLLARY 3.1 Assume that the game G = (Xi, ui)i∈I is bounded, compact and convex. If in

addition G is u-weakly continuous secure, then G has a pure strategy Nash equilibrium.

Let us consider the following examples.

EXAMPLE 3.3 Consider a timing game between two players on the unit square X1 = X2 =

[0, 1] that was considered by Reny [1999] and Bagh and Jofre [2006]. For player i = 1, 2 and

t = (t1, t2) ∈ X = [0, 1]2, let the payoff functions for the players be given by

ui(t1, t2) =


li(t) = 10, if ti < t−i

ki(t), if ti = t−i = t

mi(t−i) = −10, if ti > t−i,

where ki(t) = 10 when t < 1
2 and ki(t) = 0 when t ≥ 1

2 . It is clear that this game is bounded,

compact and quasiconcave.

This game is not continuous secure4. Indeed, consider t = (1
2 ,

1
2) ∈ X . Then, t is not

an equilibrium. For any neighborhood V of t, any correspondence ϕ : V � X , and for each

α ∈ Rn, we have: If for each j = 1, 2, αj ≤ 10, choose z ∈ V with z1 = z2 <
1
2 . Therefore

ui(z) = 10 ≥ αi, for each i = 1, 2. If αj > 10 for some j = 1, 2, then uj(tj , z−j) ≤ 10 < αj , for

each tj ∈ ϕj(z). Thus, this game is not continuous secure, so that Theorem 2.2 and Proposition 2.4

in Barelli and Meneghel [2013] and Proposition 2.7 of McLennan, Monteiro and Tourky [2011]

cannot be applied.
4A game G = (Xi, ui)i∈I is said to be continuous secure if whenever x ∈ X is not an equilibrium, there exist a

neighborhood V of x, α ∈ Rn, and a well-behaved correspondence φx : V � X so that

(a) for each t ∈ V , and i ∈ I , we have φx,i(t) ⊆ Bi(t, αi), and

(b) for each z ∈ V , there exists a player j for whom, zj /∈ coBj(z, αj).

Where Bi(x, αi) = {yi ∈ Xi such that ui(yi, x−i) ≥ αi}.
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This game does not have the generalized deviation property5. Indeed, consider t = (1
2 ,

1
2) ∈

X . Then, t is not an equilibrium. Any neighborhood V of t and for all correspondence ϕ ∈∏
i∈I
WV(ti, t−i), choosing z ∈ V with z1 = z2 <

1
2 , and for each i ∈ I , z

′ ∈ V and y
′
i ∈ ϕi(z

′
−i),

we have uϕi (y
′
i, z
′
−i) ≤ 10 = ui(z). Thus, this game does not have the generalized deviation

property, so that Theorem 58 of Bich and Laraki [2012] cannot be applied.

This game is not (generalized) better-reply secure6. Indeed, consider t = (1
2 ,

1
2) ∈ X and

u = (10, 10). Then, (t, u) is in the closure of the graph of its vector function, and t is not an

equilibrium. Each player i cannot obtain a payoff strictly above ui = 10, for any neighborhood

V ⊂ [0, 1] of t−i and for all well-behaved correspondence ϕi : V � Xi = [0, 1], for each

t
′
−i ∈ V , we then have ui(t

′
i, t
′
−i) ≤ 10 = ui, for each t

′
i ∈ ϕi(t

′
−i). Thus, this game is not

(generalized) better-reply secure. Hence Corollary 4.5 of Barelli and Soza [2009], Theorem 1 of

Carmona [2011] and Theorem 3.1 in Reny [1999] cannot be applied.

This game is not weakly reciprocal upper semicontinuous7. Indeed, consider t = (1
2 ,

1
2) ∈ X

and u = (10, 10). Then, (t, u) is in the frontier of the graph of its vector function, and t is not an

equilibrium. For each player i, we have for each yi ∈ Xi, ui(yi, 1
2) ≤ ui = 10. Thus, this game is

not weakly reciprocal upper semicontinuous. As a results, Proposition 1 of Bagh and Jofre [2006],

Theorem 4 in Prokopovych [2011] and Corollary 2 in Carmona [2009] cannot be applied.

The game is not diagonally better-reply secure. Indeed, consider t = (1
2 ,

1
2) ∈ X and

u = (10, 10). Then, (x, u) is in the closure of the graph of its vector function, and t is not an

equilibrium. Player i cannot obtain a payoff strictly above ui, for any neighborhood V ⊂ [0, 1]

of 1
2 , choosing z−i ∈ V with z−i > 1

2 . We have for each yi ∈ [0, 1], ui(yi, z−i) ≤ 10 = ui.

Thus, this game is not diagonally better-reply secure, and Theorem 4.1 in Reny [1999] cannot be

applied.

This game is not generalized weakly transfer continuous8. Indeed, consider t = (1
2 ,

1
2) ∈ X .

Each player i, for any neighborhood V ⊂ [0, 1]2 of (1
2 ,

1
2) and for all well-behaved correspondence

ϕi : V � Xi = [0, 1], choosing z ∈ V with zi < z−i. Then, for each yi ∈ ϕ1(zi, z−i), we have

ui(yi, z−i) ≤ ui(zi, z−i) = 10. Thus, this game is not generalized weakly transfer continuous, so

5A game G = (Xi, ui)i∈I has the generalized deviation property if whenever x ∈ X is not an equilibrium, there

exist a neighborhood V of x, and a correspondence φx : V � X (having a closed graph and nonempty and convex

values) so that for each z ∈ V , there exists a player j for whom, uφj (y
′
j , t

′
−j) > uj(z), for each (t

′
, y

′
j) ∈ Graph(φi).

6A gameG = (Xi, ui)i∈I is generalized better-reply secure if whenever (x, u) ∈ cl(Γ) and x is not an equilibrium,

then there exist a player i, an α > ui, a neighborhood V of x−i and a well-behaved correspondence φi : V � Xi such

that ui(z) ≥ α, for each z ∈ Graph(φi).
7A game G = (Xi, ui)i∈I is weakly reciprocal upper semicontinuous, if for any (x, u) ∈ Fr(Γ), there is a player

i and x̂i ∈ Xi such that ui(x̂i, x−i) > ui.
8A game G = (Xi, ui)i∈I is said to be generalized weakly transfer continuous if whenever x∗ ∈ X is not an

equilibrium, there exist a player i, a neighborhood V(x∗) of x∗ and a well-behaved correspondence ϕi : V(x∗) � Xi

such that inf
(z,yi)∈Graph(ϕi)

{ui(yi, z−i)− ui(z)} > 0.
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that Theorem 3.1 of Nessah [2011] cannot be applied.

However, it is u-weakly continuous secure. Indeed, let us consider in Definition 3.1

ui(yi, x) = sup
V∈Ω(x)

sup
ϕi∈WV (yi,x)

inf
(z,ti)∈Graph(ϕi)

ui(ti, z−i).

Let t = (t1, t2) be a nonequilibrium strategy. If t1 6= t2, then combining the continuity of li
and mi and the nonequilibrium of t, we deduce the 0-weakly continuous security of the game. If

t1 = t2, by the nonequilibrium of t, we have t1 ≥ 1
2 . Thus, there exist a neighborhood V of t and

a well-behaved correspondence φt : V � X defined by φt(x) = {(0, 0)}, for each x ∈ V so that

for each z ∈ V nonequilibrium, we have: if z1 < z2, let i = 2 then u2(z2, z) = −10 < 10 =

inf
x∈V

u2(x1, 0) and if z1 ≥ z2, let i = 1 so u1(z1, z) = −10 < 10 = inf
x∈V

u1(0, x2). Since for each

(x, yj) ∈ Graph(φt,j), we have uj(yj , x) ≥ inf
x∈V

uj(0, x−j). Then, for each (x, yj) ∈ Graph(φt,j),

we have uj(yj , x) > 0 ≥ uj(zj , z). The game is also bounded, compact and quasiconcave, then

by Theorem 3.1, the considered game possesses a Nash equilibrium.

EXAMPLE 3.4 Consider the two-player game on the square [0, 1]× [0, 1].

ui(p) =

{
4pi if p−i ≥ 1

2

pi otherwise.

It is clear that this game is bounded, compact and quasiconcave.

This game is not continuous secure. Consider p = (1
2 ,

1
2) ∈ X , then p is not an equilibrium.

For any neighborhood V of p, any correspondence ϕ : V � X , and for each α ∈ Rn, we

have: If for each j = 1, 2, αj ≤ 1, choose z ∈ V with zj >
1
2 , for j = 1, 2. Therefore

ui(z) = 4zi ≥ 2 > αi, for each i = 1, 2. If αj > 1 for some j = 1, 2, choose z ∈ V with zi < 1
2 ,

for each i = 1, 2. Therefore for each tj ∈ ϕj(z), we have uj(tj , z−j) = tj ≤ 1 < αj . Thus,

this game is not continuous secure, so Theorem 2.2 and Proposition 2.4 in Barelli and Meneghel

[2013] cannot be applied. Since the continuous security condition is weaker than the C-security,

then Proposition 2.7 of McLennan, Monteiro and Tourky [2011] cannot be applied.

This game does not have the single lower deviation property 9. Indeed, consider p = (1
2 ,

1
2) ∈

X , then p is not an equilibrium. Any neighborhood V of p and all y ∈ X , choosing z ∈ V with

zj >
1
2 , for j = 1, 2 and for each i ∈ I , choosing t ∈ V with t−i < 1

2 . Then, there exists a

neighborhood Vz ⊂ (1
2 , 1]2 such that ui(z) ≥ inf

z′∈Vz
ui(zi, z

′
−i) = 4zi > 2 > yi = ui(yi, t−i).

Thus, this game does not have the single lower deviation property, so that Theorem 2.2 in Reny

[2009] cannot be applied.

This game does not have the generalized deviation property. Indeed, consider p = (1
2 ,

1
2) ∈

X . Then, p is not an equilibrium. Any neighborhood V of p and for all correspondence ϕ ∈
9A game G = (Xi, ui)i∈I has the single lower deviation property if whenever x∗ is not an equilibrium, there is a

player a neighborhood V of x∗ and a strategy y ∈ X such that for each z ∈ V , there is a player j so as uj(yj , t−j) >

uj(z) for all t ∈ V .
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∏
i∈I
WV(pi, p−i), choosing z ∈ V with z = (1

2 ,
1
2), and for each i ∈ I , choosing z

′ ∈ V with

z
′
−i <

1
2 . Then, for each y

′
i ∈ ϕi(z

′
−i), we have uϕi (y

′
i, z
′
−i) ≤ ui(y

′
i, z
′
−i) = y

′
i ≤ 2 = ui(z).

Hence, Theorem 58 of Bich and Laraki [2012] cannot be applied.

This game is not (generalized) better-reply secure. Indeed, consider p = (1
2 ,

1
2) ∈ X and

u = (2, 2). Then, (p, u) is in the closure of the graph of its vector function, and p is not an

equilibrium. Each player i cannot obtain a payoff strictly above ui = 2, for any neighborhood

V ⊂ [0, 1] of p−i and for all well-behaved correspondence ϕi : V � Xi = [0, 1], choosing

p
′
−i ∈ V with p

′
−i <

1
2 , we then have ui(qi, p

′
−i) = qi ≤ 2 = ui, for each qi ∈ ϕi(p

′
−i). Thus, this

game is not (generalized) better-reply secure. Therefore, Corollary 4.5 of Barelli and Soza [2009],

Theorem 1 of Carmona [2011] and Theorem 3.1 in Reny [1999] cannot be applied.

This game is not generalized payoff secure. Indeed, let i = 1, x = (1, 1
2), ε = 1

2 . Then for any

neighborhood V ⊂ [0, 1] of 1
2 and for all well-behaved correspondence ϕi : V � [0, 1], choosing

p
′
2 ∈ V with p

′
2 <

1
2 , we then have u1(q1, p

′
2) = q1 ≤ 1 < 4− ε, for each q1 ∈ ϕ1(p

′
2). Thus, this

game is not generalized payoff secure, and consequently Theorem 4 in Prokopovych [2011] and

Corollary 2 in Carmona [2009] cannot be applied.

However, it is u-weakly continuous secure. Indeed, let us consider in Definition 3.1

ui(yi, x) = sup
V∈Ω(x)

sup
ϕi∈WV (yi,x)

inf
(z,ti)∈Graph(ϕi)

[ui(ti, z−i)− ui(z)] .

Let p = (p1, p2) be a nonequilibrium strategy profile with at least one non-one coordinate. Then,

there exists i ∈ I with pi < 1. Therefore, there exist a neighborhood V of p and ε > 0 with

p
′
i + ε < 1 for all p

′ ∈ V and a well-behaved correspondence φp : V � X defined by φp(p
′
) =

{(1, 1)}, for each p
′ ∈ V such that for each z ∈ V , we have uj(z, zj) ≤ 0, for each j (see the proof

of Proposition 4.4). For each (t, yi) ∈ Graph(φp), we have ui(yi, t−i) =

{
4, if t−i ≥ 1

2

1, otherwise
and

ui(t) =

{
4ti, if t−i ≥ 1

2

ti, otherwise,
then ui(yi, t−i)− ui(t) > 0 (Because ti + ε < 1 for all t ∈ V). Since

for each (t, yi) ∈ Graph(φp,i), we have ui(yi, t) ≥ inf
(t,yi)∈Graph(φp,i)

[ui(yi, t−i)− ui(t)]. Then, for

each (t, yi) ∈ Graph(φp,i), we have ui(yi, t) > 0 ≥ ui(z, zi). The game is also bounded, compact

and quasiconcave, so by Theorem 3.1, the considered game possesses a Nash equilibrium.

3.2 g-GENERALIZED PAYOFF SECURE

While it is simple to verify the g-weakly continuous security, it is sometimes even simpler to

verify other conditions leading to it. In the following, we introduce the g-pseudo upper semi-

continuity and the g-generalized payoff secure properties which are weaker conditions of weakly

reciprocal upper semicontinuous and/or transfer reciprocal upper semicontinuous and generalized

payoff secure, respectively and we show that under the quasiconcavity of the game, g-pseudo up-
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per semicontinuity together with g-generalized payoff security, the game is g-weakly continuous

secure.

DEFINITION 3.2 A game G = (Xi, ui)i∈I is said to be g-pseudo upper semicontinuous (PUSC)

if, whenever x ∈ X is not an equilibrium, there exist a neighborhood V of x and ε > 0 such that for

each z ∈ V nonequilibrium, there exists a player j so that sup
yj∈Xj

uj(yj , x−j)−gj(x) > ugj (zj , z)+ε.

In words, a game that is g-pseudo upper semicontinuous implies that for every nonequilibrium

x, for each slightly deviation z nonequilibrium of x, some player j has a strategy yielding a strictly

payoff at the g-locally security level even if the others play x. The g-local security level at z

means that the value of the least favorable outcome in a neighborhood of z is given by ugj (zj , z) =

sup
Vz∈Ω(z)

sup
ϕj∈WVz (zj ,z)

inf
(z′ ,z

′′
j )∈Graph(ϕj)

[
uj(z

′′
j , z

′
−j)− gj(z

′
)
]
. It is clear that G is 0-pseudo upper

semicontinuous if it is upper semicontinuous. Notice that in the definition of g-pseudo upper

semicontinuity, we do not employ the closure of the graph of the vector payoff function contrary

to the results of Reny [1999], Bagh and Jofre [2006], Prokopovych [2011], Carmona [2009, 2011]

Barelli and Soza [2009] and Barelli and Meneghel [2013].

DEFINITION 3.3 A game G = (Xi, ui)i∈I is said to be g-generalized payoff secure (g-GPS)

if for all i ∈ I , x ∈ X , and ε > 0, there exist a neighborhood V of x, and a well-behaved

correspondence φx,i : V � Xi so that ui(yi, t−i)− gi(t) ≥ ui(x)− gi(x)− ε, for each (t, yi) ∈
Graph(φx,i).

If in Definition 3.3 the function g ≡ 0, then Definition 3.3 is identical to the definition of

generalized payoff secure given by Barelli and Soza [2009]. The following notions are introduced

by Bagh and Jofre [2006] and Prokopovych [2011], respectively.

DEFINITION 3.4 A gameG = (Xi, ui)i∈I is weakly reciprocal upper semicontinuous, if for any

(x, u) ∈ Fr(Γ), there is a player i and x̂i ∈ Xi such that ui(x̂i, x−i) > ui.

DEFINITION 3.5 A game G = (Xi, ui)i∈I is transfer reciprocal upper semicontinuous, if for

any (x, u) ∈ Fr(Γ), and x is not a Nash equilibrium, then there is a player i and x̂i ∈ Xi such that

ui(x̂i, x−i) > ui.

PROPOSITION 3.1 If a game G = (Xi, ui)i∈I is weakly reciprocal upper semicontinuous at

every x and x is not an equilibrium (transfer reciprocal upper semicontinuous), then it is 0-pseudo

upper semicontinuous.

PROOF. Assume that G is weakly reciprocal upper semicontinuous at x (x is not an equilib-

rium) and it is not 0-pseudo upper semicontinuous at x. Then, by definition, for each neighborhood
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V of x and ε > 0, there exists z ∈ V , so that sup
yi∈Xi

ui(yi, x−i) < u0
i (zi, z) + ε, for each i ∈ I .

Thus, for a directed system of neighborhoods {Vk}k of x and a sequence {εk}k that converges to

0, there exists a sequence {zk}k with zk ∈ Vk so as {zk}k converges to x and for each i ∈ I , we

have

sup
yi∈Xi

ui(yi, x−i) < u0
i (z

k
i , z

k) + εk ≤ ui(zk) + εk.

Assume that {u(zk)}k converges and let u = lim
k→∞

u(zk). Then (x, u) is in the closure of the graph

of G. If (x, u) is not in the frontier of G, then u = u(x) and consequently sup
yi∈Xi

ui(yi, x−i) ≤

ui(x), for each i ∈ I , which is a contradiction because x is not a Nash equilibrium. Then (x, u) is

on the frontier of G. By weakly reciprocal upper semicontinuity of G, there exists a player j who

has a strategy ŷj ∈ Xj such that uj(ŷj , x−j) > uj ≥ sup
yj∈Xj

uj(yj , x−j), which is impossible.

PROPOSITION 3.2 If a game G = (Xi, ui)i∈I is quasiconcave, g-generalized payoff secure and

g-pseudo upper semicontinuous, then it is ug-weakly continuous secure, where

ugi (yi, x) = sup
V∈Ω(x)

sup
ϕi∈WV (yi,x)

inf
(z,ti)∈Graph(ϕi)

[ui(ti, z−i)− gi(z)] .

PROOF. Let x ∈ X be such that it is not an equilibrium. Then, by g-pseudo upper semiconti-

nuity of G, there exist a neighborhood V of x and ε > 0 such that for each z ∈ V nonequilibrium,

there exists a player i ∈ I so that sup
yi∈Xi

ui(yi, x−i) − gi(x) > ugi (zi, z) + 2ε. For ε > 0, there

exists ŷ so as ui(ŷi, x−i) ≥ sup
yi∈Xi

ui(yi, x−i) − ε. By g-generalized payoff security in (ŷi, x−i),

for ε > 0, and i ∈ I , there exist a neighborhood V i of x, and a well-behaved correspondence

φx,i : V � Xi so that ui(yi, t−i)−gi(t) ≥ ui(ŷi, x−i)−gi(x)− ε, for each (t, yi) ∈ Graph(φx,i).

We also have ugi (yi, t) ≥ inf
(t,yi)∈Graph(φx,i)

[ui(yi, t−i)− gi(t)], for each (t, yi) ∈ Graph(φx,i). Let

V =
⋂
i∈I

(
V i
)⋂
V a neighborhood of x. Then for each z ∈ V nonequilibrium, there exists a player

i ∈ I so that for each (t, yi) ∈ Graph(φx,i)

ugi (yi, t) + 2ε ≥ ui(ŷi, x−i)− gi(x) + ε ≥ sup
yi∈Xi

ui(yi, x−i)− gi(x) > ugi (zi, z) + 2ε.

Since the game is quasiconcave, then it is g-weakly continuous secure.

We have the following corollary.

COROLLARY 3.2 If a game G = (Xi, ui)i∈I is bounded, convex, compact, g-pseudo upper

semicontinuous, g-generalized payoff secure, and quasiconcave, then it possesses a pure strategy

Nash equilibrium.

REMARK 3.5 If g ≡ u, then the u-pseudo upper semicontinuity is automatically satisfied. In-

deed, since uuj (zj , z) ≤ 0 (see the proof of Proposition 4.4) and x is not an equilibrium, then
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there is a neighborhood V of x and ε > 0 such that for each z ∈ V nonequilibrium, there exists

a player j so that sup
yj∈Xj

uj(yj , x−j) − uj(x) > ε ≥ uuj (zj , z) + ε. In this case, the u-generalized

payoff secure becomes the generalized weakly transfer continuity introduced by Nessah [2011]

(see Subsection 4.3).

If g ≡ 0, then we obtain the following result.

COROLLARY 3.3 If a game G = (Xi, ui)i∈I is bounded, convex, compact, 0-pseudo upper

semicontinuous, generalized payoff secure, and quasiconcave, then it possesses a pure strategy

Nash equilibrium.

Proposition 3.2 and the following example show that Corollary 3.3 generalizes strictly Proposi-

tion 1 of Bagh and Jofre [2006], Corollary 3.3-3.4 of Reny [1999] and Corollary 8.5 of McLennan,

Monteiro and Tourky [2011].

EXAMPLE 3.5 Recall the following example considered in Example 3.4. For player i = 1, 2 and

t = (t1, t2) ∈ X = [0, 1]2, let the payoff functions for the players be given by

ui(t1, t2) =


li(t) = 10, if ti < t−i

ki(t), if ti = t−i = t

mi(t−i) = −10, if ti > t−i,

where ki(t) = 10 when t < 1
2 and ki(t) = 0 when t ≥ 1

2 . This game does not have the

generalized deviation property, it is not (generalized) better-reply secure. Furthermore, the game

is not diagonally better-reply secure (see Example 3.2). Indeed, consider t = (1
2 ,

1
2) ∈ X and

u = (10, 10). Then, (x, u) is in the closure of the graph of its vector function, and t is not an

equilibrium. Player i cannot obtain a payoff strictly above ui, for any neighborhood V ⊂ [0, 1] of
1
2 , choosing z ∈ V with z−i > 1

2 . We have for each yi ∈ [0, 1], ui(yi, z−i) ≤ 10 = ui. Thus, this

game is not diagonally better-reply secure, so that Theorem 4.1 in Reny [1999] cannot be applied.

Finally, this game is not weakly reciprocal upper semicontinuous. Indeed, consider t =

(1
2 ,

1
2) ∈ X and u = (10, 10). Then, (t, u) is in the frontier of the graph of its vector function, and

t is not an equilibrium. For each player i, we have for each yi ∈ Xi, ui(yi, 1
2) ≤ ui = 10. Thus,

this game is not weakly reciprocal upper semicontinuous. Then, Proposition 1 of Bagh and Jofre

[2006], Theorem 4 in Prokopovych [2011] and Corollary 8.5 of McLennan, Monteiro and Tourky

[2011] cannot be applied.

However, it is 0-pseudo upper semicontinuous. Indeed, let t = (t1, t2) be a nonequilibrium

strategy. If t1 6= t2, then combining the continuity of li and mi and the nonequilibrium of t, we

deduce the pseudo upper semicontinuous. If t1 = t2, by the nonequilibrium of t, we have t1 ≥ 1
2 .

Thus, there exist a strategy y = (0, 0), ε = 1 and a neighborhood V of t so that for each z ∈ V(t),
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if z1 > z2, let i = 2 and for each Vz neighborhood of z, there exists z
′ ∈ Vz with z

′
1 < z2 so

u2(z
′
1, z2) = −10 < 10− ε = u2(t1, y2)− ε. If z1 ≤ z2, let i = 1 and for each Vz neighborhood

of z, there exists z
′ ∈ Vz with z

′
2 < z1 so u1(z1, z

′
2) = −10 < 10 − ε = u1(y1, t2) − ε. Since

the game is also bounded, compact, quasiconcave and generalized payoff secure, it implies that by

Corollary 3.3, the considered game possesses a Nash equilibrium.

4 RELATED RESULTS

In this section, we show that the g-weakly continuous security is weaker than the most important

results about the existence of pure strategy equilibrium 10. Theorem 3.1 in Reny [1999] shows that

a game G = (Xi, ui)i∈I possesses a Nash equilibrium if it is compact, quasiconcave and better-

reply secure. Reny [1999] and Bagh and Jofre [2006] provided sufficient conditions for a game

to be better-reply secure. Reny [1999] showed that a game G = (Xi, ui)i∈I is better-reply secure

if it is payoff secure and reciprocal upper semicontinuous. Bagh and Jofre [2006] further showed

that G = (Xi, ui)i∈I is better-reply secure if it is payoff secure and weakly reciprocal upper semi-

continuous. Morgan and Scalzo [2007] showed that G = (Xi, ui)i∈I is better-reply secure if ui is

pseudocontinuous, ∀i ∈ I . Prokopovych [2011] proved that if a game G = (Xi, ui)i∈I is payoff

secure then G is better-reply secure if and only if it is transfer reciprocal upper semicontinuous.

Corollary 2 in Carmona [2009] shows that a G = (Xi, ui)i∈I possesses a Nash equilibrium if it is

compact, quasiconcave, weakly upper semicontinuous and weakly payoff secure. Barelli and Soza

[2009] show that ifG = (Xi, ui)i∈I is compact, quasiconcave and generalized better-reply secure,

then it has a Nash equilibrium. Theorem 1 in Carmona [2011] shows that a G = (Xi, ui)i∈I pos-

sesses a Nash equilibrium if it is compact, quasiconcave, weakly better-reply secure. Carmona

[2011] shows in Theorems 2-3 that generalized better-reply security is equivalent to weak better-

reply security. Nessah [2011] shows that a G = (Xi, ui)i∈I possesses a Nash equilibrium if it is

compact, quasiconcave and generalized weakly transfer continuous. Barelli and Meneghel [2013]

show that if G is compact, convex and continuous secure, then it has a Nash equilibrium.

In the following subsections, we show that depending on the choice of the function u, we show

that the weakly continuous security generalizes most of the notions of continuity introduced in the

literature.
10Such as the continuous security of Barelli and Meneghel [2013], C-secure of McLennan, Monteiro and Tourky

[2011], generalized deviation property of Bich and Laraki [2012], generalized better-reply security of Barelli and

Meneghel [2013], Carmona [2011], Barelli and Soza [2009], lower single deviation property of Reny [2009], better-

reply security of Reny [1999], generalized weakly transfer continuity of Nessah [2011] and the results of Prokopovych

[2011, 2012] and Carmona [2009].
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4.1 0-WEAKLY CONTINUOUS SECURE

Let us consider in Definition 3.1, u0
i (yi, x) = sup

V∈Ω(x)
sup

ϕi∈WV (yi,x)
inf

(z,ti)∈Graph(ϕi)
ui(ti, z−i). Then

we obtain the following definition.

DEFINITION 4.1 A game G = (Xi, ui)i∈I is said to be 0-weakly continuous secure (0WCS) if

whenever x ∈ X is not an equilibrium, there exist a neighborhood V of x and a well-behaved

correspondence φx : V � X so that for each z ∈ V nonequilibrium, there exists a player j such

that for each (x, yj) ∈ Graph(φx,j), we have

zj /∈ co{tj ∈ Xj such that u0
j (tj , z) ≥ u0

j (yj , x)}.

We have the following proposition.

PROPOSITION 4.1 If the game G is continuous secure, then it is 0-weakly continuous secure.

PROOF. Suppose that G is continuous secure at x where x is not an equilibrium. Then there is a

neighborhood V of x, α ∈ Rn, and a well-behaved11 correspondence φx : V � X so that

(1) for each t ∈ V , and i ∈ I , we have φx,i(t) ⊆ Bi(t, αi), and

(2) for each z ∈ V , there exists a player j for whom, zj /∈ coBj(z, αj).

Where Bi(x, αi) = {yi ∈ Xi such that ui(yi, x−i) ≥ αi}.
Condition (1) implies that for each i ∈ I , t ∈ V and yi ∈ φx,i(t), ui(yi, t−i) ≥ αi. Therefore,

inf
(t,yi)∈Graph(φx,i)

ui(ti, z−i) ≥ αi. We have for each (t, yi) ∈ Graph(φx,i),

u0
i (yi, t) ≥ inf

(t,yi)∈Graph(φx,i)
ui(ti, z−i) ≥ αi.

Assume that for some z̃ ∈ V nonequilibrium, and for each player i ∈ I so that

z̃i ∈ co{ti ∈ Xi such that u0
i (ti, z̃) ≥ u0

i (ỹi, x̃), for each (x̃, ỹj) ∈ Graph(φx,i)}.

There is a finite set Ai = {t1i , ..., t
pi
i } ⊆ co{ti ∈ Xi such that u0

i (ti, z̃) ≥
u0
i (ỹi, x̃), for each (x̃, ỹj) ∈ Graph(φx,i)} so that z̃i ∈ coAi for each i ∈ I . Therefore, for

each i ∈ I , and h = 1, ..., pi, we have

u0
i (t

h
i , z̃) ≥ u0

i (ỹi, x̃) ≥ αi.
11As mentioned by Carmona and Podczeck [2012], the definition of continuously security in Barelli and Meneghel

[2013] is not exactly equal to the one presented here. Barelli and Meneghel [2013] do not require well-behaved cor-

respondence. Unfortunately, the proof of Theorem 2.2 in Barelli and Meneghel [2013] does not go through without

well-behaved correspondence.
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By condition (2), for z̃ ∈ V , there exists a player j ∈ I so as z̃j /∈ coBj(z̃, αj). If Aj ⊆
Bj(z̃, αj), then we obtain a contradiction z̃j ∈ coAj ⊆ coBj(z̃, αj). Thus Aj * Bj(z̃, αj)

and therefore there is h0 = 1, ..., pj such that th0j /∈ Bj(z̃, αj), i.e. αj > uj(t
h0
j , z̃−j). Let

ε = 1
2 [αj − uj(th0j , z̃−j)] > 0. Then for ε > 0, there exists a neighborhood Vz̃ so that

uj(t
h0
j , z̃−j) ≥ αj − ε =

1

2
αj +

1

2
uj(t

h0
j , z̃−j).

Thus, uj(th0j , z̃−j) ≥ αj > uj(t
h0
j , z̃−j) which is a contradiction.

Consequently, we deduce the following corollaries.

COROLLARY 4.1 (Barelli and Meneghel [2013]) If G = (Xi, ui)i∈I is compact, convex and

continuous secure, then it has a pure strategy Nash equilibrium.

COROLLARY 4.2 (Barelli and Meneghel [2013]) If G = (Xi, ui)i∈I is compact, quasiconcave

and generalized better-reply secure, then it has a pure strategy Nash equilibrium.

PROPOSITION 4.2 If the game G is C-secure, then it is 0-weakly continuous secure.

PROOF. The continuous security of Barelli and Meneghel [2013] is weaker than the C-

security condition of McLennan, Monteiro and Tourky [2011]. Then by Proposition 4.1, the

considered game is 0-weakly continuous secure

COROLLARY 4.3 (McLennan, Monteiro and Tourky [2011]) If G = (Xi, ui)i∈I is compact,

convex and C-secure, then it has a pure strategy Nash equilibrium.

Since Theorem 2.2 in Barelli and Meneghel [2013] generalizes all the results of Reny [1999],

Bagh and Jofre [2006], Prokopovych [2011], Morgan and Scalzo [2007], Carmona [2009, 2011]

and Barelli and Soza [2009], then by Proposition 4.1 and Examples 3.3-3.4, we have the following

corollary:

COROLLARY 4.4 Theorem 3.1 is strictly weaker than the results of Barelli and Meneghel [2013],

Bich and Laraki [2012], Reny [1999], Bagh and Jofre [2006], Prokopovych [2011], Prokopovych

[2012], Morgan and Scalzo [2007], Carmona [2009, 2011], Barelli and Soza [2009] and

Nishimura and Friedman [1981].

PROPOSITION 4.3 If the game G is quasiconcave and has the lower single deviation property,

then it is 0-weakly continuous secure. Therefore, Theorem 3.1 generalizes Theorem 2.2 in Reny

[2009].
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PROOF. Assume that the game G has the lower single deviation property and it is not 0-

weakly continuous secure. Then for x ∈ X nonequilibrium, there exist a neighborhood V of x

and a strategy y ∈ X so that for each z ∈ V , there is a player j such as for each t ∈ V .

u0
j (yj , t) > u0

j (zj , z). (4.1)

Let Ux be an open neighborhood of x so that cl(Ux) ⊂ V . Since G is not 0-weakly continuous

secure, then for neighborhood Ux, and φx : Ux � X defined by φx(t) = {y}, there exists z̃ ∈ Ux
so that

inf
t∈cl(Ux)

u0
i (yi, t) ≤ inf

t∈Ux
u0
i (yi, t) ≤ u0

i (z̃i, z̃), for each i ∈ I. (4.2)

Let z = z̃ in (4.1), then there is a player j so that

u0
j (yj , t) > u0

j (z̃j , z̃), for each t ∈ V. (4.3)

The function t 7→ u0
j (yj , t) is lower semicontinuous on the compact cl(Ux), then there is t̃ ∈

cl(Ux) so that

u0
j (yj , t̃) = inf

t∈cl(Ux)
u0
j (yj , t) ≤ u0

j (z̃j , z̃). (4.4)

So inequalities (4.3) and (4.4) implies that u0
j (yj , t̃) ≤ u0

j (z̃j , z̃) < u0
j (yj , t) which is impossible

for t = t̃ ∈ cl(Ux) ⊂ V .

COROLLARY 4.5 (Reny [2009]) If G = (Xi, ui)i∈I is bounded, compact, quasiconcave and has

the lower single-deviation property, then it has a pure strategy Nash equilibrium.

4.2 u-WEAKLY CONTINUOUS SECURE

Let us consider in Definition 3.1, uui (yi, x) = sup
V∈Ω(x)

sup
ϕi∈WV (yi,x)

inf
(z,ti)∈Graph(ϕi)

[ui(ti, z−i)− ui(z)].

Then we obtain the following definition.

DEFINITION 4.2 A game G = (Xi, ui)i∈I is said to be u-weakly continuous secure (uWCS) if

whenever x ∈ X is not an equilibrium, there exist a neighborhood V of x and a well-behaved

correspondence φx : V � X so that for each z ∈ V nonequilibrium, there exists a player j such

that for each (x, yj) ∈ Graph(φx,j), we have

zj /∈ co{tj ∈ Xj such that uuj (tj , z) ≥ uuj (yj , x)}.

REMARK 4.1 If G = (Xi, ui)i∈I is quasiconcave, then the function uui (yi, x) is quasiconcave in

yi, for each x (see Nessah [2011]). Thus the condition zj /∈ co{tj ∈ Xj such that uuj (tj , z) ≥
uuj (yj , x) for each (x, yj) ∈ Graph(φx,j)} in Definition 4.3 becomes uuj (yj , x) > uuj (zj , z), for

each (x, yj) ∈ Graph(φx,j).
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Recall the definition of generalized weakly transfer continuity: A game G = (Xi, ui)i∈I is

said to be generalized weakly transfer continuous if whenever x∗ ∈ X is not an equilibrium, there

exist a player i, a neighborhood V of x∗ and a well-behaved correspondence ϕi : V � Xi such

that inf
(z,yi)∈Graph(ϕi)

[ui(yi, z−i)− ui(z)] > 0.

We have the following proposition.

PROPOSITION 4.4 If the game G is quasiconcave and generalized weakly transfer continuous,

then it is u-weakly continuous secure.

PROOF. For each x ∈ X , we have uuj (xj , x) ≤ 0. Indeed, if uuj (xj , x) > 0 for some i ∈ I
and x ∈ X , choose ε > 0 such that uui (x, xi) > 2ε. Then there exists a neighborhood V of x and a

well-behaved correspondence φ : V � Xi with xi ∈ φi(x) such that for each (z, yi) ∈ Graph(φi),

we have ui(yi, z−i) > ui(zi, z−i) + ε. Then for z = x and yi = xi, we obtain ui(x) > ui(x) + ε,

i.e. ε < 0 which is impossible.

Now, assume that G is generalized weakly transfer continuous. Then if x ∈ X is not an

equilibrium, there exist a player i, a neighborhood V of x and a well-behaved correspondence

ϕi : V � Xi such that inf
(x′ ,y

′
i)∈Graph(ϕi)

[
ui(y

′
i, x
′
−i)− ui(x′)

]
> 0. Thus for each z ∈ V(x),

there exists a player j = i for whom, uuj (yj , t) ≥ inf
(x′ ,y

′
j)∈Graph(ϕj)

[
uj(y

′
j , x
′
−j)− uj(x′)

]
> 0 ≥

uuj (zj , z), for each (t, yj) ∈ Graph(φx,j).

Consequently, we have the following corollary.

COROLLARY 4.6 (Nessah [2011]) If G = (Xi, ui)i∈I is bounded, compact, quasiconcave and

generalized weakly transfer continuous, then it has a pure strategy Nash equilibrium.

4.3 u-WEAKLY CONTINUOUS SECURE

Let us consider in Definition 3.1, uui (yi, x) = sup
V∈Ω(x)

inf
z∈V

[ui(yi, z−i)− ui(z)] where ui(z) =

sup
V∈Ω(z)

inf
z′∈V

ui(zi, z
′
−i). Then we obtain the following definition.

DEFINITION 4.3 A game G = (Xi, ui)i∈I is said to be u-weakly continuous secure (uWCS) if

whenever x ∈ X is not an equilibrium, there exist a neighborhood V of x and a well-behaved

correspondence φx : V � X so that for each z ∈ V nonequilibrium, there exists a player j such

that for each (x, yj) ∈ Graph(φx,j), we have

zj /∈ co{tj ∈ Xj such that uuj (tj , z) ≥ uuj (yj , x)}.

REMARK 4.2 For each x ∈ X , uui (xi, x) ≤ 0. Indeed, if uui (x, xi) > 0 for some i ∈ I and

x ∈ X . Choose ε > 0 with uui (x, xi) > 2ε, then there exists a neighborhood V of x such that

for each z ∈ V , we have ui(xi, z−i) > ui(z) + ε. Let z = (xi, z−i) ∈ V , thus ui(xi, z−i) >
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sup
Vz

inf
z′∈Vz

ui(xi, z
′
−i) + ε. Then, for Vz = V , we have ui(xi, z−i) > inf

z′∈V
ui(xi, z

′
−i) + ε, for each

z = (xi, z−i) ∈ V . By definition of inf , for ε > 0 there exists z̃ ∈ V such that ui(xi, z̃−i) ≤
inf
z′∈V

ui(xi, z
′
−i) + ε

2 . Thus, we obtain inf
z′∈V

ui(xi, z
′
−i) + ε < ui(xi, z̃−i) ≤ inf

z′∈V
ui(xi, z

′
−i) + ε

2 ;

i.e. ε < 0 which is a contradiction.

Nessah and Tian [2011]: A game G = (Xi, ui)i∈I is said to be quasi-weakly transfer con-

tinuous if whenever x∗ ∈ X is not an equilibrium, there exists a player i, yi ∈ Xi, ε > 0,

and some neighborhood V of x∗ such that for every z ∈ V and every neighborhood Vz of z,

ui(yi, z−i) > ui(zi, z
′
−i) + ε for some z

′ ∈ Vz .
We have the following proposition.

PROPOSITION 4.5 If the game G is quasiconcave and quasi-weakly transfer continuous, then it

is u-weakly continuous secure.

PROOF. For each x ∈ X , we have uuj (xj , x) ≤ 0. Now, assume that G is quasi-weakly

transfer continuous. Then if x ∈ X is not an equilibrium, there exist a player i, a neighborhood V
of x, ε > 0 and a strategy yi ∈ Xi such that ui(yi, t−i) > ui(t)+ε, for each t ∈ V . Let us consider

the following well-behaved correspondence φx : V � X defined by φx(z) = {(y1, y2)}. Since

for each (t, y
′
j) ∈ Graph(φx,j), we have uuj (y

′
j , t) ≥ inf

(t,y
′
j)∈Graph(φx,j)

[uj(y
′
j , t−j) − uj(t)]. Thus

for each z ∈ V nonequilibrium, there exists a player j = i for whom, uuj (y
′
j , t) > 0 ≥ uuj (zj , z),

for each (t, y
′
j) ∈ Graph(φx,j).

Then, we have the following corollary.

COROLLARY 4.7 (Nessah and Tian [2011]) If G = (Xi, ui)i∈I is bounded, compact, quasicon-

cave and quasi-weakly transfer continuous, then it has a pure strategy Nash equilibrium.

5 APPLICATIONS

In this section, we give some game examples that do not satisfy the conditions of existing theorems.

Examples 5.1-5.3 are games that have pure strategy equilibria by our Theorem, but which violate

the continuity and/or quasiconcavity conditions. Finally, Example 5.4 is an application to shared

resource games with characterization existence.

EXAMPLE 5.1 Let us consider the following two-player games of complete information studied

by Baye, Kovenock and de Vries [2012] in which each player i = 1, 2 chooses an action xi from

the strategy space Xi = [0, A] (A is a constant with A > − v+γ
α+θ−β−δ ) and where payoffs are

ui(x) =


W (x) = v − βxi − δx−i, if xi > x−i

L(x) = −γ − αxi − θx−i, if xi < x−i

T (x) = 1
2 [L(x) +W (x)], if xi = x−i.
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Suppose that v + γ > 0. This game can be interpreted as contests with rank-order spillovers. δ

and θ parameters capture the externalities that contestants may inflict on each other. α and β refer

to first and second order direct effects.

Baye, Kovenock and de Vries [2012] proved that this game has a pure strategy Nash equi-

librium if and only if α ≤ 0, β ≥ 0 and α + θ − β − δ < 0. Under conditions α ≤ 0,

β ≥ 0, the considered game is quasiconcave. Let us show that it is 0-weakly continuous se-

cure. Let x = (x1, x2) ∈ X be nonequilibrium. If x1 6= x2, then by continuity of L, or W ,

and the nonequilibrium of x, the game is 0-weakly continuous secure at x. If x1 = x2 = r,

let M(z) = max(L(z),W (z)). Let V an open neighborhood of (r, r) not containing an equi-

librium. Then, by condition α + θ − β − δ < 0 and V do not containing an equilibrium, we

have inf
t∈V

M(t) > sup
t∈V

1
2 [L(t) + W (t)]. By continuity of M (Berge Maximum Theorem), there

exists a continuous function τ : V → V so that for each t ∈ V , we have ui(τi(t), t−i) ≥ M(t),

for each i = 1, 2. Let us consider the following well-behaved correspondence φx : V � V
defined by φx(z) = {(τ1(z), τ2(z))}, for each z ∈ V . Therefore, inf

(t,yi)∈Graph(φx,i)
ui(yi, t−i) =

inf
t∈V

M(τi(t), t−i) ≥ inf
t∈V

M(ti, t−i). We have also for each z ∈ V nonequilibrium, there exist a

player j = 1, 2 so that u0
j (zj , z) ≤ 1

2 [L(z) + W (z)] < inf
t∈V

M(t) ≤ inf
(t,yi)∈Graph(φx,i)

ui(yi, t−i)
12.

Since the game is also bounded, compact and quasiconcave, so by Theorem 3.1, the considered

game possesses a Nash equilibrium.

EXAMPLE 5.2 Consider the two-player game studied by Baye, Tian and Zhou [1993]. Two

duopolists have zero costs and set prices (p1, p2) on X = [0, T ]× [0, T ]. The payoff functions are

(for 0 < c < T ):

ui(p) =

{
pi, if pi ≤ p−i
pi − c, if pi > p−i.

We can interpret the game as a duopoly in which each firm has committed to pay brand loyal

consumers a penalty of c if the other firm beats its price. These payoffs are not quasiconcave nor

continuous. However, the game is 0-weakly continuous secure.

Let x = (x1, x2) ∈ X be nonequilibrium. If x1 6= x2, then by continuity of ui, and the

nonequilibrium of x, the game is 0-weakly continuous secure at x. If x1 = x2 = r, and since

x = (r, r) is not an equilibrium, then r < T − c. Let V ⊂ [0, T − c) × [0, T − c) an open

neighborhood of (r, r) not containing an equilibrium and a well-behaved correspondence φx :

V � V defined by φx(z) = {(T, T )}, for each z ∈ V . Therefore, u0
i (yi, t) ≥ α = T − c, for

each (t, yi) ∈ Graph(φx,i). We have Bj(z, α) = {tj ∈ Xj such that u0
j (tj , z) ≥ α} = {tj ∈

[0, 1] so that tj ≥ T − c}. Thus for each z ∈ V , zj /∈ coBj(z, α) for each j = 1, 2. Since the

12If zi 6= z−i, then there is a player j so that u0
j (zj , z) ≤ uj(z) = min(W (z), L(z)) and if zi = z−i, then there is

a player j so that u0
j (zj , z) ≤ 1

2
[L(z) +W (z)]
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game is also bounded, compact and convex, so by Theorem 3.1, the considered game possesses a

Nash equilibrium.

EXAMPLE 5.3 Consider the following silent duel games (see Karlin [1959]). The payoff func-

tions are:

u1(x1, x2) =


2x1 − 1, if x1 < x2

0, if x1 = x2

1− 2x2, if x1 > x2

and u2(x) = −u1(x).

In this game, the payoff function ui(x1, x2) is not quasiconcave in yi for i = 2. If x1 6= x2,

then by continuity of ui, and the nonequilibrium of x, the game is 0-weakly continuous secure at

x. If x1 = x2 = r and since x = (r, r) is not an equilibrium, then r 6= 1
2 . For some ε > 0,

let V ⊂ (r − ε, 1] × (r − ε, 1] if r − ε > 1
2 and V ⊂ [0, r + ε) × [0, r + ε) if r + ε < 1

2

an open neighborhood of (r, r) not containing an equilibrium and a well-behaved correspondence

φx : V � V defined by for each z ∈ V , φx(z) =

{
{(r − ε, r − ε)}, if r − ε > 1

2

{(r + ε, r + ε)}, if r + ε < 1
2 .

Therefore,

there is α =

{
{(2(r − ε)− 1, 2(r − ε)− 1)}, if r − ε > 1

2

{(1− 2(r + ε), 1− 2(r + ε))}, if r + ε < 1
2

so that u0
i (yi, t) ≥ αi, for each

(t, yi) ∈ Graph(φx,i) and i = 1, 2. Let B0
j (z, αj) = {tj ∈ Xj such that u0

j (tj , z) ≥ αj}.

(1) If r − ε > 1
2 . For each z ∈ V , if z1 ≥ z2, then z1 /∈ coB0

1(z, α1) and if z1 < z2,

then z2 /∈ coB0
2(z, α2).

(2) If r + ε < 1
2 . For each z ∈ V , if z1 ≥ z2, then z2 /∈ coB0

2(z, α2) and if z1 < z2,

then z1 /∈ coB0
1(z, α1).

Since the game is also bounded, compact and convex, it follows by Theorem 3.1 that the game

possesses a pure strategy Nash equilibrium.

EXAMPLE 5.4 Rothstein [2007] studies a class of shared resource games with discontinuous

payoffs, which includes a wide class of games such as the canonical game of fiscal competition

for mobile capital. In these games, players compete for a share of a resource that is in fixed total

supply, except perhaps at certain joint strategies. Each player’s payoff depends on her opponents’

strategies only through the effect those strategies have on the amount of the shared resource that

the player obtains.

Formally, for such a game G = (Xi, ui)i∈I , each player i has a convex and compact strategy

spaceXi ⊂ Rl and a payoff function ui that associates the Sharing Rule defined by Si : X → [0, s]

with s ∈ (0,+∞). That is to say, each player has a payoff function ui : X → R with the form

ui(xi, x−i) = Fi [xi, Si(xi, x−i)] where Fi : Xi × [0, s]→ R and ui is bounded.13

13For more details on this model, see Rothstein [2007] and Nessah and Tian [2011]
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We characterize the existence of pure strategy Nash equilibrium by using Theorem 3.1 as

follows.

PROPOSITION 5.1 The shared resource game R = (Xi, ui)i∈I where ui(xi, x−i) =

Fi [xi, Si(xi, x−i)] has a pure strategy Nash equilibrium if and only if there is a nonempty, domi-

nant, compact and convex subset X0 of X such that R is u-weakly continuous secure on X0.

PROOF. See the proof of Theorem 3.1.

6 CONCLUSION

We establish a new condition of continuity called weakly continuous secure. We offer new Nash

equilibrium existence results for a large class of discontinuous games, which rely on weakly con-

tinuous secure. Theorem 3.1 characterizes the existence of a pure strategy Nash equilibrium by

showing that weakly continuous security on a compact, convex and dominant subset X0 in X , is

necessary while it is sufficient under the boundedness of G = (Xi, ui)i∈I . Proposition 3.2 and

Corollary 3.2 give some sufficient condition of the weakly continuous security. These results per-

mit us to significantly weaken the key assumptions, such as continuity and quasiconcavity on the

existence of Nash equilibria.

Our results strictly generalize almost the existing theorems on the existence of pure strategy

Nash equilibrium such as those in Barelli and Meneghel [2013], McLennan, Monteiro and Tourky

[2011], Bich and Laraki [2012], Carmona [2009, 2011], Barelli and Soza [2009], Reny [1999,

2009], Nessah [2011], Prokopovych [2011, 2012]. We also provide some examples illustrating the

applicability of our general results, when the existing theorems for pure strategy Nash equilibria

fail to hold. It can be easily generalized to the existence of symmetric pure strategy, mixed strategy

Nash, and Bayesian Nash equilibria.
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