3 SEMESTRES + STAGE
Programme Master in Big Data Analytics for Business
Programme
Le Master in Big Data Analytics for Business est conçu pour aider les étudiants à maîtriser les compétences commerciales, les méthodes et les outils d’analyse nécessaires pour transformer les BIG data en BIG insights en marketing, finance et gestion.
Le programme est proposé à temps complet et se compose de 3 semestres de cours et d’une expérience professionnelle. Le cursus se développe autour de modules principaux en commerce, technologie et méthodologie, ainsi que de cours spécialisés en marketing, finance et opérations.
Dans un monde connecté, les données donnent l’opportunité aux entreprises d’aligner leur stratégie marketing, financière et opérationnelle sur les faits et les chiffres. Les étudiants apprendront à devenir des managers orientés sur les données qui seront capables de repérer les opportunités analytiques dans un contexte commercial donné.
Structure du Programme

Contenu des Cours
Le programme est dispensé à temps plein et se compose de 3 semestres de cours et d’une expérience professionnelle.
ECTS
Ce cours aborde les principes fondamentaux du secteur de la gestion de projet. La gestion de projet est une discipline managériale inévitable dans le contexte commercial actuel, influencé par les données. Dans de nombreux secteurs tels que le commerce de détail, les services de la finance, l’industrie pharmaceutique, l’informatique et l’aérospatiale, les projets analytiques dirigent les affaires. Une gestion de projet efficace offre souvent de nouvelles opportunités qui permettent à leur tour d’augmenter les ventes.
Description du cours non-disponible.
Description du cours non-disponible.
Description du cours non-disponible.
Description du cours non-disponible.
Description du cours non-disponible.
Ce cours traite des fondamentaux de l’analyse de feuilles de calcul avancées. Des données d’entreprise internes et externes sont à portée de main et la capacité à les traiter de façon efficace obligent les employés à perfectionner leurs compétences analytiques. L’un des outils commerciaux les plus populaires est l’analyse de feuilles de calcul.
Ce cours porte sur les concepts d’une base de données relationnelle et sur les normes du langage SQL (Structured Query Language). Par ailleurs, ce cours fournit aux étudiants les compétences nécessaires en visualisation des données.
Ce cours analyse les principes des big data et de ses outils. Aujourd’hui, avec Internet et les technologies d’information, des quantités gigantesques d’informations sont créées et stockées par les entreprises. Les données varient en termes de volume, de variété et de rapidité. Ces quantités gigantesques d’information sont appelées big data. Aujourd’hui, les big data sont prédominantes dans les pratiques commerciales, et en apprendre plus sur ces données est essentiel pour de nombreuses organisations.
Description du cours non-disponible.
Description du cours non-disponible.
Description du cours non-disponible.
Ce cours présente aux étudiants les fondamentaux de l’analyse prédictive et descriptive. De nos jours, les informations sur les entreprises et les clients, auxquelles les analystes ont accès, augmentent considérablement. En effet, les entreprises collectent différents types d’informations telles que celles disponibles sur les réseaux sociaux, les comportements d’achat, les plaintes des clients, les informations sociodémographiques, etc. Par conséquent, savoir utiliser ces informations afin d’améliorer son service est indispensable pour chaque analyste, puisque de meilleures décisions en découlent. Ce cours tente de répondre à ce besoin en fournissant aux étudiants de nouveaux moyens de décrire les données et d’interagir avec les clients en one-to-one.
L’objectif de ce cours est de présenter une description concise de quelques séries temporelles répandues en émettant des prévisions sur des modèles basés sur des structures de régression. La modélisation et la prévision des séries temporelles sont d’une importance capitale pour de nombreux secteurs commerciaux.
Ce cours porte sur la façon dont les modèles de réseaux sont ancrés dans la vie sociale et le commerce actuels. Le cours a pour objectif de présenter l’analyse des réseaux sociaux comme étant l’un des domaines les plus innovants et brillants de la recherche en gestion. L’analyse des réseaux sociaux est une méthode de représentation et d’analyse de la structure des relations parmi les nœuds d’un réseau. Combien d’amis avez-vous sur Facebook ? Comment vous comportez-vous sur les réseaux de relations sociales ? Combien de followers sur Twitter ? Utilisez-vous LinkedIn ? Combien de liens pouvez-vous gérer ? Quelles sont les caractéristiques structurelles d’un réseau social ? Quelle sorte de relations sur les réseaux pourrait vous donner le plus de chances de trouver ce que vous cherchez ? Ce même genre de questions peut s’appliquer en contexte commercial afin de comprendre comment les entreprises s’adaptent aux relations de plus en plus nombreuses qu’elles doivent gérer (alliances, clients, fournisseurs, employés, etc.).
Description du cours non-disponible.
Description du cours non-disponible.
Description du cours non-disponible.
Description du cours non-disponible.
Lors de ce cours, vous développerez vos connaissances sur la conception des systèmes de recommandation : les concepts fondamentaux, l’espace de conception et les compromis. Les étudiants doivent comprendre l’espace de conception des systèmes de recommandation et être capables de fournir des recommandations en termes de conception pour un domaine d’application spécifique, ainsi que se montrer critique vis-à-vis d’une conception afin de faire ressortir ses forces et ses faiblesses.
Ce cours familiarise les étudiants à l’évaluation des risques-clients. De nombreuses informations sont disponibles de nos jours au sein des organisations et nous permettent de nous centrer sur une approche axée sur les données pour attribuer un risque de crédit à certains clients de l’entreprise.
Ce cours permet une approche pratique de l’Optimisation, plutôt que des algorithmes. Il vise particulièrement à : (i) fournir une liste sélective des problèmes pratiques auxquels les managers font face en optimisation, (ii) associer ces problèmes aux différentes méthodes d’optimisation mathématique, (iii) formuler des problèmes d’optimisation et interpréter les solutions sur une feuille de calculs.
Ce cours offre aux participants une expérience unique et réelle de résolution d’un enjeu concret en matière de “data science” pour une entreprise. Les participants travaillent en équipe dans le cadre de projets de quatre mois, comme un hackathon, afin de fournir une solution basée sur les données qui soit acceptable à la fois par les scientifiques et les responsables d’entreprise. Les étudiants sont suivis par des experts académiques et issus du monde professionnel.
Description du cours non-disponible.
*(2 cours à choisir parmi “Business Consultancy in a Digital Environment”, “Leading for Creativity and Design Thinking” ou “Strategic People Management”).
Description du cours non-disponible.
*(2 cours à choisir parmi “Business Consultancy in a Digital Environment”, “Leading for Creativity and Design Thinking” ou “Strategic People Management”).
Description du cours non-disponible.
*(2 cours à choisir parmi “Business Consultancy in a Digital Environment”, “Leading for Creativity and Design Thinking” ou “Strategic People Management”).
Notre Programme Carrière aide les participants à établir leur plan de carrière professionnelle en travaillant sur leurs compétences, leurs forces personnelles et en utilisant des outils de réseautage pour être prêts à répondre aux attentes des recruteurs à l’échelle internationale.
À l’issue du modèle, les étudiants doivent être capables de :
Créer un projet de carrière ;
Identifier des compétences personnelles et des expériences accumulées (e.g., expérience du Master) ;
Adapter des outils professionnels (e.g., CV, LinkedIn) au marché local ;
Développer une représentation de leur profil professionnel ;
Utiliser son réseau personnel pour mieux identifier des opportunités professionnelles ;
Mieux comprendre des techniques et des outils pour trouver un emploi ou un stage en France ou à l’étranger ;
Développer une conscience de soi pour connaître ses talents.
Description du cours non-disponible.
Des cours de langue crédités pour tous les niveaux sont inclus dans le programme. Le français est le choix obligatoire pour tout étudiant non francophone. Pour les étudiants francophone, d’autres langues sont proposées (chinois, espagnol, allemand – liste sujette à modification).
4-6 mois de stages / expérience professionnelle partout dans le monde. Les étudiants peuvent également opter pour un Projet de Consulting ou un mémoire.
Note : les informations concernant les cours peuvent être soumises à modification.
Zoom sur… Un projet concret en fin d’année
Le Master en Big Data Analytics for Business permet à ses participants de réaliser un projet concret au début du second semestre. Ce projet a pour objectif de mettre en pratique les compétences et qualifications assimilées lors de leur cursus. En collaboration avec une entreprise, les participants ont l’opportunité de travailler sur des problématiques professionnelles en appliquant les techniques et méthodes qu’ils ont acquises au cours de leur formation.
L’an dernier, le projet a été organisé sous le forme d’un hackathon “Data Science” pendant 4 mois. Plusieurs entreprises ont participé à ce hackathon lors des éditions précédentes : Microsoft, Graydon, Mealhero, Delaware Consulting, Oney, Cofidis, Crédit Agricole, Port of Antwerp-Bruges, The Royal Belgian Soccer Association, Enfocus, Mobly, Monabanq, Cinionic, etc.
Développement personnel et professionnel
Parallèlement aux cours, le programme inclut des ateliers et manifestations d’entreprise supplémentaires dans le but de développer davantage encore les compétences personnelles et professionnelles des étudiants. Ceux-ci couvrent un éventail de sujets tels que la gestion des conflits dans des environnements interculturels et la communication interculturelle.
Notre Programme Carrière aide les participants à mettre en place leur plan de carrière professionnelle en travaillant sur leurs compétences, leurs points forts individuels et en utilisant les outils de mise en réseau pour se préparer à répondre aux attentes des recruteurs au niveau international.
Stages
Durant leurs stages, les étudiants seront capables de lier les théories du management à l’expérience de terrain et d’appliquer les compétences interculturelles qu’ils auront développées à l’IÉSEG.
Ingénieur en Big Data, Analyste Données Clients, Data Analyst, Data Architect, Ingénieur Qualité des Données, Chercheur en Data Science, Data Scientist, Analyste du Marketing en ligne, Analyste Performance ou Pricing Intelligence Analyst : les opportunités de stages qu’offre la formation en fin de parcours sont multiples.
Quelques entreprises qui recrutent nos stagiaires : Trivago, Accenture, Teradata, Honda Europe, Bombardier, KBC, Materialise, Pipecandy, McAfee, CapGemini, Allianz, Sodexo, BNP Paribas, Bloomon, Auchan, AXA, etc.
Le stage peut être réalisé en France ou à l’étranger ; la majorité des étudiant l’ont réalisé en Europe ou en Asie par exemple.
Implication des entreprises dans ce programme
Les entreprises font partie intégrante de la vie académique de ce master spécialisé. Tout au long du programme, les participants ont l’occasion de rencontrer et de tisser des liens avec des entreprises de toutes tailles sur des sujets liés au master, tels que des conférences, des interventions en classe, des défis ou des recrutements sur mesure.
Exemples d’événements déjà organisés :
> Présentation de l’entreprise : “Présentation de l’activité Data Analytics du Groupe et des opportunités d’emploi” – AIR FRANCE KLM
> Visite d’entreprise : “Atelier de Design Thinking et visite du laboratoire d’innovation” – CAPGEMINI
> Intervention en classe – PALANTIR TECHNOLOGIES
Partenariats
L’IÉSEG a conclu un partenariat avec Capgemini, SAS et Air France pour son programme Master in Big Data Analytics for Business.
Ce partenariat avec des leaders mondiaux du conseil, des services informatiques, des services de sous-traitance et des services professionnels locaux enrichit la vision que les étudiants ont de l’analyse des big data. Capgemini, SAS et Air France partagent leur expertise, leurs analyses et perspectives professionnelles concernant les tendances du moment dans leur secteur d’expertise avec les étudiants au cours de sessions de coaching, conférences spéciales, cas d’étude de la vie réelle et visites de l’entreprise. L’opportunité d’en apprendre plus sur des questions professionnelles concrètes de la part de leaders du marché et d’être confronté à l’expérience réelle de professionnels accomplis est un atout capital pour les étudiants.
En 2022, les étudiants de l’IÉSEG du Master in Big Data Analytics for Business ont remporté la “SAS Curiosity Cup”, une compétition entre universités et écoles de commerce internationales dont l’objectif est de motiver les étudiants à utiliser SAS et à trouver des idées sur des sujets qui les intéressent.